VenturCom WP

RTX 5.0

Ref erence Gui de

VenturCom, Inc.
Five Cambridge Center
Cambridge, MA 02142

Tel: 617-661-1230
Fax: 617-577-1607

info@vci.com
http://www.vci.com

RTX Reference

No part of this document may be reproduced or transmitted in any form or by any means,
graphic, electronic, or mechanical, including photocopying, and recording or by any
information storage or retrieval system without the prior written permission of VenturCom,
Inc. unless such copying is expressly permitted by federal copyright law.

0 1998-2000 VenturCom, Inc. All rights reserved.

While every effort has been made to ensure the accuracy and completeness of al information
in this document, VenturCom, Inc. assumes no liability to any party for any loss or damage
caused by errors or omissions or by statements of any kind in this document, its updates,
supplements, or special editions, whether such errors, omissions, or statements result from
negligence, accident, or any other cause. VenturCom, Inc. further assumes no liability arising
out of the application or use of any product or system described herein; nor any liability for
incidental or consequential damages arising from the use of this document. VenturCom, Inc.
disclaims all warranties regarding the information contained herein, whether expressed,
implied or statutory, including implied warranties of merchantability or fitness for a particular
purpose.

VenturCom, Inc. reserves the right to make changes to this document or to the products
described herein without further notice.

RTX isatrademark and CENTer is a servicemark of VenturCom, Inc.

Microsoft, MS, and Win32 are registered trademarks and Windows, Windows CE, and
Windows NT are trademarks of Microsoft Corporation.

All other companies and product names may be trademarks or registered trademarks of their
respective holders

RTX 5.0 Reference Guide
1-016-10

Table of Contents

WELCOME TO RTX 5.0 ..ottt e e e e e et e et e e et e et e e e e e e eaaeeeean VI
Y o To 11 L0 = 10 PRSP PPPRR vii
L€ T= 1o TS] o] Lo o (S viii
LIl gL o= ST U o] oo] SRS UPPRRRRPPRE viii
VENTUICOM WED SIEE ...ttt ettt e e e e e ekttt e e e e e e e naeta et e e e e e aasnebeeeeaeeeaannntaeeeaaaeaann viii
DocuUMENTAtIoN UPAALES......cieiiiiiiiiiii ettt s b e b e e s e viii
CHAPTER 1
INTRODUCTION TO THE RTX PROGRAMMING INTERFACES ..., 1
About the RTX Programming INtEIfACESccuuuiiiiiie i e e e s e e e e e e s snarae e e e e e e e eans 1
Real-Time API (RTAPI) OVEIVIEW.cciiuiiieiiiieee ittt ettt ettt e e e s snbe e e e s snnneee s 1
WiN32-SUPPOrtEd API OVEIVIEWuviiieiieeeisieitieeeee e e s s stteae e e e e e e s s santaareaaeessanastbaeeeaeesssnnsnnaneneeeeeas 2
C Run-Time Library-Supported APl OVEIVIEWuuiiiiiiiieiiiiieesiiee ettt e e 2
About the Windows NT and Windows 2000 Driver IPC APl (RTKAPD........oovcciiiieeeeeiieiiiiieeee, 2
Matrixes of RTX and RTK FUNCHONScoiiiiiiiiiiiiieiie ettt ee e e 2
Matrix Of Real-TIME FUNCHONS ..ot e e e e et e e e e e e et e e e e e e eannneaeeeaaens 3
Matrix of Win32-SUpPPOrtEd FUNCHONS.cciiiiiiiiiiee e et e e e e s e e e e e e s e e e e e e e e s easnnraeeaeaeas 5
Matrix of C Library-Supported FUNCHONScviiiiiiiiii ettt 7
Matrix Of RTK API FUNCHONScoiiiiiiiiiiiit ettt e e e ettt e e e e e e ettt e e e e e e e s nntaeeeaaeeeeannnnneeeeens 11
Functional Groupings of Real-Time and WiIN32 APIS ... 11
EXCEPtion ManagemMENT APISooiiiiieiii et 11
ClOCKS @Nd TIMEIS APIS ...eiiiiiiiii ittt ettt et e ettt e e sttt e e e e a b et e e sttt e e aabe e e e snbbeeeebbeeesanbeeeesnbeeeans 12
GENEIAI USE APIS ...ttt e e oottt et e e e e e e aatb et e e e e e e e atbeeeeeaeeeaantbanreeeaeeeaannrans 12
INEEITUPE SEIVICES APIS ... et e e e e e e e e e e e e e e e et e e e e e e s e e atbaeeeeaeesssnabaeaeeeeas 13
Inter-Process Communication (IPC) APIS........ccuiiiiiie et e e e et e e e e s taraeee s 13
L=t 0 Lo Y Y £ PP PP 13
POIT @NA BUS 1O APIS.. ..ttt ettt ettt e e e st e e e s bttt e e se bt e e e anbb e e e snbeee s anbeeeeanbneeennne 14
Processes and ThrEadS APIS ...ttt ettt e e e e e sttt e e e e e e s tbeeeeeaaeeeennnneeeeens 14
CHAPTER 2
REAL-TIME AP e e e e et e et e e et e e et e e eann s 15
VAN FoToz= 1T o] a1 i o [U o103\ =T o g L] o /PSSR 15
REAIOCAIELOCKEUMEIMOIY ...ttt e e et e e e st e e enb e e e e nenes 16
A (o PP PRP 17
7Nz (ol g1 11T (] o) AV 4= o3 (o SRR 18
REALAChINTEITUPIVECIOIEX ..o 20
RtAtAChSHUtdOWNHANAIETeiiiiieie et 23
(O T g Tot =TI I o 1= PRSP URPR TS 25
(O (o 1ST =] o F= g o | =P PRP 26
RECOMMITLOCKHEAD ... s et s et e e e 27
RtCOMMItLOCKPTOCESSHEAPcee ittt e e 28
RECOMMITLOCKSTACK. ... eeeiii et e e et e e e neeas 29
RECTEATEEVENT. ... ettt ettt ettt ettt sttt 5 5555525555555 5 555552555 s s s s s e s e e e e msnsennnnnn 30
REICTEALEIMULEX ...ttt s s s s e s sesse s s s sssssnsnsessnnssnnsnnnnnnnnnne 32

RO (=F= 1 (=] d (010117 TN 34

RTX Reference

(O (== 1 (= 1ST=] 10 =T o o] = SRR 37
RECreateSharE@dMEIMOIYeiiie ittt a e e e et e e e st e e e e e neeas 39
(O (=T 11 T =T PSPPSR 41
UL 1= (= I =T PRSP 43
L DT IST= 1 o] L= g1 (=T (] o] £ SRR 44
BT o] (=T oo o o L PSP SSPRP 45
REENADIEINTEITUPES ..ottt s et e s et e e e s annb e e e e e nenas 46
g =Yg =T o] =1 o 4 [PSPPSR 47
(T | b (O oo =] o o Lo TR ERRT O 48
REFreECONIGUOUSMEMIOIYvviiiiieeeiiiiieiee e e e e s sttt e e e e e e s st e e e e e e s e st a e e e eeeesesnnnteaaeeeeeesssnnranneees 49
REFTEELOCKEAMEMOIY.....eeiiiitiiie ettt a e e e ettt e e et e e e e e e e e nenas 50
RIGEtBUSDAABYOTTSELciiiiiieiiiiiie ittt e e s e e e e 51
R (CT=1 (@ (0Tl R LTS o] 1] 1T o [SRRSO 53
(T (4 [Tox 1 I 1= RS PURTR RS 54
4 (CT=1 (@ o Tod g T 4114 =T (o o PRSP 55
REGEtPNYSICAIAGUIESSeeieiieiiie ittt s st e e et e e e st e e e nenes 56
(Tl I T =T= (o | = o) PSSR 57
RtGetThreadTimMEQUANTUIMuuuuriiirirurirerarererersrerererererersrere e, 60
(T I = PP EUPR R PS 61
S]] 7 PP PP PPPPPPPPPPPRY 62
o Tod 1 =] 1 1= PP 63
RELOCKPTOCESS ...ttt sttt e s bttt e e e bttt e e e bt e e e e nb e e e e nbee e e e nbeeaeeeneeas 64
LY E=T 011V T<] o o Y PSSP PPT P SPPPPINY 65
REOPENEVENT. ...t e e r e e e s s et e e e e e s e s 67
REOPENIMULEX ..ttt e e e e et ee b s e e e e e e e e e be b s e e e e e e e ee bbb s e e e e aeeesnbanaeeeaaes 68
REOPDENPIOCESS ...ttt et e e e s e s et e e e e s e st e e e e e e e s errr e es 69
(O] 01T o ST=T 0 0= 1] o] = SRR 70
REOPENSNAIEAMEMIOIYciiiiiiiiieiite ettt e et e s e bt e e s e st e e e e anb e e e anneas 71
L] PRSP EETR RS 73
REPUISEEVENT.....cooiiiiii ettt ettt st e e sttt e e s st b e e s e b be e e s ant e e e s enbbeeeeanbaeeeenneeas 76
RtReadPortBufferUchar RtReadPortBufferUshort RtReadPortBufferulongcccccveeennnee. 77
RtReadPortUchar RtReadPortUshort RtReadPortUlongcceeeviiiiiiiiiiieeei e 78
REREIEASEINTEITUDTVECTON ettt e s e e s e e e s an e e e e ennnas 79
REREIEASEIMULEX.......eeieiiiiiie ettt ettt s st e e s bttt e e s bt e e e e e s e e e e enbe e e e e nbeeeeanbeeeeanneeas 80
RIREIEASESEMAPNOIE e e e e e s s e e e e e e s e ae e e e e e e e e snrrraeees 81
RtReleaseShUutdOWNHEANAIETooi e e e s eas 83
RIRESEIEVENT ...ttt s e s s s s e se s s ssesss s e s s e ssssensesesensennnnnnnnnnnnnne 84
RESEtBUSDAtABYOTTSEL......cciiiiiiiiiii ettt 85
RIS T=] (4 [Tod [T 4= 2 PP 87
ST ST Y= o | PP PUPPPPUPPPPPPRt 88
RESEITNIEAAPTIONLYttt ea e s e st e e an e e e e e 89
RtSetThread TimMEQUANTUMt bbb b b aas babarabssasarasassssssssssssssssssssssssnssrnrnres 90
OS] o I = P SURRR PR 91
RESEITIMEIREIALIVE ... st bee e e e st e e e e s ee e e s nneas 93

Table of Contents

] LT =T o] o SRR 95
RITIANSIAtEBUSAUUIESS .. .uuuiiiiiiiiiiiiiiiiiiieeitttretereseeereeerrerrerrreerererrerrrererererereerererererererrrererererrrrrr 96
RETEIMMINAIEPTOCESS ..oeiiii ittt e e e e e e e s st e et e e e e e s st e e e e e e e e s e sannteaaeeeeeesesnnreneeees 98
R U] loTed L =11 g U= I PPPPRPIRS 100
REUNIOCKPTOCESS ... tttiiie e e ittt e e e e e e e e s e e e e e e e s s et et e e e aeeesesnntbaneeeeeeseannnneeeeees 101
REUNMEPMEIMOIY ..ttt e e e e e e e et ab s e e e e e e e tb b s e e e e e e eesbabnaeeeaees 102
RIWaAItFOrMUIIPIEODJECTS ... 103
RIWaItFOrSINGIEODJECT.eeiiieeiee e e e e e s s e e e e s s st re e e e e e e s e annraaeees 106
L ATAT o £ 011 TP PP PP PPTPUPRP P 108
RtWritePortBufferUchar RtWritePortBufferUshort RtWritePortBufferUlong.............cccccoccuvveeee. 110
RtWritePortUchar RtWritePortUshort REWTitePortUIONG..........ccoiiiiieiiiiieeieee e 111
LAY (o T PP PPPPPPPPPPRS 112
CHAPTER 3
WINS32-SUPPORTED AP ... e e e e e et eeaaee e 113
ADNOIrM Al TEIMINALION ... uuuiiiiiiiiiiiiiie i e e e e e e e rete e beeesesesesssesssssssssssssssssssssssssssssesnsnsnnnnes 113
L0 [0 7= =T o Vo | PSSR 114
(O T 1] B (= Tox (o] Y P PP PP OPPPPPPPPPPPTN 115
L@ (== 1 (=Y 1 PSSR 116
LOT ==L (= i 0] (=T Vo [PPSR 121
(D1 o (=T O g o= 1 ST 1T o P PPPPRPIRS 123
=] 11 (T PSSR 124
(BTN ToT=T (o1 @] o1 i £ FR P PPPPPPPPPPRS 125
]|V o R 128
[0 (T O g 1 or= 1R Y=Yt o o 1SR 130
(L o L0 Lo =TS PUPPPOUPPPRS 131
L I 1 (Y= (o R 132
(T] o= LTS P TP PPPPPPRP P 133
L€ T=) (10T =T o] oo =1 Lo S PPERRR. 134
(T (@A U =Y a1 == o 135
(1= (@A U =Y a1l a1 =T= o | Lo I 136
1=t (oT=Y o] ({01 @1 o [PSSR 137
GetEXCePIONINTOIMALION.cci ittt ettt e et e e e st e e e snneeeesanes 139
1= (1 (@1 o [I o] == o [PPSR 140
LTS = 1S3 4 =t o] PPN 141
7= o (017 Ao o £ PPERRR 142
LTS ool o] o 1= T T o PP PPPPPPTPPTINN 144
1o i B T =T=To | o] 11 OO O PP PPPPPPPPPPPN 145
[(== T A | o T SR 146
HEAPC AL ...ttt e e e e e e e e e et e e 147
HEAPDESIIOY ...ttt e e e e et e e e e e et e e e bbb e e e e e e e b e e e e e e ee bt e aaae 149
L (2721 0] o (=T PSP PPPPPINY 150
HEAPREAIIOC ..ttt e et e e e h et e e ekt e e e b b e e e e b e e e e e nenas 151
[(= 01 - PSSR 153
JaT i P L=Y @t g1 i or= 1 ST=Tox i o] o ISP PP PUPPPUPPPRUPRPNS 154
[T AT @ 1 Tor= 1 ST Tox 1o o PSR 155

RTX Reference

Vi

[0 Vo | N o - VY2 PSSR 156
RAISEEXCEPLION ...ttt e e bt e e ekt e e ekt e e e et e e e s e bre e e e e aaneas 158
=T Vo | SRR 160
REMOVEDIIECIONY.....eei ettt ettt e e e bt e e e et bt e e e et b e e e e et bt e e e anbreeeeanneas 162
RESUMETRIFEAGeeiieiiiiie ettt e et e e s st e e s anbb e e e s anbae e e e snbaeeeennreas 163
Y= {1 1] o T o (= PP PRPRPPRRN 164
S LS TON .. s 166
Yyl 41 (=TT L T 1Y PRSP 167
SetUnhandledEXCEPIONFIIEN.cooiiiii e 168
S 1= o PSSR 170
SUSPENUATRIEA. ...ttt e e bt e e st e e e e sbb e e e e sabe e e e s sabeeeeeanes 171
TermMINAIETRFEAU. ...t e et e e e e e e s s be e e e e e e e e e sannrereeeaaaeeean 172
LI AN T USSP PPSPTP 173
LIS (T PRSPPI 175
TISGEEVAIUE. ...ttt ettt e s a et e e s bbbt e s bbb e e s enbe e e e s bbaeeesnbaeeesnnneeeenn 176
TISSEEVAIUE ...ttt e oo e ettt e e e e e e s e aa et e e e e e e s e nbebeeeeaaeeesannteraeeeaaeeean 177
UNhandIedEXCEPLONFIIETveiiii e e e e e e e e e e s e snnrnaeeees 178
WIEFIIE . 179

CHAPTER 4

C RUN-TIME AP sttt e e e et e e e e et e e e e e e e e e eeranaeneees 181
Alphabetical List of C RUN-TIME APISuuuiiiieiii et e e e e e e s e 181

CHAPTER 5

WINDOWS NT DRIVER IPC API (RTKAPI) REFERENCE...........ccccooiiiiiieeeni, 183
(O [0 11=1 o F= 1 o | = PRSP 183
R OA == =] YT o | SRR RRR 184
(O L= 1Y 11 (= PP 186
(O (=T (1T 4T] (o] =R 188
REKCreateShar@dMEMOIYccoiiiiiieiiit ettt st e e et e e e ee e e e e 190
(@] 1= g1 A= o RS 192
REKOPENMULEX ..ttt ettt et e e ekt e e et et e e et e e e e et b e e e e anbn e e e e anbneeeeanneas 193
REKOPENSEMAPNOTE ...t e e s e e 195
@ o= R T =To [=T g T o S 197
REIKPUISEEVENLttt e e e e e ettt e e e e e e e s s sa b e e e e e e e e e s nbbbbeeeeaeeeeannteeneeas 199
RIKREIEASEMULEXeeeiiiiiee i itiiee ettt ettt e sttt e e e sttt e e e st et e e e sn bt e e e snbe e e e e snbeeeeennbeeeeennreas 200
RtKREIEASESEMAPNOIE ...t e 201
R G =T | YT o | SRR RRR 203
R TS N1 =T o PP R PR 204
R ESTS] B L] = Vo o PP USTR R R 205
ST Y= o | SRR 206
REKWaItFOrSINGIEODJECTt e 207

11 P 209

Welcome to RTX 5.0

Document ID: 1-016-10
© 2000 VenturCom, Inc. All rights reserved.

goboooooooooooooobooooooooooooboooooooooooboOoOooboo0ooooboo

=
o
o

About RTX

VenturCom’s Real-time Extension (RTX) adds real-time capabilities to Windows NT and
Windows 2000 that are unparalleled in the industry. It offers devel opers arich and powerful
real-time feature set — all in a familiar Win32-compatible interface. It also provides tools
and utilities for building and executing real-time programs, along with tools for measuring
and fine tuning the performance of both hardware and software.

In addition to using the real-time interfaces and tools provided by RTX, developers can
continue to take advantage of the abundance of products available for Windows NT and
Windows 2000. And, with the RTX inter-process communication features, the Win32 run-
time environment works seamlessly with the RTX real-time subsystem — enabling the
integration of Win32 and real-time functionality.

Experienced real-time developers will value the power of the RTX interface; we suggest that
you refer to the topics in tHeTX Overview in theRTX User’s Guidéor a more detailed

description of RTX and a discussion of important design decisions that need to be made in

order to fully take advantage of RTX features.

Vii

RTX Reference

Getting Su

Techn

pport

VenturCom offers a number of support options for RTX users, including technical support
and the VenturCom Web site.

Note: If you are a customer who purchased direct support, you would have received a
Support ID# in the letter that comes with the software. Please have this number available for
reference when contacting VenturCom. Users who purchased their product through third
parties should contact those parties directly with their questions.

ical Support

For technical support related to installing and using RTX, VenturCom offers several channels
of communication. Y ou can:

m Cadl technical support at 800-334-8649 between 9:00 AM and 6:00 PM (Eastern
Time)

m Email your questionsto support@vci.com
B Fax your questionsto 617-577-1607

VenturCom Web Site

The VenturCom Customer Support Web page islocated at:
http://www.vci.com/tech_support/support_description.html

If you are a customer with a current support contract or a member of the Real-time and
Embedded Partner Program, then you should bookmark to the Web page in the Technical
Support Arealocated at:

http://www.vci.com/tech support/support_login.html

These pages provide electronic access to the latest product rel eases, documentation, and
release notes. With avalid Support 1D#, you can access the online problem report database to
submit new issues, or to obtain the status of previously reported issues.

Documentation Updates

viii

VenturCom is committed to providing you with the information you need to use our products.
From time to time, we may provide documentation updates for our products. Check our
CENTer page for updates. While visiting CENTer, check out the various white pages and
presentations. CENTer also provides access to several newsgroups. You'l also find free
utilities and extensions that you can download.

CHAPTER 1

Introduction to RTX Programming Interfaces

About the RTX Programming Interfaces

RTX provides an essential set of real-time programming interfacesin the Win32
environment. The RTX interfaces are compatible with the Win32 programming interfaces. In
addition, RTX provides extensions to Win32 in order to provide a complete set of real-time
functions to the application programmer.

RTX application programs can use the real-time extensions in both the Win32 and RTSS
environments and programs can use the Win32-supported API in the rea -time susbsystem
(RTSS) environment. This provides maximum flexibility to the developer. In the Win32
environment, programs can be devel oped and tested with the real-time extensions using the
vast number of Win32 development tools. The same program can be re-linked asan RTSS
program and run deterministically.

The application programming interface for RTX is composed of three sets of interfaces:

m Read-TimeAPI| (RTAPI)
m Win32-Supported API
m CRun-Time Library-Supported API

See Also
About the Windows NT and Windows 2000 Driver IPC APl (RTKARPI)

Real-Time API (RTAPI) Overview

The RTAPI (real-time application programming interface) set is composed of unique
interfaces and Win32-based interfaces. All RTAPI interfaces are identified by the real-time
prefix "Rt."

Unique real-timeinterfaces-These functions are new, Win32-modeled extensions that
provide essential programming capabilities required for real-time applications. Thereisno
equivalent Win32 function for these RTAPI functions. The function begins with the "Rt"
prefix and the interface semantics are modeled on the Win32 programming interface
semantics.

An exampleis RtAttachlnterruptVector. Thisfunction isrequired for rea-time
programming, thereis no Win32 functional equivalent, and the"Rt" prefix signifiesthat the
functionisan RTAPI function.

Win32-based real-time inter faces-These functions are also extensions to the Win32
functions and provide additional real-time programming capability. Unlike the unique
functions above, there are similar functions in the Win32 environment; however, they behave
differently. The differences are required by the real-time semantics. The function nameis
prefixed with "Rt" and the interface semantics are compatible with Win32 programming
interface semantics.

RTX Reference

An exampleis RtCreateM utex. Thisfunction isrequired for real-time programming. There
isaWin32 functional equivalent, but it does not behave exactly like the Win32 CreateM utex
function. The "Rt" prefix signifiesthat the function isan RTAPI function.

See Chapter 2, Real-Time API for detailed descriptions of each function.

Win32-Supported API Overview

The Win32-Supported functions behave identically to the Win32 functions and are supported
in the RTSS environment. The function name is not prefixed with "Rt" since the behavior and
the calling interface are identical in both environments.

An exampleis ResumeThread. This function is supported in the RTSS environment; has
identical Win32 equivalent; and the function interface isidentical to the Win32 function
interface.

See Chapter 3, Win32-Supported API for detailed descriptions of each function.

C Run-Time Library-Supported API Overview

An extensive set of Microsoft C Run-time library callsis supported in the RTSS environment.
See the Alphabetical List of C Run-Time APIsin Chapter 4, C Run-Time.

About the Windows NT and Windows 2000 Driver IPC APl (RTKAPI)

The Windows NT and Windows 2000 Driver Inter-Process Communication APl (RTKAPI)
functions are used to access RTX IPC mechanisms from Windows NT and Windows 2000
kernel device drivers. These calls are analogousto their RTAPI counterparts (e.g.,
RtkOpenSemaphor e is anal ogous to RtOpenSemaphore).

Y ou use the RTKAPI functions the same way as the RTAPI functions, but from the Windows
NT and Windows 2000 kernel environment. All RTKAPI interface names are prefixed with
"Rtk."

The RTKAPI also consists of an include file (RtkApi.h) and alink library (rtx_rtk.lib).

See Chapter 4, Windows NT and Windows 2000 Driver IPC API (RTKAPI) for detailed
descriptions of each function.

Matrixes of RTX and RTK Functions

The matrixes provide technical information about the RTX and RTK APIs. Matrixes are
provided for:

® Red-Time Functions

® Win32-Supported Functions

m C Library-Supported Functions
m Matrix of RTK Functions

Chapter 1: Introduction

Key
The following key explainsthe "Notes' column in the tables.

Code for Meaning

Notes

1 The priority spectrum of Rt is 0 to 127, whereas the Win32
range is {-15, -2, -1, 0, 1, 2, 15} on Windows NT and Windows
2000.

2 The RTX IPC namespace is separate from the Win32
namespace.

3 The call is supported as both an Rt call and as a Win32 call
(e.g., RtAtoi and Atoi).

4 Not for use in RTDLL.

5 C Run-Time calls not supported in shared RTDLL.

Determ "Yes" means the elapsed time for the call is less than 5

-inistic microseconds. Deterministic functions in RTSS work at
Windows NT blue screens and Windows 2000 stop screens.

* Deterministic for small input sizes.

Matrix of Real-Time Functions

RTAPI Function Name Notes Deterministic?
RtAllocateContiguousMemory

RtAllocateLockedMemory

RtAtoi 3 Yes
RtAttachInterruptVector

RtAttachInterruptVectorEx

RtAttachShutdownHandler

RtCancelTimer Yes

RtCloseHandle

RtCommitLockHeap

RtCommitLockProcessHeap

RtCommitLockStack

RtCreateEvent 2
RtCreateMutex 2
RtCreateProcess

RtCreateSemaphore 2
RtCreateSharedMemory

RtCreateTimer

RtDeleteTimer

RTX Reference

RTAPI Function Name Notes Deterministic?
RtDisablelInterrupts Yes
RtDisablePortIo

RtEnablelnterrupts Yes
RtEnablePortIo

RtFreeContiguousMemory

RtFreeLockedMemory

RtGetBusDataByOffset

RtGetClockResolution Yes
RtGetClockTime Yes
RtGetClockTimerPeriod Yes
GetExitCodeProcess Yes
RtGetPhysicalAddress

RtGetThreadPriority 1,3 Yes
RtGetTimer Yes
RtIsInRtss Yes
RtLockKernel

RtLockProcess

RtMapMemory

RtOpenEvent 2

RtOpenMutex 2

RtOpenProcess Yes
RtOpenSemaphore 2
RtOpenSharedMemory

RtPrintf 3

RtPulseEvent 2 Yes
RtReadPortBufferUchar Yes
RtReadPortBufferUlong Yes
RtReadPortBufferUshort Yes
RtReadPortUchar Yes
RtReadPortUlong Yes
RtReadPortUshort Yes
RtReleaselnterruptVector

RtReleaseMutex 2 Yes

Chapter 1: Introduction

RTAPI Function Name Notes Deterministic?

RtReleaseSemaphore 2 Yes

RtReleaseShutdownHandler

RtResetEvent 2 Yes

RtSetBusDataByOffset

RtSetClockTime Yes

RtSetEvent 2 Yes

RtSetThreadPriority 1,3 Yes

RtSetThreadTimeQuantum Yes

RtSetTimer Yes

RtSetTimerRelative Yes

RtSleepFt Yes

RtTerminateProcess

RtTranslateBusAddress

RtUnlockKernel

RtLockProcess

RtUnmapMemory

RtWaitForMultipleObjects Yes

RtWaitForSingleObject Yes

RtWPrintf 3

RtWritePortBufferUchar Yes

RtWritePortBufferUlong Yes

RtWritePortBufferUshort Yes

RtWritePortUchar Yes

RtWritePortUlong Yes

RtWritePortUshort Yes

RtWtoi 3 Yes
Matrix of Win32-Supported Functions

Win32 Function Name Notes Deterministic?

AbnormalTermination

CloseHandle

CreateDirectory

CreateFile

CreateThread

RTX Reference

Win32 Function Name

Notes

Deterministic?

DeleteCriticalSection

DeleteFile

DeviceloControl

DlIMain

EnterCriticalSection

Yes

ExitProcess

ExitThread

FreelLibrary

GetCurrentProcessld

Yes

GetCurrentThread

Yes

GetCurrentThreadId

Yes

GetExceptionCode

Yes

GetExceptionInformation

Yes

GetExitCodeThread

Yes

GetLastError

Yes

GetProcAddress

GetProcessHeap

GetThreadPriority

1,3

Yes

HeapAlloc

HeapCreate

HeapDestroy

HeapFree

HeapReAlloc

HeapSize

Yes

InitializeCriticalSection

LeaveCriticalSection

Yes

LoadLibrary

RaiseException

Yes

ReadFile

RemoveDirectory

ResumeThread

Yes

SetFilePointer

SetLastError

Yes

Chapter 1: Introduction

Win32 Function Name Notes Deterministic?
SetThreadPriority 1,3 Yes
SetUnhandledExceptionFilter Yes
Sleep Yes
SuspendThread Yes

TerminateThread

TIsAlloc Yes
TIsFree Yes
TIsGetValue Yes
TIsSetValue Yes
UnhandledExceptionFilter Yes
WriteFile

Matrix of C Library-Supported Functions

C Library Function Name Notes Deterministic?
abs 5 Yes
acos 5 Yes
asin 5 Yes
atan 5 Yes
atan2 5 Yes
atof 5 Yes
atoi 3,5 Yes
atol 5 Yes
bsearch 5 Yes*
calloc 5

ceil 5 Yes
cos 5 Yes
cosh 5 Yes
difftime 5 Yes
div 5 Yes
exit 5

exp 5 Yes
fabs 5 Yes
fclose 5

fflush 5

fgets 5

floor 5 Yes

RTX Reference

C Library Function Name Notes Deterministic?
fmod 5 Yes

fopen 5

fprintf(stderr) 4,5

fputc 5

fputs 5

fread 5

free 5

frexp 5 Yes
fseek 5

ftell 5

fwrite 5

getc 5

isalnum 5 Yes
isalpha 5 Yes
iscntrl 5 Yes
isdigit 5 Yes
isgraph 5 Yes
islower 5 Yes
isprint 5 Yes
ispunct 5 Yes
isspace 5 Yes
isupper 5 Yes
iswalnum 5 Yes
iswalpha 5 Yes
iswascii 5 Yes
iswentrl 5 Yes
iswctype 5 Yes
iswdigit 5 Yes
iswgraph 5 Yes
iswlower 5 Yes
iswprint 5 Yes
iswpunct 5 Yes
iswspace 5 Yes
iswupper 5 Yes
iswxdigit 5 Yes
isxdigit 5 Yes
labs 5 Yes
Idexp 5 Yes

Chapter 1: Introduction

C Library Function Name Notes Deterministic?
Idiv 5 Yes
log 5 Yes
log10 5 Yes
longjmp 5 Yes
main 5

malloc 5

memchr 5 Yes
memcmp 5 Yes*
memcpy 5 Yes*
memmove 5 Yes*
memset 5 Yes
modf 5 Yes
perror 4,5

pow 5 Yes
printf 3,4,5

putc 5

putchar 5

gsort 5 Yes*
rand 5 Yes
realloc 5

rewind 5

setjmp 5 Yes
signal 5

sin 5 Yes
sinh 5 Yes
sprint 5 Yes
sqrt 5 Yes
srand 5 Yes
sscanf 5

strcat 5 Yes
strchr 5 Yes
strcmp 5 Yes
strcpy 5 Yes*
strcspn 5 Yes
strerror 5 Yes
strlen 5 Yes
strncat 5 Yes
strncmp 5 Yes*

RTX Reference

10

C Library Function Name Notes Deterministic?
strncpy 5 Yes*
strpbrk 5 Yes
strrchr 5 Yes
strspn 5 Yes
strstr 5 Yes
strtod 5 Yes
strtok 5 Yes
strtol 5 Yes
strtoul 5 Yes
tan 5 Yes
tanh 5 Yes
tolower 5 Yes
toupper 5 Yes
towlower 5 Yes
towupper 5 Yes
ungetc 5 Yes
va_start 5 Yes
vsprintf 4,5

wcscat 5 Yes
wceschr 5 Yes
wcscmp 5 Yes
wcscpy 5 Yes
wcscspn 5 Yes
wcsftime 5 Yes
wcslen 5 Yes
wcsncat 5 Yes
wcsncmp 5 Yes*
wcsncpy 5 Yes*
wcspbrk 5 Yes
wcsrchr 5 Yes
wcssphn 5 Yes
wcsstr 5 Yes
wcstod 5 Yes
wcstok 5 Yes
wcstol 5 Yes
wcstoul 5 Yes
wmain 5

wprintf 3,4,5

wtof 5 Yes

Chapter 1: Introduction

C Library Function Name Notes Deterministic?
wtoi 3,5 Yes

wtol 5 Yes

_controlfp 5

_fpreset 5

Matrix of RTK API Functions

The table that follows liststhe RTK API functions.

Note: All RTK functions are available only to Windows NT device drivers, they are not

availableto RTX applications.

RTK API Function Name

Notes

RtkCloseHandle

RtkCreateEvent

RtkCreateMutex

RtkCreateSemaphore

RtkCreateSharedMemory

RtkOpenEvent

RtkOpenMutex

RtkOpenSemaphore

N

RtkOpenSharedMemory

RtkPulseEvent

RtkReleaseMutex

RtkReleaseSemaphore

RtkResetEvent

NININ[N

RtkRtssAttach

RtkRtssDetach

RtkSetEvent

Exception Management APIs

Functional Groupings of Real-Time and Win32 APlIs

Exception Management
Real-Time APIs

Exception Management
Win32-Supported APIs

RtAttachShutdownHandler
RtReleaseShutdownHandler

AbnormalTermination
GetExceptionCode
GetExceptionInformation
RaiseException
SetUnhandledExceptionFilter
UnhandledExceptionFilter

11

RTX Reference

12

Clocks and Timers APIs

Clocks and Timers
Real-Time APIs

Clocks and Timers
Win32-Supported APIs

RtCancelTimer
RtCreateTimer
RtDeleteTimer
RtGetClockResolution
RtGetClockTime
RtGetClockTimerPeriod
RtGetTimer
RtSetClockTime
RtSetTimer
RtSetTimerRelative
RtSleepFt

Sleep

General Use APIs

General Use
Real-Time APIs

General Use
Win32-Supported APIs

RtAtoi
RtCloseHandle
RtIsInRtss
RtPrintf
RtWPrintf
RtWtoi

CloseHandle
CreateDirectory
CreateFile
DeleteCriticalSection
DeleteFile
DeviceloControl
DIIMain
EnterCriticalSection
FreelLibrary
GetlLastError
GetProcAddress
InitializeCriticalSection
LeavecCriticalSection
LoadLibrary

ReadFile
RemoveDirectory
SetFilePointer
SetlLastError
WriteFile

Chapter 1: Introduction

Interrupt Services APIs

Interrupt Services
Real-Time APIs

RtAttachInterruptVector
RtAttachInterruptVectorEx
RtDisableInterrupts

RtEnablelnterrupts
RtReleaselnterruptVector

Inter-Process Communication (IPC) APlIs

IPC
Real-Time APIs

RtCreateEvent
RtCreateMutex
RtCreateSemaphore

RtCreateSharedMemory
RtOpenEvent
RtOpenMutex
RtOpenSemaphore
RtOpenSharedMemory
RtPulseEvent
RtReleaseMutex
RtReleaseSemaphore
RtResetEvent
RtSetEvent

RtWaitForMultipleObjects
RtWaitForSingleObject

Memory APIs
Memory Memory
Real-Time APIs Win32-Supported

APIs

RtAllocateContiguousMemory GetProcessHeap
RtAllocateLockedMemory HeapAlloc
RtCommitLockHeap HeapCreate
RtCommitLockProcessHeap HeapDestroy
RtCommitLockStack HeapFree
RtCreateSharedMemory HeapReAlloc
RtFreeContiguousMemory HeapSize
RtFreeLockedMemory
RtGetPhysicalAddress
RtLockKernel
RtLockProcess

RTX Reference

14

Memory Memory
Real-Time APIs Win32-Supported
APIs

RtMapMemory
RtUnlockKernel
RtUnlockProcess

RtUnmapMemory

Port and Bus 10 APIs

Port and Bus IO Real-Time APIs

RtDisablePortlo

RtEnablePortlo

RtGetBusDataByOffset
RtReadPortBufferUchar, Ushort, Ulong
RtReadPortUchar, Ushort, Ulong
RtSetBusDataByOffset
RtTranslateBusAddress
RtWritePortBufferUchar, Ushort, Ulong
RtWritePortUchar, Ushort, Ulong

Processes and Threads APIs

Processes and Threads Processes and
Real-Time APIs Threads Win32-
Supported APIs
RtCreateProcess CreateThread
RtGetExitCodeProcess ExitProcess
RtGetThreadTimeQuantum ExitThread
RtIsInRtss GetCurrentProcessld
RtTerminateProcess GetCurrentThread
RtSetThreadPriority GetCurrentThreadld
RtSetThreadTimeQuantum GetExitCodeThread
RtSleepFt GetThreadPriority
RtOpenProcess
ResumeThread
SetThreadPriority
Sleep
SuspendThread
TerminateThread
TIsAlloc
TIsFree
TIsGetValue
TIsSetValue

CHAPTER 2

Real-Time API

RtAllocateContiguousMemory

RtAllocateContiguousMemory allocates physically contiguous memory.

PVOID

RtAllocateContiguousM emory(
ULONG Length,
LARGE_INTEGER Physical Address

)i
Parameters
Length
An unsigned 32-bit quantity indicating the amount of memory, in bytes, to allocate.

Physical Address
The highest physical address that can be part of the range allocated.
Return Values

The function returns a pointer to the memory allocated if successful; otherwise, it returns a
NULL pointer.

Comments

RtAllocateContiguousM emory allocates memory in the virtua address space of the process,
backed by contiguous, non-paged physical memory. The second argument allows the user to
specify the highest acceptable physical address. If this memory is used with certain hardware
devices, an upper-addressing limit may be imposed by the design of the hardware device.

Note that the amount of non-paged, contiguous memory available isrelatively limited, and is
rapidly fragmented through normal system operation. Applications should use this resource
carefully and obtain allocations early in operation.

See Also

RtFreeContiguousM emory
RtGetPhysical Address

15

RTX Reference

RtAllocateLockedMemory

16

RtAllocatel ockedM emory commits and locks the specified amount of memory to avoid
page faults as the memory is used.

PVOID

RtAllocatel. ockedMemory(
UINT nNumber OfBytes
);

Parameters

nNumber OfBytes
An unsigned integer specifying the number of bytes to allocate, commit, and lock.

Return Values

The function returns a pointer to the memory allocated if successful; otherwise, it returns a
NULL pointer.

Comments

RtAllocatel ockedM emory allocates memory in the virtual address space of the process,
commits that space to physical memory, and locks that physical memory. The committed
locked memory will not incur page faults when the memory is used, nor will the system page
the allocated memory out to secondary storage.

See Also

RtCommitL ockHeap
RtCommitL ockProcessHeap
RtCommitL ockStack
RtFreel ockedMemory
RtLockKernd

RtL ockProcess

RtUnlockK ernel
RtUnlockProcess

Chapter 2: Real-Time API

RtAtoI

RtAtoi converts a given string value to an integer.

INT

RtAtoi(
LPCSTR IpString

Param ete)r,s
IpSring
The source character string.
Return Values
This function returns the integer value of the string.
Comments

RtAtoi issimilar to atoi, but RtAtoi does not require the C run-time library and can work
with any combination of run-time libraries.

This function supports decimal digits only, and does not allow leading whitespace or signs.
See Also

RtPrintf
RtWoprintf
RtWtoi

17

RTX Reference

RtAttachinterruptVector

RtAttachl nterruptVector allows the user to associate a handler routine in user space with a
hardware interrupt. Non-shared, level-triggered interrupts are supported only in the RTSS
environment. They are not supported in a Win32 environment.

Note: RtAttachlnterruptVector does not permit shared interrupts. The function call,
RtAttachl nterruptVector Ex, permits shared interrupts.

HANDLE

RtAttachlnterruptVector (
PSECURITY_ATTRIBUTES pThreadAttributes,
ULONG SackSze,
VOID (RTFCNDCL *pRoutinel ST)(PVOID contextl ST),
PVOID Context,
UL ONG Priority,
INTERFACE_TYPE InterfaceType,
UL ONG BusNumber,
UL ONG BuslnterruptLevel,
UL ONG BuslnterruptVector

);

Parameters

18

pThreadAttributes (ignored by RTSS)

A security attributes structure used when the handler thread is created. See CreateT hread
in the Windows Win32 SDK.

SackSze

The number of bytesto alocate for the handler thread's stack. The stack size defaultsto the
thread’s stack size.

pRoutinel ST

A pointer to the handler routine to be run. The routine takes a single PV OID argument, and
context and returns VOID.

Contextl ST
The argument to the handler routine, cast asa PVOID.

Priority

Thethread priority for the handler routine. Executing equal and higher priority threads
disable the interrupt; executing lower priority threads enable it.

InterfaceType

Thetype of businterface on which the hardware islocated. It can be one of the following
types: Internal, ISA, EISA, MicroChannel, TurboChannel, or PCIBus. The upper
boundary on the bus types supported is always M aximuml nterfaceType.

Chapter 2: Real-Time API

BusNumber

The busthat the device is onin a multiple bus environment. It is zero-based. Note that this
value appliesto each bus type, so for a system with one ISA bus and one PCIBus, for
example, each would have a BusNumber of 0.

BuslnterruptLevel
A bus-specific interrupt level associated with the routine that will handle the interrupt.

BuslnterruptVector
A bus-specific address associated with the routine that will handle the interrupt.

Return Values

The function returns an RT X-specific interrupt handle if successful. The function returns a
NULL handlefor an invalid argument, for failing to connect the interrupt, or if adeviceis
aready using the bus resources requested.

Comments

RtAttachlnterruptVector alows a user to associate a handling routine with a hardware
interrupt on one of the supported buses on the computer. The routine uses the DDK HAL
routines for getting the system-wide interrupt vector based on the bus-specific interrupt level
and vector. If successful, it creates a handling thread in the user’s application. When the
interrupt occurs, the handling thread is notified and the thread runs the handling routine and
argument specified.

The handling routine must not change its thread priority.

Asin atypica device driver, the user is responsible for initializing the hardware device,
enabling the generation of interrupts, and acknowledging interrupts in the appropriate
manner. Interrupt generation on the device can be enabled after a successful call to
RtAttachinterruptV ector. Conversely, the user must disable interrupts before disconnecting
the interrupt with RtRe easel nterruptVector, and a so disconnect the interrupt before
exiting. In the interrupt handling routine, the user should perform the appropriate stepsto
acknowledge the device'sinterrupt. Typically, these operations are performed by writing
commands to a device’'s command/status register, which is either memory-mapped or in the
I/O address space of the system.

See Also
HalGetlnterruptVector (in the DDK for Windows NT 4.0 and DDK for Windows 2000)

RtEnablePortlo
RtReadPortBufferUchar
RtRel easel nterruptV ector
RtWritePortUchar

19

RTX Reference

RtAttachinterruptVectorEx

RtAttachl nterruptVector Ex allows the user to associate an IST and ISR with a shared or
non-shared hardware interrupt.

HANDLE

RtAttachl nterruptVector Ex(

PSECURITY_ATTRIBUTES pThreadAttributes,

ULONG SackSze,

BOOLEAN (RTFCNDCL *pRoutinel ST)(PVOID Contextl ST),

PVOID Contextl ST,

UL ONG Priority,

INTERFACE_TYPE InterfaceType,

UL ONG BusNumber,

UL ONG BuslnterruptLevel,

UL ONG BuslnterruptVector,

BOOL EAN ShareVector,

KINTERRUPT_MODE InterruptMode,
INTERRUPT_DISPOSITION (RTFCNDCL *pRoutinel SR)(PVOID Contextl SR)

);

Parameters

pThreadAttributes (Ignored by RTSS)

A security attributes structure used when the handler thread is created. See CreateThread
in the Windows Win32 SDK.

SackSze
The number of bytesto alocate for the handler thread's stack. See CreateT hread.

pRoutinel ST

A pointer to the handler routine to be run by the interrupt service thread (1ST). Theroutine
takes asingle PVOID argument and returns BOOLEAN.

Context

The argument to the handler routines (i.e., the routines pointed to by pRoutine and
Myinterrupt), cast asaPVOID.

Priority

Thethread priority for the handler routine. Executing equal and higher priority threads
disable the interrupt; executing lower priority threads enable it.

InterfaceType

Thetype of businterface on which the hardware islocated. It can be one of the following
types: Internal, | SA, EISA, MicroChannel, TurboChannel, or PCIBus. The upper
boundary on the bus types supported is always M aximuml nter faceType.

20

Chapter 2: Real-Time API

BusNumber

The busthe device is on in a multiple bus environment, with counting starting at zero.
Typicaly, amachine has only one or two of a particular bustype, so thisvalue is either 0 or
1. Note that this value appliesto each bustype, so for a system with one ISA bus and one
PCI bus, for example, each would have a BusNumber of O.

BuslnterruptLevel
A bus-specific interrupt level associated with the device.

Busl nterruptVector
A bus-specific interrupt vector associated with the device.

ShareVector
Specifies whether the caller is prepared to share the interrupt vector.

InterruptMode
Specifies whether the device interrupt is L evel Sensitive or L atched.

pRoutinel SR

A pointer to aroutine to be run by the interrupt service routine (ISR) or NULL to specify no
routine. The routine takes asingle PV OID argument, ContextI ST and returns
INTERRUPT_DISPOSITION.

Return Values

The function returns an RT X-specific interrupt handle if successful. The function returns a
NULL handlefor an invalid argument, for failing to connect the interrupt, or if adeviceis
already using the bus resources regquested and either a previous attachment or this attachment
specified ShareVector as FALSE.

Comments

RtAttachl nterruptVector Ex alows a user to associate two handling routines with a
hardware interrupt on one of the supported buses on the computer. It usesthe DDK HAL
routines for getting the system-wide interrupt vector based on the bus-specific interrupt level
and vector. If successful, it creates a handling thread in the user’s application.

When the interrupt occurs, the ISR calls the Myl nterrupt routine (if present). This optional
routine should be used to determine which attachment of a group of shared attachments
should handle the interrupt. Since it iscalled at interrupt level, this routine should complete
itswork quickly; 1-2 msec is recommended. The routine should restrict itself to the callsin
the Port 1/0 or mapped datatransfer API (RtReadPort. . ., RtWritePort. . .). Theroutine
pointed to by Mylnterrupt returns one of three values.

® It returns PassT oNextDevice if its associated device did not generate the interrupt.
® Jtreturns CalllnterruptThread if its associated device generated the interrupt and

the handling thread should be notified and call the function pointed to by
pRoutinel SR to handle the interrupt.

21

RTX Reference

® |t returns Dismissif its associated device generated the interrupt and no further action
isrequired of the handling thread (presumably because this routine has done al that
IS necessary).

When they are called, the handling routines are passed Context as an argument.
The handling routine called via pRoutine must not change its thread priority.

Asin atypica device driver, the user is responsible for initializing the hardware device,
enabling the generation of interrupts, and acknowledging interruptsin the appropriate
manner. Interrupt generation on the device can be enabled after a successful call to
RtAttachl nterruptVector Ex. Conversdly, the user must disable interrupts before
disconnecting the interrupt with RtReleasel nterruptVector, and the user must disconnect
the interrupt before exiting. In the interrupt handling routine, the user should perform the
appropriate steps to acknowledge the device's interrupt. Typically, these operations are
performed by writing commands to a device's command/status register, which is either
memory-mapped or in the 1/O address space of the system.

If ShareVector is specified as true, the interrupt handling routine must be prepared to share
the specified interrupt vector with other devices. When an interrupt occurs and the handling
routineis run, it should check the device in an appropriate manner to determineif the
interrupt came from its device. If so, it handles and acknowledges the interrupt in the usua
way, and returns TRUE. If its device did not generate the interrupt, the handling routine
returns FALSE.

If the vector is already in use by aWindows NT device driver, or another RTX program that
did not specify ShareVector as TRUE, RtAttachlnterruptVector Ex will fail.

See Also

22

HalGetlnterruptVector (in the DDK for Windows NT 4.0 and DDK for Windows 2000)
RtAttachinterruptV ector

RtEnablePortlo

RtReadPortUchar

RtRel easelnterruptV ector

RtWritePortUchar

Chapter 2: Real-Time API

RtAttachShutdownHandler

RtAttachShutdownHandler registers a stop notification handler function with RTSS. The
handler function is called in its own thread when one of the system stop events occurs.

HANDLE

RtAttachShutdownHandler (
PSECURITY_ATTRIBUTES pThreadAttributes,
ULONG Stacksize,
VOID (RTFCNDCL *Routine) (PVOID Context, LONG reason),

PVOID Context,
UL ONG Priority

);
Parameters

pThreadAttributes (unused)
A security attributes structure used when the handler thread is created.

SackSze
The number of bytesto allocate for the handler thread's stack.

Routine
The handler function to call when RTSS delivers the stop notification.

Context
The argument to the handler routine.

Priority
The priority for the created thread.

Return Values

A stop handler abject has been correctly instantiated when avalid handleis returned.
Otherwise, INVALID_HANDLE_VALUE isreturned and GetL astError should be called

for more detailed information.

23

RTX Reference

Comments

The function pointed to by Routineis called when Windows NT and Windows 2000 shut
down. The source of the stop notification is presented to this function in the reason argument.

The reason argument may have one of the following values according the reason for the
notification:

RT_SHUTDOWN_NT_SYSTEM_SHUTDOWN | The system is starting a normal
shutdown. Shortly after all shutdown
handlers have been executed, Windows
NT and Windows will stop.

RT_SHUTDOWN_NT_STOP Windows NT or Windows 2000 have
stopped (i.e., blue screen or stop screen).

RTSS will continue to operate with service
restrictions.

The order in which the shutdown handlers execute is dependent upon the priority specified
when the handler object was created. This priority is simply the RTSS thread priority.

Only one shutdown handler object is permitted per RTSS process. A handler function
should not call ExitThread, but should simply return when finished. When dl registered
shutdown handlers have returned, the system compl etes the shutdown sequence.

A shutdown handler object may be destroyed by calling RtReleaseShutdownHandler.
Note: There are alimited number of callsthat can be made.

See Also
RtRel easeShutdownHandler

24

Chapter 2: Real-Time API

RtCancelTimer

RtCancel Timer cancelsthe expiration of the indicated timer.

BOOL

RtCance Timer(
HANDLE hTimer,
PLARGE_INTEGER pTimeRemaining

);
Parameters

hTimer
An RTX-specific handle to the timer.

pTimeRemaining
A pointer to aLARGE_INTEGER to store the time remaining on the canceled timer. If the
pointer isnon-NULL, the LARGE_INTEGER will be written with the time remaining on
the timer at the time of cancellation. The time remaining is calculated relative to the current
value of of the clock associated with the time at creation and is specified in 100ns units.

Return Values

The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments

RtCancel Timer cancels the specified timer, but does not delete it. If the user provides anon-
NULL pointer to aLARGE_INTEGER, then time remaining on the timer at the time of
cancellation isreturned.

See Also

RtCreateTimer
RtDeleteTimer
RtGetClockResolution
RtGetClockTime
RtGetClockTimerPeriod
RtSetClockTime
RtSetTimer
RtSetTimerRelative
RtSleepFt

Sleep

25

RTX Reference

RtCloseHandle

RtCloseHandl e closes an open object handle.

BOOL

RtCloseHandlg(
HANDLE hObject

);
Parameters

hObject
An open object handle.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call

GetLastError.
Comments
RtCloseHandle closes handles to the following RTSS objects:
m Event m Shared memory
® Interrupts m Shutdown handler
B Mutex B Timers
m Semaphore

RtCloseHandleinvalidates the specified object handle, decrements the object’s handle count,
and performs object retention checks. Once the last handle to an object is closed, the object is
removed from the operating system.

Note: Threads must be closed with CloseHandle.

See Also
CloseHandle

26

Chapter 2: Real-Time API

RtCommitLockHeap

RtCommitL ockHeap commits and locks the heap to avoid page faults as the heap is used.

BOOL

RtCommitL ockHeap(
HANDLE hHeap,
UL ONG nNumberOfBytes,
VOID (RTFCNDCL *pExceptionRoutine)(HANDLE),

);
Parameters

hHeap
A handle to the heap to be committed and locked.

nNumber OfBytes
The number of bytesin the heap to lock.

pExceptionRoutine (ignored)
The exception routine to call if the heap uses more than the locked amount.

Return Values

The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments

RtCommitL ockHeap commits and locks the specified heap in physical memory so that it
does not incur page faults as the memory is used, and the memory used for the heap is not
paged out by the system.

Since al RTSS heaps are aways locked, this function has no effect in the RTSS environment.

See Also

RtAllocatel ockedMemory
RtCommitL ockProcessHeap
RtCommitL ockStack
RtFreel ockedMemory
RtLockKernel

RtL ockProcess

RtUnlockK ernel
RtUnlockProcess

27

RTX Reference

RtCommitLockProcessHeap

28

RtCommitL ock ProcessHeap commits and locks the system process heap to avoid page
faults asthe heap is used.

BOOL

RtCommitL ock ProcessHeap(
UL ONG nNumberOfBytes,
VOID (RTFCNDCL *pExceptionRoutine)(HANDLE),

);
Parameters

nNumber OfBytes
The number of bytes in the heap to lock.

* ExceptionRoutine (ignored)
The exception routine to call if the heap uses more than the locked amount.

Return Values

The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments

RtCommitL ock ProcessHeap commits and locks the system process heap in physical
memory so that it does not incur page faults as the memory is used, and the memory used for
the heap is not paged out by the system.

Since al RTSS heaps are aways locked, this function has no effect in the RTSS environment.

See Also

RtAllocatel ockedMemory
RtCommitLockHeap
RtCommitL ockStack
RtFreel ockedMemory
RtLockKernel

RtL ockProcess

RtUnlockK ernel
RtUnlockProcess

Chapter 2: Real-Time API

RtCommitLockStack

RtCommitL ock Stack commits and locks the specified stack to avoid page faults as the stack

isused.

BOOL

RtCommitL ockStack(
ULONG nNumber OfBytes

);
Parameters

nNumber OfBytes
The number of bytesin the stack to lock.

Return Values

The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments

RtCommitL ock Stack commits and locks the stack in physical memory so that it does not
incur page faults as the memory is used, and the memory used for the stack is not paged out
by the system.

The RTSS stack is aways locked. Any attempt to lock the stack beyond the stack size at
thread creation fails; otherwise, this call has no effect in the RTSS environment.

See Also

RtAllocatel ockedMemory
RtCommitLockHeap
RtCommitL ockProcessHeap
RtFreelockedMemory
RtLockKernel

RtL ockProcess

RtUnlockK ernel
RtUnlockProcess

29

RTX Reference

RtCreateEvent

30

RtCreateEvent creates anamed or unnamed event object.

HANDLE

RtCreateEvent(
LPSECURITY_ATTRIBUTES IpEventAttributes,
BOOL ManualReset,
BOOL plnitial Sate,
LPCTSTR IpName

);

Parameters

IpEventAttributes (ignored)
A pointer to aSECURITY_ATTRIBUTES structure.

bManual Reset

Specifies whether a manual -reset or auto-reset event is created. If TRUE, then use the
RtResetEvent function to manually reset the state to non-signaled. If FAL SE, the system
automatically resets the state to non-signaled after a single waiting thread has been rel eased.

blnitial Sate

Theinitial state of the event object. If TRUE, theinitial state is signaled; otherwise, it is
non-signaled.

IpName

A pointer to a null-terminated string specifying the name of the event object. The nameis
limited to RTX_MAX_PATH characters, and can contain any character except the
backslash path-separator character (\). Name comparison is case-sensitive.

If IpName matches the name of an existing named event object, this function requests access
to the existing object. In this case, bManual Reset and bl nitial Sate are ignored because they
have already been set by the creating process.

If IpName matches the name of an existing mutex, semaphore, or shared memory object, the
function fails and GetL astError returns ERROR_INVALID HANDLE. This occurs
because event, mutex, semaphore, and shared memory objects share the same namespace.

If IpNameis NULL, the event object is created without a name.

Return Values

If the function succeeds, the return value is a handle to the event object. If the named event
object existed before the function call, GetLastError returns ERROR_ALREADY_EXISTS.
Otherwise, GetL astError returns zero.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Chapter 2: Real-Time API

Comments

The handle returned by RtCreateEvent has al accesses to the new event object and can be
used in any function that requires a handle to an event object.

Any thread of the calling process can specify the event-object handle in acall to one of the
wait functions. The wait functions return when the state of the specified object is signaled.
When await function returns, the waiting thread is released to continue its execution.

Theinitid state of the event object is specified by the blnitial Sate parameter. Use the
RtSetEvent function to set the state of an event object to signaled. Use the RtResetEvent
function to reset the state of an event object to non-signaled.

When the state of a manual-reset event is signaled, it remains signaled until it is explicitly
reset to non-signaled by the RtResetEvent function. Any number of waiting threads, or
threads that subsequently begin wait operations for the specified event object, can be released
while the object’s state is signaled.

When the state of an auto-reset event object is signaled, it remains signaled until asingle
waiting thread is rel eased; the system then resets the state to non-signaled. If no threads are
waiting, the event object remains signal ed.

Multiple processes can have handles of the same event object, enabling use of the object for
inter-process synchronization. The avail able object-sharing mechanismis: A process can
specify the name of aevent object in acall to RtOpenEvent or RtCreateEvent.

Use RtCloseHandle to close the handle. The system closes the handle automatically when
the process terminates. The event object is destroyed when its last handle has been closed.

See Also
RtCloseHandle
RtOpenEvent
RtPulseEvent
RtResetEvent
RtSetEvent

31

RTX Reference

RtCreateMutex

RtCreateM utex creates an RTSS mutex. A handle is returned to the newly created mutex
object.

HANDLE

RtCreateM utex(
LPSECURITY_ATTRIBUTES IpMutexAttributes,
BOOL blnitial Owner,
LPCTSTR IpName

);
Parameters

IpMutexAttributes (ignored)
A pointer to aSECURITY_ATTRIBUTES structure.

blnitial Owner

Theinitia ownership state of the mutex object. If thisvalue is TRUE and the caller created
the mutex, the calling thread obtains ownership of the mutex object. Otherwise, the calling
thread does not obtain ownership of the mutex.

IpName

A pointer to anull-terminated string specifying the name of the mutex object. The nameis
limited to RTX_MAX_PATH characters and can contain any character except the backslash
path-separator character (\). Name comparison is case-sensitive.

If IpName matches the name of an existing named mutex object, this function requests
MUTEX_ALL_ACCESS access to the existing object. In this case, the binitial Owner
parameter isignored because it has already been set by the creating process.

If IpName matches the name of an existing event, semaphore, or shared memory object, the
function fails and GetL astError returns ERROR_INVALID HANDLE. This occurs
because event, mutex, semaphore, and shared memory objects share the same namespace.

If IpNameis NULL, the mutex object is created without a name.

Return Values

If the function succeeds, the return value is a handl e to the mutex object. If the named mutex
object existed before the function call, GetLastError returns ERROR_ALREADY_EXISTS.
Otherwise, GetLastError returns zero.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

32

Chapter 2: Real-Time API

Comments

The handle returned by RtCreateM utex has MUTEX_ALL_ACCESS access to the new
mutex object and can be used in any function that requires a handle to a mutex object.

Any thread of the calling process can specify the mutex-object handlein acall to any wait
function.

The state of a mutex object is signaled when it is not owned by any thread. The creating
thread can use the blnitial Owner flag to request immediate ownership of the mutex.
Otherwise, athread must use the wait function to request ownership. When the mutex’s state
issignaled, the highest priority waiting thread is granted ownership (if more than one thread
iswaiting at the same priority, they receive ownership of the mutex in the order they waited);
the mutex’s state changes to non-signaled; and the wait function returns. Only one thread can
own amutex at any given time. The owning thread uses RtReleaseM utex to release its
ownership.

Thethread that owns a mutex can specify the same mutex in repeated wait function calls
without blocking its execution. Typically, you would not wait repeatedly for the same mutex,
but this mechanism prevents a thread from deadlocking itself while waiting for a mutex that it
already owns. However, to release its ownership, the thread must call RtReleaseM utex once
for each time that the mutex satisfied await.

Two or more processes can call RtCreateM utex to create the same hamed mutex. The first
process actually creates the mutex, and subsequent processes open a handle to the existing
mutex. This enables multiple processes to get handles of the same mutex, while relieving the
user of the responsibility of ensuring that the creating processis started first. When using this
technique, set the binitial Owner flag to FALSE; otherwise, it can be difficult to be certain
which process has initial ownership.

Multiple processes can have handles of the same mutex object, enabling use of the object for
process synchronization. The available object-sharing mechanismis: A process can specify
the name of a mutex object in acall to RtOpenM utex or RtCreateM utex.

RtCloseHandle closes a mutex-object handle. The system closes the handle automatically
when the process terminates. The mutex object is destroyed when its last handle has been
closed.

See Also
RtCloseHandle
RtOpenMutex
RtRel easeM utex

33

RTX Reference

RtCreateProcess

RtCreateProcess creates and starts anew RTSS process. The new RTSS process runs the
specified RTSS executable file. RtCreateProcess is supported only in the Win32 environment.

BOOL

RtCreateProcess(
LPCTSTR IpApplicationName,
LPTSTR IpCommandLine,
LPSECURITY_ATTRIBUTES IpProcessAttributes,
LPSECURITY_ATTRIBUTES IpThreadAttributes,
BOOL binheritHandles,
DWORD dwCreationFlags,
LPVOID IpEnvironment,
LPCTSTR IpCurrentDirectory,
LPSTARTUPINFO IpStartuplnfo,
LPPROCESS INFORMATION IpProcessinformation

);

Parameters

34

IpApplicationName

Pointer to a null-terminated string that specifies the module to execute. The string must
specify the full path and file name of the module to execute.

The IpApplicationName parameter can be NULL. In that case, the module name must be the
first white space-delimited token in the [pCommandLine string.

When IpCommandLineis non-NULL and you are using along file name that contains a
space, use quoted strings to indicate where the file name ends and the arguments begin. For
example, "C: \Program Files\Rtx Test.rtss" argvl argv2isavalidstring
for this parameter. When IpCommandLine is NULL, quotes are not needed.

The specified module must be an RTSS application.

IpCommandLine

Pointer to a null-terminated string that specifies the command line to execute. The system
adds anull character to the command line.

The IpCommandLine parameter can be NULL. In that case, the function uses the string
pointed to by |pApplicationName as the command line.

If both IpApplicationName and IpCommandLine are non-NULL, *[pApplicationName
specifies the module to execute, and * [pCommandLine specifies the command line. The new
process can use GetCommandL ineto retrieve the entire command line. C runtime
processes can use the argc and ar gv arguments.

If IpApplicationName is NULL, the first white-space - delimited token of the command line
specifies the module name. If you are using along file name that contains a space, use
quoted strings to indicate where the file name ends and the arguments begin (see the

Chapter 2: Real-Time API

explanation for the |pApplicationName parameter). If the file name does not contain an
extension, .rtssis appended.

IpProcessAttributes (ignored)
IpThreadAttributes (ignored)
blnheritHandles (ignored)
dwCreationFlags (ignored)
IpEnvironment (ignored)
IpCurrentDirectory (ignored)
IpStartupl nfo (ignored)

|pProcessl nformation

Pointer to a PROCESS INFORMATION structure that receives identification information
about the new process.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Comments

An RTSS process can be created and started through RT SSrun in command line windows.
As an alternative way, RtCr eateProcess can be used to create and start anew RTSS process
through Win32 programs. RtCr eateProcess uses RT SSrun (without switches) to create and
start the new RTSS process.

When created, the new RTSS process handle receives full access rights. The handle can be
used in any function that requires an object handle to that type. The RTSS process handleis
returned in the PROCESS _INFORMATION structure.

The RTSS processis assigned a process identifier. The identifier is valid until the RTSS
process terminates. It can be used to identify the RTSS process, or specified in
RtOpenProcessto open a handle to the RTSS process. The RTSS processidentifier is
returned in the PROCESS INFORMATION structure.

RtCreatePr ocess does not create a handle for the primary thread of the new RTSS process.
The returning value of IpProcesslnformation-hThread is NULL and |pProcess| nfor mation-
dwThreadld isO.

The preferred way to shut down an RTSS processis by using ExitProcess, because this
function sends notification of approaching termination to all RTDLLSs attached to the RTSS
process. Other means of shutting down an RTSS process do not notify the attached RTDLLSs.

The created RTSS process remains in the system until all threads within the RTSS process
have terminated and all handles to the RTSS process and any of its threads have been closed
through callsto CloseHandle. The handle for the RTSS process must be closed through a call
to CloseHandle.

35

RTX Reference

If this handle is not needed, it isbest to close it immediately after the processis created.
When the last thread in an RTSS process terminates, the following events occur:
m All objects opened by the RTSS process are implicitly closed.

B The process's termination status (which is returned by RtGetExitCodePr ocess)
changes fromitsinitia value of STILL_ACTIVE to the termination status of the last
thread to terminate.

B TheRTSS process object is set to the signaled state, satisfying any threads that were
waiting on the object.

See Also
CloseHandle
ExitProcess
RtGetExitCodeProcess
RtOpenProcess
RtTerminateProcess

36

Chapter 2: Real-Time API

RtCreateSemaphore

RtCreateSemaphore creates a named or unnamed semaphore object.

HANDLE

RtCreateSemaphor e
LPSECURITY_ATTRIBUTES IpSemaphoreAttributes,
L ONG lInitial Count,
LONG IMaximumCount,
LPCTSTR IpName

);
Parameters

|pSemaphor eAttributes (ignored)
A pointer to aSECURITY_ATTRIBUTES structure.

IInitial Count

Aninitial count for the semaphore object. This value must be greater than or equal to zero
and less than or equal to IMaximumCount. The state of a semaphoreis signaled when its
count is greater than zero and non-signaled when it is zero. The count is decreased by one
whenever await function releases a thread that was waiting for the semaphore. The count is
increased by a specified amount by calling RtReleaseSemaphor e.

IMaximumCount
The maximum count for the semaphore object. This value must be greater than zero.

IpName

A pointer to a null-terminated string specifying the name of the semaphore object. The name
islimited to RTX_MAX_PATH characters, and can contain any character except the
backdash path-separator character (\). Name comparison is case-sensitive.

If IpName matches the name of an existing named semaphore object, this function requests
access to the existing object. In this case, I1nitial Count and IMaximumCount are ignored
because they have already been set by the creating process.

If IpName matches the name of an existing event, mutex, or shared memory object, the
function fails and GetL astError returns ERROR_INVALID_HANDLE. This occurs
because event, mutex, semaphore, and shared memory objects share the same namespace.

If IpName is NULL, the semaphore object is created without a name.

Return Values

If the function succeeds, the return value is a handl e to the semaphore object. If the named
semaphore object existed before the function call, GetL astError returns
ERROR_ALREADY_EXISTS. Otherwise, GetLastError returns zero.

37

RTX Reference

38

If the function fails, the return value isNULL. To get extended error information, call
GetLastError.

Comments

The handle returned by RtCreateSemaphor e has all accesses to the new semaphore object
and can be used in any function that requires a handle to a semaphore object.

Any thread of the calling process can specify the semaphore-object handle in acal to one of
the wait functions. The single-object wait functions return when the state of the specified
object is signaled. The multiple-object wait functions can be instructed to return either when
any object is signaled. When await function returns, the waiting thread is released to
continue its execution.

The state of a semaphore object is signaled when its count is greater than zero, and non-
signaled when its count is equal to zero. lInitial Count specifiestheinitial count. Eachtime a
waiting thread is released because of the semaphore’s signaled state, the count of the
semaphoreis decreased by one. Use RtReleaseSemaphor e to increment a semaphore’s count
by a specified amount. The count can never be less than zero or greater than the value
specified in IMaximumCount.

Multiple processes can have handles of the same semaphore object, enabling use of the object
for inter-process synchronization. The avail able object-sharing mechanism is a process that
can specify the name of a semaphore object in acall to RtOpenSemaphor e or
RtCreateSemaphore.

Use RtCloseHandle to close the handle. The system closes the handle automatically when
the process terminates. The semaphore object is destroyed when its last handle has been
closed.

See Also
RtCloseHandle
RtOpenSemaphore
RtRel easeSemaphore

Chapter 2: Real-Time API

RtCreateSharedMemory

RtCreateSharedM emory creates a named region of physical memory that can be mapped by
any process.

HANDLE

RtCreateSharedM emory(
DWORD flProtect,
DWORD MaximumSzeHigh,
DWORD MaximumS zel.ow,
LPCTSTR IpName,

VOID ** |ocation

);
Parameters

flProtect (ignored by RTSS)
The protection desired for the shared memory view. This parameter can be one of the
following values:

PAGE_READONLY
Gives read-only access to the committed region of pages. An attempt to write to or
execute the committed region results in an access violation.

PAGE_READWRITE
Gives read-write access to the committed region of pages.

MaximumS zeHigh
The high-order 32 bits of the size of the shared memory object.

MaximumS zeLow
The low-order 32 bits of the size of the shared memory object.

IpName

A pointer to a null-terminated string specifying the name of the shared memory object. The
name can contain any character except the backslash (\).

If this parameter matches the name of an existing named shared memory object, the function
requests access to the shared memory object with the protection specified by fl Protect.

If IpName matches the name of an existing event, mutex, or semaphore object, the function
failsand GetLastError returns ERROR_INVALID_HANDLE. This occurs because event,
mutex, semaphore, and shared memory objects share the same namespace.

If IpName is NULL, the mapping object is created without a name.

location
A pointer to alocation where the virtual address of the shared memory will be stored.

39

RTX Reference

Return Values

If the function succeeds, the return value is a handl e to the shared memory object. If the
object existed before the function call, GetL astError returns ERROR_ALREADY_EXISTS,
and the return value isavalid handle to the existing shared memory object (with its current
size, not the new specified size). If the mapping object did not exist, GetL astError returns
zero and the location is set.

If the function fails, the return value isNULL. To get extended error information, call
GetLastError.

Comments

The handle that RtCreateSharedM emory returns has full access to the new shared memory
object. Shared memory objects can be shared by name. For information on opening a shared
memory object by name, see RtOpenSharedMemory.

To close a shared memory abject, an application must close its handle by calling
RtCloseHandle.

When all handles to the shared memory object representing the physical memory are closed,
the object is destroyed and physical memory is returned to the system.

See Also

40

RtCloseHandle
RtOpenSharedM emory

Chapter 2: Real-Time API

RtCreateTimer

RtCreateTimer creates atimer associated with the specified clock, and returns a handle to
the timer.

HANDLE

RtCreateTimer (
PSECURITY_ATTRIBUTES pThreadAttributes,
ULONG StackSize,
VOID (RTFCNDCL *Routine) (PVOID context),
PVOID Context,
UL ONG Priority,
CLOCK Clock

);
Parameters

pThreadAttributes (ignored by RTSS)

An optional pointer to aSECURITY_ATTRIBUTES structure to be used at handler thread
creation. Passin NULL for default.

SackSze
The stack size for handler thread. Use asize of O for default.

Routine

A pointer to the routine to be run upon completion. The routine takes asingle PVOID
argument and returns VVOID.

Context
The argument to the routine, cast asa PVOID.

Priority
The handler thread priority as defined below.

Clock
A clock identifier as defined below in the Comments sections.

Return Values

If successful, the function returns a non-zero handle to the timer; otherwise, it returns a
NULL handle. To set the timer to expire, see RtSetTimer or RtSetTimer Relative. Upon
expiration, the specified routine is run with the specified argument.

41

RTX Reference

Comments

RtCreateTimer alocates anew timer and returnsahandletoit. Legal clock values, as
enumerated in rtapi.h, are listed below:

Clock Value | Meaning

CLOCK_1 One millisecond timer.

CLOCK_2 Real-time HAL timer. Default is 500 microseconds (as
specified in the registry).

CLOCK_FASTEST The fastest available clock and time on the system.
This is usually CLOCK_2.

CLOCK_SYSTEM Same as CLOCK_1.

Thetimer routine will run as a separate handling thread. pThreadAttributes, SackSze, and
Priority are used to control the creation of the handler thread. See CreateT hread and
SetThreadPriority for details on these parameters.

To run adifferent handling routine/context, a new timer must be created.

See Also

RtCancel Timer
RtDeleteTimer
RtGetClockResolution
RtGetClockTime
RtGetClockTimerPeriod
RtSetClockTime
RtSetTimer
RtSetTimerRelative

42

Chapter 2: Real-Time API

RtDeleteTimer

RtDeleteTimer deletesthe timer specified by the given handle.

BOOL

RtDeleteTimer(
HANDLE hTimer

);
Parameters

hTimer
An RTX-specific handle to the timer to be deleted.

Return Values

The function returns TRUE if it completes successfully, or it returns FALSE if aninvalid
parameter is specified.

Comments

RtDeleteTimer deletes the specified timer, first canceling it if it has been scheduled to
expire. Note that timer handles are not Windows NT object handles, and the RTX timer
subsystem does not maintain a reference count. Deleting atimer removes the timer entirely.
RtCloseHandle can also be used to delete atimer.

See Also
RtCancel Timer
RtCloseHandle
RtCreateTimer
RtGetClockResolution
RtGetClockTime
RtGetClockTimerPeriod
RtSetClockTime
RtSetTimer
RtSetTimerRelative

43

RTX Reference

RtDisablelnterrupts

In the Win32 environment, RtDisablel nterrupts disables al user-level interrupt handling for
all interrupts to which the Win32 process is attached.

In an RTSS environment, RtDisablel nterrupts disables all interrupts at the processor level
including timer interrupts.

BOOL
RtDisablelnterrupts(V OID)

Return Values
The function returns TRUE if successful; otherwise it returns FALSE.

Comments

To minimize latencies for higher priority threads, RtEnablel nterrupts should be called as
soon as possible after RtDisablel nterrupts.

For Win32 processes, this function does not program the hardware to stop generating
interrupts. Such programming must be done separately, typicaly viaport 1/0 callsto the
command/status registers for the device.

See Also

RtAttachinterruptV ector
RtEnablelnterrupts
RtEnablePortlo
RtReadPortUchar

RtRel easelnterruptV ector
RtWritePortUchar

44

Chapter 2: Real-Time API

RtDisablePortlo

RtDisablePortl o disables direct I/O port access from user context.

BOOL

RtDisablePortlo(
PUCHAR SartPort,
ULONG nNumber OfBytes

);
Parameters

SartPort

Thefirst port to have direct I/O permissions disabled by this call. Each 1/0O space address
points at asingle byte. For ports that represent 2-byte or 4-byte locations, the appropriate
number of /O space addresses (two and four, respectively) must be disabled.

nNumber OfBytes

An unsigned 32-bit integer indicating the number of addresses/bytesto disable, starting at
SartPort.

Return Values

The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments
RtDisablePortl o disables direct port 1/0 access for ports from the user context.

This function currently has no impact on RTSS determinism. This call isaNO-OP (no
operation) when issued from RTSS applications.

See Also

RtEnablePortlo

RtReadPortBuffer* (Uchar, Ushort, Ulong)
RtReadPort* (Uchar, Ushort, Ulong)
RtWritePortBuffer* (Uchar, Ushort, Ulong)
RtWritePort* (Uchar, Ushort, Ulong)

45

RTX Reference

RtEnablelnterrupts

RtEnablel nterrupts enables user-level interrupt handling for all interrupts to which the
processis attached.

VOID
RtEnablelnterrupts(V OID);

Parameters
This function has no parameters.

Comments

In the Win32 environment, interrupt handling is automatically enabled after attaching to an
interrupt successfully. Note that this function does not program the hardware to enable or
generate interrupts. Such programming must be done separately, typically viaport 1/O callsto
the command/status registers for the device.

See Also
HalGetlnterruptVector (inthe DDK for Windows NT and DDK for Windows 2000)
RtAttachinterruptV ector
RtDisablelnterrupts
RtDisablePortlo
RtReadPortUchar
RtRel easelnterruptV ector
RtWritePortUchar

46

Chapter 2: Real-Time API

RtEnablePortlo

RtEnablePortl o enables direct I/O port access from user context.

BOOL

RtEnablePortlo(
PUCHAR SartPort,
ULONG nNumber OfBytes

);
Parameters

SartPort

Thefirst port to have direct 1/0O permissions enabled by this call. Each 1/0 space address
points at asingle byte. For ports that represent 2-byte or 4-byte locations, the appropriate
number of 1/O space addresses must be enabled, or an exception will be encountered.

nNumber OfBytes

An unsigned 32-bit integer indicating the number of addresses/bytes to enable, starting at
SartPort.

Return Values

The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments

This function currently has no impact on RTSS determinism. This call isaNO-OP (no
operation) when issued from RTSS applications.

RtEnablePortl o enables direct user access to the specified range of 1/0 addresses. On the

Pentium processor, there are 216-1 = 65,535 byte-wide 1/0O port addresses. Two-byte word

and four-byte double word ports take two and four 1/0 port addresses, respectively, and fall
on even word and long word addresses (i.e., divisible by two and four), respectively.

The address for which direct 1/O isto be enabled is passed in StartPort, cast as a pointer to an
unsigned character (i.e., asingle-byte quantum). Generally, this address represents a
hardware register or port, so only asingle byte needs to be enabled (i.e., nNumber OfBytes is
set to 1). If the location represents a two-byte word or four-byte double word port, then the
parameter nNumber OfBytes should reflect the width of the 1/0O port. Note that

nNumber OfBytes can a so be used to enable permission for an entire range of addresses,
independent of their data widths.

See Also

RtDisablePortlo
RtReadPortBuffer* (Uchar, Ushort, Ulong), RtReadPort* (Uchar, Ushort, Ulong)
RtWritePortBuffer* (Uchar, Ushort, Ulong), RtWritePort* (Uchar, Ushort, Ulong)

a7

RTX Reference

RtGetExitCodeProcess

RtGetExitCodeProcess retrieves the termination status of the specified process.

BOOL

RtGetExitCodeProcess(
HANDLE hProcess,
LPDWORD |pExitCode

);
Parameters

hProcess
A handle to the process.

The handle must have PROCESS_QUERY _INFORMATION access.

IpExitCode
A pointer to a 32-bit variable to receive the process termination status.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments

If the specified process has not terminated, the termination status returned is
STILL_ACTIVE. If the process has terminated, the termination status returned may be one of
the following values:

B Theexit value specified in ExitProcess or RtTerminateProcess.
B Thereturn value from main or WinMain of the process.
The exception value for an unhandled exception that caused the process to terminate.

48

Chapter 2: Real-Time API

RtFreeContiguousMemory

RtFreeContiguousM emory frees a previously allocated physically contiguous memory region.

BOOL

RtFreeContiguousMemory(
PVOID pVirtual Address

);
Parameters

pVirtual Address
A virtua address as returned by a previous call to RtAllocateContiguousMemory.

Return Values
The function returns TRUE if successful; otherwise, it returns FALSE.

Comments
RtFreeContiguousM emory releases a previous alocation of physically contiguous memory.

See Also

RtAllocateContiguousM emory
RtGetPhysicalAddress

49

RTX Reference

RtFreeLockedMemory

RtFreel ockedMemory frees memory previously committed and locked by a call to
RtAllocatel. ockedMemory.

BOOL

RtFreelockedMemory(
PVOID pVirtual Address

);
Parameters

pVirtual Address
A pointer to the start of the memory, as returned by RtAllocatel ockedMemory.

Return Values
The function returns TRUE if successful, otherwise, it returns FALSE.

Comments

RtFreel ockedM emory frees memory previously allocated, committed, and locked by
RtAllocatel ockedM emory.

See Also

RtAllocatel ockedMemory
RtCommitLockHeap
RtCommitL ockProcessHeap
RtCommitL ockStack
RtLockKernd
RtLockProcess
RtUnlockKernel
RtUnlockProcess

50

Chapter 2: Real-Time API

RtGetBusDataByOffset

RtGetBusDataByOffset obtains details, starting at the given offset, about a given slot on an
1/O bus.

ULONG

RtGetBusDataByOff set(
BUS DATA_TYPE BusDataType,
ULONG BusNumber,
ULONG SotNumber,
PVOID pBuffer,
ULONG Offset,
ULONG Length

);
Parameters

BusDataType

Type of bus data to be retrieved. Currently, its value can be EisaConfiguration, Pos, or
PCI Configuration. The upper bound on the bus types supported is always
MaximumBusDataType.

BusNumber

Zero-based and system-assigned number of the busin systems with more than one bus of
the same BusDataType.

SotNumber

Logical dot number. When PCIConfiguration is specified, thisisa
PCI_SLOT_NUMBER_TY PE value.

pBuffer
A pointer to acaler-supplied buffer for configuration information specific to BusDataType.
If EisaConfiguration is specified, the buffer will contain the

CM_EISA_SLOT_INFORMATION structure followed by zero or more
CM_EISA_FUNCTION_INFORMATION structures for the specified slot.

If Posis specified, the buffer will containaCM_MCA_POS DATA structure for the
specified dlot.

When PClConfiguration is specified, the buffer will contain some or &l of the
PCI_COMMON_CONFIG information for the given SlotNumber. The specified Offset and
Length determine how

Offset

If the BusDataTypeis EisaConfiguration or Pos, the offset is zero. Otherwise, specifies the
byte offset in the PCI_COMMON_CONFIG structure for which the requested information
should be returned. Callers can use the system-defined constant,

51

RTX Reference

PCI_COMMON_HDR_LENGTH, to specify the device-specific area of
PCI_COMMON_CONFIG.

Length
Maximum number of bytesto returnin the buffer.

Return Values

RtGetBusDataByOffset returns the number of bytes of datait wrote in the given buffer. If
the given BusDataType is not valid for the current platform, this routine returns zero.

When the input BusType is PCIConfiguration, Rt GetBusDataByOffset can return either of
the following values to indicate an error:

Value Meaning
0 (zero) The specified PCIBus does not exist.

2 The specified PCIBus exists, but there is no device at the given PCI
SlotNumber. The buffer also contains the value
PCI_INVALID_VENDOR_ID at the PCI_COMMON_CONFIG VENDORID
member.

Comments

This call can be used to locate devices on a particular 1/0 bus in the machine. The bus-type-
specific configuration data returned can later be used in other calls, such as
RtSetBusDataByOffset and Rt TrandateBusAddress.

When accessing the device-specific area of the PCI configuration space,
RtGetBusDataByOffset guarantees the following:

B Thisroutine never reads or writes data outside the range specified by the input Offset
and Length.

m Evenif theinput Length is exactly a byte or a (two-byte) word, this routine never
accesses any data outside the requested range.

The PCI structures and values above are defined in rtapi.h. For more information, consult the
Device Driver Kit (DDK) for Windows NT and Windows 2000.

See Also

HalGetBusDataByOffset (in the DDK for Windows NT and DDK for Windows 2000)
RtSetBusDataByOffset
RtTranslateBusAddress

52

Chapter 2: Real-Time API

RtGetClockResolution

RtGetClockResol ution abtains the resol ution of the specified clock.

BOOL

RtGetClockResol ution(
CLOCK Clock,
PLARGE_INTEGER pResolution

);
Parameters

Clock
A clock identifier.

pResolution
A pointer to aLARGE_INTEGER structure in which to store the results.

Return Values

The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments

RtGetClockResolution obtains the resolution of the specified clock. The resolutionis
specified in 100ns units. See the table in the RtCreateTimer Comments section for alist of
legal clock values.

See Also

RtCancel Timer
RtCreateTimer
RtDeleteTimer
RtGetClockTime
RtGetClockTimerPeriod
RtSetClockTime
RtSetTimer
RtSetTimerRelative

53

RTX Reference

RtGetClockTime

54

RtGetClock Time obtains the current value of the specified clock.

BOOL

RtGetClockTime(
CLOCK Clock,
PLARGE_INTEGER pTime

);
Parameters

Clock
A clock identifier.

pTime
A pointer to aLARGE_INTEGER structure in which to store the results.

Return Values

The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments

RtGetClock Time obtains the value of the specified clock. The timeis specified in 100ns
units. Seethe table in the RtCreateTimer Comments section for alist of legal clock values.

See Also

RtCancel Timer
RtCreateTimer
RtDeleteTimer
RtGetClockResolution
RtGetClockTimerPeriod
RtSetClockTime
RtSetTimer
RtSetTimerRelative

Chapter 2: Real-Time API

RtGetClockTimerPeriod

RtGetClock Timer Period obtains the minimum timer period of the specified clock. The
RtGetClockTime call delivers the clock time as 64-bit quantity of 100ns.

BOOL

RtGetClockTimerPeriod(
CLOCK Clock,
PLARGE_INTEGER pTime

)i
Parameters
Clock
A clock identifier.
pTime
A pointer to aLARGE_INTEGER structure in which to store the results.

Return Values

The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments

RtGetClock Timer Period obtains the minimum timer period of the specified clock. Timers
with an expiration interval smaller than this will produce unpredictable results. See the table

in the RtCreateTimer Comments section for alist of legal clock values.

See Also

RtCancel Timer
RtCreateTimer
RtDeleteTimer
RtGetClockResolution
RtGetClockTime
RtSetClockTime
RtSetTimer
RtSetTimerRelative

55

RTX Reference

RtGetPhysicalAddress

56

RtGetPhysical Address returns the physical address for the virtual address of a contiguous
physical memory buffer previously allocated by RtAllocateContiguousM emory.

In the RTSS environment, this function appliesto al memory alocation. In the Win32
environment, it applies to contiguous memory alocation only.

LARGE_INTEGER

RtGetPhysical Address(
PVOID pVirtual Address

);
Parameters

pVirtual Address

The virtual address of the base of a contiguous memory buffer as returned by
RtAllocateContiguousM emory.

Return Values

If successful, the call returns the physical address corresponding to the base virtua address of
the contiguous buffer. Otherwise, the call returnsa NULL pointer, usually asaresult of an
invalid parameter.

Comments

RtGetPhysical Address alows the user to get the base physical address for a contiguous
memory buffer allocated by RtAllocateContiguousM emory. The system physical addresses
are eight-byte data types, returned asa LARGE_INTEGER.

In the RTSS environment, this call can be used on any virtual address.

See Also

RtAllocateContiguousM emory
RtFreeContiguousM emory

Chapter 2: Real-Time API

RtGetThreadPriority

RtGetThreadPriority returns the priority value for the specified thread.

RTSS Environment: RTSS has no distinct priority classes and the priority value specified is
the only determination of athread's priority.

Win32 Environment: The priority value, together with the priority class of the thread’s
process, determines the thread’s base-priority level. All processes that attach to the Win32
RTAPI library are placed in the Win32 real-time priority class after acall to
RtGetThreadPriority or RtSetThreadPriority.

INT

RtGetThreadPriority(
HANDLE hThread

);
Parameters

hThread
The thread identifier.

Return Values
If the function succeeds, the return value is the thread's priority level.

If the function fails, the return valueis THREAD_PRIORITY_ERROR_RETURN. To get
extended error information, call GetLastError.

Comments

Win32 threads are initially set to the normal class. This method is the desired behavior for
most applications since it resultsin the best possible real-time performance. Win32 threads
that contain GUI components may result in serious performance since real-time threads have
a higher priority than Win32 threads in the real-time priority class. To have GUI-based
Win32 threads scheduled on an equal basis as other threads, call SetPriorityClass.

Table 1, RTSSto Win32 NT Thread Priority Mapping, shows how the RTSS symbolic
priority names translate to requests for a particular Windows NT and Windows 2000 priority
when caling RtSetThreadPriority in aWin32 program.

For instance, RtSetThreadPriority(hThread, RT_PRIORITY_MIN+1) resultsin acal to
SetThreadPriority(hThread,thread priority_lowest) by the Win32 version of the RTX
interfaces.

57

RTX Reference

Table 1. RTSS to Win32 NT and Windows 2000 Thread Priority Mapping

RTSS Symbolic Priority RTSS Windows NT and Windows 2000 Win32
Name Value Symbolic Priority Name for Real- Value
Time Priority Class
RT_PRIORITY_MIN 0 THREAD_PRIORITY_IDLE 16
RT_PRIORITY_MIN + 1 1 THREAD_PRIORITY_LOWEST 22
RT_PRIORITY_MIN + 2 2 THREAD_PRIORITY_BELOW_NORMAL | 23
RT_PRIORITY_MIN + 3 3 THREAD_PRIORITY_NORMAL 24
RT_PRIORITY_MIN + 4 4 THREAD_PRIORITY_ABOVE_NORMAL 25
RT_PRIORITY_MIN + 5...4+ 126 | 5...126 | THREAD_PRIORITY_HIGHEST 26
RT_PRIORITY_MAX 127 THREAD_PRIORITY_TIME_CRITICAL 31

Any value from RT_PRIORITY_MIN+5to RT_PRIORITY_MIN+126 will put the thread at
THREAD_PRIORITY_HIGHEST and RT_PRIORITY_MAX will result in the
THREAD_PRIORITY_TIME_CRITICAL priority. These mappings are fixed and are
designed to preserve relative ordering among thread priorities.

Win32 NT calers of RtGetThreadPriority() will have returned the real-time priority that
was specified in the call to RtSetThreadPriority(). There are some restrictions. The most
likely source of confusion iswhen callsto RtSetThreadPriority and SetThreadPriority are
mixed. The library may not always understand the RTSS priority when a duplicated thread
handle is used. In these cases, the caller should expect that RT_PRIORITY_MIN+5 will be
returned instead of RT_PRIORITY_MIN+6 through RT_PRIORITY _MIN+126. Threads that
set and get their own RTSS priorities, i.e., specify the thread with GetCurrentThread(), will
aways get the RTSS priority that was set.

Win32 programs should use the Rt versions of the priority callsif the Win32 thread wants to
claim other than the lowest RTSS scheduling priority when waiting on RTSS synchronization
objects. For instance, a Win32 thread with an RTSS priority of RT_PRIORITY_MAX will
own amutex before an RTSS thread waiting for the same mutex with a priority less than
RT_PRIORITY_MAX.

Table 2, Win32 NT to RTSS Thread Priority Mapping, shows what callers of the Win32 set
and get thread priority calls should expect in the RTSS environment. This table describes the
inverse of the mapping shownin Table 1.

58

Table 2. Win32 NT and Windows 2000 to RTSS Thread Priority Mapping

Chapter 2: Real-Time API

AL

Windows NT and Windows Value | RTSS Symbolic Priority Value
2000 Symbolic Priority Name Name

for Real-Time Priority Class

THREAD_PRIORITY_IDLE 16 RT_PRIORITY_MIN 0
THREAD_PRIORITY_LOWEST 22 RT_PRIORITY_MIN + 1 1
THREAD_PRIORITY_BELOW_NOR | 23 RT_PRIORITY_MIN + 2 2
MAL

THREAD_PRIORITY 24 RT_PRIORITY_MIN + 3 3
_NORMAL

THREAD_PRIORITY_ABOVE_NOR | 25 RT_PRIORITY_MIN + 4 4
MAL

THREAD_PRIORITY_HIGHEST 26 RT_PRIORITY_MIN + 5 5
THREAD_PRIORITY_TIME_CRITIC | 31 RT_PRIORITY_MAX 127

There are no additional priorities between THREAD_ PRIORITY _IDLE and

THREAD_PRIORITY_HIGHEST. If the programmer needsfiner grain priorities, then the
RTSS priority spectrum should be used instead. The exception to thisis when the value of

THREAD_PRIORITY_TIME_CRITICAL isused. Just asin Win32, this value specifiesa
thread priority that is higher than al other priorities.

See Also
GetThreadPriority
RtSetThreadPriority
SetThreadPriority

59

RTX Reference

RtGetThreadTimeQuantum

60

RtGetThreadTimeQuantum gets the current time quantum, in milliseconds, for the
specified thread.

DWORD

RtGetT hreadTimeQuantum(
HANDLE hThread

);
Paramenters

hThread
The handle for the specified thread, in milliseconds.

Return Values

If the function succeeds, the return value is the thread’s time quantum in milliseconds.
Otherwise, the return value is 0. To get extended error information, call GetL astError.

Comments

Win32 Environment: The only valid time quantum value is 0. This time quantum simul ates
Windows scheduling policy.

RTSS Environment: The time guantum can be any value greater than or equal to zero. A
value of zero means the RTSS thread will run to completion.

The default time quantum value can be changed in the RTSS Control Panel.

See Also
RtSetThreadTimeQuantum

Chapter 2: Real-Time API

RtGetTimer

RtGetTimer returns the remaining relative time until the next expiration of the specified
timer.

BOOL

RtGetTimer(
HANDLE hTimer,
PLARGE_INTEGER pTimeRemaining

);
Parameters

hTimer
An RTX-specific handle to the timer.

pTimeRemaining
A pointer to a LARGE_INTEGER structure in which to store the remaining time until
expiration.

Return Values

The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments

RtGetTimer returns the relative amount of time until the specified timer expires. Thetimeis
specified in 100ns units and is written into the user-provided LARGE_INTEGER structure.

See Also

RtCreateTimer
RtDeleteTimer
RtGetClockResolution
RtGetClockTime
RtGetClockTimerPeriod
RtSetClockTime
RtSetTimer
RtSetTimerRelative

61

RTX Reference

RtisInRtss

RtlslnRtss returns TRUE if the calling processis running in the RTSS. Otherwise, the
function returns FAL SE.

BOOL
RtlsInRtss(VOID);

Parameters
This function has no parameters.

Return Values

The function returns TRUE if the calling processis running in the RTSS environment.
Otherwise, this function returns FAL SE.

Comments

A program should call this program if it must determine its run-time environment. The call
returns FAL SE when called from Win32.

62

Chapter 2: Real-Time API

RtLockKernel

RtL ockK ernel locks certain sections of Windows NT and Windows 2000 kernel’s virtual
address space into physica memory.

BOOL

RtLockKernel(
ULONG Section

);
Parameters

Section

A number specifying which section of the kernel to lock. Currently, RT_KLOCK_ALL is
supported. Thiswill lock down all pageable kernel sections.

Return Values

The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments

RtL ockK ernel locks down al specified eligible sections of the kernel’s memory, so that it is
not paged out, and so that it does not incur page faults during execution. Note that this should
be done with caution, as the system performance may be greatly affected.

Since RTSS and Windows NT and Windows 2000 kernel portions of memory used by RTSS
are always locked aready, this function has no impact on RTSS determinism. Thiscall isa
NO-OP (no operation) when issued from RTSS applications.

See Also
RtAllocatel ockedMemory
RtCommitLockHeap
RtCommitL ockProcessHeap
RtCommitL ockStack
RtFreel ockedMemory
RtL ockProcess
RtUnlockK ernel
RtUnlockProcess

63

RTX Reference

RtLockProcess

64

RtL ockProcess locks certain sections of aprocess virtual address space into physical
memory.

BOOL

RtL ockProcess(
ULONG Section

);
Parameters

Section

A number specifying which sections to lock. Currently, RT_PLOCK_ALL is supported.
Thislocks down all pageable process sections.

Return Values

The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments

RtL ockProcess locks down all specified eligible committed memory sections of the process,
so that it is not paged out, and so that it does not incur page faults during execution. Note that
this should be done with caution, as the system performance may be greatly affected.

Since al RTSS processes are always locked, this function has no effect in the RTSS
environment.

See Also

RtAllocatel ockedMemory
RtCommitLockHeap
RtCommitL ockProcessHeap
RtCommitL ockStack
RtFreelockedMemory
RtLockKernel

RtUnlockK ernel
RtUnlockProcess

Chapter 2: Real-Time API

RtMapMemory

RtMapMemory maps a range of physical memory addresses into the user’s virtual address
Space.

PVOID

RtMapM emory(
LARGE_INTEGER physAddr,
ULONG Length,

BOOLEAN CacheEnable

);
Parameters

physAddr
A LARGE_INTEGER specifying the base of the physical address range to map.

Length
An unsigned 32-bit value representing the length, in bytes, of the address range to map.

CacheEnable

A Boolean to indicate whether or not Windows NT and Windows 2000 should use the cache
with this memory map.

Return Values

If successful, avirtual addressin the caling process' space is returned. Because there are no
access checks on these addresses or the ranges requested, care should be taken not to corrupt
memory on the machine.

If the function fails, aNULL virtual addressis returned.

Comments

RtMapMemory creates a map between arange of user virtual addresses and a range of
physical memory addresses, giving the user direct access to physical memory locations on the
system. Typicaly, thisis used to access peripheral registers or buffers mapped into the
physical address space of the machine. The largest address must be alegal value on the
machine. For 32-bit machines, the largest address that can be represented is OX FFFFFFFF.

65

RTX Reference

66

See Also

RtAllocatel ockedMemory
RtCommitLockHeap
RtCommitL ockProcessHeap
RtCommitL ockStack
RtFreelockedMemory
RtLockKernel

RtL ockProcess

RtUnlockK ernel
RtUnlockProcess
RtUnmapMemory

Chapter 2: Real-Time API

RtOpenEvent

RtOpenEvent returns a handle of an existing named event object.

HANDLE

RtOpenEvent(
DWORD DesiredAccess,
BOOL blnheritHandle,
LPCTSTR IpName

);

Parameters
DesiredAccess (ignored)

blnheritHandle (ignored)

IpName

A pointer to a null-terminated string that names the event to be opened. Name comparisons
are case-sensitive.

Return Values
If the function succeeds, the return value is a handle of the event object.

If the function fails, the return value isNULL. To get extended error information, call
GetLastError.

Comments

RtOpenEvent enables multiple processes to open handles of the same event object. The
function succeeds only if some process has aready created the event by using
RtCreateEvent. The calling process can use the returned handle in any function that requires
ahandle of an event object, such as await function.

Use RtCloseHandle to close the handle. The system closes the handle automatically when
the process terminates. The event object is destroyed when its last handle has been closed.

See Also
RtCloseHandle
RtCreateEvent
RtPulseEvent
RtResetEvent
RtSetEvent

67

RTX Reference

RtOpenMutex

RtOpenMutex returns a handle to the named RTSS mutex.

HANDLE

RtOpenM utex(
DWORD DesiredAccess,
BOOL blnheritHandle,
LPCTSTR IpName

);

Parameters
DesiredAccess (ignored)

blnheritHandle (ignored)

IpName

A pointer to a null-terminated string that names the mutex to be opened. Name comparisons
are case-sensitive.

Return Values
If the function succeeds, the return value is a handle of the mutex object.

If the function fails, the return value isNULL. To get extended error information, call
GetLastError.

Comments

RtOpenM utex enables multiple processes to open handles of the same mutex object. The
function succeeds only if some process has already created the mutex with RtCreateM utex.
The calling process can use the returned handle in any function that requires a handle of a
mutex object, such as await function.

Use RtCloseHandle to close the handle. The system closes the handle automatically when
the process terminates. The mutex object is destroyed when its last handle has been closed.

See Also

RtCloseHandle
RtCreateM utex
RtRel easeM utex

68

Chapter 2: Real-Time API

RtOpenProcess

RtOpenProcess returns a handle to an existing process object.

HANDLE

RtOpenProcess(
DWORD dwDesiredAccess,
BOOL biInheritHandle,
DWORD dwProcessid

);
Parameters

dwDesiredAccess (ignored)
Specifies the access to the process object.

blnheritHandle (ignored)
Specifies whether the returned handle can be inherited by a new process created by the
current process. If TRUE, the handle isinheritable.

dwProcessld
The process identifier of the process to open.

Return Values
If the function succeeds, the return value is an open handle to the specified process.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Comments

The handle returned by RtOpenPr ocess can be used in any function that requires ahandleto
aprocess, such asthe wait functions, provided the appropriate access rights were requested.

When you are finished with the handle, be sureto closeit using CloseHandle.

See Also

CloseHandle
CreateProcess
RtGetExitCodeProcess
RtTerminateProcess

69

RTX Reference

RtOpenSemaphore

RtOpenSemaphor e returns a handle of an existing named semaphore object.

HANDLE

RtOpenSemaphor g
DWORD DesiredAccess,
BOOL blnheritHandle,
LPCTSTR IpName

);

Parameters
DesiredAccess (ignored)

blnheritHandle
This must be FALSE.

IpName

A pointer to a null-terminated string that names the semaphore to be opened. Name
comparisons are case-sensitive.

Return Values
If the function succeeds, the return value is a handle of the semaphore object.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Comments

RtOpenSemaphor e enables multiple processes to open handles of the same semaphore
object. The function succeeds only if some process has already created the semaphore by
using RtCreateSemaphor e. The calling process can use the returned handle in any function
that requires a handle of a semaphore object, such as await function, subject to the
limitations of the access specified in DesiredAccess.

Use RtCloseHandle to close the handle. The system closes the handle automatically when
the process terminates. The semaphore object is destroyed when its last handle has been
closed.

See Also

RtCloseHandle
RtRel easeSemaphore

70

Chapter 2: Real-Time API

RtOpenSharedMemory
RtOpenSharedM emory opens a named physi cal-mapping object.

HANDLE

RtOpenSharedM emory(
DWORD DesiredAccess,
BOOL bInheritHandle,
LPCTSTR IpName,
VOID ** |ocation

);
Parameters

DesiredAccess

The access mode. The RTSS environment always grants read and write access. This
parameter can be one of the following values:

Value Meaning

SHM_MAP_WRITE Read-write access. The target shared memory object must
have been created with PAGE_READWRITE protection. A read-
write view of the shared memory is mapped.

SHM_MAP_READ Read-only access. The target shared memory object must have
been created with PAGE_READWRITE or PAGE_READ
protection. A read-only view of the shared memory is mapped.

BlnheritHandle (ignored)

IpName

A pointer to a string that names the shared memory object to be opened. If there is an open
handle to a shared memory object by this name, the open operation succeeds.

location
A pointer to alocation where the virtual address of the mapping will be stored.

Return Values
If the function succeeds, the return value is an open handle to the specified shared memory
object.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Comments

The handle that RtOpenShar edM emory returns can be used with RtCloseHandle to
decrement the reference count to the shared memory object. When the reference count is
zero, the object is removed from the system.

In the same process, different callsto RtOpenSharedMemory may return different locations
because they are mapped into different virtual addresses.

71

RTX Reference

See Also

RtCreateSharedMemory
RtCloseHandle

72

Chapter 2: Real-Time API

RtPrintf

RtPrintf prints formatted output to the standard output stream or console window.

INT

RtPrintf(
LPCSTR IpFormat [,argument, . . .]

);
Parameters

|pFormat
The format control (with optional arguments).

Return Values

RtPrintf returns the number of characters printed. If an error occurs, it returns a negative
value.

Comments

RtPrintf issimilar to printf, but RtPrintf does not require the C run-time library and can
work with any combination of run-time libraries. This function does not support floating
point conversions in the RTSS environment.

RtPrintf formats and prints a series of characters and values to the standard output stream,
stdout. If arguments follow the format string, the format string must contain specifications
that determine the output format for the arguments.

The format argument consists of ordinary characters, escape sequences, and (if arguments
follow format) format specifications. The ordinary characters and escape sequences are
copied to stdout in order of their appearance. The required header is <rtapi.h>.

Format specifications aways begin with a percent sign (%) and are read left to right. When
RtPrintf encountersthe first format specification (if any), it converts the value of the first
argument after format and outputs it accordingly. The second format specification causes the
second argument to be converted and output, and so on. If there are more arguments than
there are format specifications, the extra arguments are ignored. The results are undefined if
there are not enough arguments for all the format specifications.

Example
Rt Printf("Line one\n\t\tLine two\n");
produces the output:

Li ne one
Li ne two

73

RTX Reference

Format Specification Fields (RtPrintf and RtWprintf)
A format specification, which consists of optional and required fields, has the following form:

%[flags] [width] .precision] [{h|l|L}]type

Each field of the format specification is asingle character or number signifying a particular
format option. The simplest format specification contains only the percent sign and atype
character (for example, %s). If a percent sign isfollowed by a character that has no meaning
asaformat field, the character is copied to stdout. For example, to print a percent-sign
character, use %%.

Required format field: The type character, which appears after the optional format fields, is
the only required format field. It determines whether the associated argument isinterpreted as
acharacter, astring, or a number, as shown in the table that follows.

In the RTSS environment, the following limitations apply:
m Thefloating point format is not supported (e, E, and f).
B The maximum output sizeis 256 characters.
m For RtPrintf only, thereisalimit of ten parameters.

Note: Thetypes C and S, and the behavior of ¢ and swith RtPrintf and RtWprintf are
consistent with Microsoft extensions for printf and are not ANSI compatible.

Type Argument Output
Character | Type
C int For RtPrintf, specifies a single-byte character.

For RtWprintf, specifies a wide character.

C int For RtPrintf, specifies a wide character.
For RtWprintf, specifies a single-byte character.
d int Signed decimal integer.
i int Signed decimal integer.
u int Unsigned decimal integer.
X int Unsigned hexadecimal integer, using "abcdef."
X int Unsigned hexadecimal integer, using "ABCDEF."
e double Signed value in the form:

[-]d.dddd e [sign]ddd

where, d is a single decimal digit, ddd is one or more
decimal digits, ddd is exactly three decimal digits, and
the sign is + or -.

E double Same as the "e" specifier. See above.

f double Signed value in the form:
[- 1dddd.dddd

where, dddd is one or more decimal digits. The number
of digits before the decimal point depends on the
magnitude of the number, and the nhumber of digits
after the decimal point depends on the requested
precision.

s string For RtPrintf, specifies a single-byte character string.

For RtWprintf, specifies a wide character string.

74

Chapter 2: Real-Time API

Type Argument Output

Character | Type
Characters are printed up to the first null character or
until the precision value is reached.

S string For RtPrintf, specifies a wide character string.

For RtWprintf, specifies a single-byte character string.

Characters are printed up to the first null character or
until the precision value is reached.

Optional format fields: The optional fields, which appear before the type character, control
other aspects of the formatting, as shown in thelist that follows.

flags

Optional character(s) that control justification of output and print of signs, blanks,
decimal points, and octal and hexadecimal prefixes. More than one flag can appear in a

format specification.width

Optional number that specifies the minimum number of characters.

precision

Optional number that specifies the maximum number of characters printed for al or part
of the output field or the minimum number of digits printed for integer values.

H|I| L

Optional prefixesto type that specify the size of the argument.

See Also
RtAtoi
RtWPrintf
RtWhtoi

75

RTX Reference

RtPulseEvent

76

RtPulseEvent provides asingle operation that sets (to signaled) the state of the specified
event object and then resets it (to non-signaled) after releasing the appropriate number of
waiting threads.

BOOL

RtPulseEvent(
HANDLE hEvent

);
Parameters

hEvent

Identifies the event object. The RtCreateEvent or RtOpenEvent function returns this
handle.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments

For a manual-reset event object, all waiting threads that can be released are released. The
function then resets the event object’s state to non-signaled and returns.

For an auto-reset event object, the function resets the state to non-signaled and returns after
releasing a single waiting thread, even if multiple threads are waiting.

If no threads are waiting, or if no thread can be released immediately, RtPulseEvent simply
sets the event object’s state to non-signaled and returns.

See Also

RtCreateEvent
RtOpenEvent
RtResetEvent
RtSetEvent

Chapter 2: Real-Time API

RtReadPortBufferUchar
RtReadPortBufferUshort
RtReadPortBufferUlong

RtReadPortBuffer* calls copy a series of one-, two-, or four-byte quantafrom an 1/0 port to a
buffer.

VOID

RtReadPortBuffer Uchar (PUCHAR PortAddress, PUCHAR pBuffer, ULONG
nNumber OfBytes);
VOID

RtReadPortBuffer Ushort(PUSHORT PortAddress, PUSHORT pBuffer, ULONG
nNumber OfBytes);
VOID

RtReadPortBuffer Ulong(PULONG PortAddress, PULONG pBuffer, ULONG
nNumber OfBytes);

Parameters

PortAddress
A Port 1/0 address cast as a pointer to the type of data being read.

pBuffer
A pointer to a buffer.

nNumber OfBytes
The size of the buffer to be read.

Comments

RtReadPortBuffer Uchar, RtReadPortBuffer Ushort, and RtReadPortBuffer Ulong read a
buffer of one-, two-, or four-byte quanta directly from an I/O port to a buffer.

See Also
RtDisablePortlo
RtEnablePortlo
RtReadPort* (Uchar, Ushort, Ulong)
RtWritePortBuffer* (Uchar, Ushort, Ulong)
RtWritePort* (Uchar, Ushort, Ulong)

77

RTX Reference

RtReadPortUchar
RtReadPortUshort
RtReadPortUlong

RtReadPort* read a one-, two-, or four-byte quantum directly from an /O port.

UCHAR

RtReadPortUchar (PUCHAR PortAddress);
USHORT

RtReadPortUshort(PUSHORT PortAddress);
ULONG

RtReadPortUlong(PULONG PortAddress);

Parameters

PortAddress
A Port 1/0 address cast as a pointer to the type of datato be read.

Comments

RtReadPortUchar, RtReadPortUshort, and RtReadPortUlong read a one-, two-, or four-
byte quantum directly from an 1/O port and return the value.

See Also
RtDisablePortlo
RtEnablePortlo
RtReadPortBuffer* (Uchar, Ushort, Ulong)
RtWritePortBuffer* (Uchar, Ushort, Ulong)
RtWritePort* (Uchar, Ushort, Ulong)

78

Chapter 2: Real-Time API

RtReleaselnterruptVector

RtReleasel nterruptVector releases aprevioudy attached interrupt. This breaks the
association between a user's interrupt handling routine and the hardware interrupt.

BOOL

RtRel easel nterruptV ector(
HANDLE hinterrupt

);
Parameters

hlnterrupt
An RTX-specific handle as returned by a preceding call to RtAttachlnterruptVector.

Return Values

The function returns TRUE if successful, or it returns FALSE if the argument was invalid or
the operation on the handle did not succeed.

Comments

RtReleasel nterruptVector breaks the association between a device interrupt and the user’s
handling routine. The user should take care to disable interrupt generation on the hardware
device before making a call to thisroutine. Typicaly, thisis done by writing to the command
register of the device.

See Also

RtAttachinterruptV ector
RtAttachinterruptV ectorEx

79

RTX Reference

RtReleaseMutex

RtRel easeM utex relinguishes ownership of an RTSS mutex.

BOOL

RtRel easeM utex(
HANDLE hMutex

);
Parameters

hMutex

The handle which identifies the mutex object as retuned by a preceding call to
RtCreateMutex or RtOpenM utex.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments
RtReleaseM utex failsif the calling thread does not own the mutex object.

A thread gets ownership of amutex by specifying a handle of the mutex in wait functions.
Thethread that creates a mutex object can aso get immediate ownership without using one of
the wait functions. When the owning thread no longer needs to own the mutex object, it cals
RtReleaseM utex.

While athread has ownership of a mutex, it can specify the same mutex in additional wait-
function calls without blocking its execution. This prevents a thread from deadlocking itself
while waiting for amutex that it already owns. However, to release its ownership, the thread
must call RtReleaseM utex once for each time that the mutex satisfied a wait.

See Also
RtCreateM utex
RtOpenMutex
RtWaitForSingleObject

80

Chapter 2: Real-Time API

RtReleaseSemaphore

RtReleaseSemaphor e increases the count of the specified semaphore object by a specified
amount.

BOOL

RtReleaseSemaphor g
HANDL E hSemaphore,
L ONG IReleaseCount,
L PLONG IpPreviousCount

);
Parameters

hSemaphore
The semaphore object. RtCreateSemaphor e or RtOpenSemaphor e returns this handle.

|ReleaseCount

The amount by which the semaphore object’s current count is to beincreased. The value
must be greater than zero. If the specified amount causes the semaphore’s count to exceed
the maximum count that was specified when the semaphore was created, the count is not
changed and the function returns FAL SE.

|pPreviousCount

A pointer to a 32-hit variable receives the previous count for the semaphore. This parameter
can be NULL if the previous count is not required.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments

The state of a semaphore object is signaled when its count is greater than zero and non-
signaled when its count is equal to zero. The process that calls RtCreateSemaphore
specifies the semaphore'sinitial count. Each time awaiting thread is released because of the
semaphore’s signaled state, the count of the semaphore is decreased by one.

Typically, an application uses a semaphore to limit the number of threads using a resource.
Before athread uses the resource, it specifies the semaphore handle in a call to one of the
wait functions. When the wait function returns, it decreases the semaphore’s count by one.
When the thread has finished using the resource, it calls RtReleaseSemaphor e to increase
the semaphore’s count by one.

Another use of RtReleaseSemaphor e is during an application’sinitialization. The application
can create a semaphore with an initial count of zero. This sets the semaphore’s state to non-

81

RTX Reference

82

signaled and blocks all threads from accessing the protected resource. When the application
finishesitsinitialization, it uses RtReleaseSemaphor e to increase the count to its maximum
value to permit normal access to the protected resource.

RtReleaseSemaphor e with high release counts (e.g., greater than 10), and RtSetEvent with
ManualReset TRUE and a high number of waiting threads (e.g., greater than 10) will
experience dightly longer latencies, which scale with the number of threads made run-ablein
the call. For the best determinism, devel opers should avoid designs that make alarge number
of threads run-able a one time.

Note: Actua time depends on the number of try-except frames and the amount of processing
in except and finally routines, as specified by the application developer; RTX itself does not
introduce any long latencies.

See Also

RtCreateSemaphore
RtOpenSemaphore

Chapter 2: Real-Time API

RtReleaseShutdownHandler

RtRel easeShutdownHandler destroys the shutdown handler object created by
RtAttachShutdownHandler.

BOOL

RtRel easeShutdownHandler(
HANDLE hShutdown

);
Parameters

hShutdown
A handle returned by RtAttachShutdownHandler.

Return Values

The function returns TRUE when hShutdown specifies a valid shutdown handler object and
the object has been successfully destroyed. Otherwise, the function returns FAL SE and the
caller may call GetLastError for more details.

Comments

The shutdown handler should not call ExitThread or ExitProcess, nor should it attempt to
create or close any objects. The process will exit after the shutdown handler returns.

See Also

ExitThread
RtAttachShutdownHandl er

83

RTX Reference

RtResetEvent

84

RtResetEvent sets the state of the specified event object to non-signal ed.

BOOL

RtResetEvent(
HANDLE hEvent

);
Parameters

hEvent

Identifies the event object. The RtCreateEvent or RtOpenEvent function returns this
handle.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments

The state of an event object remains non-signaled until it is explicitly set to signaled by the
RtSetEvent or RtPulseEvent function. The non-signaled state blocks the execution of any
threads that have specified the event object in a call to await function.

The RtResetEvent function is used primarily for manual-reset event objects, which must be
set explicitly to the non-signaled state. Auto-reset event objects automatically change from
signaled to non-signaled after a single waiting thread is rel eased.

See Also
RtCreateEvent
RtOpenEvent
RtPulseEvent
RtSetEvent

Chapter 2: Real-Time API

RtSetBusDataByOffset

RtSetBusDataByOffset sets bus-configuration data for a device on adynamically
configurable 1/0O bus with a published, standard interface.

ULONG
RtSetBusDataByOffset(
BUS DATA_TYPE BusDataType,
ULONG BusNumber,
ULONG SotNumber,
PVOID pBuffer,
ULONG Offset,
ULONG Length

);
Parameters

BusDataType

Thetype of bus data to be set. Currently, its value can be EisaConfiguration, Pos, or
PCI Configuration.. The upper boundary on the bus types supported is always
MaximumBusDataType.

BusNumber

The zero-based and system-assigned number of the busin systems with more than one bus
of the same BusDataType.

SotNumber

Thelogical slot number. When PClConfiguration is specified, thisisa
PCI_SLOT_NUMBER-TY PE value.

pBuffer

A pointer to acaler-supplied buffer with configuration information specific to
BusDataType.

When PCIConfiguration is specified, the buffer contains some or all of the
PCI_COMMON_CONFIG information for the given SlotNumber. The specified Offset and
L ength determine how much information is supplied. Certain members of
PClI_COMMON_CONFIG have read-only values, and the caller is responsible for
preserving the system-supplied values of read-only members.

Offset

The byte offset in the PCI_COMMON_CONFIG structure at which the caller-supplied
configuration values begin. Callers can use the system-defined constant
PCI_COMMON_HDR_LENGTH to specify the device-specific area of
PCI_COMMON_CONFIG.

Length
The number of bytesin the buffer.

85

RTX Reference

Return Values

RtSetBusDataByOffset returns the number of bytes of data successfully set for the given
SotNumber. If the given BusDataType is not valid for the current platform or if the supplied
information isinvalid, this routine returns zero.

Comments

When accessing the device-specific area of the PCI configuration space,
RtSetBusDataByOffset guarantees the following:
B Thisroutine never reads or writes data outside the range specified by the input Offset
and Length.

m Evenif theinput Length is exactly a byte or a (two-byte) word, this routine never
accesses any data outside the requested range.

The PCI structures and values above is defined in rtapi.h. For more information consult the
Device Driver Kit (DDK) for Windows NT and Windows 2000.

See Also

Hal SetBusDataByOffset (in the DDK for Windows NT and Windows 2000)
RtGetBusDataByOff set
RtTranslateBusAddress

86

Chapter 2: Real-Time API

RtSetClockTime

RtSetClock Time sets the current value of the specified clock.

BOOL

RtSetClockTime(
CLOCK Clock,
PLARGE_INTEGER pTime

);
Parameters

Clock
A clock identifier.

pTime
A pointer to a LARGE_INTEGER structure specifying the new value for Clock.

Return Values

The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments

RtSetClock Time sets the value of the specified clock. The clock is specified in 100ns units.
See thetablein the RtCreateTimer section for alist of legal clock values.

See Also

RtCancel Timer
RtCreateTimer
RtDeleteTimer
RtGetClockResolution
RtGetClockTime
RtGetClockTimerPeriod
RtSetTimer
RtSetTimerRelative

87

RTX Reference

RtSetEvent

RtSetEvent sets the state of the specified event object to signaled.

BOOL

RtSetEvent(
HANDLE hEvent

);
Parameters

hEvent
Identifies the event object. The RtCreateEvent or RtOpenEvent function returns this handle.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments

The state of a manual-reset event object remains signaled until it is set explicitly to the non-
signaled state by the RtResetEvent function. Any number of waiting threads, or threads that
subsequently begin wait operations for the specified event object by calling the wait
functions, can be released while the object’s state is signaled.

The state of an auto-reset event object, the function resets the state to non-signaled and
returns after releasing remains signaled until a single waiting thread is released, at which time
the system automatically sets the state to non-signaled. If no threads are waiting, the event
object’s state remains signaled.

See Also
RtCreateEvent
RtOpenEvent
RtPulseEvent
RtResetEvent

88

Chapter 2: Real-Time API

RtSetThreadPriority

RtSetThreadPriority setsthe priority value for the specified thread.

BOOL

RtSetThreadPriority(
HANDLE hThread,
int nPriority

);
Parameters

hThread
The thread whose priority valueisto be set.

nPriority
RTSS Environment: A priority level from O to 127, where 127 identifies the highest
priority thread.
Win32 Environment: Win32 has only seven program-settable thread prioritiesin the rea -
time priority class. RtSetThreadPriority maps the 128 thread priorities into these seven
priorities. The RTX Win32 library maintains the real-time thread priority and returns this
value when RtGetThreadPriority() is called.

Return Values
If the function succeeds, thereturn valueis TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments
See the Comments section in RtGetThreadPriority for details on the relationship between
Win32 and RTSS thread priorities.

See Also
GetThreadPriority
RtGetThreadPriority
SetThreadPriority

89

RTX Reference

RtSetThread TimeQuantum

RtSetThread TimeQuantum sets the time quantum for the specified thread.

BOOL

RtSetThread TimeQuantum(
HANDLE hThread,
DWORD dwQuantuminMS

);
Parameters

hThread
The handle of the thread whose time quantum is to be set.

dwQuantuminMS

A new time quantum value in milliseconds. The amount of time the thread will run before it
yieldsto another RTSS thread with the same priority.

Return Values
If the function succeeds, the return value is FALSE.

If the function fails, the return value is TRUE. To get extended information, call
GetL astError.

Comments

Win32 Environment: The only valid time quantum value is 0. Thistime quantum simulates
Windows scheduling policy.

RTSS Environment: The time guantum can be any value greater than or equal to zero. A
value of zero means the RTSS thread will run to completion.

The default time quantum value can be changed in the RTSS Control Panel.

See Also
RtGetThread TimeQuantum

90

Chapter 2: Real-Time API

RtSetTimer

RtSetTimer setsthe expiration time and repeat interval on the specified timer.

BOOL

RtSetTimer(
HANDLE hTimer,
PLARGE_INTEGER pExpiration,
PLARGE_INTEGER plnterval

);
Parameters

hTimer
An RTX-specific handle to the timer.

pExpiration
A pointer to aLARGE_INTEGER structure indicating the absolute time for the initial
expiration of the timer. The clock is specified in 100ns units. If the value of the expiration
time isless than zero, the call isinterpreted as arequest to set the timer relative to current
time on the associated clock. Theresult isidentical to calling RtSetTimer Relative, with the
absolute value of the specified expiration time.

pinterval

A pointer to aLARGE_INTEGER structure indicating the amount of time between the first
expiration and each successive expiration. The clock is specified in 100ns units.

Return Values

The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments

RtSetTimer setsthe expiration time and repeat interval for the specified timer. If the repeat
interval is non-zero, then after the first expiration, the timer will repeatedly expire at the
specified interval. If the repeat interval pointer is NULL, then the timer will expire only once,
i.e., itisa"one-shot" timer. Likewise, anon-NULL interval pointer may be passed in, with its
value set to zero, for aone-shot timer.

Upon each expiration of the timer, the handling thread is signaled to indicate the expiration,
and the specified handling routine is run. The timer signals expirations only on the RTX timer
interrupt boundaries. The RTX timer interval will be rounded up to the RTX timer resolution.
The highest RTX timer resolution is 100ms, which can be set in RTX Control Panel.

To reset the expiration of atimer that has been previously set, the user must ensure that the
timer isnot active. That is, it must be either a one-shot timer that has expired, or the user
must first cancel the timer with RtCancel Timer.

91

RTX Reference

92

See Also

RtCancel Timer
RtCreateTimer
RtDeleteTimer
RtGetClockResolution
RtGetClockTime
RtGetClockTimerPeriod
RtGetTimer
RtSetClockTime
RtSetTimerRelative

Chapter 2: Real-Time API

RtSetTimerRelative

RtSetTimer Relative sets the expiration time and repeat interval on the specified timer.

BOOL

RtSetTimerRelative(
HANDLE hTimer,
PLARGE_INTEGER pExpiration,
PLARGE_INTEGER plnterval

);
Parameters

hTimer
An RTX-specific handle to the timer.

pExpiration
A pointer to a LARGE_INTEGER structure indicating the time for the initial expiration of

the timer. Expiration is calculated relative to the current value of the clock associated with
the timer at creation. The clock is specified in 100ns units.

plnterval

A pointer to aLARGE_INTEGER structure indicating the amount of time between the first
expiration and each successive expiration. The clock is specified in 100ns units.

Return Values

The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments

RtSetTimer Relative sets the relative expiration time and repeat interval for the specified
timer. If the repeat interval is non-zero, then after the first expiration, the timer will
repeatedly expire at the specified interval. If the repeat interval pointer is NULL, then the
timer will expire only once, i.e., it isa"one-shot" timer. Likewise, anon-NULL interval
pointer may be passed in, with its value set to zero, for a one-shot timer.

Upon each expiration of the timer, the handling thread is signaled to indicate the expiration,
and the specified handling routine is run. The timer signals expirations only on the RTX timer
interrupt boundaries. The RTX timer interval will be rounded up to the RTX timer resolution.
The highest RTX timer resolution is 100ms, which can be set in RTX Control Panel.

To reset the expiration of atimer that has been previously set, the user must ensure that the
timer isnot active. That is, it must be either a one-shot timer that has expired, or the user
must first cancel the timer with RtCancel Timer.

93

RTX Reference

94

See Also

RtCancel Timer
RtCreateTimer
RtDeleteTimer
RtGetClockResolution
RtGetClockTime
RtGetClockTimerPeriod
RtGetTimer
RtSetClockTime
RtSetTimer

Chapter 2: Real-Time API

RtSleepFt

RtSleepFt suspends the current thread for the specified time.

VOID

RtSleepFt(
PLARGE_INTEGER pDuration

);
Parameters

pDuration

A pointer to aLARGE_INTEGER structure indicating the amount of time to deep, in 100ns
units. pDuration must be less than or equa to one second, and must be greater than or equal
to the minimum timer period of the system.

Return Values
Thisfunction returns no value.

Comments
RtSleepFt suspends the given thread from execution for the specified amount of time.

An expiration interval of 0 yields the process to other equa priority runnable threads (if any).

See Also

RtCreateTimer
RtDeleteTimer
RtGetClockResolution
RtGetClockTime
RtGetClockTimerPeriod
RtGetTimer
RtSetClockTime
RtSetTimer
RtSetTimerRelative

Sleep

95

RTX Reference

RtTranslateBusAddress

RtTrandateBusAddress translates a bus-specific address into the corresponding system
logical address.

BOOL

RtTrang ateBusAddress(
INTERFACE_TY PE InterfaceType,
ULONG BusNumber,
LARGE_INTEGER BusAddress,
PULONG pAddressSpace,
PLARGE_INTEGER pTransatedAddress

);
Parameters

InterfaceType

The businterface type, which can be one of the following: Internal, 1SA, EISA,
MicroChanndl, TurboChannel, or PCIBus. The upper bound on the types of buses
supported is always Maximuml nterfaceType.

BusNumber

The zero-based and system-assigned bus number for the device is used together with
InterfaceType to identify the bus for systems with more than one bus of the same type.

BusAddress
The bus-relative address.

pAddressSpace

A pointer that specifies whether the address is a port number or a memory address:
* pAddressSpace 0x0 indicates memory, 0X 1 indicates 1/0 space.

pTrandatedAddress
A pointer to the translated address.

Return Values

A return value of TRUE indicates the system logical address corresponding to the given
BusNumber and BusAddress has been returned in pTrans atedAddress.

Comments

There are many ways to connect a peripheral businto a system. The memory address space of
the bus, referred to asthe logical address space, can be directly merged with the physical
address space of the host, or some mapping may be involved. Also, some machines can have
more than one bus, or a bus can have more than one address space, asin having separate
memory and 1/0O addresses.

96

Chapter 2: Real-Time API

RtTrandateBusAddress performs this trandlation. The parameters to this routine include a
bus number to support platforms with more than one bus of the same InterfaceType, the bus
address to be trandated, and a pAddressSpace specifier typically used to differentiate between
memory and 1/0 space, if these are separate. The user might obtain these parameters by
calling RtGetBusDataByOffset.

See Also
HalTrandateBusAddress (in the DDK for Windows NT and Windows 2000)
RtGetBusDataByOff set
RtSetBusDataByOffset

97

RTX Reference

RtTerminateProcess

RtTerminatePr ocess terminates the specified process and al of its threads.

BOOL

RtTerminateProcess(
HANDLE hProcess,
UINT uExitCode

);
Parameters

hProcess
Handle to the process to terminate. The handle must have PROCESS TERMINATE access.

uExitCode

The exit code for the process and for al threads terminated as aresult of thiscall. Use
RtGetExitCodePr ocess to retrieve the process's exit value. Use GetExitCodeT hread to
retrieve athread's exit value.

Return Values
If the function succeeds, the return valueis TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments

RtTerminateProcessis used to unconditionally cause a process to exit. Useit only in
extreme circumstances. The state of global data maintained by dynamic-link libraries
(DLLs) may be compromised if RtTerminateProcessis used rather than ExitProcess.

RtTerminatePr ocess causes all threads within a process to terminate, and causes a process to
exit, but DLLs attached to the process are not notified that the process is terminating.

Terminating a process causes the following:
1. All of the object handles opened by the process are closed.
2. All of the threadsin the process terminate their execution.

3. The state of the process object becomes signaled, satisfying any threads that had been
waiting for the process to terminate.

4. The states of all threads of the process become signaled, satisfying any threads that
had been waiting for the threads to terminate.

5. Thetermination status of the process changes from STILL_ACTIVE to the exit value
of the process.

98

Chapter 2: Real-Time API

Terminating a process does not cause child processes to be terminated.

Terminating a process does not necessarily remove the process object from the system. A
process object is deleted when the last handle to the process is closed.

See Also

ExitProcess
RtGetExitCodeProcess
GetExitCodeThread
RtOpenProcess
RtCreateProcess

99

RTX Reference

RtUnlockKernel

100

RtUnlockK er nel unlocks sections of the kernel’s virtual address space previously locked into
physical memory.

BOOL

RtUnlockK ernel
ULONG Section

);
Parameters

Section

A number specifying which section of the kernel to lock. Currently, the value
RT_KLOCK_ALL issupported.

Return Values

The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments

RtUnlockK ernel unlocks sections of the kernel’s memory previously locked by acall to
RtL ockKernel. The behavior of unlocking memory not previously locked by RtL ockK ernel
is undefined and unpredictable.

Because processes are always locked, this function has no impact on RTSS determinism. This
call isaNO-OP (no operation) when issued from RTSS applications.

See Also

RtAllocatel ockedMemory
RtCommitLockHeap
RtCommitL ockProcessHeap
RtCommitL ockStack
RtFreelockedMemory
RtLockKernel

RtL ockProcess
RtUnlockProcess

Chapter 2: Real-Time API

RtUnlockProcess

RtUnlock Process unlocks sections of the processes' virtual address space previously locked
into physical memory. RtUnlock Process has no effect within the RTSS environment.

BOOL

RtUnlockProcess(
ULONG Section

);
Parameters

Section

A number specifying which sectionsto unlock. Currently, the value RT_PLOCK_ALL is
supported.

Return Values

The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments

RtUnlockProcess unlocks sections of the process memory previously locked by acal to
RtLockProcess. The behavior of unlocking memory not previously locked by RtLockProcess
is undefined and unpredictable. This function has no impact on RTSS determinism. This call
isaNO-OP (no operation) when issued from RTSS applications.

See Also

RtAllocatel ockedMemory
RtCommitLockHeap
RtCommitL ockProcessHeap
RtCommitL ockStack
RtFreelockedMemory
RtLockKernel

RtL ockProcess

RtUnlockK ernel

101

RTX Reference

RtUnmapMemory

RtUnmapM emory releases a mapping made by a previous call to RtMapMemory.

BOOL

RtUnmapM emory(
PVOID pVirtual Address

);
Parameters

pVirtual Address
A pointer returned by a previous call to RtMapMemory.

Return Values
If the function is successful, it returns TRUE. Otherwise, it returns FALSE.

Comments

The virtual address passed in must be the same base address returned to the user by a
previous cal to RtMapMemory.

See Also

RtAllocatel ockedMemory
RtCommitLockHeap
RtCommitL ockProcessHeap
RtCommitL ockStack
RtFreel ockedMemory
RtLockKernel

RtL ockProcess
RtMapMemory

RtUnlockK ernel
RtUnlockProcess

102

Chapter 2: Real-Time API

RtWaitForMultipleObjects

RtWaitForM ultipleObjects returns when one of the following occurs:

B Any one of the specified objectsisin the signaled state.
B Thetime-out interval elapses.
m Thisfunction only supports WAIT FOR ANY object.

DWORD

RtWaitForM ultipleObjects(
DWORD nCount,
CONST HANDLE *IpHandles,
BOOL fWaitAll,
DWORD dwMilliseconds

);
Parameters

nCount

Specifies the number of object handlesin the array pointed to by IpHandles. The maximum
number of object handlesisMAX_WFMO, as defined in RTAPI.h.

IpHandles

Pointer to an array of object handles. For alist of the object types whose handles can be
specified, see the following Remarks section. The array can contain handles to objects of
different types. It may not contain the multiple copies of the same handle.

If one of these handlesis closed while the wait is still pending, the function’s behavior is
undefined.

The handles must have SY NCHRONIZE access,

fWaitAll

Specifies the wait type. The function returns when the state of any one of the objects set to
issignaled. The return value indicates the object whose state caused the function to return.

RTSS Environment: This parameter must be FALSE, indicating WAIT FOR ANY .

dwMilliseconds

Specifies the time-out interval, in milliseconds. The function returns if the interval elapses,
even if the condition specified by the f\WaitAll parameter are not met. If dwMillisecondsis
zero, the function tests the states of the specified objects and returnsimmediately. If
dwMillisecondsis INFINITE, the function’s time-out interval never elapses.

103

RTX Reference

104

Return Values

If the function succeeds, the return value indicates the event that caused the function to

return. This value can be one of the following.

Return Value

Meaning

WAIT_OBJECT_O to (WAIT_OBJECT_O + nCount
-1)

The return value minus
WAIT_OBJECT_O indicates the
IpHandles array index of the object
that satisfied the wait. If more than
one object became signalled during
the call, this is the array index of the
signalled object with the smallest
index value of all the signalled
objects.

WAIT_ABANDONED_O to
(WAIT_ABANDONED_O + nCount - 1)

The return value minus
WAIT_ABANDONED_O indicates the
IpHandles array index of an
abandoned mutex object that
satisfied the wait.

WAIT_TIMEOUT

The time-out interval elapsed and
the conditions specified by the
fWaitAll parameter are not satisfied.
If the function fails, the return value
is WAIT_FAILED. To get extended
error information, call
GetLastError.

Remarks

RtWaitFor M ultipleObj ects determines whether the wait criteria have been met. If the
criteria have not been met, the calling thread enters the wait state. It uses no processor time

while waiting for the criteria to be met.

The function modifies the state of some types of synchronization objects. M odification occurs

only for the object or objects whose signaled state caused the function to return. For example,
the count of a semaphore object is decreased by one. When fWaitAll is FALSE, and multiple

objects are in the signaled state, the function chooses one of the objects to satisfy the wait; the

states of the other objects are unaffected.

RtWaitFor M ultipleObjects can specify handles of any of the following object typesin the

IpHandles array:

m Event
Mutex
Process
Semaphore

[]
]
]
m Thread

Chapter 2: Real-Time API

See Also

CreateT hread
RtOpenProcess
RtCreateEvent
RtCreateM utex
RtCreateProcess
RtCreateSemaphore
RtOpenEvent
RtOpenMutex
RtOpenSemaphore
RtWaitForSingleObject

105

RTX Reference

RtWaitForSingleObject

RtWaitForSingleObject returns when one of the following occurs:

B The specified object isin the signaled state.
B Thetime-out interval elapses.

DWORD

RtWaitForSingleObj ect(

HANDLE Handle,
DWORD Milliseconds

);
Parameters

hHandle
The object identifier. See thelist of the object types whose handles can be specified in the
Comments section.

Milliseconds

The time-out interval, in milliseconds. The function returnsif the interval elapses, even if
the object’s state is non-signaled. If Millisecondsis zero, the function tests the object’s state
and returns immediately. If Millisecondsis INFINITE, the function’s time-out interval never

elapses.

Return Values
If the function succeeds, the return value indicates the event that caused the function to
return.

If the function fails, the return value isWAIT_FAILED. To get extended error information,
cal GetLastError.

The return value on success is one of the following values:

Value Meaning

WAIT_ABANDONED | The specified object is a mutex object that was not released by
the thread that owned the mutex object before the owning
thread terminated. Ownership of the mutex object is granted to
the calling thread, and the mutex is set to non-signaled.

WAIT_OBJECT_O The state of the specified object is signaled.

WAIT_TIMEOUT The time-out interval elapsed, and the object's state is non-
signaled.

Comments

RtWaitFor SingleObject checks the current state of the specified object. If the object’s state
isnon-signaled, the calling thread enters an efficient wait state. The thread consumes very
little processor time while waiting for the object state to become signaled or the time-out

interval to elapse.
Before returning, await function modifies the state of some types of synchronization objects.

106

Chapter 2: Real-Time API

Modification occurs only for the object or objects whose signaled state caused the function to
return. For example, the count of a semaphore object is decreased by one.

RtWaitFor SingleObject can wait for the following objects:

Semaphore
RtCreateSemaphore or RtOpenSemaphor e returns the handle. A semaphore object
maintains a count between zero and some maximum value. Its stateis signaled when its
count is greater than zero and non-signaled when its count is zero. If the current stateis
signaled, the wait function decreases the count by one.
Mutex
RtCreateM utex and RtOpenM utex return handles to the mutex object which becomes
signaled when the mutex is unowned.
Event
The RtCreateEvent or RtOpenEvent function returns the handle. An event object’s
stateis set explicitly to signaled by the RtSetEvent or RtPulseEvent function. A
manual-reset event object’s state must be reset explicitly to nonsignaled by the
RtResetEvent function. For an auto-reset event object, the wait function resets the
object’s state to nonsignaled before returning.

See Also

RtCreateEvent
RtCreateM utex
RtCreateSemaphore
RtOpenEvent
RtOpenMutex
RtOpenSemaphore

107

RTX Reference

RtWprintf

RtWprintf prints formatted output to the standard output stream or console window.

INT

RtWprintf(
LPCWSTR IpFormat [, argument, . . .]

);
Parameters

|pFormat
The format control with optional arguments.

Return Values

RtWprintf returns the number of wide characters printed. If an error occurs, it returns a
negative value.

Comments
RtWoprintf issimilar to wprintf, but RtWprintf does not require the C run-time library and

can work with any combination of run-time libraries. This function does not support floating
point conversions in the RTSS environment.

RtWprintf formats and prints a series of characters and val ues to the standard output stream,
stdout. If arguments follow the format string, the format string must contain specifications
that determine the output format for the arguments.

The format argument consists of ordinary characters, escape sequences, and (if arguments
follow format) format specifications. The ordinary characters and escape sequences are
copied to stdout in order of their appearance. The required header is <rtapi.h>.

Format specifications always begin with a percent sign (%) and are read |eft to right. When
RtWprintf encounters the first format specification (if any), it converts the value of thefirst
argument after format and outputs it accordingly. The second format specification causes the
second argument to be converted and output, and so on. If there are more arguments than
there are format specifications, the extra arguments are ignored. The results are undefined if
there are not enough arguments for all the format specifications.

Example
RtWorintf(L"Line one\n\t\tLine two\n");
produces the output:

Li ne one
Li ne two

108

Chapter 2: Real-Time API

Format Specification Fields
See the format specification fields in the Comments section of RtPrintf for details.

See Also
RtAtoi
RtPrintf
RtWtoi

109

RTX Reference

RtWritePortBufferUchar
RtWritePortBufferUshort
RtWritePortBufferUlong

110

The RtWritePortBuffer* calls copy a series of one-, two-, or four-byte quanta from a buffer to
an 1/0 port.

VOID

RtWritePortBuffer Uchar (PUCHAR PortAddress, PUCHAR pBuffer, ULONG
nNumber OfBytes);
VOID

RtWritePortBuffer Ushort(PUSHORT PortAddress, PUSHORT pBuffer, ULONG
nNumber OfBytes);
VOID

RtWritePortBuffer Ulong(PULONG PortAddress, PULONG pBuffer, ULONG
nNumber OfBytes);

Parameters

PortAddress
A Port 1/0 address cast as a pointer to the type of data being written.

pBuffer
A pointer to a buffer of one-, two-, or four-byte quanta.

nNumber OfBytes
The size of the buffer to be written.

Comments

RtWritePortBuffer Uchar, RtWritePortBuffer Ushort, and RtWritePortBuffer Ulong
write a buffer of one-, two-, or four-byte quanta directly to an 1/0 port from the buffer.

See Also
RtDisablePortlo
RtEnablePortlo
RtReadPortBuffer* (Uchar, Ushort, Ulong)
RtReadPort* (Uchar, Ushort, Ulong)
RtWritePort* (Uchar, Ushort, Ulong)

Chapter 2: Real-Time API

RtWritePortUchar
RtWritePortUshort
RtWritePortUlong

The RtWritePort* calls write a one-, two-, or four-byte quantum directly to an 1/O port.

VOID

RtWritePortUchar (PUCHAR PortAddress, UCHAR pBuffer);
VOID

RtWritePortUshort(PUSHORT PortAddress, USHORT pBuffer);
VOID

RtWritePortUlong(PULONG PortAddress, UL ONG pBuffer);

Parameters

PortAddress
A Port 1/0 address cast as a pointer to the type of data being written.

pBuffer
The one-, two-, or four-byte quantum to be written to the port.

Comments

RtWritePortUchar, RtWritePortUshort, and RtWritePortUlong write a one-, two-, or
four-byte quantum directly to an /O port.

See Also
RtDisablePortlo
RtEnablePortlo
RtReadPortBuffer* (Uchar, Ushort, Ulong)
RtReadPort* (Uchar, Ushort, Ulong)
RtWritePortBuffer* (Uchar, Ushort, Ulong)

111

RTX Reference

RtWtoi

RtWtoi converts a given string value to an integer.

INT

RtWtoi(
LPCWSTR IpString

);
Parameters

IpString
The source Unicode string.

Return Values
This function returns the integer value of the string.

Comments

RtWtoi issimilar to wtoi, but RtWtoi does not require the C run-time library and can work
with any combination of run-time libraries.

This function supports decimal digits only, and does not allow |eading whitespace or signs.
See Also

RtAtoi
RtWPrintf

112

CHAPTER 3

Win32-Supported API

AbnormalTermination

AbnormalTermination indicates whether the try block of atry-finally statement terminated
normally. The function can be called only from within the finally block of atry-finally
Statement.

BOOL
Abnormal Termination(V OID)

Parameters
This function has no parameters.

Return Values
If the try block of the try-finally statement terminated abnormally, the return value is TRUE.
If the try block of the try-finally statement terminated normally, the return value is FAL SE.

Comments

Thetry block terminates normally only if execution leaves the block sequentially after
executing the last statement in the block. Statements (such asreturn, goto, continue, or
break) that cause execution to leave the try block result in abnormal termination of the block.
Thisisthe case even if such a statement is the last statement in the try block.

Abnormal termination of atry block causes the system to search backward through all stack
frames to determine whether any termination handlers must be called. This can result in the
execution of hundreds of instructions, so it isimportant to avoid abnormal termination of a
try block due to areturn, goto, continue, or break statement. Note that these statements do
not generate an exception, even though the termination is abnormal.

113

RTX Reference

CloseHandle

CloseHandle closes an open object handle.

BOOL

CloseHandl g
HANDLE hObject

);
Parameters

hObject
An open object handle.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments

CloseHandle closes handles to thread and file objects. It invalidates the specified object
handle, decrements the object’s handle count, and performs object-retention checks. Once the
last handle to an object is closed, the object is removed from the operating system.

Note: Inthe RTSS environment, CloseHandle can aso be used to close any RTX object. Use
the RtCloseHandle to close RTX objects. In the Win32 environment, CloseHandle can only
close Win objects.

See Also
RtCloseHandle

114

Chapter 3: Win32-Supported API

CreateDirectory

CreateDirectory creates anew directory. If the underlying file system supports security on
files and directories, the function applies a specified security descriptor to the new directory.

BOOL

CreateDirectory(
LPCTSTR IpPathName,
LPSECURITY_ATTRIBUTES IpSecurityAttributes

);
Parameters

IpPathName
A pointer to a null-terminated string that specifies the path of the directory to be created.

Thereisadefault string size limit for paths of RTX_MAX_PATH characters. Thislimitis
related to how CreateDirectory parses paths.

|pSecurityAttributes

A pointer to aSECURITY_ATTRIBUTES structure that determines whether the returned
handle can be inherited by child processes. If IpSecurityAttributesis NULL, the handle
cannot be inherited.

The IpSecurityDescriptor member of the structure specifies a security descriptor for the new
directory. If IpSecurityAttributesis NULL, the directory gets a default security descriptor.
Thetarget file system must support security on files and directories for this parameter to
have an effect.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments

Some file systems, such as NTFS, support compression for individual files and directories.
On volumes formatted for such afile system, anew directory inherits the compression
attribute of its parent directory.

See Also
CreateFile

115

RTX Reference

CreateFile

CreateFile creates or opens two types of objects: files and directories (open only). It then
returns a handle that can be used to access the object.

HANDLE

CreateFile(
LPCTSTR IpFileName,
DWORD DesiredAccess,
DWORD ShareMode,
LPSECURITY_ATTRIBUTES IpSecurityAttributes,
DWORD CreationDisposition,
DWORD FlagsAndAttributes,
HANDLE hTemplateFile

);
Parameters

IpFileName
A pointer to a null-terminated string that specifies the name of the object to create or open.

If *|pFileNameis a path, the string size limit is RTX_MAX_PATH characters. Thislimitis
related to how CreateFile parses paths.

DesiredAccess

Thetype of accessto the object. An application can obtain read access, write access, read-
write access, or device query access. This parameter can be any combination of the
following values.

0 (zero)

Specifies device query access to the object. An application can query device attributes
without accessing the device.

GENERIC_READ
Specifies read access to the object. Data can be read from the file and the file pointer can
be moved. Combine with GENERIC _WRITE for read-write access.

GENERIC_WRITE
Specifies write access to the object. Data can be written to the file and the file pointer
can be moved. Combine with GENERIC_READ for read-write access.

ShareMode

Set of bit flags that specifies how the object can be shared. If ShareModeis O, the object
cannot be shared. Subsequent open operations on the object will fail, until the handle is
closed.

116

Chapter 3: Win32-Supported API

To share the object, use a combination of one or more of the following values:

FILE_SHARE _DELETE
Subsequent open operations on the object will succeed only if delete accessis requested.

FILE_SHARE_READ
Subsequent open operations on the object will succeed only if read access is requested.

FILE_SHARE_WRITE
Subsequent open operations on the object will succeed only if write accessis requested.

IpSecurityAttributes (ignored by RTX)
A pointer to aSECURITY_ATTRIBUTES structure that determines whether the returned

handle can be inherited by child processes. If IpSecurityAttributesis NULL, the handle
cannot beinherited.

The IpSecurityDescriptor member of the structure specifies a security descriptor for the
object. If IpSecurityAttributesis NULL, the object gets a default security descriptor. The
target file system must support security on files and directories for this parameter to have an
effect on files.

CreationDisposition
Specifies which action to take on files that exist, and which action to take when files do not

exist. For more information about this parameter, see the Comments section. This parameter
must be one of the following values:

CREATE_NEW
Creates anew file. CreateFilefailsif the specified file already exists.
CREATE_ALWAYS
Creates anew file. If thefile exists, CreateFile overwrites the file and clears the
exigting attributes.
OPEN_EXISTING
Opensthefile. CreateFilefailsif thefile does not exist. See the Comments section for
information on hen to use the OPEN_EXISTING flag if using CreateFile for devices,
including the console.
OPEN_ALWAYS
Opensthefile, if it exists. If the file does not exist, CreateFile creates thefile asif
CreationDisposition were CREATE_NEW.

TRUNCATE_EXISTING
Opens the file. Once opened, the file istruncated so that its size is zero bytes. The
calling process must open the file with at least GENERIC_WRITE access. CreateFile
failsif the file does not exist.
FlagsAndAttributes

Thefile attributes and flags for the file.

117

RTX Reference

Valid Attributes
Any combination of the following attributesis acceptable for the FlagsAndAttributes
parameter, except all other file attributes override FILE_ ATTRIBUTE_NORMAL.

FILE ATTRIBUTE_ARCHIVE
The file should be archived. Applications use this attribute to mark files for backup or
removal.

FILE_ATTRIBUTE_HIDDEN
Thefileishidden. It is not to be included in an ordinary directory listing.

FILE ATTRIBUTE_NORMAL
The file has no other attributes set. This attribute isvalid only if used alone.

FILE_ ATTRIBUTE_OFFLINE
The data of thefile is not immediately available. Indicates that the file data has been
physically moved to offline storage.

FILE_ ATTRIBUTE_READONLY
Thefileisread only. Applications can read the file but cannot write to it or deleteit.

FILE_ ATTRIBUTE_SYSTEM
Thefileispart of or isused exclusively by the operating system.

FILE_ ATTRIBUTE_TEMPORARY
Thefileisbeing used for temporary storage. File systems attempt to keep all of the data
in memory for quicker access rather than flushing the data back to mass storage. A
temporary file should be deleted by the application as soon as it is no longer needed.

Valid Flags
Any combination of the following flags is acceptable for the FlagsAndAttributes parameter.

FILE FLAG_WRITE_THROUGH
Instructs the system to write through any intermediate cache and go directly to disk.
Windows can still cache write operations, but cannot lazily flush them.

FILE_FLAG_NO_BUFFERING
Instructs the system to open the file with no intermediate buffering or caching. An
application must meet certain requirements when working with files opened with
FILE_FLAG_NO_BUFFERING:

B File access must begin at byte offsets within the file that are integer multiples of the
volume’s sector size.

B Fileaccess must be for numbers of bytesthat are integer multiples of the volume’s
sector size. For example, if the sector sizeis 512 bytes, an application can request
reads and writes of 512, 1024, or 2048 bytes, but not of 335, 981, or 7171 bytes.

m Buffer addresses for read and write operations must be aligned on addresses in
memory that are integer multiples of the volume's sector size.

FILE_FLAG_RANDOM_ACCESS
Indicates that the file is accessed randomly. The system can use this as a hint to optimize
file caching.
FILE_FLAG_SEQUENTIAL_SCAN
Indicates that the file is to be accessed sequentially from beginning to end. The system
can use this as a hint to optimize file caching. If an application moves the file pointer for
random access, optimum caching may not occur; however, correct operation is still
guaranteed. Specifying this flag can increase performance for applications that read large

118

Chapter 3: Win32-Supported API

files using sequential access. Performance gains can be even more noticeable for
applications that read large files mostly sequentialy, but occasionally skip over small
ranges of bytes.

FILE FLAG_DELETE_ON_CLOSE

Indicates that the operating system isto delete the file immediately after all of its

handles have been closed, not just the handle for which you specified
FILE_ FLAG_DELETE_ON_CLOSE. Subsequent open requests for the file will fail,
unless FILE_ SHARE_DELETE is used.

hTemplateFile (ignored)

Return Values

If CreateFile succeeds, the return value is an open handle to the specified file. If the
specified file exists before the function call and CreationDisposition is CREATE_ALWAYS
or OPEN_ALWAYS, acall to GetLastError returns ERROR_ALREADY _EXISTS (even
though the function has succeeded). If the file does not exist before the call, GetL astError
returns ERROR_SUCCESS. If CreateFilefails, thereturn valueis
INVALID_HANDLE_VALUE. To get extended error information, call GetLastError.

Comments
Use CloseHandle to close an object handle returned by CreateFile.

As noted above, specifying zero for DesiredAccess alows an application to query device
attributes without actually accessing the device. Thistype of querying is useful, for example,
if an application wants to determine the size of afloppy disk drive and the formats it supports
without having a floppy in the drive.

Files
When creating a new file, CreateFile performs the following actions:

m Combines the file attributes and flags specified by FlagsAndAttributes with
FILE_ATTRIBUTE_ARCHIVE.

B Setsthefilelength to zero.

m Copiesthe extended attributes supplied by the template file to the new fileif the
hTemplateFile parameter is specified.

When opening an existing file, CreateFile performs the following actions:
m Combinesthefile flags specified by FlagsAndAttributes with existing file attributes.
CreateFile ignoresthefile attributes specified by FlagsAndAttributes.
Setsthefile length according to the value of CreationDisposition.
Ignores the hTemplateFile parameter.

B Ignores the IpSecurityDescriptor member of the SECURITY_ATTRIBUTES
structureif the IpSecurityAttributes parameter is not NULL. The other structure
members are used. binheritHandle is the only way to indicate whether the file handle
can be inherited.

Some file systems, such as NTFS, support compression for individual files and directories.
On volumes formatted for such afile system, anew file inherits the compression attribute of
its directory.

119

RTX Reference

Do not use CreateFile to set afile’'s compression state. Setting

FILE_ ATTRIBUTE_COMPRESSED in the FlagsAndAttributes parameter does nothing. Use
Devicel oControl and the FSCTL_SET_COMPRESSION operation to set afile’s
compression state.

Directories

An application cannot create a directory with CreateFile; it must call CreateDirectory to
create a directory.

See Also

CreateDirectory
DeviceloControl
ReadFile
WriteFile

120

Chapter 3: Win32-Supported API

CreateThread

CreateThread creates athread to execute within the address space of the calling process.

HANDLE

CreateThread(
LPSECURITY_ATTRIBUTES IpThreadAttributes,
DWORD SackSze,
LPTHREAD_START_ROUTINE IpSartAddress,
LPVOID IpParameter,
DWORD dwCreationFlags,
LPDWORD IpThreadid

);
Parameters

IpThreadAttributes (ignored)

SackSze

The size, in bytes, of the stack for the new thread. If O is specified, the stack size defaults to
8192 bytes under RTSS or to the same size as the calling thread's stack under Win32. The
stack is allocated automatically in the memory space of the process, and it is freed when the
thread terminates. In the Win32 environment, the stack size grows when necessary. In the
RTSS environment, the stack cannot grow.

The number of bytes specified by StackSze must be available from non-paged memory in
the kernel.

IpStartAddress

A pointer to the application-supplied function to be executed by the thread and represents
the starting address of the thread. The function accepts a single 32-bit argument and returns
a 32-bit exit value.

|pParameter
A single 32-bit parameter value passed to the thread.

CreationFlags

Additional flags that control the creation of the thread. If the CREATE_SUSPENDED flag
is specified, the thread is created in a suspended state and will not run until ResumeT hread
iscaled. If thisvalueis zero, the thread runsimmediately after creation. At thistime, no
other values are supported.

IpThreadid
A pointer to a 32-bit variable that receives the thread identifier.

Return Values
If the function succeeds, the return value is a handle to the new thread.

121

RTX Reference

If the function fails, the return value isNULL. To get extended error information, call
GetLastError.

Comments
The new thread handle is created with full access to the new thread.

The thread execution begins at the function specified by IpSartAddress. If this function
returns, the DWORD return value is used to terminate the thread in an implicit call to
ExitThread.

Thethread is created with athread priority of 0. Use GetThreadPriority and
SetThreadPriority to get and set the priority value of athread.

The thread object remains in the system until the thread has terminated and al handlesto it
have been closed through a call to CloseHandle. (For threads, use CloseHandle rather than
RtCloseHandle.)

ExitProcess, ExitThread, and CreateThread, aswell as aprocess that is starting, are
serialized between each other within a process. Only one of these events can happen in an
address space at atime.

See Also

CloseHandle
ExitProcess
ExitThread
GetThreadPriority
ResumeThread
SetThreadPriority

122

Chapter 3: Win32-Supported API

DeleteCriticalSection

DeleteCritical Section releases all resources used by an unowned critical -section object.

VOID

DeleteCritical Section(
LPCRITICAL_SECTION IpCritical Section

);
Parameter

IpCritical Section
A pointer to the critical-section object.

Return Values
This function does not return avalue.

Comments

Deleting a critical-section object releases al system resources used by the object. Once
deleted, the critical-section object cannot be specified in the Enter Critical Section or
L eaveCritical Section function.

See Also
EnterCritical Section
InitializeCritical Section
L eaveCritical Section

123

RTX Reference

DeleteFile

DeleteFile deletes an existing file.

BOOL

DeleteFilg(
LPCTSTR IpFileName

);
Parameters

IpFileName
Points to a null-terminated string that specifies the file to be deleted.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments
If an application attempts to delete afile that does not exit, the DeleteFile function fails.

The DeleteFile function failsif an application attempts to delete afile that is open for normal
I/0 or as a memory-mapped file.

To close an open file, use the CloseHandl e function.

See Also

CloseHandle
CreateFile

124

Chapter 3: Win32-Supported API

DeviceloControl

Devicel oControl sends a control code directly to a specified device driver, causing the
corresponding device to perform the specified operation.

BOOL

Devicel oControl(
HANDLE hDevice,
DWORD loControlCode,
LPVOID IplnBuffer,
DWORD nInBufferSze,
LPVOID IpOutBuffer,
DWORD nOutBufferSize,
L PDWORD IpBytesReturned,
LPOVERLAPPED I|pOverlapped

);
Parameters

hDevice

A handle to the device that is to perform the operation. Call CreateFile to obtain adevice
handle.

|oControlCode

The control code for the operation. This value identifies the specific operation to be
performed and the type of device on which the operation isto be performed. The following
values are defined:

|IOCTL_DISK_CHECK_VERIFY
Obsolete. Use IOCTL_STORAGE_CHECK_VERIFY

|IOCTL_DISK_EJECT _MEDIA
Obsolete. Use IOCTL_STORAGE_EJECT_MEDIA

IOCTL_DISK_FORMAT_TRACKS
Formats a contiguous set of disk tracks.

IOCTL_DISK_GET_DRIVE_GEOMETRY
Obtains information on the physical disk’s geometry.

IOCTL_DISK_GET_DRIVE_LAYOUT
Provides information about each partition on adisk.

|IOCTL_DISK_GET_MEDIA_TYPES
Obsolete. Use IOCTL_STORAGE_GET_MEDIA_TYPES

IOCTL_DISK_GET_PARTITION_INFO
Obtains disk partition information.

|IOCTL_DISK_LOAD_MEDIA
Obsolete. Use IOCTL_STORAGE_LOAD_MEDIA

|IOCTL_DISK_MEDIA_REMOVAL
Obsolete. Use IOCTL_STORAGE_MEDIA_REMOVAL

125

RTX Reference

126

IOCTL_DISK_PERFORMANCE
Provides disk performance information.

IOCTL_DISK_REASSIGN_BLOCKS
Maps disk blocks to spare-block pool.

IOCTL_DISK_SET DRIVE LAYOUT
Partitions a disk.

IOCTL_DISK_SET_PARTITION_INFO
Sets the disk partition type.

IOCTL_DISK_VERIFY
Performslogical format of adisk extent.

IOCTL_SERIAL_LSRMST_INSERT
Enables or disables placement of aline and modem status data into the data stream.

IOCTL_STORAGE_CHECK_VERIFY
Checks for change in aremovable-media device.

IOCTL_STORAGE_EJECT_MEDIA
Ejects mediafrom a SCSI device.

IOCTL_STORAGE_GET_MEDIA_TYPES
Obtains information about media support.

IOCTL_STORAGE _LOAD MEDIA
Loads mediainto adevice.

IOCTL_STORAGE_MEDIA_REMOVAL
Enables or disables the media g ect mechanism.

For more detailed information on each control code, seeits topic in the Microsoft
documentation. In particular, each topic provides details on the usage of the |plnBuffer,
ninBuffer Sze, IpOutBuffer, nOutBuffer Sze, and |pBytesReturned parameters.

IplnBuffer
A pointer to a buffer that contains the data required to perform the operation.

This parameter can be NULL if the loControl Code parameter specifies an operation that
does not require input data.

ninBuffer Sze
The size, in bytes, of the buffer pointed to by IpInBuffer.

|pOutBuffer
A pointer to a buffer that receives the operation’s output data.

This parameter can be NULL if the loControl Code parameter specifies an operation that
does not produce output data.

nOutBuffer Sze
The size, in bytes, of the buffer pointed to by |pOutBuffer.

|pBytesReturned

A pointer to avariable that receives the size, in bytes, of the data stored into the buffer
pointed to by |pOutBuffer.

Chapter 3: Win32-Supported API

IpOverlapped (ignored by RTX)
This parameter should be set to NULL.

Return Values
If the function succeeds, thereturn valueis TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

See Also
CreateFile

127

RTX Reference

DIlIMain

The DIIMain function is an optional method of entry into adynamic-link library (DLL). If
the function is used, it is called by the system when processes and threads are initialized and
terminated, or upon callsto LoadLibrary and FreeLibrary.

BOOL WINAPI

DIlIMain(
HINSTANCE hinstDLL,
DWORD fdwReason,
LPVOID IpvReserved

);
Parameters

HinstDLL

A handletothe DLL. HINSTANCE of aDLL isthe same asthe HMODULE of the DLL,
so hinstDLL can be used in subsequent calls to functions that require a module handle.

fdwReason

Specifies aflag indicating why the DLL entry-point function is being called. This parameter
can be one of the following values:

Value Meaning

DLL_PROCESS_ATTACH Indicates that the DLL is being loaded into the virtual
address space of the current process as a result of a call to
LoadLibrary.

DLL_THREAD_ATTACH This value is not used in the RTSS Environment.

DLL_THREAD_DETACH This value is not used in the RTSS Environment.

DLL_PROCESS_DETACH Indicates that the DLL is being unloaded from the virtual
address space of the calling process as a result of either a
process exit or a call to FreeLibrary.

|pvReserved
IpvReserved is NULL.

Return Values

When the system calls DIIM ain with the DLL_PROCESS ATTACH value, the function
returns TRUE if it succeeds or FALSE if initialization fails. If the return value is FAL SE,
LoadLibrary returns NULL. To get extended error information, call GetLastError.

When the system calls DIIM ain with any value other than DLL_PROCESS ATTACH, the
return value isignored.

128

Chapter 3: Win32-Supported API

Comments
RTSS calls DlIMain only for thread-issuing LoadL ibrary calls.

On attach, the body of the DLL entry-point function should perform only simple initialization
tasks such as creating synchronization objects, and opening files. Do not call LoadLibrary in
the entry-point function, because this may create dependency loopsin the DLL load order.
This can result in aDLL being used before the system has executed itsinitialization code.
Similarly, do not call FreeLibrary in the entry-point function on detach because this can
resultinaDLL being used after the system has executed its termination code.

Calling Win32 functions other than synchronization, and file functions may result in
problems that are difficult to diagnose. For example, calling User, Shell, COM, RPC, and
Windows Sockets functions (or any functions that call these functions) can cause access
violation errors because their DLLs call LoadL ibrary to load other system components.

To provide more complex initiaization, create an initialization routine for the DLL and
require applications to call theinitialization routine before calling any other routinesin the
DLL. Otherwise, have the initialization routine create a named mutex, and have each routine
inthe DLL call theinitialization routine if the mutex does not exist.

129

RTX Reference

EnterCriticalSection

Enter Critical Section waits for ownership of the specified critical-section object. The
function returns when the calling thread is granted ownership.

VOID

EnterCritical Section(
LPCRITICAL_SECTION IpCritical Section
)i

Parameters

IpCritical Section
A pointer to the critical-section object.

Return Values
This function does not return avalue.

Comments

The threads of a single process can use a critical-section object for mutual-exclusion
synchronization. The processis responsible for allocating the memory used by acritical-
section object, which it can do by declaring a variable of type CRITICAL_SECTION. Before
using a critical-section, some thread of the process must call the I nitializeCritical Section
function to initialize the object.

To enable mutually exclusive access to a shared resource, each thread calls the

Enter Critical Section function to request ownership of the critical -section before executing
any section of code that accesses the protected resource. Enter Critical Section blocks until
the thread can take ownership of the critical-section. When it has finished executing the
protected code, the thread uses the L eaveCritical Section function to relinquish ownership,
enabling another thread to become owner and access the protected resource. The thread must
call LeaveCritical Section once for each time that it entered the critical-section. The thread
enters the critical-section each time Enter Critical Section succeeds.

Once athread has ownership of a critical-section, it can make additional callsto
Enter Critical Section without blocking its execution. This prevents athread from
deadlocking itself while waiting for a critical-section that it aready owns.

Any thread of the process can use the DeleteCr itical Section function to release the system
resources that were allocated when the critical -section object was initialized.

After thisfunction has been called, the critical-section object can no longer be used for
synchronization.

See Also
DeleteCritical Section, InitiaizeCritical Section, L eaveCritical Section

130

Chapter 3: Win32-Supported API

ExitProcess

ExitProcess ends a process and al itsthreads.

VOID

ExitProcess(
UINT uExitCode

);
Parameters

uExitCode (Ignored in RTSS)
The exit code for the process.

Return Values
This function does not return avalue.

Comments

ExitProcess, ExitThread, CreateT hread, and a processthat is starting are seriaized
between each other within a process. Only one of these events can occur in an address space
at atime.

See Also
CreateThread
ExitThread
GetExitCodeThread

131

RTX Reference

ExitThread

ExitThread ends athread.

VOID

ExitThread(
DWORD ExitCode

);
Parameters

ExitCode

The exit code for the calling thread. Use GetExitCodeT hread to retrieve athread’s exit
code.

Return Values
This function does not return avalue.

Comments

ExitThread isthe preferred method of exiting a thread. When this function is called (either
explicitly or by returning from athread procedure), the current thread's stack is de-allocated
and the thread terminates.

If the thread isthe last thread in the process when this function is called, the thread’s process
is aso terminated.

Terminating a thread does not necessarily remove the thread object from the operating
system. A thread object is deleted when the last handle to the thread is closed.

ExitProcess, ExitThread, CreateThread, and a processthat is starting are seriaized
between each other within a process. Only one of these events can occur at atime.

If the primary thread calls ExitThread, the application will exit.

See Also
CreateThread
ExitProcess
GetExitCodeT hread
TerminateThread

132

Chapter 3: Win32-Supported API

FreeLibrary

FreelL ibrary decrements the reference count of the loaded dynamic-link library (DLL)
module. When the reference count reaches zero, the module is unmapped from the address
space of the calling process and the handle is no longer valid.

BOOL

FreeLibrary(
HMODULE hLibModule

);
Parameters

hLibModule
Handle to the loaded library module. The LoadL ibrary function returns this handle.

Return Values
If the function succeeds, the return valueis TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments
Each process maintains a reference count for each loaded library module.
This reference count isincremented each time LoadL ibrary is called and is decremented
eachtime FreeLibrary iscaled. A DLL module loaded at process initialization due to load-

time dynamic linking has a reference count of one. This count isincremented if the same
module isloaded by acall to LoadLibrary.

Before unmapping a library module, the system enablesthe DLL to detach from the process
by calling the DLL's DIIM ain function, if it has one, with the DLL_PROCESS DETACH
value. Doing so gives the DLL an opportunity to clean up resources allocated on behalf of the
current process. After the entry-point function returns, the library module is removed from
the address space of the current process.

Itisnot safeto call FreeLibrary from DIIMain. For more information, see the Comments
sectionin DIIMain.

Calling FreeL ibrary does not affect other processes using the same library module.

See Also
DlIMain
ExitThread
LoadLibrary

133

RTX Reference

GetCurrentProcesslid

GetCurrentProcessld returns the process identifier of the calling process.

DWORD
GetCurrentProcessld(VOID)

Parameters
This function has no parameters.

Return Values
Thereturn value isthe process identifier of the calling process.

Comments

Until the process terminates, the process identifier uniquely identifies the process throughout
the system.

RTSSRun returns the value of the current process ID. In the RTSS environment, thisis
equivalent to the RTSS slot number.

See Also
RtOpenProcess

134

Chapter 3: Win32-Supported API

GetCurrentThread

GetCurrentThread returns a pseudohandle for the current thread.

HANDLE
GetCurrentThread(VOID)

Parameters
This function has no parameters.

Return Values
Thereturn value is a pseudohandle for the current thread.

Comments

A pseudohandle is a specia constant that is interpreted as the current thread handle. The
calling thread can use this handle to specify itself whenever athread handleis required.
Pseudohandles are not inherited by child processes.

This handle has the maximum possible access to the thread object.
The function cannot be used by one thread to create a handle that can be used by other

threads to refer to thefirst thread. The handle is dways interpreted as referring to the thread

that isusing it.

See Also

CloseHandle
GetCurrentThreadld

135

RTX Reference

GetCurrentThreadld

GetCurrentThreadl d returns the thread identifier of the calling thread.

DWORD
GetCurrentThreadid(V OID)

Parameters
This function has no parameters.

Return Values
Thereturn value isthe thread identifier of the calling thread.

Comments

Until the thread terminates, the thread identifier uniquely identifies the thread throughout the
system.

See Also
GetCurrentThread

136

Chapter 3: Win32-Supported API

GetExceptionCode

GetExceptionCode retrieves a code that identifies the type of exception that occurred. The
function can be called only from within the filter expression or exception-handler block of a
try-except exception handler.

DWORD
GetExceptionCode(VOID)

Parameters
This function has no parameters.
Return Values

Thereturn value identifies the type of exception. The following list shows the exception
codesthat are likely to occur due to common programming errors. For more information, see

RTX Exception Handling in the RTX User’s Guide.

Value

Meaning

EXCEPTION_ACCESS_VIOLATION

The thread attempted to read from or write to
a virtual address for which it does not have
the appropriate access.

EXCEPTION_BREAKPOINT

A breakpoint was encountered.

EXCEPTION_DATATYPE_MISALIGNMENT

The thread attempted to read or write data
that is misaligned on hardware that does not
provide alignment. For example, 16-bit
values must be aligned on 2-byte boundaries,
32-bit values on 4-byte boundaries, and so
on.

EXCEPTION_FLT_DENORMAL_OPERAND

One of the operands in a floating-point
operation is denormal. A denormal value is
one that is too small to represent as a
standard floating-point value.

EXCEPTION_FLT_DIVIDE_BY_ZERO

The thread attempted to divide a floating-
point value by a floating-point divisor of zero.

EXCEPTION_FLT_INEXACT_RESULT

The result of a floating-point operation cannot
be represented exactly as a decimal fraction.

EXCEPTION_FLT_INVALID_OPERATION

This exception represents any floating-point
exception not included in this list.

EXCEPTION_FLT_OVERFLOW

The exponent of a floating-point operation is
greater than the magnitude allowed by the
corresponding type.

EXCEPTION_FLT_UNDERFLOW

The exponent of a floating-point operation is
less than the magnitude allowed by the
corresponding type.

EXCEPTION_INT_DIVIDE_BY_ZERO

The thread attempted to divide an integer
value by an integer divisor of zero.

EXCEPTION_ILLEGAL_INSTRUCTION

The method has terminated due to invalid
parameters or property values.

137

RTX Reference

Comments

GetExceptionCode can be called only from within the filter expression or exception-handler
block of atry-except statement. Thefilter expression is evaluated if an exception occurs
during execution of the try block, and it determines whether the except block is executed. The
following example shows the structure of atry-except statement.

try {

/[* try block */

}

except (filter-expression) {
/* exception handl er block */

}

Thefilter expression can invoke afilter function. The filter function cannot call
GetExceptionCode. However, the return value of GetExceptionCode can be passed as a
parameter to afilter function. The return value of the GetExceptionl nformation function
can also be passed as a parameter to afilter function. GetExceptionl nfor mation returns a
pointer to a structure that includes the exception-code information. In the case of nested try-
except statements, each statement’s filter expression is evaluated until oneis evaluated as
EXCEPTION_EXECUTE_HANDLER or EXCEPTION_CONTINUE_EXECUTION. Each
filter expression can invoke GetExceptionCode to get the exception code. The exception
code returned is the code generated by a hardware exception, or the code specified in the
RaiseException function for a software-generated exception.

See Also

138

GetExceptionlnformation
RaiseException

Chapter 3: Win32-Supported API

GetExceptionIinformation

GetExceptionl nformation retrieves a machine-independent description of an exception, and
information about the machine state that existed for the thread when the exception occurred.
Thisfunction can be called only from within the filter expression of atry-except exception
handler.

LPEXCEPTION_POINTERS
GetExceptionlnformation(V OID)

Parameters
Thisfunction has no parameters.

Return Values

Thereturn value is a pointer to an EXCEPTION_POINTERS structure that contains pointers
to two other structures: an EXCEPTION_RECORD structure containing a description of the
exception, and a CONTEXT structure containing the machine-state information.

Comments

Thefilter expression (from which the function is called) is evaluated if an exception occurs
during execution of the try block, and it determines whether the except block is executed. The
following example shows the structure of atry-except statement.

try {

/[* try block */

}

except (filter-expression) {
/* exception handl er block */

}

Thefilter expression can invoke afilter function. The filter function cannot call
GetExceptionl nfor mation. However, the return value of GetExceptionlnformation can be
passed as a parameter to afilter function.

To passthe EXCEPTION_POINTERS information to the exception-handler block, the filter
expression or filter function must copy the pointer or the data to safe storage that the handler
can later access. In the case of nested try-except statements, each statement’s filter expression
is evaluated until oneis evaluated as EXCEPTION _EXECUTE _HANDLER or
EXCEPTION_CONTINUE_EXECUTION. Each filter expression can invoke
GetExceptionl nfor mation to get exception information.

See Also
GetExceptionCode

139

RTX Reference

GetExitCodeThread

140

GetExitCodeT hread retrieves the termination status of the specified thread.

BOOL

GetExitCodeThread(
HANDLE hThread,
LPDWORD |pExitCode

);
Parameters

hThread
Thethread identifier.

IpExitCode
A pointer to a 32-bit variable to receive the thread termination status.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments

If the specified thread has not terminated, the termination status returned is STILL_ACTIVE.
If the thread has terminated, the termination status returned may be one of the following:

B Theexit value specified in ExitThread or TerminateT hread
B Thereturn value from the thread function
m Theexit value of the thread's process

See Also

ExitThread
TerminateThread

Chapter 3: Win32-Supported API

GetlLastError

GetL astError returnsthe calling thread's last-error code value. The last-error codeis
maintained on a per-thread basis. Multiple threads do not overwrite each other’s last-error
code.

DWORD
GetLastError(VOID)

Parameters
This function has no parameters.

Return Values

Thereturn value isthe calling thread’s last-error code value. Functions set this value by
calling SetLastError.

Comments

Call GetLastError immediately when afunction’s return value indicates that such a call will
return useful data. That is because some functions call SetL astError(0) when they succeed,
wiping out the error code set by the most recently failed function.

Most functions provided in RTX that set the thread's |ast error code value set it when they
fail; afew functions set it when they succeed. Function failureistypically indicated by a
return value error code such as FALSE, NULL, OXFFFFFFFF, or -1. Some functions call
SetLastError under conditions of success; those cases are noted in each function’s reference

page.

141

RTX Reference

GetProcAddress

GetProcAddressreturns the address of the specified exported dynamic-link library (DLL)
function.

FARPROC

GetProcAddress(
HMODULE hModule,
LPCSTR IpProcName

);
Parameters

hModule

A handle to the DLL module that contains the function. The L oadLibrary function returns
this handle.

IpProcName

A pointer to a null-terminated string contai ning the function name, or the function’s ordina
value.

Return Values
If the function succeeds, the return value is the address of the DLL’s exported function.

If the function fails, the return value isNULL. To get extended error information, call
GetLastError.

Comments
GetProcAddressisused to retrieve addresses of exported functionsin DLLS.

The spelling and case of the function name pointed to by IpProcName must be identical to
that in the EXPORTS statement of the source DLL’s module-definition (.DEF) file. The
exported names of Win32 API functions may differ from the names used when calling these
functions in the code. This difference is hidden by macros used in the SDK header files. For
more information, see Win32 Function Prototypes.

The IpProcName parameter can identify the DLL function by specifying an ordina value
associated with the function in the EXPORTS statement.

GetProcAddress verifies that the specified ordinal isin the range 1 through the highest
ordinal value exported in the .DEF file. The function then uses the ordinal as an index to read
the function’s address from afunction table. If the .DEF file does not number the functions
consecutively from 1to N (where N isthe number of exported functions), an error can occur
where GetProcAddress returns an invalid, non-NULL address, even though thereis no
function with the specified ordinal.

In cases where the function may not exist, the function should be specified by name rather
than by ordinal value.

142

Chapter 3: Win32-Supported API

RTSS Environment: The following information applies to the RTSS environment:

m Function lookup by ordinal valueis not presently supported.

m [f the exported routine name is decorated (e.g., _<fname>@<# argument bytes> asin
the __stdcall convention) the decorated name must be specified in the call to
GetProcAddress.

m DEF filesare not supported.
See Also

FreeLibrary
LoadLibrary

143

RTX Reference

GetProcessHeap

GetProcessHeap obtains a handle to the heap of the calling process. This handle can then be
used in callsto HeapAlloc, HeapReAlloc, HeapFree, and HeapSize.

HANDLE
GetProcessHeap(V OID)

Parameters
This function has no parameters.

Return Values
If the function succeeds, the return value is a handl e to the calling process's heap.

If the function fails, the return valueis NULL.
Comments

GetProcessHeap allows RTSS processes to allocate memory from the process heap. The
following example shows how to use this call with HeapAlloc.

HeapAl | oc(Get ProcessHeap(), 0, dwBytes);

See Also

HeapAlloc
HeapFree
HeapReAlloc
HeapSize

144

Chapter 3: Win32-Supported API

GetThreadPriority

GetThreadPriority returnsthe priority value for the specified thread. This value, together
with the priority class of the thread’s process, determines the thread's base-priority level.

INT

GetThreadPriority(
HANDLE hThread

);
Parameters

hThread
Thethread identifier.

Return Values
If the function succeeds, the return value is the thread’s priority level.

If the function fails, the return valueis THREAD_PRIORITY_ERROR_RETURN. To get
extended error information, call GetLastError.

Comments
See the Comments section in RtGetThreadPriority for details on thread priority mapping.

See Also
CreateThread
RtGetThreadPriority
RtSetThreadPriority
SetThreadPriority

145

RTX Reference

HeapAlloc

HeapAlloc allocates a block of memory from a heap. The alocated memory is not movable.

LPVOID
HeapAlloc(
HANDLE hHeap,
DWORD Flags,
DWORD Bytes
)i
Parameters
hHeap
The heap from which the memory will be allocated. This parameter is a handle returned by
GetProcessHeap.
Flags

The controllable aspects of heap alocation. Y ou can specify the following flag:

HEAP_ZERO_MEMORY
The allocated memory will beinitialized to zero.
Bytes
The number of bytesto be alocated.

Return Values
If the function succeeds, the return value is a pointer to the allocated memory block.
If the function fails, the return valueis NULL.

Comments

If HeapAlloc succeeds, it allocates at |east the amount of memory requested. If the actual
amount allocated is greater than the amount requested, because it is rounded to page boundry,
the process can use the entire amount. To determine the actual size of the allocated block, use
HeapSize.

To free ablock of memory allocated by HeapAlloc, use HeapFree. Memory allocated by
HeapAlloc is not movable. Since the memory is not movable, it is possible for the heap to
become fragmented. Note that if HEAP_ZERO_MEMORY is not specified, the allocated

memory may not be initialized to zero.

See Also
GetProcessHeap, HeapFree, HeapReAlloc, HeapSize, Setl astError

146

Chapter 3: Win32-Supported API

HeapCreate

HeapCreate creates a heap object that can be used by the caling process. The function
reserves a contiguous block in the virtual address space of the process and allocates physical
storage for a specified initia portion of this block.

HANDLE

HeapCreate(
DWORD flOptions,
DWORD InitialSze,
DWORD MaximumSze

);
Parameters

flOptions

The optional attributes for the new heap. These flags will affect subsequent accessto the
new heap through calls to the heap functions (HeapAlloc, HeapFree, HeapReAlloc, and
HeapSize).

Y ou can specify one or more of the following flags:

HEAP_GENERATE_EXCEPTIONS
Specifies that the system will raise an exception to indicate afunction failure, such asan
out-of-memory condition, instead of returning NULL.

HEAP_NO_SERIALIZE
Specifies that mutual exclusion will not be used when the heap functions allocate and
free memory from this heap. The default, occurring when the HEAP_NO_SERIALIZE
flag is not specified, isto serialize accessto the heap. Serialization of heap access allows
two or more threads to simultaneoudly allocate and free memory from the same heap.

InitialSze

Theinitid size, in bytes, of the heap. This value determines the initial amount of physical
storage that is allocated for the heap. The valueis rounded up to the next page boundary.

MaximumS ze

If MaximumSze is a non-zero value, it specifies the maximum size, in bytes, of the heap.
HeapCreate rounds MaximumS ze up to the next page boundary, and then reserves a block
of that size in the process’s virtual address space for the heap. If allocation requests made by
HeapAlloc or HeapReAlloc exceed the initid amount of physical storage specified by
Initial Sze, the system allocates additional pages of physical storage for the heap, up to the
heap’s maximum size.

If MaximumS ze is hon-zero, the heap cannot grow, and an absolute limitation arises: the
maximum size of amemory block in the heap is a bit less than Ox7FFF8 bytes. Requests to
alocate larger blocks will fail, even if the maximum size of the heap islarge enough to
contain the block.

147

RTX Reference

If MaximumSize is zero, it specifies that the heap can grow. The heap's sizeis limited only
by available memory. Requests to allocate blocks larger than Ox7FFF8 bytes do not
automatically fail; the system calls Virtual Alloc to obtain the memory needed for such
large blocks. Applications that need to alocate large memory blocks should set
MaximumS ze to zero.

Return Values

If the function succeeds, the return value is a handle of the newly created heap.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Comments

HeapCreate creates a private heap object from which the calling process can alocate
memory blocks by using HeapAlloc. Theinitia size determines the number of committed
pages that are initially allocated for the heap. The maximum size determines the total number
of reserved pages. These pages create a contiguous block in the process's virtual address
space into which the heap can grow. If requests by HeapAlloc exceed the current size of
committed pages, additional pages are automatically committed from this reserved space,
assuming that the physical storage isavailable.

The memory of a private heap object is accessible only to the processthat created it. If a
dynamic-link library (DLL) creates a private heap, the heap is created in the address space of
the processthat called the DLL, and it is accessible only to that process.

The system uses memory from the private heap to store heap support structures, so not al of
the specified heap sizeis available to the process. For example, if HeapAlloc requests 64
Kilobytes (K) from a heap with a maximum size of 64K, the request may fail because of
system overhead.

If the HEAP_NO_SERIALIZE flag is not specified (the simple default), the heap will
serialize access within the calling process. Serialization ensures mutua exclusion when two
or more threads attempt to simultaneously alocate or free blocks from the same heap. There
isasmall performance cost to serialization, but it must be used whenever multiple threads
alocate and free memory from the same heap.

Setting the HEAP_NO_SERIALIZE flag eliminates mutual exclusion on the heap. Without
serialization, two or more threads that use the same heap handle might attempt to alocate or
free memory simultaneoudly, likely causing corruption in the heap. The

HEAP_NO_SERIALIZE flag can, therefore, be safely used only in the following situations:

B The process has only one thread.

B The process has multiple threads, but only one thread calls the heap functions for a
specific heap.

B The process has multiple threads, and the application providesits own mechanism for
mutual exclusion to a specific heap.

See Also

148

GetProcessHeap, HeapAlloc, HeapDestroy, HeapFree,HeapReAlloc, HeapSize

Chapter 3: Win32-Supported API

HeapDestroy

HeapDestroy destroys the specified heap object. It uncommits and releases all the pages of a
private heap object and it invalidates the handle of the heap.

BOOL

HeapDestroy(
HANDLE hHeap

);
Parameters

hHeap

The heap to be destroyed. This parameter should be a heap handle returned by HeapCr eate.
A heap handle returned by GetProcessHeap should not be used.

Return Values
If the function succeeds, the return valueis TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments

Processes can call HeapDestroy without first calling HeapFr ee to free memory alocated
from the heap.

See Also
GetProcessHeap
HeapAlloc
HeapCreate
HeapFree
HeapReAlloc
HeapSize

149

RTX Reference

HeapFree

HeapFree frees amemory block allocated from a heap by HeapAlloc or HeapReAlloc.

BOOL

HeapFree(
HANDLE hHeap,
DWORD Flags,
LPVOID IpMem

);
Parameters

hHeap

The heap whose memory block the function frees. This parameter is the handle returned by
GetProcessHeap.

Flags (ignored)

IpMem

A pointer to the memory block to free. This pointer is returned by HeapAlloc or
HeapReAlloc.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

See Also
GetProcessHeap
HeapAlloc
HeapReAlloc
HeapSize
Setl astError

150

Chapter 3: Win32-Supported API

HeapReAlloc

HeapReAlloc reallocates a block of memory from a heap. This function enables you to resize
amemory block and change other memory block properties.

LPVOID

HeapReAlloc(
HANDLE hHeap,
DWORD Flags,
LPVOID IpMem,
DWORD Bytes

);
Parameters

hHeap

The heap from which the memory will be reallocated. Thisisthe handle returned by
GetProcessHeap.

Flags

The controllable aspects of heap reallocation. Y ou can specify one or both of the following
flags:

HEAP_REALLOC IN_PLACE ONLY (not supportedin RTSS)

Specifies that there can be no movement when reallocating a memory block to alarger
size. If thisflag is not specified and the reall ocation request isfor alarger size, the
function may move the block to anew location. If thisflag is specified and the block
cannot be enlarged without moving, the function will fail, leaving the original memory
block unchanged. Because memory movement always occurs, this flag is not supported
in the RTSS environment.

HEAP_ZERO_MEMORY

If the reallocation request isfor alarger size, thisflag specifies that the additional region
of memory beyond the original size will beinitialized to zero. The contents of the
memory block—up to its original size—are unaffected.

IpMem

A pointer to the block of memory that the function reallocates. This pointer is returned by an
earlier call toHeapAlloc or HeapReAlloc.

Bytes

The new size of the memory block, in bytes. A memory block's size can be increased or
decreased by using this function.

Return Values
If the function succeeds, the return value is a pointer to the reallocated memory block.
If the function fails, the return value is NULL. It calletL astError. To get extended error

151

RTX Reference

information, call GetLastError.

Comments

If HeapReAlloc succeeds, it alocates at |east the amount of memory requested. If the actual
amount allocated is greater than the amount requested, the process can use the entire amount.
To determine the actual size of the reallocated block, use HeapSize.

To free ablock of memory allocated by HeapReAlloc, use HeapFree.

See Also
GetProcessHeap
HeapAlloc
HeapFree
HeapSize
SetLastError

152

Chapter 3: Win32-Supported API

HeapSize

HeapSize returns the size, in bytes, of amemory block allocated from a heap by HeapAlloc
or HeapReAlloc.

DWORD

HeapSize(
HANDLE hHeap,
DWORD Flags,
LPCVOID IpMem

);
Parameters

hHeap
The heap in which the memory block resides. This handle is returned by GetPr ocessHeap.

Flags (ignored)
IpMem

A pointer to the memory block whose size the function will obtain. This pointer is returned
by HeapAlloc or HeapReAlloc.

Return Values
If the function succeeds, the return value is the size, in bytes, of the allocated memory block.

If the function fails, the return value is OX FFFFFFFF. The function does not call
SetL astError. An application cannot call GetLastError for extended error information.

See Also
GetProcessHeap
HeapAlloc
HeapFree
HeapReAlloc
Setl astError

153

RTX Reference

InitializeCriticalSection

InitializeCritical Section initializes a critical section object.

VOID

InitializeCritical Section(
LPCRITICAL_SECTION IpCritical Section
)i

Parameters

IpCritical Section
A pointer to the critical section object.

Return Values
This function does not return avalue.

Comments

The threads of a single process can use acritical section object for mutual-exclusion
synchronization. The processis responsible for allocating the memory used by acritical
section object, which it can do by declaring a variable of type CRITICAL_SECTION. Before
using a critical section, some thread of the process must call InitializeCritical Section to
initialize the object.

Once a critical-section object has been initialized, the threads of the process can specify the
object in Enter CriticalSection or L eaveCritical Section to provide mutually exclusive
access to a shared resource. For similar synchronization between the threads of different
processes, use a mutex object.

A critical-section object cannot be moved or copied. The process must also not modify the
object, but must treat it aslogically opaque.

See Also
DeleteCritical Section
EnterCritical Section
L eaveCritical Section
RtCreateM utex

154

Chapter 3: Win32-Supported API

LeaveCriticalSection

L eaveCritical Section releases ownership of the specified critical-section object.

VOID

L eaveCiriti cal Section(
LPCRITICAL_SECTION IpCritical Section

);
Parameters

IpCritical Section
A pointer to the critical-section object.

Return Values
This function does not return avalue.

Comments

The threads of a single process can use a critical-section object for mutual-exclusion
synchronization. The processis responsible for allocating the memory used by acritical-
section object, which it can do by declaring a variable of type CRITICAL_SECTION.

Before using a critical -section, some thread of the process must call the
I nitializeCritical Section function to initialize the object. A thread uses the

Enter Critical Section function to acquire ownership of a critical-section object. To release its
ownership, the thread must call L eaveCritical Section once for each time that it entered the

critical-section. If athread calls L eaveCritical Section when it does not have ownership of

the specified critical-section object, an error occurs that may cause another thread using
Enter Critical Section to wait indefinitely. Any thread of the process can use the

DeleteCritical Section function to release the system resources that were allocated when the
critical-section object was initialized. After this function has been caled, the critical-section

object can no longer be used for synchronization.

See Also
DeleteCritical Section
EnterCritical Section
InitializeCritical Section

155

RTX Reference

LoadLibrary

L oadL ibrary maps the specified executable module into the address space of the calling
process.

HPINSTANCE

LoadLibrary(
LPCTSTR IpLibFileName

);

Parameters

LpLibFileName

Pointer to a null-terminated string that names the executable module (either aDLL or EXE
file). The name specified is the filename of the module and is not related to the name stored
in the library module itself, as specified by the library keyword in the modul e definition
(DEF) file.

If the string specifies a path but the path does not exist in the specified directory, the
function fails.

If the string does not specify a path, the function uses a standard search strategy to find the
file.

For RTDLLs, Iplibfilename should have the extension .dll, not .rtdll. A path is not necessary
to provide, but the RTDLL should be registered.

Return Values

If the function succeeds, the return value is a handle to the module.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Comments

156

LoadL ibrary can be used to map a DLL module and return a handle that can be used in
GetProcAddressto get the address of a DLL function. LoadLibrary can aso be used to
map other executable modules. For example, the function can specify an EXE fileto get a
handle that can be used in FindResour ce or L oadResour ce.

Note: Do not use LoadLibrary to run an EXE file.

If the module’s DLL is not aready mapped for the calling process, the system callsthe DLL’s
DIlIMain function with the DLL_PROCESS ATTACH value.

If the DLL’s entry-point function does not return TRUE, L oadLibrary fails and returns
NULL.

Note: It isnot safeto call LoadLibrary from DIIMain.

Module handles are not global or inheritable. A call to LoadL ibrary by one process does not

Chapter 3: Win32-Supported API

produce a handle that another process can use, for example, in calling GetProcAddress. The
other process must make its own call to LoadL ibrary for the module before calling
GetProcAddress.

If no filename extension is specified in the IpLibFileName parameter, the default library
extension .DLL is appended. However, the filename string can include atrailing point
character (.) to indicate that the module name has no extension. When no path is specified,
the function searches for loaded modul es whose base name matches the base name of the
module to be loaded. If the name matches, the load succeeds. Otherwise, the function
searches for the file in the following sequence:

1. Thedirectory from which the application loaded.
2. Thecurrent directory.

3. The 32-bit Windows system directory. (Use the GetSystemDir ectory function to get
the path of this directory. The name of this directory is SY STEM32.)

4. The 16-bit Windows system directory. There is no function that obtains the path of
this directory, but it is searched. The name of this directory is SY STEM. Use the
GetWindowsDirectory function to get the path of this directory. The directories that
arelisted in the PATH environment variable. The first directory searched isthe one
directory containing the image file used to create the calling process (for more
information, see CreatePr ocess in the Microsoft SDK documentation). Doing this
alows private dynamic-link library (DLL) files associated with a process to be found
without adding the process's installed directory to the PATH environment variable.

The Visua C++ compiler supports a syntax that enables you to declare thread-local variables:
_declspec(thread). If you use this syntax inaDLL, you will not be able to load the DLL
explicitly using LoadL ibrary. If your DLL will be loaded explicitly, you must use the thread
local storage functionsinstead of _declspec(thread).

RTSS Environment: The following information appliesto the RTSS environment.

B The.exe extension and DLL names without an extension (i.e., the trailing dot
convention) are not supported.

m Any path specified as part of IpLibFileName isignored. RTDLLSs are loaded based on
whether the filename specified matches an existing, registered RTDLL.

m DLLsmust beregistered through "RTSSRun /dIl <image name>" before they can be
successfully accessed with LoadL ibrary.

_declspec(thread) is not supported.

See Also

DIIMain
GetProcAddress

157

RTX Reference

RaiseException

RaiseException raises an exception in the calling thread.

VOID

RaiseException(
DWORD ExceptionCode,
DWORD ExceptionFlags,
DWORD nNumberOf Arguments,
CONST DWORD* IpArguments

);
Parameters

ExceptionCode

The application-defined exception code of the exception being raised. The filter expression

and exception-handler block of an exception handler can use GetExceptionCode to retrieve
this value.

Note that the system will clear bit 28 of ExceptionCode. This bit is areserved exception hit,
used by the system for its own purposes. For example, after calling RaiseException with an
ExceptionCode value of OX FFFFFFFF, Windows displays a message indicating that the
exception number is OXEFFFFFFF.

ExceptionFlags

The exception flags. This can be either zero to indicate a continuable exception, or
EXCEPTION_NONCONTINUABLE to indicate a hon-continuabl e exception.

A non-continuable exception causes the process to unload or freeze with a"Non-continuable
Exception” message to prevent a stack fault in RTSS.

Note: The Win32 behavior differs; it continues re-raising
EXCEPTION_NONCONTINUABLE _EXCEPTION.

nNumber OfArguments

The number of arguments in the IpArguments array. This value must not exceed
EXCEPTION_MAXIMUM_PARAMETERS. This parameter isignored if [pArgumentsis
NULL.

IpArguments

A pointer to an array of 32-bit arguments. This parameter can be NULL. These arguments
can contain any application-defined data that needs to be passed to the filter expression of
the exception handler.

Return Values
This function does not return avalue.

158

Chapter 3: Win32-Supported API

Comments

RaiseException enables a process to use structured exception handling to handle private,
software-generated, application-defined exceptions. Raising an exception causes the
exception dispatcher to go through the following search for an exception handler:

1. The system attempts to locate a frame-based exception handler by searching the stack
frames of the thread in which the exception occurred. The system searches the
current stack frame first, then proceeds backward through preceding stack frames.

2. If no frame-based handler can be found, or no frame-based handler handles the
exception, the system provides default handling based on the exception type. For
most exceptions, the default action isto call ExitProcess.

The values specified in the ExceptionCode, ExceptionFlags, nNumber OfArguments, and
IpArguments parameters can be retrieved in the filter expression of atry-except frame-based
exception handler by calling GetExceptionl nfor mation.

See Also

ExitProcess
GetExceptionCode
GetExceptionlnformation

159

RTX Reference

ReadFile

ReadFile reads data from afile, starting at the position indicated by the file pointer. After the
read operation has been completed, the file pointer is adjusted by the number of bytes
actualy read.

BOOL

ReadFile(
HANDLE hFile,
LPVOID IpBuffer,
DWORD nNumberOfBytesT oRead,
L PDWORD |IpNumberOfBytesRead,
LPOVERLAPPED IpOverlapped

);

Parameters

hFile

Thefileto be read. The file handle must have been created with GENERIC_READ access
to thefile.

| pBuffer
A pointer to the buffer that receives the dataread from thefile.

nNumber OfBytesToRead
The number of bytesto be read from thefile.

IpNumber OfBytesRead

A pointer to the number of bytes read. ReadFile setsthis value to zero before doing any
work or error checking. If this parameter is zero when ReadFile returns TRUE on a named
pipe, the ather end of the message-mode pipe called WriteFile with

nNumber OfBytesToWrite set to zero.

IpOverlapped (not supported)
This parameter must be set to NULL.

Return Values

160

If the function succeeds, thereturn valueis TRUE.

If the return value is TRUE and the number of bytesread is zero, the file pointer was beyond
the current end of thefile at the time of the read operation.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Chapter 3: Win32-Supported API

Comments
ReadFile returns when the number of bytes requested has been read, or an error occurs.

If part of thefileislocked by another process and the read operation overlaps the locked
portion, this function fails.

Applications must not read from nor write to the input buffer that a read operation isusing
until the read operation completes. A premature access to the input buffer may lead to
corruption of the dataread into that buffer.

When a synchronous read operation reaches the end of afile, ReadFile returns TRUE and
sets * | pNumber OfBytesRead to zero.

See Also

CreateFile
WriteFile

161

RTX Reference

RemoveDirectory

162

RemoveDirectory deletes an existing empty directory.

BOOL

RemoveDirectory(
LPCTSTR IpPathName

);
Parameters

IpPathName

A pointer to a null-terminated string that specifies the path of the directory to be removed.
The path must specify an empty directory, and the calling process must have del ete access
to the directory.

Return Values
If the function succeeds, the return valueis TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments
RemoveDirectory does not delete any object identified by |pPathName.

See Also
CreateDirectory

Chapter 3: Win32-Supported API

ResumeThread

ResumeT hread subtracts one from a thread’s suspend count. When the suspend count is
reduced to zero, the execution of the thread is resumed.

DWORD

ResumeT hread(
HANDLE hThread

);
Parameters

hThread
A handlefor the thread to be restarted.

Return Values
If the function succeeds, the return value is the thread’s previous suspend count.

If the function fails, the return value is OXFFFFFFFF. To get extended error information, call
GetL astError.

Comments

ResumeThread checks the suspend count of the subject thread. If the suspend count is 0, the
thread is not currently suspended. Otherwise, the subject thread’s suspend count is reduced by
one. If the resulting value is 0, then the execution of the subject thread is resumed.

If the return value is 0, the specified thread was not suspended. If thereturn valueis 1, the
specified thread was suspended but was restarted. If the return value is greater than 1, the
specified thread is still suspended.

See Also
SuspendThread

163

RTX Reference

SetFilePointer

SetFilePointer moves the file pointer of an open file.

DWORD

SetFilePointer (
HANDLE hFile,
L ONG IDistanceToMove,
PLONG IpDistanceToMoveHigh,
DWORD MoveMethod

);
Parameters

hFile

The file whose file pointer is to be moved. The file handle must have been created with
GENERIC_READ or GENERIC_WRITE accessto thefile.

|DistanceToMove

The number of bytes to move the file pointer. A positive value moves the pointer forward in
the file and a negative value moves it backward.

IpDistanceToMoveHigh

A pointer to the high-order word of the 64-bit distance to move. If the value of this
parameter is NULL, SetFilePointer can operate only on files whose maximum size is 232
- 2. If this parameter is specified, the maximum file size is 264 - 2. This parameter also
receives the high-order word of the new value of the file pointer.

MoveMethod
The starting point for the file pointer move. This parameter can be one of the following
values:
Value Meaning
FILE_BEGIN The starting point is zero or the beginning of the file. If FILE_BEGIN

is specified, DistanceToMove is interpreted as an unsigned location
for the new file pointer.

FILE_ CURRENT The current value of the file pointer is the starting point.

FILE_END The current end-of-file position is the starting point.

Return Values

If SetFilePointer succeeds, the return value isthe low-order double-word of the new file
pointer, and if IpDistanceToMoveHigh isnot NULL, the function puts the high-order double-
word of the new file pointer into the LONG pointed to by that parameter.

If the function fails and IpDistanceToMoveHigh isNULL, the return value is OXFFFFFFFF.
To get extended error information, call GetLastError.

If the function fails and IpDistanceToMoveHigh is non-NULL, the return valueis
OXFFFFFFFF and GetLastError will return avalue other than NO_ERROR.

164

Chapter 3: Win32-Supported API

Comments

Do not use SetFilePointer with a handle to a non-seeking device, such asapipeor a
communications device.

Use caution when setting the file pointer in a multithreaded application. For example, an
application whose threads share afile handle, update the file pointer, and read from the file
must protect this sequence by using a critical section object or mutex object.

If the hFile file handle was opened with the FILE_FLAG_NO_BUFFERING flag set, an
application can move the file pointer only to sector-aligned positions. A sector-aligned
position is a position that is awhole number multiple of the volume's sector size. If an
application calls SetFilePointer with distance-to-move values that result in aposition that is
not sector-aligned and a handle that was opened with FILE_FLAG_NO_BUFFERING, the
function fails, and GetL astError returns ERROR_INVALID PARAMETER.

If the return value is OxFFFFFFFF and IpDistanceToMoveHigh is non-NULL, an application
must call GetLastError to determine whether the function has succeeded or failed.

} // end of error handler

11
/| Case Two: calling the function with
/'l | phDi stanceToMoveH gh !'= NULL

/Il try to nove hFile's file pointer sone huge distance

dwPoi nterLow = SetFilePointer (hFile, |D stanceLow, & |DistanceH gh,
FILE BEGN) ;

I if we failed ...
i f (dwPoi nterLow == OXFFFFFFFF
&&
(dwerror = GetLastError()) != NO ERROR){

/]l deal with that failure

} // end of error handler

See Also
ReadFile
WriteFile
InitializeCritical Section
EnterCritical Section
L eaveCritical Section
DeleteCritical Section
Mutex Objects

165

RTX Reference

SetLastError

SetL astError setsthe last-error code for the calling thread.

VOID

SetLastError(
DWORD ErrCode

);
Parameters

ErrCode
The last error code for the thread.

Return Values
This function does not return avaue.

Comments

Error codes are 32-bit values. (Bit 31 isthe most significant bit.) Bit 29 isreserved for
application-defined error codes; no RTAPI error code has this bit set. If you are defining an
error code for your application, set this bit to indicate that the error code has been defined by
your application and ensure that your error code does not conflict with any system-defined
error codes.

Most functions provided in RTX call SetLastError when they fail. Function failureis
typically indicated by areturn value error code such as FALSE, NULL, OXFFFFFFFF, or -1.

Applications can retrieve the value saved by this function by using GetL astError. The use of
GetLastError isoptiond; an application can cal it to find out the specific reason for a
function failure.

Thelast error code is kept in thread local storage so that multiple threads do not overwrite
each other's values.

See Also
GetLastError

166

Chapter 3: Win32-Supported API

SetThreadPriority

SetThreadPriority sets the priority value for the specified thread.

BOOL

SetThreadPriority(
HANDLE hThread,
int nPriority

);
Parameters

hThread
The thread whose priority valueisto be set.

nPriority
See the Comments section in RtGetThreadPriority for details on thread mapping priority.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

See Also

GetThreadPriority
RtGetThreadPriority
RtSetThreadPriority

167

RTX Reference

SetUnhandledExceptionFilter

SetUnhandledExceptionFilter |lets an application supersede the top-level exception handler
that RTSS places at the top of each thread and process. After calling thisfunction, if an
exception occursin a process and the system’s scan of handlers reaches the RTSS unhandled
exception filter, that filter will call the exception filter function specified by the

IpTopLevel ExceptionFilter parameter.

LPTOP_LEVEL_EXCEPTION_FILTER

SetUnhandl edExceptionFilter(
LPTOP_LEVEL EXCEPTION_FILTER pTopLevel ExceptionFilter

);

Parameters

IpTopLevel ExceptionFilter

The address of atop-level exception filter function that will be called whenever the
UnhandledExceptionFilter function gets control. A value of NULL for this parameter
specifies default handling within UnhandledExceptionFilter. The filter function has syntax
congruent to that of UnhandledExceptionFilter: It takes a single parameter of type
LPEXCEPTION_POINTERS, and returns a value of type LONG. The filter function returns
one of the following values:

Value Meaning

EXCEPTION_EXECUTE_HANDLER Return from UnhandledExceptionFilter and execute
the associated exception handler. This usually resultsin
process termination.

EXCEPTION_CONTINUE Return from UnhandledExceptionFilter and continue
_EXECUTION execution from the point of the exception. Note that the
filter function is free to modify the continuation state
by modifying the exception information supplied
through its |pException_Pointers parameter.

EXCEPTION_CONTINUE_SEARCH Proceed with normal execution of
UnhandledExceptionFilter. On an exception, RTSS
aways displays an Application Error message box
stating that the application has been frozen or unloaded.
The Win32 UnhandledExceptionFilter semantics
provide the option to disable the exception-related pop-
up viathe SetError M ode function with the
SEM_NOGPFAULTERRORBOX flag.

Return Values

168

SetUnhandledExceptionFilter returns the address of the previous exception filter
established with the function. A NULL return value means there is no current top-level
exception handler.

Chapter 3: Win32-Supported API

Comments
Issuing SetUnhandledExceptionFilter replaces the existing top-level exception filter for al
existing and all future threads in the calling process.

The exception handler specified by |pTopLevel ExceptionFilter is executed in the context of
the thread that caused the fault. This can affect the exception handler’s ability to recover from

certain exceptions, such as an invalid stack.

See Also
UnhandledExceptionFilter

169

RTX Reference

Sleep

Sleep suspends the current process for the specified time.

VOID

Sleep(
UL ONG milliSeconds

);
Parameters

milliSeconds
The amount of time to sleep, expressed as milliseconds.

Return Values
The function returns no value.

Comments
Sleep suspends the given thread from execution for the specified amount of time.

See Also

RtCreateTimer
RtDeleteTimer
RtGetClockResolution
RtGetClockTime
RtGetClockTimerPeriod
RtGetTimer
RtSetClockTime
RtSetTimer
RtSetTimerRelative

170

Chapter 3: Win32-Supported API

SuspendThread

SuspendT hread suspends the specified thread.

DWORD

SuspendT hread(
HANDLE hThread

);
Parameters

hThread
The thread to suspend.

Return Values

If the function succeeds, the return value is the thread’s previous suspend count; otherwise, it
is OXFFFFFFFF. To get extended error information, use GetL astError.

Comments
If the function succeeds, execution of the specified thread is suspended and the thread’s
suspend count israised by one.
Suspending a thread causes the thread to stop executing.

Each thread has a suspend count (with a maximum value of
MAXIMUM_SUSPEND_COUNT). If the suspend count is greater than zero, the thread is
suspended; otherwise, the thread is not suspended and is eligible for execution. Calling
SuspendT hread causes the target thread’s suspend count to be raised by one. Attempting to
increment past the maximum suspend count causes an error without incrementing the count.

ResumeThread decrements the suspend count of a suspended thread.

See Also
ResumeThread

171

RTX Reference

TerminateThread

TerminateT hread terminates a thread.

BOOL

TerminateT hread(
HANDLE hThread,
DWORD ExitCode

);
Parameters

hThread
The thread to terminate.

ExitCode
The exit code for the thread. Use GetExitCodeT hread to retrieve athread’s exit value.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments

TerminateThread is used to cause athread to exit. When this occurs, the target thread has
no chance to execute any user-mode code. TerminateT hread is a danger ous function that
should only be used in the most extreme cases. Call TerminateThread only if you know
exactly what the target thread is doing, and you control al of the code that the target thread
could possibly be running at the time of the termination.

A thread cannot protect itself against TerminateT hread, other than by controlling access to
its handles.

If the target thread is the last thread of a process when this function is called, the thread’s
processis also terminated.

Terminating a thread does not necessarily remove the thread object from the system. A thread
object is deleted when the last thread handleis closed.

See Also

CreateThread
ExitThread
GetExitCodeThread

172

Chapter 3: Win32-Supported API

TIsAlloc
TlsAlloc alocates athread loca storage (TLS) index. Any thread of the process can
subsequently use thisindex to store and retrieve values that are local to the thread.
DWORD
TIsAlloc(VOID)
Parameters

This function has no parameters.

Return Values

If the function succeeds, the return valueisa TL S index.

If the function fails, the return value is OXFFFFFFFF. To get extended errorinformation, call
GetLastError.

Comments

The threads of the process can use the TLS index in subsequent callsto TIsFree,
TIsSetValue,or TIsGetValue.

TLSindexes aretypically allocated during process or dynamic-link library(DLL)

initiali zation. Once allocated, each thread of the process can use a TL Sindex to access its own
TLS storage slot. To store avaluein its slot, athread specifiestheindex in acal to
TlsSetValue.The thread specifies the same index in a subsequent call to TIsGetValue, to
retrieve the stored value.

Theconstant TLS MINIMUM_AVAILABLE defines the minimum number of TLS
indexesavailable in each process. This minimum is guaranteed to be at |east 64 for alsystems.

TLSindexes are not valid across process boundaries. A DLL cannot assumethat an index
assigned in one process is valid in another process. A DLL mightuse TIsAlloc,
TIsSetValue TIsGetValue, and TIsFreeas follows:

m WhenaDLL attachesto aprocess, the DLL uses TIsAllocto allocate a TLS index.
The DLL then allocates some dynamic storage and usesthe TLSindex in acall to
TlIsSetValue tostore the address in the TLS dot. This concludes the per-thread
initiali zationfor the initial thread of the process. The TLS index is stored in a global
orstatic variable of the DLL.

m Eachtimethe DLL attachesto a new thread of theprocess, the DLL allocates some
dynamic storage for the new thread and usestheTLSindex in acall to TIsSetValue
tostore the address in the TLS dot. This concludes the per-thread initializationfor the
new thread.

B Eachtimeaninitialized thread makesaDLL callrequiring the datain its dynamic
storage, the DLL usesthe TLSindex in acallto TIsGetValue to retrieve the address
ofthe dynamic storage for that thread.

Note: Since DIIMainisonly called for RTDLLs atprocess attach (and not thread attach) it can
only be used in an RTDLL to maintainper-process data for the initializing thread. It can not

173

RTX Reference

be used inan RTDLL to maintain thread local storage for anyadditional threads.

See Also

TlIsFree
TIsGetVaue
TIsSetVaue

174

Chapter 3: Win32-Supported API

TIsFree

TlsFree releases athread local storage (TLS) index, making it available for reuse.

BOOL

TIsFreeg(
DWORD TlsIndex

);
Parameters

TlsIndex
The TLSindex that was allocated by TIsAlloc.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments

If the threads of the process have allocated dynamic storage and used the TLS index to store
pointers to this storage, they should free the storage before calling TIsFree. The TlsFree
function does not free any dynamic storage that has been associated with the TLSindex. Itis
expected that DLLs call thisfunction (if at all) only during their process detach routine.

For abrief discussion of typical uses of the TLS functions, see the Comments section of
TIsAlloc.

See Also

TIsAlloc
TIsGetVaue
TlIsSetVaue

175

RTX Reference

TlsGetValue

TlsGetValue retrieves the value in the calling thread’s thread local storage (TLS) dot for a
specified TLSindex. Each thread of a process hasits own slot for each TLS index.

LPVOID

TIsGetValue(
DWORD TlsIndex

);

Parameters

TlsIndex
The TLSindex that was allocated by TIsAlloc.

Return Values

If the function succeeds, the return value is the value stored in the calling thread's TLS dot
associ ated with the specified index.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Note that the data stored in aTLS slot can have avalue of zero. In this case, the return value
iszero and GetL astError returns NO_ERROR.

Comments

TLSindexes aretypically alocated by TIsAlloc during process or DLL initialization. Once
alocated, each thread of the process can use a TLS index to accessits own TLS storage ot
for that index. The storage slot for each thread isinitialized to NULL. A thread specifiesa
TLSindex inacall to TIsSetValue, to storeavalueinitsslot. The thread specifies the same
index in a subsequent call to TIsGetValue, to retrieve the stored value.

TlIsSetValue and TIsGetValue were implemented with speed as the primary goal. These
functions perform minimal parameter validation and error checking. In particular, this
function succeeds if TlsIndex isin the range O through (TLS MINIMUM_AVAILABLE - 1).
It is up to the programmer to ensure that the index is valid.

Win32 functions that return indications of failure call SetLastError when they fail. They
generally do not call SetL astError when they succeed. TIsGetValueis an exception to this
generd rule; it cals SetLastError to clear athread’s last error when it succeeds. That allows
checking for the error-free retrieval of NULL values.

See Also

176

GetL astError
SetlastError
TlsAlloc
TlsFree
TIsSetVaue

Chapter 3: Win32-Supported API

TlsSetValue

TlIsSetValue stores avalue in the calling thread's thread local storage (TLS) dlot for a
specified TLSindex. Each thread of a process hasits own slot for each TLS index.

BOOL

TIsSetValug(
DWORD TlsIndex,
LPVOID IpTisvValue

);
Parameters

TlsIndex
The TLSindex that was allocated by TIsAlloc.

IpTisvValue
The valueto be stored in the calling thread's TL S dot-specified by Tlslndex.

Return Values
If the function succeeds, the return valueis TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments

TLSindexes aretypically alocated by TIsAlloc during process or DLL initialization. Once
allocated, each thread of the process can usea TLS index to accessits own TLS storage dot
for that index. The storage slot for each thread isinitialized to NULL. A thread specifiesa
TLSindex inacal to TIsSetValue, to storeavaueinitsslot. The thread specifies the same
index in a subsequent call to TIsGetValue, to retrieve the stored value.

TIsSetValue and TIsGetValue were implemented with speed as the primary goal. These
functions perform minimal parameter validation and error checking. In particular, this
function succeeds if TIsindex isin the range O through (TLS MINIMUM_AVAILABLE - 1).
It is up to the programmer to ensure that the index is valid.

See Also

TIsAlloc
TlIsFree
TIsGetVaue

177

RTX Reference

UnhandledExceptionFilter

178

UnhandledExceptionFilter displays an Application Error message box and causes the
exception handler to be executed. This function can be called only from within the filter
expression of atry-except exception handler.

LONG

UnhandledExceptionFilter(
STRUCT_EXCEPTION_POINTERS * Exceptionlnfo

);
Parameters

Exceptioninfo

A pointer to an EXCEPTION_POINTERS structure containing a description of the
exception and the processor context at the time of the exception. This pointer isthe return
value of acall to the GetExceptionlnformation function.

Return Values
The function returns one of the following values:

EXCEPTION_CONTINUE_SEARCH
Control returns to the default system exception handler, which terminates the process.

EXCEPTION_EXECUTE_HANDLER
Control returns to the exception handler, which is free to take any appropriate action.

Comments

The function displays an Application Error message box. When athread of a multi-threaded
RTSS process causes an exception, RTSS freezes (or unloads, if so configured) all threads of
aprocess and produces an Application Error message box. The default behavior of Win32 is
somewhat different. In Win32, until the user responds to the box, other threads of the Win32
process continue running. When the user has responded, all threads of the Win32 process
terminate.

See Also

GetExceptionlnformation
SetUnhandl edExceptionFilter

Chapter 3: Win32-Supported API

WriteFile

WriteFile writes data to afile (synchronous operations only). The function starts writing data
to thefile at the position indicated by the file pointer. After the write operation has been
completed, thefile pointer is adjusted by the number of bytes actually written.

BOOL
WriteFilg(
HANDLE hFile,
LPCVOID IpBuffer,
DWORD nNumberOfBytesT oWrite,
L PDWORD |IpNumberOfBytesWritten,
LPOVERLAPPED IpOverlapped

);
Parameters

hFile
Thefileto be written to. The file handle must have been created with GENERIC_WRITE
accessto thefile.

| pBuffer
A pointer to the buffer containing the data to be written to the file.

nNumber OfBytesToWrite
The number of bytesto writeto thefile.

Windows NT and Windows 2000 interpret a value of zero as specifying a null write
operation. A null write operation does not write any bytes but does cause the time stamp to
change.

|pNumber OfBytesWritten

A pointer to the number of bytes written by this function. WriteFile sets this value to zero
before doing any work or error checking.

If IpOverlapped is NULL, IpNumberOf BytesWritten cannot be NULL.

IpOverlapped (not supported by RTX)
This parameter must be set to NULL.

Return Values
If the function succeeds, thereturn valueis TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

179

RTX Reference

Comments
RTX does not support asynchronous operations.

If part of thefileislocked by another process and the write operation overlaps the locked
portion, this function fails.

Applications must not read from nor write to the output buffer that a write operation isusing
until the write operation completes. Premature access of the output buffer may lead to
corruption of the data written from that buffer.

Windows NT and Windows 2000 interpret zero bytes to write as specifying a null write
operation and WriteFile does not truncate or extend thefile.

See Also

CreateFile
ReadFile

180

CHAPTER 4

C Run-Time API

Alphabetical List of C Run-Time APIs

Thefollowing C run-time library calls are supported in the RTSS environment.

abs isalpha memset strtoul
acos iscntrl modf tan

asin isdigit perror tanh
atan isgraph pow tolower
atan2 islower printf toupper
atof isprint putc towlower
atoi ispunct putchar towupper
atol isspace gsort ungetc
bsearch isupper rand va_start
calloc iswalnum realloc vsprintf
ceil iswalpha rewind wcscat
cos iswascii setjmp wcschr
cosh iswentrl signal wcscmp
difftime iswctype sin wcscpy
div iswdigit sinh wcscspn
exit iswgraph sqrt wcsftime
exp iswlower srand wcslen
fabs iswprint sscanf wcsncat
fclose iswpunct strcat wcshcmp
fflush iswspace strchr wcsncpy
fgets iswupper strcmp wcspbrk
floor iswxdigit strcpy wcsrchr
fmod isxdigit strcspn wcsspn
fopen labs strerror wcsstr
fprintf (stderr) Idexp strlen wcstod
fputc Idiv strncat wcstok
fputs log strncmp wcstol
fread log10 strncpy wcstoul
free longjmp strpbrk wmain
frexp main strrchr wprintf
fseek malloc strspn wtof

ftell memchr strstr wtoi
fwrite memcmp strtod wtol

getc memcpy strtok _controlfp
isalnum memmove strtol _fpreset

181

RTX Reference

182

CHAPTER 5

Windows NT Driver IPC API (RTKAPI)
Reference

RtkCloseHandle

Rtk CloseHandle closes an open object handle.

BOOL RTKAPI

RtkCloseHandl g
RTSSINST RtssInst
PULONG pErrorCode
HANDLE hObject

);
Parameters

Rtssinst
An RTSSINST type returned from call to RtkRtssAttach.

pErrorCode
A pointer to Ulong for error returned code.

hObject
An open object handle.

Return Values
If the function succeeds, the return value is TRUE and ErrorCode if defined is set to NULL.

If the function fails, the return value is FALSE. To get any extended error information, check
the ErrorCode value. pErrorCode may be set to NULL on entry and ignored.

Comments
Rtk CloseHandle closes handles to the following RTSS objects:
m Mutex
m Semaphore
m Shared memory
m Event

Rtk CloseHandle invalidates the specified object handle, decrements the object’s handle
count, and performs object retention checks. Once the last handle to an object is closed, the
object isremoved from the operating system.

183

RTX Reference

RtkCreateEvent

RtkCreateEvent creates an RTSS event. A handle is returned to the newly created event.

HANDLE RTKAPI

RtkCreateEvent(
RTSSINST Rtssinst,
PULONG pErrorCode,
LPSECURITY_ATTRIBUTES pSecurity,
BOOL bManual Reset,
BOOL Initial Sate,
PUNICODE_STRING IpName

);
Parameters

Rtsslnst
An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to alocation where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, thislocationis set to
NULL if no error occurred.

pSecurity (ignored)
A pointer to aSECURITY_ATTRIBUTES structure.

bManual Reset, binitial Sate, [pName

A pointer to a PUNICODE_STRING specifying the name of the event object. The nameis
limited to RTX_MAX_PATH characters and can contain any character except the backslash
path-separator character (\). Name comparison is case-sensitive.

Return Values

If the function succeeds, the return value is a handle to the event object. If the named event
object existed before the function call, pErrorCodeis set to ERROR_ALREADY EXISTS.

If the function fails, the return valueis NULL.

Comments

The handle returned by RtkCreateEvent hasEVENT_ALL_ACCESS access to the new
event object and can be used in any function that requires a handle to a event object.

Any thread of the calling process can specify the event-object handle in acall to
RtkWaitFor SingleObject. This wait function returns when the state of the specified object is
signaled.

Multiple processes can have handles of the same event object, enabling use of the object for
process synchronization. The available object-sharing mechanismis: A process can specify

184

Chapter 5: Windows NT Driver IPC API

the name of a event object in acall to RtkOpenEvent or RtkCreateEvent.

Rtk CloseHandle closes an event-object handle. The system closes the handle automatically
when the process terminates. The event object is destroyed when its last handle has been
closed.

See Also

RtkCloseHandle
RtkOpenEvent

185

RTX Reference

RtkCreateMutex

Rtk CreateM utex creates an RTSS mutex. A handle is returned to the newly created mutex
object.

HANDLE RTKAPI

RtkCreateM utex(
RTSSINST Rtssingt,
PULONG pErrorCode,
LPSECURITY_ATTRIBUTES pSecurity,
BOOL binitialOwner,
PUNICODE_STRING IpName

);
Parameters

Rtsslnst
An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to alocation where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, thislocationis set to
NULL if no error occurred.

pSecurity (ignored)
A pointer to aSECURITY_ATTRIBUTES structure.

blnitial Owner

Theinitiad ownership state of the mutex object. If TRUE, the calling thread requests
immediate ownership of the mutex object. Otherwise, the mutex is not owned.

IpName

A pointer to a PUNICODE_STRING specifying the name of the mutex object. The name is
limited to RTX_MAX_PATH characters and can contain any character except the backslash
path-separator character (\). Name comparison is case-sensitive.

If IpName matches the name of an existing named mutex object, this function requests
MUTEX_ALL_ACCESS access to the existing object. In this case, the blnitial Owner
parameter isignored because it has already been set by the creating process.

If IpName matches the name of an existing semaphore, the function fails;
ERROR_INVALID_HANDLE isreturned in the ErrorCode location, if defined, provided
by the caller. This occurs because mutex and semaphore objects share the same name space.

Return Values

If the function succeeds, the return value is a handle to the mutex object. If the named mutex
object existed before the function call, pErrorCodeis set to ERROR_ALREADY EXISTS.

186

Chapter 5: Windows NT Driver IPC API

If the function fails, the return valueis NULL.

Comments

The handle returned by RtkCreateM utex has MUTEX_ALL_ACCESS access to the new
mutex object and can be used in any function that requires a handle to a mutex object.

Any thread of the calling process can specify the mutex-object handlein acall to
RtkWaitFor SingleObject. This wait function returns when the state of the specified object is
signaled.

The state of a mutex object is signaled when it is not owned by any thread. The creating
thread can use the blnitial Owner flag to request immediate ownership of the mutex.
Otherwise, athread must use the wait function to request ownership. When the mutex’s state
issignaled, the highest priority waiting thread is granted ownership (if more than one thread
iswaiting at the same priority, they receive ownership of the mutex in the order they waited);
the mutex’s state changes to non-signaled; and the wait function returns. Only one thread can
own amutex at any given time. The owning thread uses RtkReleaseM utex to release its
ownership.

Thethread that owns a mutex can specify the same mutex in repeated wait function calls
without blocking its execution. Typically, you would not wait repeatedly for the same mutex,
but this mechanism prevents a thread from deadlocking itself while waiting for a mutex that it
aready owns. However, to release its ownership, the thread must call Rtk ReleaseM utex
once for each time that the mutex satisfied a wait.

Two or more processes can call RtkCreateM utex to create the same named mutex. The first
process actually creates the mutex, and subsequent processes open a handle to the existing
mutex. This enables multiple processes to get handles of the same mutex, while relieving the
user of the responsibility of ensuring that the creating process is started first. When using this
technique, you should set the binitialOwner flag to FAL SE; otherwise, it can be difficult to
be certain which process has initial ownership.

Multiple processes can have handles of the same mutex object, enabling use of the object for
process synchronization. The available object-sharing mechanismis: A process can specify
the name of a mutex object in acall to RtkOpenMutex or RtkCreateM utex.

Rtk CloseH andle closes a mutex-object handle. The system closes the handle automatically
when the process terminates. The mutex object is destroyed when its last handle has been
closed.

See Also

RtkCloseHandle
RtkOpenMutex
RtkRel easeM utex

187

RTX Reference

RtkCreateSemaphore

RtkCreateSemaphore creates a named semaphore object.

HANDLE RTKAPI

RtkCreateSemaphore(
RTSSINST Rtsslnst,
PULONG pErrorCode,
LPSECURITY_ATTRIBUTES pSecurity,
LONG lInitial Count,
LONG IMaximumCount,
PUNICODE_STRING IpName

);
Parameters

Rtsslnst
An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to alocation where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, thislocationis set to
NULL if no error occurred.

pSecurity (ignored)
A pointer to aSECURITY_ATTRIBUTES structure.

|pSemaphor eAttributes (ignored)
A pointer to security attributes.

IInitial Count

Aninitial count for the semaphore object. This value must be greater than or equal to zero
and less than or equal to IMaximumCount. The state of a semaphoreis signaled when its
count is greater than zero and non-signaled when it is zero. The count is decreased by one
whenever await function releases a thread that was waiting for the semaphore. The count is
increased by a specified amount by calling RtkReleaseSemaphore.

IMaxi mumCount
The maximum count for the semaphore object. This value must be greater than zero.

IpName

A pointer to a PUNICODE_STRING specifying the name of the mutex object. The nameis
limited to RTX_MAX_PATH characters and can contain any character except the backslash
path-separator character (\). Name comparison is case-sensitive.

If IpName matches the name of an existing named semaphore object, this function requests
access to the existing object. In this case, I1nitial Count and IMaximumCount are ignored

188

Chapter 5: Windows NT Driver IPC API

because they have already been set by the creating process.

Return Values

If the function succeeds, the return value is a handl e to the semaphore object. If I[pName
matches the name of an existing semaphore, the function fails,
ERROR_INVALID_HANDLE isreturned in the ErrorCode location, if defined, provided by
the caller. This occurs because mutex and semaphore objects share the same name space.

Comments

The handle returned by RtkCreateSemaphor e has all accesses to the new semaphore object
and can be used in any function that requires a handle to a semaphore object.

Any thread of the calling process can specify the semaphore-object handle in acall to one of
the wait functions. The single-object wait functions return when the state of the specified
object is signaled. The multiple-object wait functions can be instructed to return either when
any one or when al of the specified objects are signaled. When await function returns, the
waiting thread is released to continue its execution.

The state of a semaphore object is signaled when its count is greater than zero, and non-
signaled when its count is equal to zero. lInitial Count specifiestheinitial count. Each time a
waiting thread is released because of the semaphore’s signaled state, the count of the
semaphore is decreased by one. Use RtkReleaseSemaphor e to increment a semaphore’s
count by a specified amount. The count can never be less than zero or greater than the value
specified in IMaximumCount.

Multiple processes can have handles of the same semaphore object, enabling use of the object
for inter-process synchronization. The available object-sharing mechanismis: A process can
specify the name of a semaphore object in acall to RtkOpenSemaphore or

Rtk CreateSemaphore.

Use RtkCloseHandle to close the handle. The system closes the handle automatically when
the process terminates. The semaphore object is destroyed when its last handle has been
closed.

See Also

RtkCloseHandle
RtkOpenSemaphore
RtkRel easeSemaphore

189

RTX Reference

RtkCreateSharedMemory

Rtk CreateSharedM emory creates a named region of physical memory that can be mapped
by any process.

HANDLE RTKAPI

Rtk CreateSharedM emory(
RTSSINST RtssInst,
PULONG pErrorCode,
DWORD flProtect,

DWORD MaximumSzeHigh,
DWORD MaximumSzeLow,
PUNICODE_STRING IpName,
VOID ** |location

);
Parameters

Rtsslnst
An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to alocation where additional error information may be returned. This location
need not be defined; the user may passa NULL value. If defined, thislocation is set to
NULL if no error occurred.

flProtect (ignored by RTSS)
The protection desired for the shared memory view. This parameter can be one of the
following values:

PAGE_READONLY
Gives read-only access to the committed region of pages. An attempt to write to or
execute the committed region results in an access violation.

PAGE_READWRITE
Gives read-write access to the committed region of pages.
MaximumS zeHigh
The high-order 32 bits of the size of the shared memory object.

MaximumS zeLow
The low-order 32 bits of the size of the shared memory object.

IpName

A pointer to a PUNICODE_STRING specifying the name of the shared memory object. The
nameislimited to RTX_MAX_PATH characters and can contain any character except the
backslash path-separator character (\). Name comparison is case-sensitive.

If this parameter matches the name of an existing named shared memory object, the function

190

Chapter 5: Windows NT Driver IPC API

requests access to the shared memory object with the protection specified by fl Protect.

location
A pointer to alocation where the virtual address of the shared memory will be stored.

Return Value

If the function succeeds, the return value is a handl e to the shared memory object. If the
object existed before the function call, ErrorCode, if defined, contains
ERROR_ALREADY_EXISTS, and the return valueis a valid handle to the existing shared
memory object (with its current size, not the new specified size).

If the function fails, the return valueis NULL.

Comments

The handle that RtkCreateShar edM emory returns has full access to the new shared memory
object. Shared memory objects can be shared by name. For information on opening a shared
memory object by name, see RtkOpenSharedMemory.

To fully close a shared memory object, an application must close the physical mapping object
handle by calling RtkCloseHandle. The order in which these functions are called does not
matter.

When all handles to the shared memory object representing the physical memory are closed,
the object is destroyed and physical memory is returned to the system.

See Also

RtkCloseHandle
RtkOpenSharedM emory

191

RTX Reference

RtkOpenEvent

RtkOpenEvent returns a handle to the named RTSS event.

HANDLE RTKAPI

RtOpenEvent(
RTSSINST Rtssing,
PUL ONG pErrorCode,
DWORD DesiredAccess,
BOOL blnheritHandle,
PUNICODE_STRING IpName

);
Parameters

Rtsslnst
An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to alocation where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, thislocationis set to
NULL if no error occurred.

DesiredAccess (ignored)
blnheritHandle (ignored)

IpName

A pointer to a PUNICODE_STRING specifying the name of the event object. The nameis
limited to RTX_MAX_PATH characters and can contain any character except the backslash
path-separator character (\). Name comparison is case-sensitive.

Return Values
If the function succeeds, the return value is a handle of the event object.

If the function fails, the return valueis NULL.

Comments

RtkOpenEvent enables multiple processes to open handles of the same event object. The
function succeeds only if some process has aready created the event with Rtk CreateEvent.
The calling process can use the returned handle in any function that requires a handle of a
event object, such asawait function.

Use RtkCloseHandle to close the handle. The system closes the handle automatically when
the process terminates. The event object is destroyed when its last handle has been closed.

See Also

RtkCloseHandle
RtkCreateEvent

192

Chapter 5: Windows NT Driver IPC API

RtkOpenMutex

RtkOpenMutex returns a handle to the named RTSS mutex.

HANDLE

RtOpenM utex(
RTSSINST RtssInst,
PUL ONG pErrorCode,
DWORD DesiredAccess,
BOOL blnheritHandle,
PUNICODE_STRING IpName

);
Parameters

Rtsslnst
An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to alocation where additional error information may be returned. This location
need not be defined; the user may passa NULL value. If defined, thislocation is set to
NULL if no error occurred.

DesiredAccess (ignored)
The requested access to the mutex object.

blnheritHandle (ignored)
An indicator whether the returned handle isinheritable.

IpName

A pointer to a PUNICODE_STRING specifying the name of the mutex object. The name is
limited to RTX_MAX_PATH characters and can contain any character except the backslash
path-separator character (\). Name comparison is case-sensitive.

Return Values
If the function succeeds, the return value is a handle of the mutex object.

If the function fails, the return valueis NULL.

Comments

RtkOpenM utex enables multiple processes to open handles of the same mutex object. The
function succeeds only if some process has already created the mutex with RtkCr eateM utex.
The calling process can use the returned handle in any function that requires a handle of a
mutex object, such as await function.

193

RTX Reference

Use RtkCloseHandle to close the handle. The system closes the handle automatically when
the process terminates. The mutex object is destroyed when its last handle has been closed.

See Also
RtkCloseHandle
RtkCreateMutex
RtkRel easeM utex

194

Chapter 5: Windows NT Driver IPC API

RtkOpenSemaphore

RtkOpenSemaphor e returns a handle of an existing named semaphore object.

HANDLE RTKAPI

RtkOpenSemaphor
RTSSINST Rtssinst,
PUL ONG pErrorCode,
DWORD DesiredAccess,
BOOL blnheritHandle,
PUNICODE_STRING IpName

);
Parameters

Rtsslnst
An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to alocation where additional error information may be returned. This location
need not be defined; the user may passa NULL value. If defined, thislocation is set to
NULL if no error occurred.

DesiredAccess

The regquested access to the semaphore object. This parameter can be any combination of the
following values:

SEMAPHORE_ALL_ACCESS
Specifies all possible access flags for the semaphore object.

SEMAPHORE_MODIFY_STATE
Enables use of the semaphore handle in RtkReleaseSemaphor e to modify the
semaphore’s count.

SYNCHRONIZE
Enables use of the semaphore handle in any of the wait functions to wait for the
semaphore’s state to be signaled.
blnheritHandle
This must be FALSE.

IpName

A pointer to a PUNICODE_STRING specifying the name of the mutex object. The name is
limited to RTX_MAX_PATH characters and can contain any character except the backslash
path-separator character (\). Name comparison is case-sensitive.

195

RTX Reference

Return Values
If the function succeeds, the return value is a handle of the semaphore object.

If the function fails, the return valueis NULL.

Comments

RtkOpenSemaphor e enables multiple processes to open handles of the same semaphore
object. The function succeeds only if some process has aready created the semaphore by
using RtkCreateSemaphore. The calling process can use the returned handle in any function
that requires a handle of a semaphore object, such as await function, subject to the
limitations of the access specified in DesiredAccess.

Use RtkCloseHandle to close the handle. The system closes the handle automatically when
the process terminates. The semaphore object is destroyed when its last handle has been
closed.

See Also

RtkCloseHandle
RtkRel easeSemaphore

196

Chapter 5: Windows NT Driver IPC API

RtkOpenSharedMemory

RtkOpenSharedM emory opens a named physical-mapping object.

HANDLE RTKAPI

RtkOpenSharedM emor y(
RTSSINST Rtssinst,
PUL ONG pErrorCode,
DWORD DesiredAccess,
BOOL blnheritHandle,
PUNICODE_STRING IpName,
VOID ** |ocation

);
Parameters

Rtsslnst
An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to alocation where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, thislocationis set to
NULL if no error occurred.

DesiredAccess
The access mode. The RTSS environment always grants read and write access. This
parameter can be one of the following values:

SHM_MAP_WRITE
Read-write access. The target shared memory object must have been created with
PAGE_READWRITE protection. A read-write view of the shared memory is mapped.

SHM_MAP_READ
Read-only access. The target shared memory object must have been created with
PAGE_READWRITE or PAGE_READ protection. A read-only view of the shared
memory is mapped.

blnheritHandle (ignored)

IpName

A pointer to a PUNICODE_STRING specifying the name of the shared memory object. The
nameislimited to RTX_MAX_PATH characters and can contain any character except the
backslash path-separator character (\). Name comparison is case-sensitive.

location
A pointer to alocation where the virtual address of the mapping will be stored.

197

RTX Reference

Return Values

If the function succeeds, the return value is an open handle to the specified shared memory
object.

If the function fails, the return valueis NULL.

Comments

The handle that RtkOpenShar edM emory returns can be used with RtkCloseHandle to
decrement the reference count to the shared memory object. When the reference count is
zero, the object is removed from the system.

See Also

RtkCreateSharedMemory
RtkCloseHandle

198

Chapter 5: Windows NT Driver IPC API

RtkPulseEvent

RtkPulseEvent provides a single operation that sets (to signaled) the state of the specified
event object and then resets it (to non-signaled) after releasing the appropriate number of
waiting threads.

BOOL RTKAPI

RtkPul seEvent(
RTSSINST Rtsslnst,
PULONG pErrorCode,
HANDLE hEvent

);
Parameters

Rtsslnst
An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to alocation where additional error information may be returned. This location
need not be defined; the user may passa NULL value. If defined, thislocation is set to
NULL if no error occurred.

hEvent

The handle which identifies the event object as returned by a preceding call to
Rtk CreateEvent or RtkOpenEvent.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.

Comments

For amanual-reset event object, all waiting threads that can be released are released. The
function then resets the event object’s state to non-signaled and returns.

For an auto-reset event object, the function resets the state to non-signaled and returns after
releasing a single waiting thread, even if multiple threads are waiting.

If no threads are waiting, or if no thread can be released immediately, RtkPulseEvent simply
sets the event object’s state to non-signaled and returns.

See Also

RtkCreateEvent
RtkOpenEvent
RtkWaitForSingleObject

199

RTX Reference

RtkReleaseMutex

RtkReleaseM utex relinguishes ownership of an RTSS mutex.

BOOL RTKAPI

RtkRel easeM utex(
RTSSINST Rtsslnst,
PULONG pErrorCode,
HANDLE hMutex

);
Parameters

Rtsslnst
An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to alocation where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, thislocationis set to
NULL if no error occurred.

hMutex

The handle which identifies the mutex object as returned by a preceding call to
RtkCreateM utex or RtkOpenM utex.

Return Values
If the function succeeds, the return value is non-zero.

If the function fails, the return valueis zero.

Comments
RtkReleaseM utex failsif the calling thread does not own the mutex object.

A thread gets ownership of a mutex by specifying a handle of the mutex in

RtkWaitFor SingleObject. The thread that creates a mutex object can also get immediate
ownership without using one of the wait functions. When the owning thread no longer needs
to own the mutex object, it calls RtkReleaseM utex.

While athread has ownership of a mutex, it can specify the same mutex in additional wait-
function calls without blocking its execution. This prevents a thread from deadlocking itself
while waiting for amutex that it already owns. However, to release its ownership, the thread
must call RtkReleaseM utex once for each time that the mutex satisfied a wait.

See Also

RtkCreateM utex
RtkOpenM utex
RtkWaitForSingleObject

200

Chapter 5: Windows NT Driver IPC API

RtkReleaseSemaphore

RtkReleaseSemaphor e increases the count of the specified semaphore object by a specified
amount.

BOOL RTKAPI

RtkReleaseSemaphor g
RTSSINST Rtssinst,
PUL ONG pErrorCode,
HANDL E hSemaphore,

L ONG |IReleaseCount,
PLONG IpPreviousCount

);
Parameters

Rtsslnst
An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to alocation where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, thislocationis set to
NULL if no error occurred.

hSemaphore
The semaphore object. RtkCr eateSemaphor e or RtkOpenSemaphor e returns this handle.

|ReleaseCount

The amount by which the semaphore object’s current count is to beincreased. The value
must be greater than zero. If the specified amount would cause the semaphore’s count to
exceed the maximum count that was specified when the semaphore was created, the count is
not changed and the function returns FALSE.

| pPreviousCount

A pointer to a 32-hit variable receives the previous count for the semaphore. This parameter
can be NULL if the previous count is not required.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.

Comments

The state of a semaphore object is signaled when its count is greater than zero and non-
signaled when its count is equal to zero. The process that calls RtkCreateSemaphore
specifies the semaphore'sinitial count. Each time awaiting thread is released because of the

201

RTX Reference

semaphore’s signaled state, the count of the semaphore is decreased by one.

Typically, an application uses a semaphore to limit the number of threads using a resource.
Before athread uses the resource, it specifies the semaphore handle in a call to one of the
wait functions. When the wait function returns, it decreases the semaphore's count by one.
When the thread has finished using the resource, it calls RtkReleaseSemaphor e to increase
the semaphore's count by one.

Another use of RtkReleaseSemaphor e is during an application’sinitialization. The
application can create a semaphore with an initial count of zero. This sets the semaphore’s
state to non-signaled and blocks al threads from accessing the protected resource. When the
application finishesitsinitialization, it uses Rtk ReleaseSemaphor e to increase the count to
its maximum value, to permit normal access to the protected resource.

See Also

202

RtkCreateSemaphore
RtkOpenSemaphore

Chapter 5: Windows NT Driver IPC API

RtkResetEvent

RtkResetEvent provides a single operation that sets (to signaled) the state of the specified
event object and then resets it (to non-signaled) after releasing the appropriate number of
waiting threads.

BOOL RTKAPI

RtkResetEvent(
RTSSINST Rtsslnst,
PULONG pErrorCode,
HANDLE hEvent

);
Parameters

Rtsslnst
An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to alocation where additional error information may be returned. This location
need not be defined; the user may passa NULL value. If defined, thislocation is set to
NULL if no error occurred.

hEvent

The handle which identifies the event object as returned by a preceding call to
Rtk CreateEvent or RtkOpenEvent.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.

Comments

For amanual-reset event object, all waiting threads that can be released are released. The
function then resets the event object’s state to non-signaled and returns.

For an auto-reset event object, the function resets the state to non-signaled and returns after
releasing a single waiting thread, even if multiple threads are waiting.

If no threads are waiting, or if no thread can be released immediately, RtkPulseEvent simply
sets the event object’s state to non-signaled and returns.

See Also

RtkCreateEvent
RtkOpenEvent
RtkWaitForSingleObject

203

RTX Reference

RtkRtssAttach

RtkRtssAttach attaches a kernel device driver to RTSS.

RTSSINST RTKAPI

RtkRtssAttach(
LONG MaxWFS0,
PULONG pErrorCode,

);
Parameters

MaxWFSO
The count of the number of wait-for-single-objects the user requires. The required minimum
isone.

pErrorCode

A pointer to alocation where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, thislocationis set to
NULL if no error occurred.

Return Values
If the function succeeds, the return value is a non-zero RTSSINST.

If the function fails, the return valueis zero.

Comments

This call is made only once by a kernel-resident device driver. The returned instance must be
used for all subsequent RTKAPI calls. Thiscall isusually made at, but not restricted to,
driver entry.

If the device driver caller starts at boot time - you have to, first, set RTX to start at the boot
time, and second, make this call ONCE in the Driver Dispatch routine, NEVER in the
DriverEntry() routine.

See Also
RtkRtssDetach

204

Chapter 5: Windows NT Driver IPC API

RtkRtssDetach

RtkRtssDetach detaches a kernel device driver from RTSS.

VOIDRTKAPI

RtkRtssAttach(
RTSSINST Rtsslnst
PULONG pErrorCode,

);
Parameters

Rtsslnst
An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to alocation where additional error information may be returned. This location
need not be defined; the user may passa NULL value. If defined, thislocation is set to
NULL if no error occurred.

Return Values
The function aways succeeds.

Comments

This call is made only once by a kernel-resident device driver to disconnect or detach from
RTSS. Thiscal isusually made at, but not restricted to, driver unload.

See Also
RtkRtssAttach

205

RTX Reference

RtkSetEvent

Rtk SetEvent sets the state of the specified event object to signaled.

BOOL RTKAPI

RtkSetEvent(
RTSSINST Rtsslnst,
PULONG pErrorCode,
HANDLE hEvent

);
Parameters

Rtsslnst
An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to alocation where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, thislocationis set to
NULL if no error occurred.

hEvent

The handle which identifies the event object as returned by a preceding call to
Rtk CreateEvent or RtkOpenEvent.

Return Values
If the function succeeds, the return valueis TRUE.

If the function fails, thereturn value is FALSE.

Comments

The state of a manual-reset event object remains signaled until it is set explicitly to the non-
signaled state by the Rtk SetEvent function. Any number of waiting threads, or threads that
subsequently begin wait operations for the specified event object by calling the wait
functions, can be released while the object’s state is signaled.

The state of an auto-reset event object, the function resets the state to non-signaled and
returns after releasing remains signaled until a single waiting thread is released, at which time
the system automatically sets the state to non-signaled. If no threads are waiting, the event
object’s state remains signaled.

See Also

RtkCreateEvent
RtkOpenEvent
RtkWaitForSingleObject

206

Chapter 5: Windows NT Driver IPC API

RtkWaitForSingleObject

RtkW aitFor SingleObject returns when one of the following occurs:

B The specified object isin the signaled state.
B Thetime-out interval elapses.

ULONG

RtkWaitForSingleObject(
RTSSINST Rtssinst,
PULONG pErrorCode,
HANDLE hHandle,
DWORD Milliseconds
)i

Parameters
Rtsslnst

An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to alocation where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, thislocationis set to
NULL if no error occurred.

hHandle

The object identifier. See thelist of the object types whose handles can be specified in the
Comments section.

Milliseconds

The time-out interval, in milliseconds. The function returnsif the interval elapses, even if
the object’s state is non-signaled. If Millisecondsis zero, the function tests the object’s state
and returns immediately. If Milliseconds is INFINITE, the function’s time-out interval never
elapses.

Return Values

If the function succeeds, the return value indicates the event that caused the function to
return.

If the function fails, the return value isWAIT_FAILED.
The return value on success is one of the following values:

WAIT_ABANDONED
The specified object is amutex object that was not released by the thread that owned the
mutex object before the owning thread terminated. Ownership of the mutex object is
granted to the calling thread, and the mutex is set to non-signal ed.

207

RTX Reference

WAIT_OBJECT 0
The state of the specified object is signaled.

WAIT_TIMEOUT
Thetime-out interval elapsed, and the object’s state is non-signaled.

Comments

RtkWaitFor SingleObject checks the current state of the specified object. If the object’s state
isnon-signaled, the calling thread enters an efficient wait state. The thread consumes very
little processor time while waiting for the object state to become signaled or the time-out
interval to elapse.

Before returning, await function modifies the state of some types of synchronization objects.
Modification occurs only for the object or objects whose signaled state caused the function to
return. For example, the count of a semaphore object is decreased by one.

RtkWaitFor SingleObject can wait for the following objects:

Semaphore
Rtk CreateSemaphore or RtkOpenSemaphor e returns the handle. A semaphore object
maintains a count between zero and some maximum value. Its stateis signaled when its
count is greater than zero and non-signaled when its count is zero. If the current stateis
signaled, the wait function decreases the count by one.

Mutex
RtkCreateM utex and RtkOpenM utex return handles to the mutex object which
becomes signaled when the mutex is unowned.

See Also
RtkCreateM utex
RtkCreateSemaphore
RtkOpenM utex
RtkOpenSemaphor

208

Index

A
AbnormalTermination, 99
B
Bus IO APIs, 14
C

C Library-Supported Functions, 7
Matrix, 7
Call
RtGetThreadPriority, 43
CENTer, x
Clocks, 12
CreateDirectory, 101
CreateFile, 102
CreateProcess, 142
CreateThread, 107

D

DeleteCriticalSection, 109
Documentation Updates, x
DWORD, 89

DWORD nCount, 89

E

Exception Management APls, 11
ExitCode, 118

ExitProcess, 117

ExitThread, 118

F

FreeLibrary, 119, 206
FWaitAll, 89

G

General Use APIs, 12
GetCurrentProcessld, 120
GetCurrentThread, 121
GetCurrentThreadld, 122
GetExceptionCode, 123
GetlLastError, 12, 127
GetProcessHeap, 130
GetThreadPriority, 131

H

HalGetInterruptVector, 4, 32
HeapReAlloc, 137

Inter-Process Communication, 13

Interrupt Services, 13
Interrupt Services APls, 13
IPC, 13

L

Like

Win32 CreateMutex, 1
LpApplicationName, 20
LpCommandLine, 20
LpCurrentDirectory, 20
LpExitCode, 126
LpProcessAttributes, 20
LpProcessinformation, 20
LpThreadAttributes, 20

M

Memory APIs, 13
Mutex, 23, 66, 89, 186
creates, 66
identifies, 66
own, 66
Mutual-exclusion synchronization, 116

N
Namespace, 23
R

Real-Time APIs, 11, 12, 13, 14
RtAllocateContiguousMemory, 1, 35, 218
RtAllocateLockedMemory, 2, 36
RTAPI, 210

RTAPI.h, 89
RtAttachShutdownHandler, 69
RtCancelTimer, 11, 224
RtCloseHandle, 12, 100
RtCommitLockHeap, 13
RtCommitLockProcessHeap, 14
RtCommitLockStack, 15
RtCreateMutex, 18
RtCreateProcess, 20
RtCreateSemaphore, 23
RtCreateSharedMemory, 25
RtCreateTimer, 27, 210, 224
RtDeleteTimer, 210, 224
RtDisablelnterrupts, 30
RtDisablePortlo, 31

RTDLLs, 216

RtEnablePortlo, 33
RtFreeContiguousMemory, 35
RtFreeContiguousMemory(vAddress, 218
RtFreeLockedMemory, 36
RtGetBusDataByOffset, 195

209

RTX Reference

RtGetClockResolution, 39
RtGetClockTime, 40
RtGetClockTimerPeriod, 41
RtGetExitCodeProcess, 34
RtGetLastError, 220, 223
RtGetPhysicalAddress, 42, 218
RtGetThreadPriority, 43
RtGetThreadTimeQuantum, 46
RtGetTimer, 47
RtlsInRtss, 48
RTK API Functions, 11
Matrix, 11
RTKAPI, 190
RtkCreateEvent, 170
RtkCreateSemaphore, 174
RtkOpenEvent, 178
RtkOpenMutex, 179
RtkOpenSemaphore, 181
RtkOpenSharedMemory, 183
RtkPulseEvent, 185
RtkReleaseSemaphore, 187
RtkResetEvent, 189
RtkRtssAttach, 190, 191
RtkRtssDetach, 191
RtkSetEvent, 192
RtLockKernel, 49, 220
RtLockProcess, 50, 223
RtMapMemory, 51, 195
RtOpenEvent, 178
RtOpenMutex, 54, 179
RtOpenProcess, 55
RtOpenSemaphore, 56
RtOpenSharedMemory, 57
RtPrintf, 59
RtPulseEvent, 62
RtReadPort, 64
RtReadPortBuffer, 63
RtReadPortBufferUchar, 63
RtReadPortBufferUlong, 63
RtReadPortBufferUshort, 63
RtReadPortUchar, 64
RtReadPortUlong, 64
RtReadPortUshort, 64
RtReleaseSemaphore, 67
RtReleaseShutdownHandler, 69
RtResetEvent, 70
RtSetClockTime, 73
RtSetEvent, 74
RtSetThreadPriority, 75, 224
RtSetThreadTimeQuantum, 76
RtSetTimerRelative, 79, 224
RtSleepFt, 81
RTSS application, 20
RTSS Control Panel, 76
RTSS Environment, 76, 89, 114
RTSS mutex, 54

210

RTSSkill Examples, 216
RTSSrun, 120, 210
RtTranslateBusAddress, 195
RtUnlockKernel, 86, 220
RtUnlockProcess, 87
RtWaitForMultipleObjects, 89
RtWaitForSingleObiject, 92
RtWprintf, 59
RtWritePortBuffer, 96
RtWritePortBufferUchar, 96
RtWritePortBufferUlong, 96
RtWritePortBufferUshort, 96
RtWritePortUchar, 97
RtWritePortUlong, 97
RtWritePortUshort, 97

RTX HAL Timer, 224
RTXIPC, 2

RTX IPC namespace, 2
RTX Timer, 224

S

SetErrorMode, 154

SetThreadPriority, 153

Sleep, 156

Sleep Calls Programming Example, 224
Support ID, x

Synchronization, 89, 116, 140
SYNCHRONIZE, 89

T

Technical Support, x
Technical Support Area, X
TerminateThread, 158
Threads, 164

Win32, 164
TimerHandler, 210
Timers APIs, 12
TlsAlloc, 159
TIsFree, 161
TlsIndex, 161, 162, 163
TlsSetValue, 163

u

Use
RTKAPI, 2
RtkReleaseSemaphore, 187

\Y

VenturCom Customer Support Web, x
VenturCom Web site, x

w

WAIT FOR ANY, 89
WAIT_ABANDONED_O0, 89
WAIT_FAILED, 89

WAIT_TIMEOUT, 89

Win32 namespace, 2

Win32-Supported APl Overview, 2

Win32-Supported APls, 1, 12, 13

Win32-Supported Functions, 5
Matrix, 5

Windows 2000 Driver Inter-Process
Communication API, 2

Windows 2000 Driver IPC API, 2

Index

211

