
RTX 5.0
Reference Guide

VenturCom, Inc.
Five Cambridge Center
Cambridge, MA 02142

Tel: 617-661-1230
Fax: 617-577-1607

info@vci.com
http://www.vci.com

RTX Reference

No part of this document may be reproduced or transmitted in any form or by any means,
graphic, electronic, or mechanical, including photocopying, and recording or by any
information storage or retrieval system without the prior written permission of VenturCom,
Inc. unless such copying is expressly permitted by federal copyright law.

 1998-2000 VenturCom, Inc. All rights reserved.

While every effort has been made to ensure the accuracy and completeness of all information
in this document, VenturCom, Inc. assumes no liability to any party for any loss or damage
caused by errors or omissions or by statements of any kind in this document, its updates,
supplements, or special editions, whether such errors, omissions, or statements result from
negligence, accident, or any other cause. VenturCom, Inc. further assumes no liability arising
out of the application or use of any product or system described herein; nor any liability for
incidental or consequential damages arising from the use of this document. VenturCom, Inc.
disclaims all warranties regarding the information contained herein, whether expressed,
implied or statutory, including implied warranties of merchantability or fitness for a particular
purpose.

VenturCom, Inc. reserves the right to make changes to this document or to the products
described herein without further notice.

RTX is a trademark and CENTer is a servicemark of VenturCom, Inc.

Microsoft, MS, and Win32 are registered trademarks and Windows, Windows CE, and
Windows NT are trademarks of Microsoft Corporation.

All other companies and product names may be trademarks or registered trademarks of their
respective holders

RTX 5.0 Reference Guide

1-016-10

Table of Contents

WELCOME TO RTX 5.0 ...VII
About RTX... vii

Getting Support .. viii
Technical Support..viii

VenturCom Web Site ...viii

Documentation Updates... viii
CHAPTER 1
INTRODUCTION TO THE RTX PROGRAMMING INTERFACES 1

About the RTX Programming Interfaces ...1

Real-Time API (RTAPI) Overview...1

Win32-Supported API Overview ...2

C Run-Time Library-Supported API Overview..2

About the Windows NT and Windows 2000 Driver IPC API (RTKAPI)...2

Matrixes of RTX and RTK Functions ..2
Matrix of Real-Time Functions...3

Matrix of Win32-Supported Functions..5

Matrix of C Library-Supported Functions ...7

Matrix of RTK API Functions ...11

Functional Groupings of Real-Time and Win32 APIs ...11
Exception Management APIs ..11

Clocks and Timers APIs ..12

General Use APIs ..12

Interrupt Services APIs ..13

Inter-Process Communication (IPC) APIs..13

Memory APIs ...13

Port and Bus IO APIs...14

Processes and Threads APIs ..14

CHAPTER 2
REAL-TIME API ... 15

RtAllocateContiguousMemory...15

RtAllocateLockedMemory ...16

RtAtoi...17

RtAttachInterruptVector...18

RtAttachInterruptVectorEx ..20

RtAttachShutdownHandler..23

RtCancelTimer ..25

RtCloseHandle ..26

RtCommitLockHeap ..27

RtCommitLockProcessHeap...28

RtCommitLockStack..29

RtCreateEvent...30

RtCreateMutex ..32

RtCreateProcess...34

RTX Reference

iv

RtCreateSemaphore ...37

RtCreateSharedMemory ...39

RtCreateTimer...41

RtDeleteTimer ...43

RtDisableInterrupts ...44

RtDisablePortIo ...45

RtEnableInterrupts ..46

RtEnablePortIo..47

RtGetExitCodeProcess ...48

RtFreeContiguousMemory..49

RtFreeLockedMemory...50

RtGetBusDataByOffset ...51

RtGetClockResolution...53

RtGetClockTime..54

RtGetClockTimerPeriod ..55

RtGetPhysicalAddress ..56

RtGetThreadPriority ..57

RtGetThreadTimeQuantum ..60

RtGetTimer..61

RtIsInRtss..62

RtLockKernel...63

RtLockProcess ..64

RtMapMemory...65

RtOpenEvent...67

RtOpenMutex ..68

RtOpenProcess...69

RtOpenSemaphore ...70

RtOpenSharedMemory ...71

RtPrintf ..73

RtPulseEvent...76

RtReadPortBufferUchar RtReadPortBufferUshort RtReadPortBufferUlong77

RtReadPortUchar RtReadPortUshort RtReadPortUlong ..78

RtReleaseInterruptVector..79

RtReleaseMutex..80

RtReleaseSemaphore...81

RtReleaseShutdownHandler...83

RtResetEvent ..84

RtSetBusDataByOffset..85

RtSetClockTime ..87

RtSetEvent ..88

RtSetThreadPriority...89

RtSetThreadTimeQuantum...90

RtSetTimer ..91

RtSetTimerRelative ...93

Table of Contents

v

RtSleepFt ..95

RtTranslateBusAddress ..96

RtTerminateProcess ...98

RtUnlockKernel ...100

RtUnlockProcess...101

RtUnmapMemory ..102

RtWaitForMultipleObjects ...103

RtWaitForSingleObject..106

RtWprintf ...108

RtWritePortBufferUchar RtWritePortBufferUshort RtWritePortBufferUlong..............................110

RtWritePortUchar RtWritePortUshort RtWritePortUlong...111

RtWtoi..112
CHAPTER 3
WIN32-SUPPORTED API... 113

AbnormalTermination..113

CloseHandle..114

CreateDirectory ...115

CreateFile..116

CreateThread ..121

DeleteCriticalSection...123

DeleteFile ..124

DeviceIoControl...125

DllMain ..128

EnterCriticalSection...130

ExitProcess ...131

ExitThread...132

FreeLibrary..133

GetCurrentProcessId ..134

GetCurrentThread ...135

GetCurrentThreadId ..136

GetExceptionCode ..137

GetExceptionInformation...139

GetExitCodeThread ..140

GetLastError..141

GetProcAddress..142

GetProcessHeap...144

GetThreadPriority..145

HeapAlloc ..146

HeapCreate ...147

HeapDestroy ...149

HeapFree ..150

HeapReAlloc ...151

HeapSize...153

InitializeCriticalSection ..154

LeaveCriticalSection ...155

RTX Reference

vi

LoadLibrary ...156

RaiseException ...158

ReadFile ..160

RemoveDirectory...162

ResumeThread ...163

SetFilePointer..164

SetLastError ..166

SetThreadPriority ..167

SetUnhandledExceptionFilter..168

Sleep ...170

SuspendThread...171

TerminateThread...172

TlsAlloc..173

TlsFree ..175

TlsGetValue...176

TlsSetValue...177

UnhandledExceptionFilter ...178

WriteFile ..179
CHAPTER 4
C RUN-TIME API .. 181

Alphabetical List of C Run-Time APIs...181
CHAPTER 5
WINDOWS NT DRIVER IPC API (RTKAPI) REFERENCE... 183

RtkCloseHandle ..183

RtkCreateEvent ...184

RtkCreateMutex ..186

RtkCreateSemaphore ...188

RtkCreateSharedMemory ...190

RtkOpenEvent ...192

RtkOpenMutex ..193

RtkOpenSemaphore ...195

RtkOpenSharedMemory ...197

RtkPulseEvent...199

RtkReleaseMutex..200

RtkReleaseSemaphore ...201

RtkResetEvent ..203

RtkRtssAttach ...204

RtkRtssDetach ..205

RtkSetEvent ..206

RtkWaitForSingleObject..207
INDEX... 209

vii

Welcome to RTX 5.0

Document ID: 1-016-10

© 2000 VenturCom, Inc. All rights reserved.

About RTX

VenturCom’s Real-time Extension (RTX) adds real-time capabilities to Windows NT and
Windows 2000 that are unparalleled in the industry. It offers developers a rich and powerful
real-time feature set — all in a familiar Win32-compatible interface. It also provides tools
and utilities for building and executing real-time programs, along with tools for measuring
and fine tuning the performance of both hardware and software.

In addition to using the real-time interfaces and tools provided by RTX, developers can
continue to take advantage of the abundance of products available for Windows NT and
Windows 2000. And, with the RTX inter-process communication features, the Win32 run-
time environment works seamlessly with the RTX real-time subsystem — enabling the
integration of Win32 and real-time functionality.

Experienced real-time developers will value the power of the RTX interface; we suggest that
you refer to the topics in the RTX Overview in the RTX User’s Guide for a more detailed
description of RTX and a discussion of important design decisions that need to be made in
order to fully take advantage of RTX features.

RTX Reference

viii

Getting Support

VenturCom offers a number of support options for RTX users, including technical support
and the VenturCom Web site.

Note: If you are a customer who purchased direct support, you would have received a
Support ID# in the letter that comes with the software. Please have this number available for
reference when contacting VenturCom. Users who purchased their product through third
parties should contact those parties directly with their questions.

Technical Support

For technical support related to installing and using RTX, VenturCom offers several channels
of communication. You can:

n Call technical support at 800-334-8649 between 9:00 AM and 6:00 PM (Eastern
Time)

n Email your questions to support@vci.com

n Fax your questions to 617-577-1607

VenturCom Web Site

The VenturCom Customer Support Web page is located at:

http://www.vci.com/tech_support/support_description.html

If you are a customer with a current support contract or a member of the Real-time and
Embedded Partner Program, then you should bookmark to the Web page in the Technical
Support Area located at:

http://www.vci.com/tech_support/support_login.html

These pages provide electronic access to the latest product releases, documentation, and
release notes. With a valid Support ID#, you can access the online problem report database to
submit new issues, or to obtain the status of previously reported issues.

Documentation Updates

VenturCom is committed to providing you with the information you need to use our products.
From time to time, we may provide documentation updates for our products. Check our
CENTer page for updates. While visiting CENTer, check out the various white pages and
presentations. CENTer also provides access to several newsgroups. You’ll also find free
utilities and extensions that you can download.

1

CHAPTER 1

Introduction to RTX Programming Interfaces

About the RTX Programming Interfaces

RTX provides an essential set of real-time programming interfaces in the Win32
environment. The RTX interfaces are compatible with the Win32 programming interfaces. In
addition, RTX provides extensions to Win32 in order to provide a complete set of real-time
functions to the application programmer.

RTX application programs can use the real-time extensions in both the Win32 and RTSS
environments and programs can use the Win32-supported API in the real-time susbsystem
(RTSS) environment. This provides maximum flexibility to the developer. In the Win32
environment, programs can be developed and tested with the real-time extensions using the
vast number of Win32 development tools. The same program can be re-linked as an RTSS
program and run deterministically.

The application programming interface for RTX is composed of three sets of interfaces:

n Real-Time API (RTAPI)

n Win32-Supported API

n C Run-Time Library-Supported API

See Also

About the Windows NT and Windows 2000 Driver IPC API (RTKAPI)

Real-Time API (RTAPI) Overview

The RTAPI (real-time application programming interface) set is composed of unique
interfaces and Win32-based interfaces. All RTAPI interfaces are identified by the real-time
prefix "Rt."

Unique real-time interfaces-These functions are new, Win32-modeled extensions that
provide essential programming capabilities required for real-time applications. There is no
equivalent Win32 function for these RTAPI functions. The function begins with the "Rt"
prefix and the interface semantics are modeled on the Win32 programming interface
semantics.

An example is RtAttachInterruptVector. This function is required for real-time
programming, there is no Win32 functional equivalent, and the "Rt" prefix signifies that the
function is an RTAPI function.

Win32-based real-time interfaces-These functions are also extensions to the Win32
functions and provide additional real-time programming capability. Unlike the unique
functions above, there are similar functions in the Win32 environment; however, they behave
differently. The differences are required by the real-time semantics. The function name is
prefixed with "Rt" and the interface semantics are compatible with Win32 programming
interface semantics.

RTX Reference

2

An example is RtCreateMutex. This function is required for real-time programming. There
is a Win32 functional equivalent, but it does not behave exactly like the Win32 CreateMutex
function. The "Rt" prefix signifies that the function is an RTAPI function.

See Chapter 2, Real-Time API for detailed descriptions of each function.

Win32-Supported API Overview

The Win32-Supported functions behave identically to the Win32 functions and are supported
in the RTSS environment. The function name is not prefixed with "Rt" since the behavior and
the calling interface are identical in both environments.

An example is ResumeThread. This function is supported in the RTSS environment; has
identical Win32 equivalent; and the function interface is identical to the Win32 function
interface.

See Chapter 3, Win32-Supported API for detailed descriptions of each function.

C Run-Time Library-Supported API Overview

An extensive set of Microsoft C Run-time library calls is supported in the RTSS environment.

See the Alphabetical List of C Run-Time APIs in Chapter 4, C Run-Time.

About the Windows NT and Windows 2000 Driver IPC API (RTKAPI)

The Windows NT and Windows 2000 Driver Inter-Process Communication API (RTKAPI)
functions are used to access RTX IPC mechanisms from Windows NT and Windows 2000
kernel device drivers. These calls are analogous to their RTAPI counterparts (e.g.,
RtkOpenSemaphore is analogous to RtOpenSemaphore).

You use the RTKAPI functions the same way as the RTAPI functions, but from the Windows
NT and Windows 2000 kernel environment. All RTKAPI interface names are prefixed with
"Rtk."

The RTKAPI also consists of an include file (RtkApi.h) and a link library (rtx_rtk.lib).

See Chapter 4, Windows NT and Windows 2000 Driver IPC API (RTKAPI) for detailed
descriptions of each function.

Matrixes of RTX and RTK Functions

The matrixes provide technical information about the RTX and RTK APIs. Matrixes are
provided for:

n Real-Time Functions

n Win32-Supported Functions

n C Library-Supported Functions

n Matrix of RTK Functions

Chapter 1: Introduction

3

Key

The following key explains the "Notes" column in the tables.

&RGH�IRU
1RWHV

0HDQLQJ

� 7KH�SULRULW\�VSHFWUXP�RI�5W�LV���WR������ZKHUHDV�WKH�:LQ��
UDQJH�LV�^������������������������`�RQ�:LQGRZV�17�DQG�:LQGRZV
�����

� 7KH�57;�,3&�QDPHVSDFH�LV�VHSDUDWH�IURP�WKH�:LQ��
QDPHVSDFH�

� 7KH�FDOO�LV�VXSSRUWHG�DV�ERWK�DQ�5W�FDOO�DQG�DV�D�:LQ���FDOO
�H�J���5W$WRL�DQG�$WRL��

� 1RW�IRU�XVH�LQ�57'//�

� &�5XQ�7LPH�FDOOV�QRW�VXSSRUWHG�LQ�VKDUHG�57'//�

'HWHUP
�LQLVWLF

�<HV��PHDQV�WKH�HODSVHG�WLPH�IRU�WKH�FDOO�LV�OHVV�WKDQ��
PLFURVHFRQGV��'HWHUPLQLVWLF�IXQFWLRQV�LQ�5766�ZRUN�DW
:LQGRZV�17�EOXH�VFUHHQV�DQG�:LQGRZV������VWRS�VFUHHQV�

 'HWHUPLQLVWLF�IRU�VPDOO�LQSXW�VL]HV�

Matrix of Real-Time Functions

57$3,�)XQFWLRQ�1DPH 1RWHV 'HWHUPLQLVWLF"

5W$OORFDWH&RQWLJXRXV0HPRU\

5W$OORFDWH/RFNHG0HPRU\

5W$WRL � <HV

5W$WWDFK,QWHUUXSW9HFWRU

5W$WWDFK,QWHUUXSW9HFWRU([

5W$WWDFK6KXWGRZQ+DQGOHU

5W&DQFHO7LPHU <HV

5W&ORVH+DQGOH

5W&RPPLW/RFN+HDS

5W&RPPLW/RFN3URFHVV+HDS

5W&RPPLW/RFN6WDFN

5W&UHDWH(YHQW �

5W&UHDWH0XWH[�

5W&UHDWH3URFHVV

5W&UHDWH6HPDSKRUH �

5W&UHDWH6KDUHG0HPRU\

5W&UHDWH7LPHU

5W'HOHWH7LPHU

RTX Reference

4

57$3,�)XQFWLRQ�1DPH 1RWHV 'HWHUPLQLVWLF"

5W'LVDEOH,QWHUUXSWV <HV

5W'LVDEOH3RUW,R

5W(QDEOH,QWHUUXSWV <HV

5W(QDEOH3RUW,R

5W)UHH&RQWLJXRXV0HPRU\

5W)UHH/RFNHG0HPRU\

5W*HW%XV'DWD%\2IIVHW

5W*HW&ORFN5HVROXWLRQ <HV

5W*HW&ORFN7LPH <HV

5W*HW&ORFN7LPHU3HULRG <HV

*HW([LW&RGH3URFHVV <HV

5W*HW3K\VLFDO$GGUHVV

5W*HW7KUHDG3ULRULW\ ��� <HV

5W*HW7LPHU �<HV

5W,V,Q5WVV �<HV

5W/RFN.HUQHO

5W/RFN3URFHVV

5W0DS0HPRU\

5W2SHQ(YHQW �

5W2SHQ0XWH[�

5W2SHQ3URFHVV �<HV

5W2SHQ6HPDSKRUH �

5W2SHQ6KDUHG0HPRU\

5W3ULQWI �

5W3XOVH(YHQW � <HV

5W5HDG3RUW%XIIHU8FKDU <HV

5W5HDG3RUW%XIIHU8ORQJ <HV

5W5HDG3RUW%XIIHU8VKRUW <HV

5W5HDG3RUW8FKDU <HV

5W5HDG3RUW8ORQJ <HV

5W5HDG3RUW8VKRUW <HV

5W5HOHDVH,QWHUUXSW9HFWRU

5W5HOHDVH0XWH[� <HV

Chapter 1: Introduction

5

57$3,�)XQFWLRQ�1DPH 1RWHV 'HWHUPLQLVWLF"

5W5HOHDVH6HPDSKRUH � <HV

5W5HOHDVH6KXWGRZQ+DQGOHU

5W5HVHW(YHQW � <HV

5W6HW%XV'DWD%\2IIVHW

5W6HW&ORFN7LPH <HV

5W6HW(YHQW � <HV

5W6HW7KUHDG3ULRULW\ ��� <HV

5W6HW7KUHDG7LPH4XDQWXP �<HV

5W6HW7LPHU <HV

5W6HW7LPHU5HODWLYH <HV

5W6OHHS)W <HV

5W7HUPLQDWH3URFHVV

5W7UDQVODWH%XV$GGUHVV

5W8QORFN.HUQHO

5W/RFN3URFHVV

5W8QPDS0HPRU\

5W:DLW)RU0XOWLSOH2EMHFWV <HV

5W:DLW)RU6LQJOH2EMHFW <HV

5W:3ULQWI �

5W:ULWH3RUW%XIIHU8FKDU <HV

5W:ULWH3RUW%XIIHU8ORQJ <HV

5W:ULWH3RUW%XIIHU8VKRUW <HV

5W:ULWH3RUW8FKDU <HV

5W:ULWH3RUW8ORQJ <HV

5W:ULWH3RUW8VKRUW <HV

5W:WRL � <HV

 Matrix of Win32-Supported Functions

:LQ���)XQFWLRQ�1DPH 1RWHV 'HWHUPLQLVWLF"

$EQRUPDO7HUPLQDWLRQ

&ORVH+DQGOH

&UHDWH'LUHFWRU\

&UHDWH)LOH

&UHDWH7KUHDG

RTX Reference

6

:LQ���)XQFWLRQ�1DPH 1RWHV 'HWHUPLQLVWLF"

'HOHWH&ULWLFDO6HFWLRQ

'HOHWH)LOH

'HYLFH,R&RQWURO

'OO0DLQ

(QWHU&ULWLFDO6HFWLRQ <HV

([LW3URFHVV

([LW7KUHDG

)UHH/LEUDU\

*HW&XUUHQW3URFHVV,G <HV

*HW&XUUHQW7KUHDG <HV

*HW&XUUHQW7KUHDG,G <HV

*HW([FHSWLRQ&RGH <HV

*HW([FHSWLRQ,QIRUPDWLRQ <HV

*HW([LW&RGH7KUHDG <HV

*HW/DVW(UURU <HV

*HW3URF$GGUHVV

*HW3URFHVV+HDS

*HW7KUHDG3ULRULW\ ����� <HV

+HDS$OORF

+HDS&UHDWH

+HDS'HVWUR\

+HDS)UHH

+HDS5H$OORF

+HDS6L]H <HV

,QLWLDOL]H&ULWLFDO6HFWLRQ

/HDYH&ULWLFDO6HFWLRQ <HV

/RDG/LEUDU\

5DLVH([FHSWLRQ �<HV

5HDG)LOH

5HPRYH'LUHFWRU\

5HVXPH7KUHDG <HV

6HW)LOH3RLQWHU

6HW/DVW(UURU <HV

Chapter 1: Introduction

7

:LQ���)XQFWLRQ�1DPH 1RWHV 'HWHUPLQLVWLF"

6HW7KUHDG3ULRULW\ ����� <HV

6HW8QKDQGOHG([FHSWLRQ)LOWHU <HV

6OHHS <HV

6XVSHQG7KUHDG <HV

7HUPLQDWH7KUHDG

7OV$OORF <HV

7OV)UHH <HV

7OV*HW9DOXH <HV

7OV6HW9DOXH <HV

8QKDQGOHG([FHSWLRQ)LOWHU <HV

:ULWH)LOH

Matrix of C Library-Supported Functions

&�/LEUDU\�)XQFWLRQ�1DPH 1RWHV 'HWHUPLQLVWLF"

DEV � <HV

DFRV �� <HV

DVLQ �� <HV

DWDQ �� <HV

DWDQ� �� <HV

DWRI �� <HV

DWRL ����� <HV

DWRO �� <HV

EVHDUFK �� <HV

FDOORF ��

FHLO �� <HV

FRV �� <HV

FRVK �� <HV

GLIIWLPH �� <HV

GLY �� <HV

H[LW ��

H[S �� <HV

IDEV �� <HV

IFORVH ��

IIOXVK ��

IJHWV ��

IORRU �� <HV

RTX Reference

8

&�/LEUDU\�)XQFWLRQ�1DPH 1RWHV 'HWHUPLQLVWLF"

IPRG �� <HV

IRSHQ ��

ISULQWI�VWGHUU� ����

ISXWF ��

ISXWV ��

IUHDG ��

IUHH ��

IUH[S �� <HV

IVHHN ��

IWHOO ��

IZULWH ��

JHWF ��

LVDOQXP �� <HV

LVDOSKD �� <HV

LVFQWUO �� <HV

LVGLJLW �� <HV

LVJUDSK �� <HV

LVORZHU �� <HV

LVSULQW �� <HV

LVSXQFW �� <HV

LVVSDFH �� <HV

LVXSSHU �� <HV

LVZDOQXP �� <HV

LVZDOSKD �� <HV

LVZDVFLL �� <HV

LVZFQWUO �� <HV

LVZFW\SH �� <HV

LVZGLJLW �� <HV

LVZJUDSK �� <HV

LVZORZHU �� <HV

LVZSULQW �� <HV

LVZSXQFW �� <HV

LVZVSDFH �� <HV

LVZXSSHU �� <HV

LVZ[GLJLW �� <HV

LV[GLJLW �� <HV

ODEV �� <HV

OGH[S �� <HV

Chapter 1: Introduction

9

&�/LEUDU\�)XQFWLRQ�1DPH 1RWHV 'HWHUPLQLVWLF"

OGLY �� <HV

ORJ �� <HV

ORJ�� �� <HV

ORQJMPS �� <HV

PDLQ ��

PDOORF ��

PHPFKU �� <HV

PHPFPS �� <HV

PHPFS\ �� <HV

PHPPRYH �� <HV

PHPVHW �� <HV

PRGI �� <HV

SHUURU ����

SRZ �� <HV

SULQWI �����

SXWF ��

SXWFKDU ��

TVRUW �� <HV

UDQG �� <HV

UHDOORF ��

UHZLQG ��

VHWMPS �� <HV

VLJQDO ��

VLQ �� <HV

VLQK �� <HV

VSULQW �� <HV

VTUW �� <HV

VUDQG �� <HV

VVFDQI ��

VWUFDW �� <HV

VWUFKU �� <HV

VWUFPS �� <HV

VWUFS\ �� <HV

VWUFVSQ �� <HV

VWUHUURU �� <HV

VWUOHQ �� <HV

VWUQFDW �� <HV

VWUQFPS �� <HV

RTX Reference

10

&�/LEUDU\�)XQFWLRQ�1DPH 1RWHV 'HWHUPLQLVWLF"

VWUQFS\ �� <HV

VWUSEUN �� <HV

VWUUFKU �� <HV

VWUVSQ �� �<HV

VWUVWU �� <HV

VWUWRG �� <HV

VWUWRN �� <HV

VWUWRO �� <HV

VWUWRXO �� <HV

WDQ �� <HV

WDQK �� <HV

WRORZHU �� <HV

WRXSSHU �� <HV

WRZORZHU �� <HV

WRZXSSHU �� <HV

XQJHWF �� <HV

YDBVWDUW �� <HV

YVSULQWI ���

ZFVFDW �� <HV

ZFVFKU �� <HV

ZFVFPS �� <HV

ZFVFS\ �� <HV

ZFVFVSQ �� <HV

ZFVIWLPH �� <HV

ZFVOHQ �� <HV

ZFVQFDW �� <HV

ZFVQFPS �� <HV

ZFVQFS\ �� <HV

ZFVSEUN �� <HV

ZFVUFKU �� <HV

ZFVVSQ �� <HV

ZFVVWU �� <HV

ZFVWRG �� <HV

ZFVWRN �� <HV

ZFVWRO �� <HV

ZFVWRXO �� <HV

ZPDLQ ��

ZSULQWI �����

ZWRI �� <HV

Chapter 1: Introduction

11

&�/LEUDU\�)XQFWLRQ�1DPH 1RWHV 'HWHUPLQLVWLF"

ZWRL ��� <HV

ZWRO �� <HV

BFRQWUROIS ��

BISUHVHW ��

Matrix of RTK API Functions

The table that follows lists the RTK API functions.

Note: All RTK functions are available only to Windows NT device drivers; they are not
available to RTX applications.

57.�$3,�)XQFWLRQ�1DPH 1RWHV

5WN&ORVH+DQGOH

5WN&UHDWH(YHQW �

5WN&UHDWH0XWH[�

5WN&UHDWH6HPDSKRUH �

5WN&UHDWH6KDUHG0HPRU\

5WN2SHQ(YHQW �

5WN2SHQ0XWH[�

5WN2SHQ6HPDSKRUH �

5WN2SHQ6KDUHG0HPRU\

5WN3XOVH(YHQW �

5WN5HOHDVH0XWH[�

5WN5HOHDVH6HPDSKRUH �

5WN5HVHW(YHQW �

5WN5WVV$WWDFK

5WN5WVV'HWDFK

5WN6HW(YHQW �

Functional Groupings of Real-Time and Win32 APIs

Exception Management APIs

([FHSWLRQ�0DQDJHPHQW
�5HDO�7LPH�$3,V

([FHSWLRQ�0DQDJHPHQW
�:LQ���6XSSRUWHG�$3,V

5W$WWDFK6KXWGRZQ+DQGOHU

5W5HOHDVH6KXWGRZQ+DQGOHU

$EQRUPDO7HUPLQDWLRQ

*HW([FHSWLRQ&RGH

*HW([FHSWLRQ,QIRUPDWLRQ

5DLVH([FHSWLRQ

6HW8QKDQGOHG([FHSWLRQ)LOWHU

8QKDQGOHG([FHSWLRQ)LOWHU

RTX Reference

12

Clocks and Timers APIs

&ORFNV�DQG�7LPHUV
�5HDO�7LPH�$3,V

&ORFNV�DQG�7LPHUV
�:LQ���6XSSRUWHG�$3,V

5W&DQFHO7LPHU

5W&UHDWH7LPHU

5W'HOHWH7LPHU

5W*HW&ORFN5HVROXWLRQ

5W*HW&ORFN7LPH

5W*HW&ORFN7LPHU3HULRG

5W*HW7LPHU

5W6HW&ORFN7LPH

5W6HW7LPHU

5W6HW7LPHU5HODWLYH

5W6OHHS)W

�6OHHS

General Use APIs

*HQHUDO�8VH
�5HDO�7LPH�$3,V

*HQHUDO�8VH
�:LQ���6XSSRUWHG�$3,V

5W$WRL

5W&ORVH+DQGOH

5W,V,Q5WVV

5W3ULQWI

5W:3ULQWI

5W:WRL

&ORVH+DQGOH

&UHDWH'LUHFWRU\

&UHDWH)LOH

'HOHWH&ULWLFDO6HFWLRQ

'HOHWH)LOH

'HYLFH,R&RQWURO

'OO0DLQ

(QWHU&ULWLFDO6HFWLRQ

)UHH/LEUDU\

*HW/DVW(UURU

*HW3URF$GGUHVV

,QLWLDOL]H&ULWLFDO6HFWLRQ

/HDYH&ULWLFDO6HFWLRQ

/RDG/LEUDU\

5HDG)LOH

5HPRYH'LUHFWRU\

6HW)LOH3RLQWHU

6HW/DVW(UURU

:ULWH)LOH

Chapter 1: Introduction

13

Interrupt Services APIs

,QWHUUXSW�6HUYLFHV
�5HDO�7LPH�$3,V

5W$WWDFK,QWHUUXSW9HFWRU

5W$WWDFK,QWHUUXSW9HFWRU([

5W'LVDEOH,QWHUUXSWV

5W(QDEOH,QWHUUXSWV

5W5HOHDVH,QWHUUXSW9HFWRU

Inter-Process Communication (IPC) APIs

,3&
�5HDO�7LPH�$3,V

5W&UHDWH(YHQW

5W&UHDWH0XWH[

5W&UHDWH6HPDSKRUH

5W&UHDWH6KDUHG0HPRU\

5W2SHQ(YHQW

5W2SHQ0XWH[

5W2SHQ6HPDSKRUH

5W2SHQ6KDUHG0HPRU\

5W3XOVH(YHQW

5W5HOHDVH0XWH[

5W5HOHDVH6HPDSKRUH

5W5HVHW(YHQW

5W6HW(YHQW

5W:DLW)RU0XOWLSOH2EMHFWV
5W:DLW)RU6LQJOH2EMHFW

Memory APIs

0HPRU\
5HDO�7LPH�$3,V

0HPRU\
:LQ���6XSSRUWHG
$3,V

5W$OORFDWH&RQWLJXRXV0HPRU\

5W$OORFDWH/RFNHG0HPRU\

5W&RPPLW/RFN+HDS

5W&RPPLW/RFN3URFHVV+HDS

5W&RPPLW/RFN6WDFN

5W&UHDWH6KDUHG0HPRU\

5W)UHH&RQWLJXRXV0HPRU\

5W)UHH/RFNHG0HPRU\

5W*HW3K\VLFDO$GGUHVV

5W/RFN.HUQHO

5W/RFN3URFHVV

*HW3URFHVV+HDS

+HDS$OORF

+HDS&UHDWH

+HDS'HVWUR\

+HDS)UHH

+HDS5H$OORF

+HDS6L]H

RTX Reference

14

0HPRU\
5HDO�7LPH�$3,V

0HPRU\
:LQ���6XSSRUWHG
$3,V

5W0DS0HPRU\

5W8QORFN.HUQHO

5W8QORFN3URFHVV

5W8QPDS0HPRU\

Port and Bus IO APIs

3RUW�DQG�%XV�,2�5HDO�7LPH�$3,V

5W'LVDEOH3RUW,R

5W(QDEOH3RUW,R

5W*HW%XV'DWD%\2IIVHW

5W5HDG3RUW%XIIHU8FKDU��8VKRUW��8ORQJ

5W5HDG3RUW8FKDU��8VKRUW��8ORQJ

5W6HW%XV'DWD%\2IIVHW

5W7UDQVODWH%XV$GGUHVV

5W:ULWH3RUW%XIIHU8FKDU��8VKRUW��8ORQJ

5W:ULWH3RUW8FKDU��8VKRUW��8ORQJ

Processes and Threads APIs

3URFHVVHV�DQG�7KUHDGV
5HDO�7LPH�$3,V

3URFHVVHV�DQG
7KUHDGV�:LQ���
6XSSRUWHG�$3,V

5W&UHDWH3URFHVV

5W*HW([LW&RGH3URFHVV

5W*HW7KUHDG7LPH4XDQWXP

5W,V,Q5WVV

5W7HUPLQDWH3URFHVV

5W6HW7KUHDG3ULRULW\

5W6HW7KUHDG7LPH4XDQWXP

5W6OHHS)W

&UHDWH7KUHDG

([LW3URFHVV

([LW7KUHDG

*HW&XUUHQW3URFHVV,G

*HW&XUUHQW7KUHDG

*HW&XUUHQW7KUHDG,G

*HW([LW&RGH7KUHDG

*HW7KUHDG3ULRULW\

5W2SHQ3URFHVV

5HVXPH7KUHDG

6HW7KUHDG3ULRULW\

6OHHS

6XVSHQG7KUHDG

7HUPLQDWH7KUHDG

7OV$OORF

7OV)UHH

7OV*HW9DOXH

7OV6HW9DOXH

15

CHAPTER 2

Real-Time API

RtAllocateContiguousMemory

RtAllocateContiguousMemory allocates physically contiguous memory.

PVOID
RtAllocateContiguousMemory(

 ULONG Length,
 LARGE_INTEGER PhysicalAddress
);

Parameters

Length

An unsigned 32-bit quantity indicating the amount of memory, in bytes, to allocate.

PhysicalAddress

The highest physical address that can be part of the range allocated.

Return Values

The function returns a pointer to the memory allocated if successful; otherwise, it returns a
NULL pointer.

Comments

RtAllocateContiguousMemory allocates memory in the virtual address space of the process,
backed by contiguous, non-paged physical memory. The second argument allows the user to
specify the highest acceptable physical address. If this memory is used with certain hardware
devices, an upper-addressing limit may be imposed by the design of the hardware device.

Note that the amount of non-paged, contiguous memory available is relatively limited, and is
rapidly fragmented through normal system operation. Applications should use this resource
carefully and obtain allocations early in operation.

See Also

RtFreeContiguousMemory
RtGetPhysicalAddress

RTX Reference

16

RtAllocateLockedMemory

RtAllocateLockedMemory commits and locks the specified amount of memory to avoid
page faults as the memory is used.

PVOID
RtAllocateLockedMemory(

 UINT nNumberOfBytes
);

Parameters

nNumberOfBytes

An unsigned integer specifying the number of bytes to allocate, commit, and lock.

Return Values

The function returns a pointer to the memory allocated if successful; otherwise, it returns a
NULL pointer.

Comments

RtAllocateLockedMemory allocates memory in the virtual address space of the process,
commits that space to physical memory, and locks that physical memory. The committed
locked memory will not incur page faults when the memory is used, nor will the system page
the allocated memory out to secondary storage.

See Also

RtCommitLockHeap
RtCommitLockProcessHeap
RtCommitLockStack
RtFreeLockedMemory
RtLockKernel
RtLockProcess
RtUnlockKernel
RtUnlockProcess

Chapter 2: Real-Time API

17

RtAtoi

RtAtoi converts a given string value to an integer.

INT
RtAtoi(
LPCSTR lpString

);
Parameters

lpString

The source character string.

Return Values

This function returns the integer value of the string.

Comments

RtAtoi is similar to atoi, but RtAtoi does not require the C run-time library and can work
with any combination of run-time libraries.

This function supports decimal digits only, and does not allow leading whitespace or signs.

See Also

RtPrintf
RtWprintf
RtWtoi

RTX Reference

18

RtAttachInterruptVector

RtAttachInterruptVector allows the user to associate a handler routine in user space with a
hardware interrupt. Non-shared, level-triggered interrupts are supported only in the RTSS
environment. They are not supported in a Win32 environment.

Note: RtAttachInterruptVector does not permit shared interrupts. The function call,
RtAttachInterruptVectorEx, permits shared interrupts.

HANDLE
RtAttachInterruptVector(

 PSECURITY_ATTRIBUTES pThreadAttributes,
 ULONG StackSize,
 VOID (RTFCNDCL *pRoutineIST)(PVOID contextIST),
 PVOID Context,
 ULONG Priority,
 INTERFACE_TYPE InterfaceType,
 ULONG BusNumber,
 ULONG BusInterruptLevel,
 ULONG BusInterruptVector
);

Parameters

pThreadAttributes (ignored by RTSS)

A security attributes structure used when the handler thread is created. See CreateThread
in the Windows Win32 SDK.

StackSize

The number of bytes to allocate for the handler thread’s stack. The stack size defaults to the
thread’s stack size.

pRoutineIST

A pointer to the handler routine to be run. The routine takes a single PVOID argument, and
context and returns VOID.

ContextIST

The argument to the handler routine, cast as a PVOID.

Priority

The thread priority for the handler routine. Executing equal and higher priority threads
disable the interrupt; executing lower priority threads enable it.

InterfaceType

The type of bus interface on which the hardware is located. It can be one of the following
types: Internal, ISA, EISA, MicroChannel, TurboChannel, or PCIBus. The upper
boundary on the bus types supported is always MaximumInterfaceType.

Chapter 2: Real-Time API

19

BusNumber

The bus that the device is on in a multiple bus environment. It is zero-based. Note that this
value applies to each bus type, so for a system with one ISA bus and one PCIBus, for
example, each would have a BusNumber of 0.

BusInterruptLevel

A bus-specific interrupt level associated with the routine that will handle the interrupt.

BusInterruptVector

A bus-specific address associated with the routine that will handle the interrupt.

Return Values
The function returns an RTX-specific interrupt handle if successful. The function returns a
NULL handle for an invalid argument, for failing to connect the interrupt, or if a device is
already using the bus resources requested.

Comments
RtAttachInterruptVector allows a user to associate a handling routine with a hardware
interrupt on one of the supported buses on the computer. The routine uses the DDK HAL
routines for getting the system-wide interrupt vector based on the bus-specific interrupt level
and vector. If successful, it creates a handling thread in the user’s application. When the
interrupt occurs, the handling thread is notified and the thread runs the handling routine and
argument specified.

The handling routine must not change its thread priority.

As in a typical device driver, the user is responsible for initializing the hardware device,
enabling the generation of interrupts, and acknowledging interrupts in the appropriate
manner. Interrupt generation on the device can be enabled after a successful call to
RtAttachInterruptVector. Conversely, the user must disable interrupts before disconnecting
the interrupt with RtReleaseInterruptVector, and also disconnect the interrupt before
exiting. In the interrupt handling routine, the user should perform the appropriate steps to
acknowledge the device’s interrupt. Typically, these operations are performed by writing
commands to a device’s command/status register, which is either memory-mapped or in the
I/O address space of the system.

See Also
HalGetInterruptVector (in the DDK for Windows NT 4.0 and DDK for Windows 2000)

RtEnablePortIo
RtReadPortBufferUchar
RtReleaseInterruptVector
RtWritePortUchar

RTX Reference

20

RtAttachInterruptVectorEx

RtAttachInterruptVectorEx allows the user to associate an IST and ISR with a shared or
non-shared hardware interrupt.

HANDLE
RtAttachInterruptVectorEx(

 PSECURITY_ATTRIBUTES pThreadAttributes,
 ULONG StackSize,
 BOOLEAN (RTFCNDCL *pRoutineIST)(PVOID ContextIST),
 PVOID ContextIST,
 ULONG Priority,
 INTERFACE_TYPE InterfaceType,
 ULONG BusNumber,
 ULONG BusInterruptLevel,
 ULONG BusInterruptVector,
 BOOLEAN ShareVector,
 KINTERRUPT_MODE InterruptMode,
 INTERRUPT_DISPOSITION (RTFCNDCL *pRoutineISR)(PVOID ContextISR)
);

Parameters

pThreadAttributes (Ignored by RTSS)

A security attributes structure used when the handler thread is created. See CreateThread
in the Windows Win32 SDK.

StackSize

The number of bytes to allocate for the handler thread’s stack. See CreateThread.

pRoutineIST

A pointer to the handler routine to be run by the interrupt service thread (IST). The routine
takes a single PVOID argument and returns BOOLEAN.

Context

The argument to the handler routines (i.e., the routines pointed to by pRoutine and
MyInterrupt), cast as a PVOID.

Priority

The thread priority for the handler routine. Executing equal and higher priority threads
disable the interrupt; executing lower priority threads enable it.

InterfaceType

The type of bus interface on which the hardware is located. It can be one of the following
types: Internal, ISA, EISA, MicroChannel, TurboChannel, or PCIBus. The upper
boundary on the bus types supported is always MaximumInterfaceType.

Chapter 2: Real-Time API

21

BusNumber

The bus the device is on in a multiple bus environment, with counting starting at zero.
Typically, a machine has only one or two of a particular bus type, so this value is either 0 or
1. Note that this value applies to each bus type, so for a system with one ISA bus and one
PCI bus, for example, each would have a BusNumber of 0.

BusInterruptLevel

A bus-specific interrupt level associated with the device.

BusInterruptVector

A bus-specific interrupt vector associated with the device.

ShareVector

Specifies whether the caller is prepared to share the interrupt vector.

InterruptMode

Specifies whether the device interrupt is LevelSensitive or Latched.

pRoutineISR

A pointer to a routine to be run by the interrupt service routine (ISR) or NULL to specify no
routine. The routine takes a single PVOID argument, ContextIST and returns
INTERRUPT_DISPOSITION.

Return Values
The function returns an RTX-specific interrupt handle if successful. The function returns a
NULL handle for an invalid argument, for failing to connect the interrupt, or if a device is
already using the bus resources requested and either a previous attachment or this attachment
specified ShareVector as FALSE.

Comments
RtAttachInterruptVectorEx allows a user to associate two handling routines with a
hardware interrupt on one of the supported buses on the computer. It uses the DDK HAL
routines for getting the system-wide interrupt vector based on the bus-specific interrupt level
and vector. If successful, it creates a handling thread in the user’s application.

When the interrupt occurs, the ISR calls the MyInterrupt routine (if present). This optional
routine should be used to determine which attachment of a group of shared attachments
should handle the interrupt. Since it is called at interrupt level, this routine should complete
its work quickly; 1-2 msec is recommended. The routine should restrict itself to the calls in
the Port I/O or mapped data transfer API (RtReadPort. . ., RtWritePort. . .). The routine
pointed to by MyInterrupt returns one of three values.

� It returns PassToNextDevice if its associated device did not generate the interrupt.

� It returns CallInterruptThread if its associated device generated the interrupt and
the handling thread should be notified and call the function pointed to by
pRoutineISR to handle the interrupt.

RTX Reference

22

� It returns Dismiss if its associated device generated the interrupt and no further action
is required of the handling thread (presumably because this routine has done all that
is necessary).

When they are called, the handling routines are passed Context as an argument.

The handling routine called via pRoutine must not change its thread priority.

As in a typical device driver, the user is responsible for initializing the hardware device,
enabling the generation of interrupts, and acknowledging interrupts in the appropriate
manner. Interrupt generation on the device can be enabled after a successful call to
RtAttachInterruptVectorEx. Conversely, the user must disable interrupts before
disconnecting the interrupt with RtReleaseInterruptVector, and the user must disconnect
the interrupt before exiting. In the interrupt handling routine, the user should perform the
appropriate steps to acknowledge the device’s interrupt. Typically, these operations are
performed by writing commands to a device’s command/status register, which is either
memory-mapped or in the I/O address space of the system.

If ShareVector is specified as true, the interrupt handling routine must be prepared to share
the specified interrupt vector with other devices. When an interrupt occurs and the handling
routine is run, it should check the device in an appropriate manner to determine if the
interrupt came from its device. If so, it handles and acknowledges the interrupt in the usual
way, and returns TRUE. If its device did not generate the interrupt, the handling routine
returns FALSE.

If the vector is already in use by a Windows NT device driver, or another RTX program that
did not specify ShareVector as TRUE, RtAttachInterruptVectorEx will fail.

See Also
HalGetInterruptVector (in the DDK for Windows NT 4.0 and DDK for Windows 2000)
RtAttachInterruptVector
RtEnablePortIo
RtReadPortUchar
RtReleaseInterruptVector
RtWritePortUchar

Chapter 2: Real-Time API

23

RtAttachShutdownHandler

RtAttachShutdownHandler registers a stop notification handler function with RTSS. The
handler function is called in its own thread when one of the system stop events occurs.

HANDLE
RtAttachShutdownHandler(

 PSECURITY_ATTRIBUTES pThreadAttributes,
 ULONG Stacksize,
 VOID (RTFCNDCL *Routine) (PVOID Context, LONG reason),
 PVOID Context,
 ULONG Priority
);

Parameters

pThreadAttributes (unused)

A security attributes structure used when the handler thread is created.

StackSize

The number of bytes to allocate for the handler thread’s stack.

Routine

The handler function to call when RTSS delivers the stop notification.

Context

The argument to the handler routine.

Priority

The priority for the created thread.

Return Values
A stop handler object has been correctly instantiated when a valid handle is returned.
Otherwise, INVALID_HANDLE_VALUE is returned and GetLastError should be called
for more detailed information.

RTX Reference

24

Comments
The function pointed to by Routine is called when Windows NT and Windows 2000 shut
down. The source of the stop notification is presented to this function in the reason argument.
The reason argument may have one of the following values according the reason for the
notification:

57B6+87'2:1B17B6<67(0B6+87'2:1 7KH�V\VWHP�LV�VWDUWLQJ�D�QRUPDO
VKXWGRZQ��6KRUWO\�DIWHU�DOO�VKXWGRZQ
KDQGOHUV�KDYH�EHHQ�H[HFXWHG��:LQGRZV
17�DQG�:LQGRZV�ZLOO�VWRS�

57B6+87'2:1B17B6723 :LQGRZV�17�RU�:LQGRZV������KDYH
VWRSSHG��L�H���EOXH�VFUHHQ�RU�VWRS�VFUHHQ��
5766�ZLOO�FRQWLQXH�WR�RSHUDWH�ZLWK�VHUYLFH
UHVWULFWLRQV�

The order in which the shutdown handlers execute is dependent upon the priority specified
when the handler object was created. This priority is simply the RTSS thread priority.

Only one shutdown handler object is permitted per RTSS process. A handler function
should not call ExitThread, but should simply return when finished. When all registered
shutdown handlers have returned, the system completes the shutdown sequence.

A shutdown handler object may be destroyed by calling RtReleaseShutdownHandler.

Note: There are a limited number of calls that can be made.

See Also

RtReleaseShutdownHandler

Chapter 2: Real-Time API

25

RtCancelTimer

RtCancelTimer cancels the expiration of the indicated timer.

BOOL
RtCancelTimer(

 HANDLE hTimer,
 PLARGE_INTEGER pTimeRemaining
);

Parameters

hTimer

An RTX-specific handle to the timer.

pTimeRemaining

A pointer to a LARGE_INTEGER to store the time remaining on the canceled timer. If the
pointer is non-NULL, the LARGE_INTEGER will be written with the time remaining on
the timer at the time of cancellation. The time remaining is calculated relative to the current
value of of the clock associated with the time at creation and is specified in 100ns units.

Return Values
The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments
RtCancelTimer cancels the specified timer, but does not delete it. If the user provides a non-
NULL pointer to a LARGE_INTEGER, then time remaining on the timer at the time of
cancellation is returned.

See Also
RtCreateTimer
RtDeleteTimer
RtGetClockResolution
RtGetClockTime
RtGetClockTimerPeriod
RtSetClockTime
RtSetTimer
RtSetTimerRelative
RtSleepFt
Sleep

RTX Reference

26

RtCloseHandle

RtCloseHandle closes an open object handle.

BOOL
RtCloseHandle(

 HANDLE hObject
);

Parameters

hObject

An open object handle.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments
RtCloseHandle closes handles to the following RTSS objects:

n Event
n Interrupts
n Mutex
n Semaphore

n Shared memory
n Shutdown handler
n Timers

RtCloseHandle invalidates the specified object handle, decrements the object’s handle count,
and performs object retention checks. Once the last handle to an object is closed, the object is
removed from the operating system.

Note: Threads must be closed with CloseHandle.

See Also
CloseHandle

Chapter 2: Real-Time API

27

RtCommitLockHeap

RtCommitLockHeap commits and locks the heap to avoid page faults as the heap is used.

BOOL
RtCommitLockHeap(

 HANDLE hHeap,
 ULONG nNumberOfBytes,
 VOID (RTFCNDCL *pExceptionRoutine)(HANDLE),
);

Parameters

hHeap

A handle to the heap to be committed and locked.

nNumberOfBytes

The number of bytes in the heap to lock.

pExceptionRoutine (ignored)

The exception routine to call if the heap uses more than the locked amount.

Return Values
The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments
RtCommitLockHeap commits and locks the specified heap in physical memory so that it
does not incur page faults as the memory is used, and the memory used for the heap is not
paged out by the system.

Since all RTSS heaps are always locked, this function has no effect in the RTSS environment.

See Also
RtAllocateLockedMemory
RtCommitLockProcessHeap
RtCommitLockStack
RtFreeLockedMemory
RtLockKernel
RtLockProcess
RtUnlockKernel
RtUnlockProcess

RTX Reference

28

RtCommitLockProcessHeap

RtCommitLockProcessHeap commits and locks the system process heap to avoid page
faults as the heap is used.

BOOL
RtCommitLockProcessHeap(

 ULONG nNumberOfBytes,
 VOID (RTFCNDCL *pExceptionRoutine)(HANDLE),
);

Parameters

nNumberOfBytes

The number of bytes in the heap to lock.

*ExceptionRoutine (ignored)

The exception routine to call if the heap uses more than the locked amount.

Return Values
The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments
RtCommitLockProcessHeap commits and locks the system process heap in physical
memory so that it does not incur page faults as the memory is used, and the memory used for
the heap is not paged out by the system.

Since all RTSS heaps are always locked, this function has no effect in the RTSS environment.

See Also
RtAllocateLockedMemory
RtCommitLockHeap
RtCommitLockStack
RtFreeLockedMemory
RtLockKernel
RtLockProcess
RtUnlockKernel
RtUnlockProcess

Chapter 2: Real-Time API

29

RtCommitLockStack

RtCommitLockStack commits and locks the specified stack to avoid page faults as the stack
is used.

BOOL
RtCommitLockStack(

 ULONG nNumberOfBytes
);

Parameters

nNumberOfBytes

The number of bytes in the stack to lock.

Return Values
The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments
RtCommitLockStack commits and locks the stack in physical memory so that it does not
incur page faults as the memory is used, and the memory used for the stack is not paged out
by the system.

The RTSS stack is always locked. Any attempt to lock the stack beyond the stack size at
thread creation fails; otherwise, this call has no effect in the RTSS environment.

See Also
RtAllocateLockedMemory
RtCommitLockHeap
RtCommitLockProcessHeap
RtFreeLockedMemory
RtLockKernel
RtLockProcess
RtUnlockKernel
RtUnlockProcess

RTX Reference

30

RtCreateEvent

RtCreateEvent creates a named or unnamed event object.

HANDLE
RtCreateEvent(

 LPSECURITY_ATTRIBUTES lpEventAttributes,
 BOOL ManualReset,
 BOOL pInitialState,
 LPCTSTR lpName
);

Parameters

lpEventAttributes (ignored)

A pointer to a SECURITY_ATTRIBUTES structure.

bManualReset

Specifies whether a manual-reset or auto-reset event is created. If TRUE, then use the
RtResetEvent function to manually reset the state to non-signaled. If FALSE, the system
automatically resets the state to non-signaled after a single waiting thread has been released.

bInitialState

The initial state of the event object. If TRUE, the initial state is signaled; otherwise, it is
non-signaled.

lpName

A pointer to a null-terminated string specifying the name of the event object. The name is
limited to RTX_MAX_PATH characters, and can contain any character except the
backslash path-separator character (\). Name comparison is case-sensitive.

If lpName matches the name of an existing named event object, this function requests access
to the existing object. In this case, bManualReset and bInitialState are ignored because they
have already been set by the creating process.

If lpName matches the name of an existing mutex, semaphore, or shared memory object, the
function fails and GetLastError returns ERROR_INVALID_HANDLE. This occurs
because event, mutex, semaphore, and shared memory objects share the same namespace.

If lpName is NULL, the event object is created without a name.

Return Values
If the function succeeds, the return value is a handle to the event object. If the named event
object existed before the function call, GetLastError returns ERROR_ALREADY_EXISTS.
Otherwise, GetLastError returns zero.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Chapter 2: Real-Time API

31

Comments
The handle returned by RtCreateEvent has all accesses to the new event object and can be
used in any function that requires a handle to an event object.

Any thread of the calling process can specify the event-object handle in a call to one of the
wait functions. The wait functions return when the state of the specified object is signaled.
When a wait function returns, the waiting thread is released to continue its execution.

The initial state of the event object is specified by the bInitialState parameter. Use the
RtSetEvent function to set the state of an event object to signaled. Use the RtResetEvent
function to reset the state of an event object to non-signaled.

When the state of a manual-reset event is signaled, it remains signaled until it is explicitly
reset to non-signaled by the RtResetEvent function. Any number of waiting threads, or
threads that subsequently begin wait operations for the specified event object, can be released
while the object’s state is signaled.

When the state of an auto-reset event object is signaled, it remains signaled until a single
waiting thread is released; the system then resets the state to non-signaled. If no threads are
waiting, the event object remains signaled.

Multiple processes can have handles of the same event object, enabling use of the object for
inter-process synchronization. The available object-sharing mechanism is: A process can
specify the name of a event object in a call to RtOpenEvent or RtCreateEvent.

Use RtCloseHandle to close the handle. The system closes the handle automatically when
the process terminates. The event object is destroyed when its last handle has been closed.

See Also
RtCloseHandle
RtOpenEvent
RtPulseEvent
RtResetEvent
RtSetEvent

RTX Reference

32

RtCreateMutex

RtCreateMutex creates an RTSS mutex. A handle is returned to the newly created mutex
object.

HANDLE
RtCreateMutex(

 LPSECURITY_ATTRIBUTES lpMutexAttributes,
 BOOL bInitialOwner,
 LPCTSTR lpName
);

Parameters

lpMutexAttributes (ignored)

A pointer to a SECURITY_ATTRIBUTES structure.

bInitialOwner

The initial ownership state of the mutex object. If this value is TRUE and the caller created
the mutex, the calling thread obtains ownership of the mutex object. Otherwise, the calling
thread does not obtain ownership of the mutex.

lpName

A pointer to a null-terminated string specifying the name of the mutex object. The name is
limited to RTX_MAX_PATH characters and can contain any character except the backslash
path-separator character (\). Name comparison is case-sensitive.

If lpName matches the name of an existing named mutex object, this function requests
MUTEX_ALL_ACCESS access to the existing object. In this case, the bInitialOwner
parameter is ignored because it has already been set by the creating process.

If lpName matches the name of an existing event, semaphore, or shared memory object, the
function fails and GetLastError returns ERROR_INVALID_HANDLE. This occurs
because event, mutex, semaphore, and shared memory objects share the same namespace.

If lpName is NULL, the mutex object is created without a name.

Return Values
If the function succeeds, the return value is a handle to the mutex object. If the named mutex
object existed before the function call, GetLastError returns ERROR_ALREADY_EXISTS.
Otherwise, GetLastError returns zero.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Chapter 2: Real-Time API

33

Comments
The handle returned by RtCreateMutex has MUTEX_ALL_ACCESS access to the new
mutex object and can be used in any function that requires a handle to a mutex object.

Any thread of the calling process can specify the mutex-object handle in a call to any wait
function.

The state of a mutex object is signaled when it is not owned by any thread. The creating
thread can use the bInitialOwner flag to request immediate ownership of the mutex.
Otherwise, a thread must use the wait function to request ownership. When the mutex’s state
is signaled, the highest priority waiting thread is granted ownership (if more than one thread
is waiting at the same priority, they receive ownership of the mutex in the order they waited);
the mutex’s state changes to non-signaled; and the wait function returns. Only one thread can
own a mutex at any given time. The owning thread uses RtReleaseMutex to release its
ownership.

The thread that owns a mutex can specify the same mutex in repeated wait function calls
without blocking its execution. Typically, you would not wait repeatedly for the same mutex,
but this mechanism prevents a thread from deadlocking itself while waiting for a mutex that it
already owns. However, to release its ownership, the thread must call RtReleaseMutex once
for each time that the mutex satisfied a wait.

Two or more processes can call RtCreateMutex to create the same named mutex. The first
process actually creates the mutex, and subsequent processes open a handle to the existing
mutex. This enables multiple processes to get handles of the same mutex, while relieving the
user of the responsibility of ensuring that the creating process is started first. When using this
technique, set the bInitialOwner flag to FALSE; otherwise, it can be difficult to be certain
which process has initial ownership.

Multiple processes can have handles of the same mutex object, enabling use of the object for
process synchronization. The available object-sharing mechanism is: A process can specify
the name of a mutex object in a call to RtOpenMutex or RtCreateMutex.

RtCloseHandle closes a mutex-object handle. The system closes the handle automatically
when the process terminates. The mutex object is destroyed when its last handle has been
closed.

See Also
RtCloseHandle
RtOpenMutex
RtReleaseMutex

RTX Reference

34

RtCreateProcess

RtCreateProcess creates and starts a new RTSS process. The new RTSS process runs the
specified RTSS executable file. RtCreateProcess is supported only in the Win32 environment.

BOOL
RtCreateProcess(

 LPCTSTR lpApplicationName,
 LPTSTR lpCommandLine,
 LPSECURITY_ATTRIBUTES lpProcessAttributes,
 LPSECURITY_ATTRIBUTES lpThreadAttributes,
 BOOL bInheritHandles,
 DWORD dwCreationFlags,
 LPVOID lpEnvironment,
 LPCTSTR lpCurrentDirectory,
 LPSTARTUPINFO lpStartupInfo,
 LPPROCESS_INFORMATION lpProcessInformation
);

Parameters

lpApplicationName

Pointer to a null-terminated string that specifies the module to execute. The string must
specify the full path and file name of the module to execute.

The lpApplicationName parameter can be NULL. In that case, the module name must be the
first white space-delimited token in the lpCommandLine string.

When lpCommandLine is non-NULL and you are using a long file name that contains a
space, use quoted strings to indicate where the file name ends and the arguments begin. For
example, �&�?3URJUDP�)LOHV?5W[�7HVW�UWVV��DUJY��DUJY� is a valid string
for this parameter. When lpCommandLine is NULL, quotes are not needed.

The specified module must be an RTSS application.

lpCommandLine

Pointer to a null-terminated string that specifies the command line to execute. The system
adds a null character to the command line.

The lpCommandLine parameter can be NULL. In that case, the function uses the string
pointed to by lpApplicationName as the command line.

If both lpApplicationName and lpCommandLine are non-NULL, *lpApplicationName
specifies the module to execute, and *lpCommandLine specifies the command line. The new
process can use GetCommandLine to retrieve the entire command line. C runtime
processes can use the argc and argv arguments.

If lpApplicationName is NULL, the first white-space - delimited token of the command line
specifies the module name. If you are using a long file name that contains a space, use
quoted strings to indicate where the file name ends and the arguments begin (see the

Chapter 2: Real-Time API

35

explanation for the lpApplicationName parameter). If the file name does not contain an
extension, .rtss is appended.

lpProcessAttributes (ignored)

lpThreadAttributes (ignored)

bInheritHandles (ignored)

dwCreationFlags (ignored)

lpEnvironment (ignored)

lpCurrentDirectory (ignored)

lpStartupInfo (ignored)

lpProcessInformation

Pointer to a PROCESS_INFORMATION structure that receives identification information
about the new process.

Return Values
If the function succeeds, the return value is nonzero.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Comments
An RTSS process can be created and started through RTSSrun in command line windows.
As an alternative way, RtCreateProcess can be used to create and start a new RTSS process
through Win32 programs. RtCreateProcess uses RTSSrun (without switches) to create and
start the new RTSS process.

When created, the new RTSS process handle receives full access rights. The handle can be
used in any function that requires an object handle to that type. The RTSS process handle is
returned in the PROCESS_INFORMATION structure.

The RTSS process is assigned a process identifier. The identifier is valid until the RTSS
process terminates. It can be used to identify the RTSS process, or specified in
RtOpenProcess to open a handle to the RTSS process. The RTSS process identifier is
returned in the PROCESS_INFORMATION structure.

RtCreateProcess does not create a handle for the primary thread of the new RTSS process.
The returning value of lpProcessInformation-hThread is NULL and lpProcessInformation-
dwThreadId is 0.

The preferred way to shut down an RTSS process is by using ExitProcess, because this
function sends notification of approaching termination to all RTDLLs attached to the RTSS
process. Other means of shutting down an RTSS process do not notify the attached RTDLLs.

The created RTSS process remains in the system until all threads within the RTSS process
have terminated and all handles to the RTSS process and any of its threads have been closed
through calls to CloseHandle. The handle for the RTSS process must be closed through a call
to CloseHandle.

RTX Reference

36

If this handle is not needed, it is best to close it immediately after the process is created.
When the last thread in an RTSS process terminates, the following events occur:

n All objects opened by the RTSS process are implicitly closed.

n The process’s termination status (which is returned by RtGetExitCodeProcess)
changes from its initial value of STILL_ACTIVE to the termination status of the last
thread to terminate.

n The RTSS process object is set to the signaled state, satisfying any threads that were
waiting on the object.

See Also
CloseHandle
ExitProcess
RtGetExitCodeProcess
RtOpenProcess
RtTerminateProcess

Chapter 2: Real-Time API

37

RtCreateSemaphore

RtCreateSemaphore creates a named or unnamed semaphore object.

HANDLE
RtCreateSemaphore(

 LPSECURITY_ATTRIBUTES lpSemaphoreAttributes,
 LONG lInitialCount,
 LONG lMaximumCount,
 LPCTSTR lpName
);

Parameters

lpSemaphoreAttributes (ignored)

A pointer to a SECURITY_ATTRIBUTES structure.

lInitialCount

An initial count for the semaphore object. This value must be greater than or equal to zero
and less than or equal to lMaximumCount. The state of a semaphore is signaled when its
count is greater than zero and non-signaled when it is zero. The count is decreased by one
whenever a wait function releases a thread that was waiting for the semaphore. The count is
increased by a specified amount by calling RtReleaseSemaphore.

lMaximumCount

The maximum count for the semaphore object. This value must be greater than zero.

lpName

A pointer to a null-terminated string specifying the name of the semaphore object. The name
is limited to RTX_MAX_PATH characters, and can contain any character except the
backslash path-separator character (\). Name comparison is case-sensitive.

If lpName matches the name of an existing named semaphore object, this function requests
access to the existing object. In this case, lInitialCount and lMaximumCount are ignored
because they have already been set by the creating process.

If lpName matches the name of an existing event, mutex, or shared memory object, the
function fails and GetLastError returns ERROR_INVALID_HANDLE. This occurs
because event, mutex, semaphore, and shared memory objects share the same namespace.

If lpName is NULL, the semaphore object is created without a name.

Return Values
If the function succeeds, the return value is a handle to the semaphore object. If the named
semaphore object existed before the function call, GetLastError returns
ERROR_ALREADY_EXISTS. Otherwise, GetLastError returns zero.

RTX Reference

38

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Comments
The handle returned by RtCreateSemaphore has all accesses to the new semaphore object
and can be used in any function that requires a handle to a semaphore object.

Any thread of the calling process can specify the semaphore-object handle in a call to one of
the wait functions. The single-object wait functions return when the state of the specified
object is signaled. The multiple-object wait functions can be instructed to return either when
any object is signaled. When a wait function returns, the waiting thread is released to
continue its execution.

The state of a semaphore object is signaled when its count is greater than zero, and non-
signaled when its count is equal to zero. lInitialCount specifies the initial count. Each time a
waiting thread is released because of the semaphore’s signaled state, the count of the
semaphore is decreased by one. Use RtReleaseSemaphore to increment a semaphore’s count
by a specified amount. The count can never be less than zero or greater than the value
specified in lMaximumCount.

Multiple processes can have handles of the same semaphore object, enabling use of the object
for inter-process synchronization. The available object-sharing mechanism is a process that
can specify the name of a semaphore object in a call to RtOpenSemaphore or
RtCreateSemaphore.

Use RtCloseHandle to close the handle. The system closes the handle automatically when
the process terminates. The semaphore object is destroyed when its last handle has been
closed.

See Also
RtCloseHandle
RtOpenSemaphore
RtReleaseSemaphore

Chapter 2: Real-Time API

39

RtCreateSharedMemory

RtCreateSharedMemory creates a named region of physical memory that can be mapped by
any process.

HANDLE
RtCreateSharedMemory(

 DWORD flProtect,
 DWORD MaximumSizeHigh,
 DWORD MaximumSizeLow,
 LPCTSTR lpName,
 VOID ** location
);

Parameters

flProtect (ignored by RTSS)

The protection desired for the shared memory view. This parameter can be one of the
following values:

PAGE_READONLY
 Gives read-only access to the committed region of pages. An attempt to write to or
execute the committed region results in an access violation.

PAGE_READWRITE
 Gives read-write access to the committed region of pages.

MaximumSizeHigh

The high-order 32 bits of the size of the shared memory object.

MaximumSizeLow

The low-order 32 bits of the size of the shared memory object.

lpName

A pointer to a null-terminated string specifying the name of the shared memory object. The
name can contain any character except the backslash (\).

If this parameter matches the name of an existing named shared memory object, the function
requests access to the shared memory object with the protection specified by flProtect.

If lpName matches the name of an existing event, mutex, or semaphore object, the function
fails and GetLastError returns ERROR_INVALID_HANDLE. This occurs because event,
mutex, semaphore, and shared memory objects share the same namespace.

If lpName is NULL, the mapping object is created without a name.

location

A pointer to a location where the virtual address of the shared memory will be stored.

RTX Reference

40

Return Values
If the function succeeds, the return value is a handle to the shared memory object. If the
object existed before the function call, GetLastError returns ERROR_ALREADY_EXISTS,
and the return value is a valid handle to the existing shared memory object (with its current
size, not the new specified size). If the mapping object did not exist, GetLastError returns
zero and the location is set.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Comments
The handle that RtCreateSharedMemory returns has full access to the new shared memory
object. Shared memory objects can be shared by name. For information on opening a shared
memory object by name, see RtOpenSharedMemory.

To close a shared memory object, an application must close its handle by calling
RtCloseHandle.

When all handles to the shared memory object representing the physical memory are closed,
the object is destroyed and physical memory is returned to the system.

See Also
RtCloseHandle
RtOpenSharedMemory

Chapter 2: Real-Time API

41

RtCreateTimer

RtCreateTimer creates a timer associated with the specified clock, and returns a handle to
the timer.

HANDLE
RtCreateTimer(

 PSECURITY_ATTRIBUTES pThreadAttributes,
 ULONG StackSize,
 VOID (RTFCNDCL *Routine) (PVOID context),
 PVOID Context,
 ULONG Priority,
 CLOCK Clock
);

Parameters

pThreadAttributes (ignored by RTSS)

An optional pointer to a SECURITY_ATTRIBUTES structure to be used at handler thread
creation. Pass in NULL for default.

StackSize

The stack size for handler thread. Use a size of 0 for default.

Routine

A pointer to the routine to be run upon completion. The routine takes a single PVOID
argument and returns VOID.

Context

The argument to the routine, cast as a PVOID.

Priority

The handler thread priority as defined below.

Clock

A clock identifier as defined below in the Comments sections.

Return Values
If successful, the function returns a non-zero handle to the timer; otherwise, it returns a
NULL handle. To set the timer to expire, see RtSetTimer or RtSetTimerRelative. Upon
expiration, the specified routine is run with the specified argument.

RTX Reference

42

Comments
RtCreateTimer allocates a new timer and returns a handle to it. Legal clock values, as
enumerated in rtapi.h, are listed below:

&ORFN�9DOXH 0HDQLQJ

&/2&.B� 2QH�PLOOLVHFRQG�WLPHU�

&/2&.B� 5HDO�WLPH�+$/�WLPHU��'HIDXOW�LV�����PLFURVHFRQGV��DV
VSHFLILHG�LQ�WKH�UHJLVWU\��

&/2&.B)$67(67 7KH�IDVWHVW�DYDLODEOH�FORFN�DQG�WLPH�RQ�WKH�V\VWHP�
7KLV�LV�XVXDOO\�&/2&.B��

&/2&.B6<67(0 6DPH�DV�&/2&.B��

The timer routine will run as a separate handling thread. pThreadAttributes, StackSize, and
Priority are used to control the creation of the handler thread. See CreateThread and
SetThreadPriority for details on these parameters.

To run a different handling routine/context, a new timer must be created.

See Also
RtCancelTimer
RtDeleteTimer
RtGetClockResolution
RtGetClockTime
RtGetClockTimerPeriod
RtSetClockTime
RtSetTimer
RtSetTimerRelative

Chapter 2: Real-Time API

43

RtDeleteTimer

RtDeleteTimer deletes the timer specified by the given handle.

BOOL
RtDeleteTimer(

 HANDLE hTimer
);

Parameters

hTimer

An RTX-specific handle to the timer to be deleted.

Return Values
The function returns TRUE if it completes successfully, or it returns FALSE if an invalid
parameter is specified.

Comments
RtDeleteTimer deletes the specified timer, first canceling it if it has been scheduled to
expire. Note that timer handles are not Windows NT object handles, and the RTX timer
subsystem does not maintain a reference count. Deleting a timer removes the timer entirely.
RtCloseHandle can also be used to delete a timer.

See Also
RtCancelTimer
RtCloseHandle
RtCreateTimer
RtGetClockResolution
RtGetClockTime
RtGetClockTimerPeriod
RtSetClockTime
RtSetTimer
RtSetTimerRelative

RTX Reference

44

RtDisableInterrupts

In the Win32 environment, RtDisableInterrupts disables all user-level interrupt handling for
all interrupts to which the Win32 process is attached.

In an RTSS environment, RtDisableInterrupts disables all interrupts at the processor level
including timer interrupts.

BOOL
RtDisableInterrupts(VOID)

Return Values
The function returns TRUE if successful; otherwise it returns FALSE.

Comments
To minimize latencies for higher priority threads, RtEnableInterrupts should be called as
soon as possible after RtDisableInterrupts.

For Win32 processes, this function does not program the hardware to stop generating
interrupts. Such programming must be done separately, typically via port I/O calls to the
command/status registers for the device.

See Also
RtAttachInterruptVector
RtEnableInterrupts
RtEnablePortIo
RtReadPortUchar
RtReleaseInterruptVector
RtWritePortUchar

Chapter 2: Real-Time API

45

RtDisablePortIo

RtDisablePortIo disables direct I/O port access from user context.

BOOL
RtDisablePortIo(

 PUCHAR StartPort,
 ULONG nNumberOfBytes
);

Parameters

StartPort

The first port to have direct I/O permissions disabled by this call. Each I/O space address
points at a single byte. For ports that represent 2-byte or 4-byte locations, the appropriate
number of I/O space addresses (two and four, respectively) must be disabled.

nNumberOfBytes

An unsigned 32-bit integer indicating the number of addresses/bytes to disable, starting at
StartPort.

Return Values
The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments
RtDisablePortIo disables direct port I/O access for ports from the user context.

This function currently has no impact on RTSS determinism. This call is a NO-OP (no
operation) when issued from RTSS applications.

See Also
RtEnablePortIo
RtReadPortBuffer*(Uchar, Ushort, Ulong)
RtReadPort* (Uchar, Ushort, Ulong)
RtWritePortBuffer* (Uchar, Ushort, Ulong)
RtWritePort* (Uchar, Ushort, Ulong)

RTX Reference

46

RtEnableInterrupts

RtEnableInterrupts enables user-level interrupt handling for all interrupts to which the
process is attached.

VOID
RtEnableInterrupts(VOID);

Parameters
This function has no parameters.

Comments
In the Win32 environment, interrupt handling is automatically enabled after attaching to an
interrupt successfully. Note that this function does not program the hardware to enable or
generate interrupts. Such programming must be done separately, typically via port I/O calls to
the command/status registers for the device.

See Also
HalGetInterruptVector (in the DDK for Windows NT and DDK for Windows 2000)
RtAttachInterruptVector
RtDisableInterrupts
RtDisablePortIo
RtReadPortUchar
RtReleaseInterruptVector
RtWritePortUchar

Chapter 2: Real-Time API

47

RtEnablePortIo

RtEnablePortIo enables direct I/O port access from user context.

BOOL
RtEnablePortIo(

 PUCHAR StartPort,
 ULONG nNumberOfBytes
);

Parameters

StartPort

The first port to have direct I/O permissions enabled by this call. Each I/O space address
points at a single byte. For ports that represent 2-byte or 4-byte locations, the appropriate
number of I/O space addresses must be enabled, or an exception will be encountered.

nNumberOfBytes

An unsigned 32-bit integer indicating the number of addresses/bytes to enable, starting at
StartPort.

Return Values
The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments
This function currently has no impact on RTSS determinism. This call is a NO-OP (no
operation) when issued from RTSS applications.

RtEnablePortIo enables direct user access to the specified range of I/O addresses. On the
Pentium processor, there are 216-1 = 65,535 byte-wide I/O port addresses. Two-byte word
and four-byte double word ports take two and four I/O port addresses, respectively, and fall
on even word and long word addresses (i.e., divisible by two and four), respectively.

The address for which direct I/O is to be enabled is passed in StartPort, cast as a pointer to an
unsigned character (i.e., a single-byte quantum). Generally, this address represents a
hardware register or port, so only a single byte needs to be enabled (i.e., nNumberOfBytes is
set to 1). If the location represents a two-byte word or four-byte double word port, then the
parameter nNumberOfBytes should reflect the width of the I/O port. Note that
nNumberOfBytes can also be used to enable permission for an entire range of addresses,
independent of their data widths.

See Also
RtDisablePortIo
RtReadPortBuffer* (Uchar, Ushort, Ulong), RtReadPort* (Uchar, Ushort, Ulong)
RtWritePortBuffer* (Uchar, Ushort, Ulong), RtWritePort* (Uchar, Ushort, Ulong)

RTX Reference

48

RtGetExitCodeProcess

RtGetExitCodeProcess retrieves the termination status of the specified process.

BOOL
RtGetExitCodeProcess(

 HANDLE hProcess,
 LPDWORD lpExitCode
);

Parameters

hProcess

A handle to the process.

The handle must have PROCESS_QUERY_INFORMATION access.

lpExitCode

A pointer to a 32-bit variable to receive the process termination status.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments
If the specified process has not terminated, the termination status returned is
STILL_ACTIVE. If the process has terminated, the termination status returned may be one of
the following values:

n The exit value specified in ExitProcess or RtTerminateProcess.

n The return value from main or WinMain of the process.

The exception value for an unhandled exception that caused the process to terminate.

Chapter 2: Real-Time API

49

RtFreeContiguousMemory

RtFreeContiguousMemory frees a previously allocated physically contiguous memory region.

BOOL
RtFreeContiguousMemory(

 PVOID pVirtualAddress
);

Parameters

pVirtualAddress

A virtual address as returned by a previous call to RtAllocateContiguousMemory.

Return Values
The function returns TRUE if successful; otherwise, it returns FALSE.

Comments
RtFreeContiguousMemory releases a previous allocation of physically contiguous memory.

See Also
RtAllocateContiguousMemory
RtGetPhysicalAddress

RTX Reference

50

RtFreeLockedMemory

RtFreeLockedMemory frees memory previously committed and locked by a call to
RtAllocateLockedMemory.

BOOL
RtFreeLockedMemory(

 PVOID pVirtualAddress
);

Parameters

pVirtualAddress

A pointer to the start of the memory, as returned by RtAllocateLockedMemory.

Return Values

The function returns TRUE if successful, otherwise, it returns FALSE.

Comments
RtFreeLockedMemory frees memory previously allocated, committed, and locked by
RtAllocateLockedMemory.

See Also
RtAllocateLockedMemory
RtCommitLockHeap
RtCommitLockProcessHeap
RtCommitLockStack
RtLockKernel
RtLockProcess
RtUnlockKernel
RtUnlockProcess

Chapter 2: Real-Time API

51

RtGetBusDataByOffset

RtGetBusDataByOffset obtains details, starting at the given offset, about a given slot on an
I/O bus.

ULONG
RtGetBusDataByOffset(

 BUS_DATA_TYPE BusDataType,
 ULONG BusNumber,
 ULONG SlotNumber,
 PVOID pBuffer,
 ULONG Offset,
 ULONG Length
);

Parameters

BusDataType

Type of bus data to be retrieved. Currently, its value can be EisaConfiguration, Pos, or
PCIConfiguration. The upper bound on the bus types supported is always
MaximumBusDataType.

BusNumber

Zero-based and system-assigned number of the bus in systems with more than one bus of
the same BusDataType.

SlotNumber

Logical slot number. When PCIConfiguration is specified, this is a
PCI_SLOT_NUMBER_TYPE value.

pBuffer

A pointer to a caller-supplied buffer for configuration information specific to BusDataType.

If EisaConfiguration is specified, the buffer will contain the
CM_EISA_SLOT_INFORMATION structure followed by zero or more
CM_EISA_FUNCTION_INFORMATION structures for the specified slot.

If Pos is specified, the buffer will contain a CM_MCA_POS_DATA structure for the
specified slot.

When PCIConfiguration is specified, the buffer will contain some or all of the
PCI_COMMON_CONFIG information for the given SlotNumber. The specified Offset and
Length determine how

Offset

If the BusDataType is EisaConfiguration or Pos, the offset is zero. Otherwise, specifies the
byte offset in the PCI_COMMON_CONFIG structure for which the requested information
should be returned. Callers can use the system-defined constant,

RTX Reference

52

PCI_COMMON_HDR_LENGTH, to specify the device-specific area of
PCI_COMMON_CONFIG.

Length

Maximum number of bytes to return in the buffer.

Return Values
RtGetBusDataByOffset returns the number of bytes of data it wrote in the given buffer. If
the given BusDataType is not valid for the current platform, this routine returns zero.

When the input BusType is PCIConfiguration, RtGetBusDataByOffset can return either of
the following values to indicate an error:

9DOXH 0HDQLQJ

���]HUR� 7KH�VSHFLILHG�3&,%XV�GRHV�QRW�H[LVW�

� 7KH�VSHFLILHG�3&,%XV�H[LVWV��EXW�WKHUH�LV�QR�GHYLFH�DW�WKH�JLYHQ�3&,
6ORW1XPEHU��7KH�EXIIHU�DOVR�FRQWDLQV�WKH�YDOXH
3&,B,19$/,'B9(1'25B,'�DW�WKH�3&,B&20021B&21),*�9(1'25,'
PHPEHU�

Comments
This call can be used to locate devices on a particular I/O bus in the machine. The bus-type-
specific configuration data returned can later be used in other calls, such as
RtSetBusDataByOffset and RtTranslateBusAddress.

When accessing the device-specific area of the PCI configuration space,
RtGetBusDataByOffset guarantees the following:

n This routine never reads or writes data outside the range specified by the input Offset
and Length.

n Even if the input Length is exactly a byte or a (two-byte) word, this routine never
accesses any data outside the requested range.

The PCI structures and values above are defined in rtapi.h. For more information, consult the
Device Driver Kit (DDK) for Windows NT and Windows 2000.

See Also
HalGetBusDataByOffset (in the DDK for Windows NT and DDK for Windows 2000)
RtSetBusDataByOffset
RtTranslateBusAddress

Chapter 2: Real-Time API

53

RtGetClockResolution

RtGetClockResolution obtains the resolution of the specified clock.

BOOL
RtGetClockResolution(

 CLOCK Clock,
 PLARGE_INTEGER pResolution
);

Parameters

Clock

A clock identifier.

pResolution

A pointer to a LARGE_INTEGER structure in which to store the results.

Return Values
The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments
RtGetClockResolution obtains the resolution of the specified clock. The resolution is
specified in 100ns units. See the table in the RtCreateTimer Comments section for a list of
legal clock values.

See Also
RtCancelTimer
RtCreateTimer
RtDeleteTimer
RtGetClockTime
RtGetClockTimerPeriod
RtSetClockTime
RtSetTimer
RtSetTimerRelative

RTX Reference

54

RtGetClockTime

RtGetClockTime obtains the current value of the specified clock.

BOOL
RtGetClockTime(

 CLOCK Clock,
 PLARGE_INTEGER pTime
);

Parameters

Clock

A clock identifier.

pTime

A pointer to a LARGE_INTEGER structure in which to store the results.

Return Values
The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments
RtGetClockTime obtains the value of the specified clock. The time is specified in 100ns
units. See the table in the RtCreateTimer Comments section for a list of legal clock values.

See Also
RtCancelTimer
RtCreateTimer
RtDeleteTimer
RtGetClockResolution
RtGetClockTimerPeriod
RtSetClockTime
RtSetTimer
RtSetTimerRelative

Chapter 2: Real-Time API

55

RtGetClockTimerPeriod

RtGetClockTimerPeriod obtains the minimum timer period of the specified clock. The
RtGetClockTime call delivers the clock time as 64-bit quantity of 100ns.

BOOL
RtGetClockTimerPeriod(

 CLOCK Clock,
 PLARGE_INTEGER pTime
);

Parameters

Clock

A clock identifier.

pTime

A pointer to a LARGE_INTEGER structure in which to store the results.

Return Values
The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments
RtGetClockTimerPeriod obtains the minimum timer period of the specified clock. Timers
with an expiration interval smaller than this will produce unpredictable results. See the table
in the RtCreateTimer Comments section for a list of legal clock values.

See Also
RtCancelTimer
RtCreateTimer
RtDeleteTimer
RtGetClockResolution
RtGetClockTime
RtSetClockTime
RtSetTimer
RtSetTimerRelative

RTX Reference

56

RtGetPhysicalAddress

RtGetPhysicalAddress returns the physical address for the virtual address of a contiguous
physical memory buffer previously allocated by RtAllocateContiguousMemory.

In the RTSS environment, this function applies to all memory allocation. In the Win32
environment, it applies to contiguous memory allocation only.

LARGE_INTEGER
RtGetPhysicalAddress(

 PVOID pVirtualAddress
);

Parameters

pVirtualAddress

The virtual address of the base of a contiguous memory buffer as returned by
RtAllocateContiguousMemory.

Return Values
If successful, the call returns the physical address corresponding to the base virtual address of
the contiguous buffer. Otherwise, the call returns a NULL pointer, usually as a result of an
invalid parameter.

Comments
RtGetPhysicalAddress allows the user to get the base physical address for a contiguous
memory buffer allocated by RtAllocateContiguousMemory. The system physical addresses
are eight-byte data types, returned as a LARGE_INTEGER.

In the RTSS environment, this call can be used on any virtual address.

See Also
RtAllocateContiguousMemory
RtFreeContiguousMemory

Chapter 2: Real-Time API

57

RtGetThreadPriority

RtGetThreadPriority returns the priority value for the specified thread.

RTSS Environment: RTSS has no distinct priority classes and the priority value specified is
the only determination of a thread’s priority.

Win32 Environment: The priority value, together with the priority class of the thread’s
process, determines the thread’s base-priority level. All processes that attach to the Win32
RTAPI library are placed in the Win32 real-time priority class after a call to
RtGetThreadPriority or RtSetThreadPriority.

INT
RtGetThreadPriority(

 HANDLE hThread
);

Parameters

hThread

The thread identifier.

Return Values
If the function succeeds, the return value is the thread’s priority level.

If the function fails, the return value is THREAD_PRIORITY_ERROR_RETURN. To get
extended error information, call GetLastError.

Comments
Win32 threads are initially set to the normal class. This method is the desired behavior for
most applications since it results in the best possible real-time performance. Win32 threads
that contain GUI components may result in serious performance since real-time threads have
a higher priority than Win32 threads in the real-time priority class. To have GUI-based
Win32 threads scheduled on an equal basis as other threads, call SetPriorityClass.

Table 1, RTSS to Win32 NT Thread Priority Mapping, shows how the RTSS symbolic
priority names translate to requests for a particular Windows NT and Windows 2000 priority
when calling RtSetThreadPriority in a Win32 program.

For instance, RtSetThreadPriority(hThread, RT_PRIORITY_MIN+1) results in a call to
SetThreadPriority(hThread,thread_priority_lowest) by the Win32 version of the RTX
interfaces.

RTX Reference

58

Table 1. RTSS to Win32 NT and Windows 2000 Thread Priority Mapping
5766�6\PEROLF�3ULRULW\
1DPH

5766
9DOXH

:LQGRZV�17�DQG�:LQGRZV�����
6\PEROLF�3ULRULW\�1DPH�IRU�5HDO�
7LPH�3ULRULW\�&ODVV

:LQ��
9DOXH

57B35,25,7<B0,1 � 7+5($'B35,25,7<B,'/(��

57B35,25,7<B0,1���� � 7+5($'B35,25,7<B/2:(67 ��

57B35,25,7<B0,1���� � 7+5($'B35,25,7<B%(/2:B1250$/ ��

57B35,25,7<B0,1���� � 7+5($'B35,25,7<B1250$/ ��

57B35,25,7<B0,1���� � 7+5($'B35,25,7<B$%29(B1250$/ ��

57B35,25,7<B0,1������������ ������� 7+5($'B35,25,7<B+,*+(67 ��

57B35,25,7<B0$; ��� 7+5($'B35,25,7<B7,0(B&5,7,&$/ ��

Any value from RT_PRIORITY_MIN+5 to RT_PRIORITY_MIN+126 will put the thread at
THREAD_PRIORITY_HIGHEST and RT_PRIORITY_MAX will result in the
THREAD_PRIORITY_TIME_CRITICAL priority. These mappings are fixed and are
designed to preserve relative ordering among thread priorities.

Win32 NT callers of RtGetThreadPriority() will have returned the real-time priority that
was specified in the call to RtSetThreadPriority(). There are some restrictions. The most
likely source of confusion is when calls to RtSetThreadPriority and SetThreadPriority are
mixed. The library may not always understand the RTSS priority when a duplicated thread
handle is used. In these cases, the caller should expect that RT_PRIORITY_MIN+5 will be
returned instead of RT_PRIORITY_MIN+6 through RT_PRIORITY_MIN+126. Threads that
set and get their own RTSS priorities, i.e., specify the thread with GetCurrentThread(), will
always get the RTSS priority that was set.

Win32 programs should use the Rt versions of the priority calls if the Win32 thread wants to
claim other than the lowest RTSS scheduling priority when waiting on RTSS synchronization
objects. For instance, a Win32 thread with an RTSS priority of RT_PRIORITY_MAX will
own a mutex before an RTSS thread waiting for the same mutex with a priority less than
RT_PRIORITY_MAX.

Table 2, Win32 NT to RTSS Thread Priority Mapping, shows what callers of the Win32 set
and get thread priority calls should expect in the RTSS environment. This table describes the
inverse of the mapping shown in Table 1.

Chapter 2: Real-Time API

59

Table 2. Win32 NT and WIndows 2000 to RTSS Thread Priority Mapping
:LQGRZV�17�DQG�:LQGRZV
�����6\PEROLF�3ULRULW\�1DPH
IRU�5HDO�7LPH�3ULRULW\�&ODVV

9DOXH 5766�6\PEROLF�3ULRULW\
1DPH

9DOXH

7+5($'B35,25,7<B,'/(�� 57B35,25,7<B0,1 �

7+5($'B35,25,7<B/2:(67 �� 57B35,25,7<B0,1���� �

7+5($'B35,25,7<B%(/2:B125
0$/

�� 57B35,25,7<B0,1���� �

7+5($'B35,25,7<
B1250$/

�� 57B35,25,7<B0,1���� �

7+5($'B35,25,7<B$%29(B125
0$/

�� 57B35,25,7<B0,1���� �

7+5($'B35,25,7<B+,*+(67 �� 57B35,25,7<B0,1���� �

7+5($'B35,25,7<B7,0(B&5,7,&
$/

�� 57B35,25,7<B0$; ���

There are no additional priorities between THREAD_PRIORITY_IDLE and
THREAD_PRIORITY_HIGHEST. If the programmer needs finer grain priorities, then the
RTSS priority spectrum should be used instead. The exception to this is when the value of
THREAD_PRIORITY_TIME_CRITICAL is used. Just as in Win32, this value specifies a
thread priority that is higher than all other priorities.

See Also
GetThreadPriority
RtSetThreadPriority
SetThreadPriority

RTX Reference

60

RtGetThreadTimeQuantum

RtGetThreadTimeQuantum gets the current time quantum, in milliseconds, for the
specified thread.

DWORD
RtGetThreadTimeQuantum(

 HANDLE hThread
);

Paramenters

hThread

The handle for the specified thread, in milliseconds.

Return Values
If the function succeeds, the return value is the thread’s time quantum in milliseconds.
Otherwise, the return value is 0. To get extended error information, call GetLastError.

Comments
Win32 Environment: The only valid time quantum value is 0. This time quantum simulates
Windows scheduling policy.

RTSS Environment: The time quantum can be any value greater than or equal to zero. A
value of zero means the RTSS thread will run to completion.

The default time quantum value can be changed in the RTSS Control Panel.

See Also
RtSetThreadTimeQuantum

Chapter 2: Real-Time API

61

RtGetTimer

RtGetTimer returns the remaining relative time until the next expiration of the specified
timer.

BOOL
RtGetTimer(

 HANDLE hTimer,
 PLARGE_INTEGER pTimeRemaining
);

Parameters

hTimer

An RTX-specific handle to the timer.

pTimeRemaining

A pointer to a LARGE_INTEGER structure in which to store the remaining time until
expiration.

Return Values
The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments

RtGetTimer returns the relative amount of time until the specified timer expires. The time is
specified in 100ns units and is written into the user-provided LARGE_INTEGER structure.

See Also
RtCreateTimer
RtDeleteTimer
RtGetClockResolution
RtGetClockTime
RtGetClockTimerPeriod
RtSetClockTime
RtSetTimer
RtSetTimerRelative

RTX Reference

62

RtIsInRtss

RtIsInRtss returns TRUE if the calling process is running in the RTSS. Otherwise, the
function returns FALSE.

BOOL
RtIsInRtss(VOID);

Parameters
This function has no parameters.

Return Values
The function returns TRUE if the calling process is running in the RTSS environment.
Otherwise, this function returns FALSE.

Comments
A program should call this program if it must determine its run-time environment. The call
returns FALSE when called from Win32.

Chapter 2: Real-Time API

63

RtLockKernel

RtLockKernel locks certain sections of Windows NT and Windows 2000 kernel’s virtual
address space into physical memory.

BOOL
RtLockKernel(

 ULONG Section
);

Parameters

Section

A number specifying which section of the kernel to lock. Currently, RT_KLOCK_ALL is
supported. This will lock down all pageable kernel sections.

Return Values
The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments
RtLockKernel locks down all specified eligible sections of the kernel’s memory, so that it is
not paged out, and so that it does not incur page faults during execution. Note that this should
be done with caution, as the system performance may be greatly affected.

Since RTSS and Windows NT and Windows 2000 kernel portions of memory used by RTSS
are always locked already, this function has no impact on RTSS determinism. This call is a
NO-OP (no operation) when issued from RTSS applications.

See Also
RtAllocateLockedMemory
RtCommitLockHeap
RtCommitLockProcessHeap
RtCommitLockStack
RtFreeLockedMemory
RtLockProcess
RtUnlockKernel
RtUnlockProcess

RTX Reference

64

RtLockProcess

RtLockProcess locks certain sections of a process’ virtual address space into physical
memory.

BOOL
RtLockProcess(

 ULONG Section
);

Parameters

Section

A number specifying which sections to lock. Currently, RT_PLOCK_ALL is supported.
This locks down all pageable process sections.

Return Values
The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments
RtLockProcess locks down all specified eligible committed memory sections of the process,
so that it is not paged out, and so that it does not incur page faults during execution. Note that
this should be done with caution, as the system performance may be greatly affected.

Since all RTSS processes are always locked, this function has no effect in the RTSS
environment.

See Also
RtAllocateLockedMemory
RtCommitLockHeap
RtCommitLockProcessHeap
RtCommitLockStack
RtFreeLockedMemory
RtLockKernel
RtUnlockKernel
RtUnlockProcess

Chapter 2: Real-Time API

65

RtMapMemory

RtMapMemory maps a range of physical memory addresses into the user’s virtual address
space.

PVOID
RtMapMemory(

 LARGE_INTEGER physAddr,
 ULONG Length,
 BOOLEAN CacheEnable
);

Parameters

physAddr

A LARGE_INTEGER specifying the base of the physical address range to map.

Length

An unsigned 32-bit value representing the length, in bytes, of the address range to map.

CacheEnable

A Boolean to indicate whether or not Windows NT and Windows 2000 should use the cache
with this memory map.

Return Values
If successful, a virtual address in the calling process’ space is returned. Because there are no
access checks on these addresses or the ranges requested, care should be taken not to corrupt
memory on the machine.

If the function fails, a NULL virtual address is returned.

Comments
RtMapMemory creates a map between a range of user virtual addresses and a range of
physical memory addresses, giving the user direct access to physical memory locations on the
system. Typically, this is used to access peripheral registers or buffers mapped into the
physical address space of the machine. The largest address must be a legal value on the
machine. For 32-bit machines, the largest address that can be represented is 0XFFFFFFFF.

RTX Reference

66

See Also
RtAllocateLockedMemory
RtCommitLockHeap
RtCommitLockProcessHeap
RtCommitLockStack
RtFreeLockedMemory
RtLockKernel
RtLockProcess
RtUnlockKernel
RtUnlockProcess
RtUnmapMemory

Chapter 2: Real-Time API

67

RtOpenEvent

RtOpenEvent returns a handle of an existing named event object.

HANDLE
RtOpenEvent(

 DWORD DesiredAccess,
 BOOL bInheritHandle,
 LPCTSTR lpName
);

Parameters
DesiredAccess (ignored)

bInheritHandle (ignored)

lpName

A pointer to a null-terminated string that names the event to be opened. Name comparisons
are case-sensitive.

Return Values
If the function succeeds, the return value is a handle of the event object.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Comments
RtOpenEvent enables multiple processes to open handles of the same event object. The
function succeeds only if some process has already created the event by using
RtCreateEvent. The calling process can use the returned handle in any function that requires
a handle of an event object, such as a wait function.

Use RtCloseHandle to close the handle. The system closes the handle automatically when
the process terminates. The event object is destroyed when its last handle has been closed.

See Also
RtCloseHandle
RtCreateEvent
RtPulseEvent
RtResetEvent
RtSetEvent

RTX Reference

68

RtOpenMutex

RtOpenMutex returns a handle to the named RTSS mutex.

HANDLE
RtOpenMutex(

 DWORD DesiredAccess,
 BOOL bInheritHandle,
 LPCTSTR lpName
);

Parameters
DesiredAccess (ignored)

bInheritHandle (ignored)

lpName

A pointer to a null-terminated string that names the mutex to be opened. Name comparisons
are case-sensitive.

Return Values
If the function succeeds, the return value is a handle of the mutex object.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Comments
RtOpenMutex enables multiple processes to open handles of the same mutex object. The
function succeeds only if some process has already created the mutex with RtCreateMutex.
The calling process can use the returned handle in any function that requires a handle of a
mutex object, such as a wait function.

Use RtCloseHandle to close the handle. The system closes the handle automatically when
the process terminates. The mutex object is destroyed when its last handle has been closed.

See Also
RtCloseHandle
RtCreateMutex
RtReleaseMutex

Chapter 2: Real-Time API

69

RtOpenProcess

RtOpenProcess returns a handle to an existing process object.

HANDLE
RtOpenProcess(

 DWORD dwDesiredAccess,
 BOOL bInheritHandle,
 DWORD dwProcessId
);

Parameters

dwDesiredAccess (ignored)

Specifies the access to the process object.

bInheritHandle (ignored)

Specifies whether the returned handle can be inherited by a new process created by the
current process. If TRUE, the handle is inheritable.

dwProcessId

The process identifier of the process to open.

Return Values
If the function succeeds, the return value is an open handle to the specified process.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Comments
The handle returned by RtOpenProcess can be used in any function that requires a handle to
a process, such as the wait functions, provided the appropriate access rights were requested.

When you are finished with the handle, be sure to close it using CloseHandle.

See Also
CloseHandle
CreateProcess
RtGetExitCodeProcess
RtTerminateProcess

RTX Reference

70

RtOpenSemaphore

RtOpenSemaphore returns a handle of an existing named semaphore object.

HANDLE
RtOpenSemaphore(

 DWORD DesiredAccess,
 BOOL bInheritHandle,
 LPCTSTR lpName
);

Parameters
DesiredAccess (ignored)

bInheritHandle

This must be FALSE.

lpName

A pointer to a null-terminated string that names the semaphore to be opened. Name
comparisons are case-sensitive.

Return Values
If the function succeeds, the return value is a handle of the semaphore object.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Comments
RtOpenSemaphore enables multiple processes to open handles of the same semaphore
object. The function succeeds only if some process has already created the semaphore by
using RtCreateSemaphore. The calling process can use the returned handle in any function
that requires a handle of a semaphore object, such as a wait function, subject to the
limitations of the access specified in DesiredAccess.

Use RtCloseHandle to close the handle. The system closes the handle automatically when
the process terminates. The semaphore object is destroyed when its last handle has been
closed.

See Also
RtCloseHandle
RtReleaseSemaphore

Chapter 2: Real-Time API

71

RtOpenSharedMemory

RtOpenSharedMemory opens a named physical-mapping object.

HANDLE
RtOpenSharedMemory(

 DWORD DesiredAccess,
 BOOL bInheritHandle,
 LPCTSTR lpName,
 VOID ** location
);

Parameters

DesiredAccess

The access mode. The RTSS environment always grants read and write access. This
parameter can be one of the following values:

9DOXH 0HDQLQJ
6+0B0$3B:5,7(5HDG�ZULWH�DFFHVV��7KH�WDUJHW�VKDUHG�PHPRU\�REMHFW�PXVW

KDYH�EHHQ�FUHDWHG�ZLWK�3$*(B5($':5,7(�SURWHFWLRQ��$�UHDG�
ZULWH�YLHZ�RI�WKH�VKDUHG�PHPRU\�LV�PDSSHG�

6+0B0$3B5($' 5HDG�RQO\�DFFHVV��7KH�WDUJHW�VKDUHG�PHPRU\�REMHFW�PXVW�KDYH
EHHQ�FUHDWHG�ZLWK�3$*(B5($':5,7(�RU�3$*(B5($'
SURWHFWLRQ��$�UHDG�RQO\�YLHZ�RI�WKH�VKDUHG�PHPRU\�LV�PDSSHG�

BInheritHandle (ignored)

lpName

A pointer to a string that names the shared memory object to be opened. If there is an open
handle to a shared memory object by this name, the open operation succeeds.

location

A pointer to a location where the virtual address of the mapping will be stored.

Return Values
If the function succeeds, the return value is an open handle to the specified shared memory
object.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Comments
The handle that RtOpenSharedMemory returns can be used with RtCloseHandle to
decrement the reference count to the shared memory object. When the reference count is
zero, the object is removed from the system.

In the same process, different calls to RtOpenSharedMemory may return different locations
because they are mapped into different virtual addresses.

RTX Reference

72

See Also
RtCreateSharedMemory
RtCloseHandle

Chapter 2: Real-Time API

73

RtPrintf

RtPrintf prints formatted output to the standard output stream or console window.

INT
RtPrintf(

 LPCSTR lpFormat [,argument, . . .]
);

Parameters

lpFormat

The format control (with optional arguments).

Return Values
RtPrintf returns the number of characters printed. If an error occurs, it returns a negative
value.

Comments
RtPrintf is similar to printf, but RtPrintf does not require the C run-time library and can
work with any combination of run-time libraries. This function does not support floating
point conversions in the RTSS environment.

RtPrintf formats and prints a series of characters and values to the standard output stream,
stdout. If arguments follow the format string, the format string must contain specifications
that determine the output format for the arguments.

The format argument consists of ordinary characters, escape sequences, and (if arguments
follow format) format specifications. The ordinary characters and escape sequences are
copied to stdout in order of their appearance. The required header is <rtapi.h>.

Format specifications always begin with a percent sign (%) and are read left to right. When
RtPrintf encounters the first format specification (if any), it converts the value of the first
argument after format and outputs it accordingly. The second format specification causes the
second argument to be converted and output, and so on. If there are more arguments than
there are format specifications, the extra arguments are ignored. The results are undefined if
there are not enough arguments for all the format specifications.

Example
RtPrintf("Line one\n\t\tLine two\n");

produces the output:

Line one

 Line two

RTX Reference

74

Format Specification Fields (RtPrintf and RtWprintf)

A format specification, which consists of optional and required fields, has the following form:

%[flags] [width] .precision] [{h|l|L}]type

Each field of the format specification is a single character or number signifying a particular
format option. The simplest format specification contains only the percent sign and a type
character (for example, %s). If a percent sign is followed by a character that has no meaning
as a format field, the character is copied to stdout. For example, to print a percent-sign
character, use %%.

Required format field: The type character, which appears after the optional format fields, is
the only required format field. It determines whether the associated argument is interpreted as
a character, a string, or a number, as shown in the table that follows.

In the RTSS environment, the following limitations apply:

n The floating point format is not supported (e, E, and f).

n The maximum output size is 256 characters.

n For RtPrintf only, there is a limit of ten parameters.

Note: The types C and S, and the behavior of c and s with RtPrintf and RtWprintf are
consistent with Microsoft extensions for printf and are not ANSI compatible.

7\SH
&KDUDFWHU

$UJXPHQW
7\SH

2XWSXW

F LQW)RU�5W3ULQWI��VSHFLILHV�D�VLQJOH�E\WH�FKDUDFWHU�

)RU�5W:SULQWI��VSHFLILHV�D�ZLGH�FKDUDFWHU�

& LQW)RU�5W3ULQWI��VSHFLILHV�D�ZLGH�FKDUDFWHU�

)RU�5W:SULQWI��VSHFLILHV�D�VLQJOH�E\WH�FKDUDFWHU�

G LQW 6LJQHG�GHFLPDO�LQWHJHU�

L LQW 6LJQHG�GHFLPDO�LQWHJHU�

X LQW 8QVLJQHG�GHFLPDO�LQWHJHU�

[LQW 8QVLJQHG�KH[DGHFLPDO�LQWHJHU��XVLQJ��DEFGHI��

; LQW 8QVLJQHG�KH[DGHFLPDO�LQWHJHU��XVLQJ��$%&'()��

H GRXEOH 6LJQHG�YDOXH�LQ�WKH�IRUP�

>���@G�GGGG�H�>VLJQ@GGG

ZKHUH��G�LV�D�VLQJOH�GHFLPDO�GLJLW��GGG�LV�RQH�RU�PRUH
GHFLPDO�GLJLWV��GGG�LV�H[DFWO\�WKUHH�GHFLPDO�GLJLWV��DQG
WKH�VLJQ�LV���RU���

(GRXEOH 6DPH�DV�WKH��H��VSHFLILHU��6HH�DERYH�

I GRXEOH 6LJQHG�YDOXH�LQ�WKH�IRUP�

>���@GGGG�GGGG

ZKHUH��GGGG�LV�RQH�RU�PRUH�GHFLPDO�GLJLWV��7KH�QXPEHU
RI�GLJLWV�EHIRUH�WKH�GHFLPDO�SRLQW�GHSHQGV�RQ�WKH
PDJQLWXGH�RI�WKH�QXPEHU��DQG�WKH�QXPEHU�RI�GLJLWV
DIWHU�WKH�GHFLPDO�SRLQW�GHSHQGV�RQ�WKH�UHTXHVWHG
SUHFLVLRQ�

V VWULQJ)RU�5W3ULQWI��VSHFLILHV�D�VLQJOH�E\WH�FKDUDFWHU�VWULQJ�

)RU�5W:SULQWI��VSHFLILHV�D�ZLGH�FKDUDFWHU�VWULQJ�

Chapter 2: Real-Time API

75

7\SH
&KDUDFWHU

$UJXPHQW
7\SH

2XWSXW

&KDUDFWHUV�DUH�SULQWHG�XS�WR�WKH�ILUVW�QXOO�FKDUDFWHU�RU
XQWLO�WKH�SUHFLVLRQ�YDOXH�LV�UHDFKHG�

6 VWULQJ)RU�5W3ULQWI��VSHFLILHV�D�ZLGH�FKDUDFWHU�VWULQJ�

)RU�5W:SULQWI��VSHFLILHV�D�VLQJOH�E\WH�FKDUDFWHU�VWULQJ�

&KDUDFWHUV�DUH�SULQWHG�XS�WR�WKH�ILUVW�QXOO�FKDUDFWHU�RU
XQWLO�WKH�SUHFLVLRQ�YDOXH�LV�UHDFKHG�

Optional format fields: The optional fields, which appear before the type character, control
other aspects of the formatting, as shown in the list that follows.

flags
 Optional character(s) that control justification of output and print of signs, blanks,
decimal points, and octal and hexadecimal prefixes. More than one flag can appear in a
format specification.width
 Optional number that specifies the minimum number of characters.

precision
 Optional number that specifies the maximum number of characters printed for all or part
of the output field or the minimum number of digits printed for integer values.

H|l| L
 Optional prefixes to type that specify the size of the argument.

See Also
RtAtoi
RtWPrintf
RtWtoi

RTX Reference

76

RtPulseEvent

RtPulseEvent provides a single operation that sets (to signaled) the state of the specified
event object and then resets it (to non-signaled) after releasing the appropriate number of
waiting threads.

BOOL
RtPulseEvent(

 HANDLE hEvent
);

Parameters

hEvent

Identifies the event object. The RtCreateEvent or RtOpenEvent function returns this
handle.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments
For a manual-reset event object, all waiting threads that can be released are released. The
function then resets the event object’s state to non-signaled and returns.

For an auto-reset event object, the function resets the state to non-signaled and returns after
releasing a single waiting thread, even if multiple threads are waiting.

If no threads are waiting, or if no thread can be released immediately, RtPulseEvent simply
sets the event object’s state to non-signaled and returns.

See Also
RtCreateEvent
RtOpenEvent
RtResetEvent
RtSetEvent

Chapter 2: Real-Time API

77

RtReadPortBufferUchar
RtReadPortBufferUshort
RtReadPortBufferUlong

RtReadPortBuffer* calls copy a series of one-, two-, or four-byte quanta from an I/O port to a
buffer.

VOID
RtReadPortBufferUchar(PUCHAR PortAddress, PUCHAR pBuffer, ULONG

nNumberOfBytes);
VOID
RtReadPortBufferUshort(PUSHORT PortAddress, PUSHORT pBuffer, ULONG

nNumberOfBytes);
VOID
RtReadPortBufferUlong(PULONG PortAddress, PULONG pBuffer, ULONG

nNumberOfBytes);

Parameters

PortAddress

A Port I/O address cast as a pointer to the type of data being read.

pBuffer

A pointer to a buffer.

nNumberOfBytes

The size of the buffer to be read.

Comments
RtReadPortBufferUchar, RtReadPortBufferUshort, and RtReadPortBufferUlong read a
buffer of one-, two-, or four-byte quanta directly from an I/O port to a buffer.

See Also
RtDisablePortIo
RtEnablePortIo
RtReadPort* (Uchar, Ushort, Ulong)
RtWritePortBuffer* (Uchar, Ushort, Ulong)
RtWritePort* (Uchar, Ushort, Ulong)

RTX Reference

78

RtReadPortUchar
RtReadPortUshort
RtReadPortUlong

RtReadPort* read a one-, two-, or four-byte quantum directly from an I/O port.

UCHAR
RtReadPortUchar(PUCHAR PortAddress);
USHORT
RtReadPortUshort(PUSHORT PortAddress);
ULONG
RtReadPortUlong(PULONG PortAddress);

Parameters

PortAddress

A Port I/O address cast as a pointer to the type of data to be read.

Comments
RtReadPortUchar, RtReadPortUshort, and RtReadPortUlong read a one-, two-, or four-
byte quantum directly from an I/O port and return the value.

See Also
RtDisablePortIo
RtEnablePortIo
RtReadPortBuffer* (Uchar, Ushort, Ulong)
RtWritePortBuffer* (Uchar, Ushort, Ulong)
RtWritePort* (Uchar, Ushort, Ulong)

Chapter 2: Real-Time API

79

RtReleaseInterruptVector

RtReleaseInterruptVector releases a previously attached interrupt. This breaks the
association between a user’s interrupt handling routine and the hardware interrupt.

BOOL
RtReleaseInterruptVector(

 HANDLE hInterrupt
);

Parameters

hInterrupt

An RTX-specific handle as returned by a preceding call to RtAttachInterruptVector.

Return Values
The function returns TRUE if successful, or it returns FALSE if the argument was invalid or
the operation on the handle did not succeed.

Comments
RtReleaseInterruptVector breaks the association between a device interrupt and the user’s
handling routine. The user should take care to disable interrupt generation on the hardware
device before making a call to this routine. Typically, this is done by writing to the command
register of the device.

See Also
RtAttachInterruptVector
RtAttachInterruptVectorEx

RTX Reference

80

RtReleaseMutex

RtReleaseMutex relinquishes ownership of an RTSS mutex.

BOOL
RtReleaseMutex(

 HANDLE hMutex
);

Parameters

hMutex

The handle which identifies the mutex object as retuned by a preceding call to
RtCreateMutex or RtOpenMutex.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments
RtReleaseMutex fails if the calling thread does not own the mutex object.

A thread gets ownership of a mutex by specifying a handle of the mutex in wait functions.
The thread that creates a mutex object can also get immediate ownership without using one of
the wait functions. When the owning thread no longer needs to own the mutex object, it calls
RtReleaseMutex.

While a thread has ownership of a mutex, it can specify the same mutex in additional wait-
function calls without blocking its execution. This prevents a thread from deadlocking itself
while waiting for a mutex that it already owns. However, to release its ownership, the thread
must call RtReleaseMutex once for each time that the mutex satisfied a wait.

See Also
RtCreateMutex
RtOpenMutex
RtWaitForSingleObject

Chapter 2: Real-Time API

81

RtReleaseSemaphore

RtReleaseSemaphore increases the count of the specified semaphore object by a specified
amount.

BOOL
RtReleaseSemaphore(

 HANDLE hSemaphore,
 LONG lReleaseCount,
 LPLONG lpPreviousCount
);

Parameters

hSemaphore

The semaphore object. RtCreateSemaphore or RtOpenSemaphore returns this handle.

lReleaseCount

The amount by which the semaphore object’s current count is to be increased. The value
must be greater than zero. If the specified amount causes the semaphore’s count to exceed
the maximum count that was specified when the semaphore was created, the count is not
changed and the function returns FALSE.

lpPreviousCount

A pointer to a 32-bit variable receives the previous count for the semaphore. This parameter
can be NULL if the previous count is not required.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments
The state of a semaphore object is signaled when its count is greater than zero and non-
signaled when its count is equal to zero. The process that calls RtCreateSemaphore
specifies the semaphore’s initial count. Each time a waiting thread is released because of the
semaphore’s signaled state, the count of the semaphore is decreased by one.

Typically, an application uses a semaphore to limit the number of threads using a resource.
Before a thread uses the resource, it specifies the semaphore handle in a call to one of the
wait functions. When the wait function returns, it decreases the semaphore’s count by one.
When the thread has finished using the resource, it calls RtReleaseSemaphore to increase
the semaphore’s count by one.

Another use of RtReleaseSemaphore is during an application’s initialization. The application
can create a semaphore with an initial count of zero. This sets the semaphore’s state to non-

RTX Reference

82

signaled and blocks all threads from accessing the protected resource. When the application
finishes its initialization, it uses RtReleaseSemaphore to increase the count to its maximum
value to permit normal access to the protected resource.

RtReleaseSemaphore with high release counts (e.g., greater than 10), and RtSetEvent with
ManualReset TRUE and a high number of waiting threads (e.g., greater than 10) will
experience slightly longer latencies, which scale with the number of threads made run-able in
the call. For the best determinism, developers should avoid designs that make a large number
of threads run-able at one time.

Note: Actual time depends on the number of try-except frames and the amount of processing
in except and finally routines, as specified by the application developer; RTX itself does not
introduce any long latencies.

See Also
RtCreateSemaphore
RtOpenSemaphore

Chapter 2: Real-Time API

83

RtReleaseShutdownHandler

RtReleaseShutdownHandler destroys the shutdown handler object created by
RtAttachShutdownHandler.

BOOL
RtReleaseShutdownHandler(

 HANDLE hShutdown
);

Parameters

hShutdown

A handle returned by RtAttachShutdownHandler.

Return Values
The function returns TRUE when hShutdown specifies a valid shutdown handler object and
the object has been successfully destroyed. Otherwise, the function returns FALSE and the
caller may call GetLastError for more details.

Comments
The shutdown handler should not call ExitThread or ExitProcess, nor should it attempt to
create or close any objects. The process will exit after the shutdown handler returns.

See Also
ExitThread
RtAttachShutdownHandler

RTX Reference

84

RtResetEvent

RtResetEvent sets the state of the specified event object to non-signaled.

BOOL
RtResetEvent(

 HANDLE hEvent
);

Parameters

hEvent

Identifies the event object. The RtCreateEvent or RtOpenEvent function returns this
handle.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments
The state of an event object remains non-signaled until it is explicitly set to signaled by the
RtSetEvent or RtPulseEvent function. The non-signaled state blocks the execution of any
threads that have specified the event object in a call to a wait function.

The RtResetEvent function is used primarily for manual-reset event objects, which must be
set explicitly to the non-signaled state. Auto-reset event objects automatically change from
signaled to non-signaled after a single waiting thread is released.

See Also
RtCreateEvent
RtOpenEvent
RtPulseEvent
RtSetEvent

Chapter 2: Real-Time API

85

RtSetBusDataByOffset

RtSetBusDataByOffset sets bus-configuration data for a device on a dynamically
configurable I/O bus with a published, standard interface.

ULONG
RtSetBusDataByOffset(

 BUS_DATA_TYPE BusDataType,
 ULONG BusNumber,
 ULONG SlotNumber,
 PVOID pBuffer,
 ULONG Offset,
 ULONG Length
);

Parameters

BusDataType

The type of bus data to be set. Currently, its value can be EisaConfiguration, Pos, or
PCIConfiguration.. The upper boundary on the bus types supported is always
MaximumBusDataType.

BusNumber

The zero-based and system-assigned number of the bus in systems with more than one bus
of the same BusDataType.

SlotNumber

The logical slot number. When PCIConfiguration is specified, this is a
PCI_SLOT_NUMBER-TYPE value.

pBuffer

A pointer to a caller-supplied buffer with configuration information specific to
BusDataType.
 When PCIConfiguration is specified, the buffer contains some or all of the
PCI_COMMON_CONFIG information for the given SlotNumber. The specified Offset and
Length determine how much information is supplied. Certain members of
PCI_COMMON_CONFIG have read-only values, and the caller is responsible for
preserving the system-supplied values of read-only members.

Offset

The byte offset in the PCI_COMMON_CONFIG structure at which the caller-supplied
configuration values begin. Callers can use the system-defined constant
PCI_COMMON_HDR_LENGTH to specify the device-specific area of
PCI_COMMON_CONFIG.

Length

The number of bytes in the buffer.

RTX Reference

86

Return Values
RtSetBusDataByOffset returns the number of bytes of data successfully set for the given
SlotNumber. If the given BusDataType is not valid for the current platform or if the supplied
information is invalid, this routine returns zero.

Comments
When accessing the device-specific area of the PCI configuration space,
RtSetBusDataByOffset guarantees the following:

n This routine never reads or writes data outside the range specified by the input Offset
and Length.

n Even if the input Length is exactly a byte or a (two-byte) word, this routine never
accesses any data outside the requested range.

The PCI structures and values above is defined in rtapi.h. For more information consult the
Device Driver Kit (DDK) for Windows NT and Windows 2000.

See Also
HalSetBusDataByOffset (in the DDK for Windows NT and Windows 2000)
RtGetBusDataByOffset
RtTranslateBusAddress

Chapter 2: Real-Time API

87

RtSetClockTime

RtSetClockTime sets the current value of the specified clock.

BOOL
RtSetClockTime(

 CLOCK Clock,
 PLARGE_INTEGER pTime
);

Parameters

Clock

A clock identifier.

pTime

A pointer to a LARGE_INTEGER structure specifying the new value for Clock.

Return Values
The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments
RtSetClockTime sets the value of the specified clock. The clock is specified in 100ns units.
See the table in the RtCreateTimer section for a list of legal clock values.

See Also
RtCancelTimer
RtCreateTimer
RtDeleteTimer
RtGetClockResolution
RtGetClockTime
RtGetClockTimerPeriod
RtSetTimer
RtSetTimerRelative

RTX Reference

88

RtSetEvent

RtSetEvent sets the state of the specified event object to signaled.

BOOL
RtSetEvent(

 HANDLE hEvent
);

Parameters

hEvent

Identifies the event object. The RtCreateEvent or RtOpenEvent function returns this handle.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments
The state of a manual-reset event object remains signaled until it is set explicitly to the non-
signaled state by the RtResetEvent function. Any number of waiting threads, or threads that
subsequently begin wait operations for the specified event object by calling the wait
functions, can be released while the object’s state is signaled.

The state of an auto-reset event object, the function resets the state to non-signaled and
returns after releasing remains signaled until a single waiting thread is released, at which time
the system automatically sets the state to non-signaled. If no threads are waiting, the event
object’s state remains signaled.

See Also
RtCreateEvent
RtOpenEvent
RtPulseEvent
RtResetEvent

Chapter 2: Real-Time API

89

RtSetThreadPriority

RtSetThreadPriority sets the priority value for the specified thread.

BOOL
RtSetThreadPriority(

 HANDLE hThread,
 int nPriority
);

Parameters

hThread

The thread whose priority value is to be set.

nPriority

RTSS Environment: A priority level from 0 to 127, where 127 identifies the highest
priority thread.
 Win32 Environment: Win32 has only seven program-settable thread priorities in the real-
time priority class. RtSetThreadPriority maps the 128 thread priorities into these seven
priorities. The RTX Win32 library maintains the real-time thread priority and returns this
value when RtGetThreadPriority() is called.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments
See the Comments section in RtGetThreadPriority for details on the relationship between
Win32 and RTSS thread priorities.

See Also
GetThreadPriority
RtGetThreadPriority
SetThreadPriority

RTX Reference

90

RtSetThreadTimeQuantum

RtSetThreadTimeQuantum sets the time quantum for the specified thread.

BOOL
RtSetThreadTimeQuantum(

 HANDLE hThread,
 DWORD dwQuantumInMS
);

Parameters

hThread

The handle of the thread whose time quantum is to be set.

dwQuantumInMS

A new time quantum value in milliseconds. The amount of time the thread will run before it
yields to another RTSS thread with the same priority.

Return Values
If the function succeeds, the return value is FALSE.

If the function fails, the return value is TRUE. To get extended information, call
GetLastError.

Comments
Win32 Environment: The only valid time quantum value is 0. This time quantum simulates
Windows scheduling policy.

RTSS Environment: The time quantum can be any value greater than or equal to zero. A
value of zero means the RTSS thread will run to completion.

The default time quantum value can be changed in the RTSS Control Panel.

See Also
RtGetThreadTimeQuantum

Chapter 2: Real-Time API

91

RtSetTimer

RtSetTimer sets the expiration time and repeat interval on the specified timer.

BOOL
RtSetTimer(

 HANDLE hTimer,
 PLARGE_INTEGER pExpiration,
 PLARGE_INTEGER pInterval
);

Parameters

hTimer

An RTX-specific handle to the timer.

pExpiration

A pointer to a LARGE_INTEGER structure indicating the absolute time for the initial
expiration of the timer. The clock is specified in 100ns units. If the value of the expiration
time is less than zero, the call is interpreted as a request to set the timer relative to current
time on the associated clock. The result is identical to calling RtSetTimerRelative, with the
absolute value of the specified expiration time.

pInterval

A pointer to a LARGE_INTEGER structure indicating the amount of time between the first
expiration and each successive expiration. The clock is specified in 100ns units.

Return Values
The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments
RtSetTimer sets the expiration time and repeat interval for the specified timer. If the repeat
interval is non-zero, then after the first expiration, the timer will repeatedly expire at the
specified interval. If the repeat interval pointer is NULL, then the timer will expire only once,
i.e., it is a "one-shot" timer. Likewise, a non-NULL interval pointer may be passed in, with its
value set to zero, for a one-shot timer.

Upon each expiration of the timer, the handling thread is signaled to indicate the expiration,
and the specified handling routine is run. The timer signals expirations only on the RTX timer
interrupt boundaries. The RTX timer interval will be rounded up to the RTX timer resolution.
The highest RTX timer resolution is 100ms, which can be set in RTX Control Panel.

To reset the expiration of a timer that has been previously set, the user must ensure that the
timer is not active. That is, it must be either a one-shot timer that has expired, or the user
must first cancel the timer with RtCancelTimer.

RTX Reference

92

See Also
RtCancelTimer
RtCreateTimer
RtDeleteTimer
RtGetClockResolution
RtGetClockTime
RtGetClockTimerPeriod
RtGetTimer
RtSetClockTime
RtSetTimerRelative

Chapter 2: Real-Time API

93

RtSetTimerRelative

RtSetTimerRelative sets the expiration time and repeat interval on the specified timer.

BOOL
RtSetTimerRelative(

 HANDLE hTimer,
 PLARGE_INTEGER pExpiration,
 PLARGE_INTEGER pInterval
);

Parameters

hTimer

An RTX-specific handle to the timer.

pExpiration

A pointer to a LARGE_INTEGER structure indicating the time for the initial expiration of
the timer. Expiration is calculated relative to the current value of the clock associated with
the timer at creation. The clock is specified in 100ns units.

pInterval

A pointer to a LARGE_INTEGER structure indicating the amount of time between the first
expiration and each successive expiration. The clock is specified in 100ns units.

Return Values
The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments
RtSetTimerRelative sets the relative expiration time and repeat interval for the specified
timer. If the repeat interval is non-zero, then after the first expiration, the timer will
repeatedly expire at the specified interval. If the repeat interval pointer is NULL, then the
timer will expire only once, i.e., it is a "one-shot" timer. Likewise, a non-NULL interval
pointer may be passed in, with its value set to zero, for a one-shot timer.

Upon each expiration of the timer, the handling thread is signaled to indicate the expiration,
and the specified handling routine is run. The timer signals expirations only on the RTX timer
interrupt boundaries. The RTX timer interval will be rounded up to the RTX timer resolution.
The highest RTX timer resolution is 100ms, which can be set in RTX Control Panel.

To reset the expiration of a timer that has been previously set, the user must ensure that the
timer is not active. That is, it must be either a one-shot timer that has expired, or the user
must first cancel the timer with RtCancelTimer.

RTX Reference

94

See Also
RtCancelTimer
RtCreateTimer
RtDeleteTimer
RtGetClockResolution
RtGetClockTime
RtGetClockTimerPeriod
RtGetTimer
RtSetClockTime
RtSetTimer

Chapter 2: Real-Time API

95

RtSleepFt

RtSleepFt suspends the current thread for the specified time.

VOID
RtSleepFt(

 PLARGE_INTEGER pDuration
);

Parameters

pDuration

A pointer to a LARGE_INTEGER structure indicating the amount of time to sleep, in 100ns
units. pDuration must be less than or equal to one second, and must be greater than or equal
to the minimum timer period of the system.

Return Values
This function returns no value.

Comments
RtSleepFt suspends the given thread from execution for the specified amount of time.

An expiration interval of 0 yields the process to other equal priority runnable threads (if any).

See Also
RtCreateTimer
RtDeleteTimer
RtGetClockResolution
RtGetClockTime
RtGetClockTimerPeriod
RtGetTimer
RtSetClockTime
RtSetTimer
RtSetTimerRelative
Sleep

RTX Reference

96

RtTranslateBusAddress

RtTranslateBusAddress translates a bus-specific address into the corresponding system
logical address.

BOOL
RtTranslateBusAddress(

 INTERFACE_TYPE InterfaceType,
 ULONG BusNumber,
 LARGE_INTEGER BusAddress,
 PULONG pAddressSpace,
 PLARGE_INTEGER pTranslatedAddress
);

Parameters

InterfaceType

The bus interface type, which can be one of the following: Internal, ISA, EISA,
MicroChannel, TurboChannel, or PCIBus. The upper bound on the types of buses
supported is always MaximumInterfaceType.

BusNumber

The zero-based and system-assigned bus number for the device is used together with
InterfaceType to identify the bus for systems with more than one bus of the same type.

BusAddress

The bus-relative address.

pAddressSpace

A pointer that specifies whether the address is a port number or a memory address:
*pAddressSpace 0x0 indicates memory, 0X1 indicates I/O space.

pTranslatedAddress

A pointer to the translated address.

Return Values
A return value of TRUE indicates the system logical address corresponding to the given
BusNumber and BusAddress has been returned in pTranslatedAddress.

Comments
There are many ways to connect a peripheral bus into a system. The memory address space of
the bus, referred to as the logical address space, can be directly merged with the physical
address space of the host, or some mapping may be involved. Also, some machines can have
more than one bus, or a bus can have more than one address space, as in having separate
memory and I/O addresses.

Chapter 2: Real-Time API

97

RtTranslateBusAddress performs this translation. The parameters to this routine include a
bus number to support platforms with more than one bus of the same InterfaceType, the bus
address to be translated, and a pAddressSpace specifier typically used to differentiate between
memory and I/O space, if these are separate. The user might obtain these parameters by
calling RtGetBusDataByOffset.

See Also
HalTranslateBusAddress (in the DDK for Windows NT and Windows 2000)
RtGetBusDataByOffset
RtSetBusDataByOffset

RTX Reference

98

RtTerminateProcess

RtTerminateProcess terminates the specified process and all of its threads.

BOOL
RtTerminateProcess(

 HANDLE hProcess,
 UINT uExitCode
);

Parameters

hProcess

Handle to the process to terminate. The handle must have PROCESS_TERMINATE access.

uExitCode

The exit code for the process and for all threads terminated as a result of this call. Use
RtGetExitCodeProcess to retrieve the process’s exit value. Use GetExitCodeThread to
retrieve a thread’s exit value.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments
RtTerminateProcess is used to unconditionally cause a process to exit. Use it only in
extreme circumstances. The state of global data maintained by dynamic-link libraries
(DLLs) may be compromised if RtTerminateProcess is used rather than ExitProcess.

RtTerminateProcess causes all threads within a process to terminate, and causes a process to
exit, but DLLs attached to the process are not notified that the process is terminating.

Terminating a process causes the following:

1. All of the object handles opened by the process are closed.

2. All of the threads in the process terminate their execution.

3. The state of the process object becomes signaled, satisfying any threads that had been
waiting for the process to terminate.

4. The states of all threads of the process become signaled, satisfying any threads that
had been waiting for the threads to terminate.

5. The termination status of the process changes from STILL_ACTIVE to the exit value
of the process.

Chapter 2: Real-Time API

99

Terminating a process does not cause child processes to be terminated.

Terminating a process does not necessarily remove the process object from the system. A
process object is deleted when the last handle to the process is closed.

See Also
ExitProcess
RtGetExitCodeProcess
GetExitCodeThread
RtOpenProcess
RtCreateProcess

RTX Reference

100

RtUnlockKernel

RtUnlockKernel unlocks sections of the kernel’s virtual address space previously locked into
physical memory.

BOOL
RtUnlockKernel(

 ULONG Section
);

Parameters

Section

A number specifying which section of the kernel to lock. Currently, the value
RT_KLOCK_ALL is supported.

Return Values
The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments
RtUnlockKernel unlocks sections of the kernel’s memory previously locked by a call to
RtLockKernel. The behavior of unlocking memory not previously locked by RtLockKernel
is undefined and unpredictable.

Because processes are always locked, this function has no impact on RTSS determinism. This
call is a NO-OP (no operation) when issued from RTSS applications.

See Also
RtAllocateLockedMemory
RtCommitLockHeap
RtCommitLockProcessHeap
RtCommitLockStack
RtFreeLockedMemory
RtLockKernel
RtLockProcess
RtUnlockProcess

Chapter 2: Real-Time API

101

RtUnlockProcess

RtUnlockProcess unlocks sections of the processes’ virtual address space previously locked
into physical memory. RtUnlockProcess has no effect within the RTSS environment.

BOOL
RtUnlockProcess(

 ULONG Section
);

Parameters

Section

A number specifying which sections to unlock. Currently, the value RT_PLOCK_ALL is
supported.

Return Values
The function returns TRUE if it completes successfully, or it returns FALSE if invalid
parameters are specified.

Comments
RtUnlockProcess unlocks sections of the process’ memory previously locked by a call to
RtLockProcess. The behavior of unlocking memory not previously locked by RtLockProcess
is undefined and unpredictable. This function has no impact on RTSS determinism. This call
is a NO-OP (no operation) when issued from RTSS applications.

See Also
RtAllocateLockedMemory
RtCommitLockHeap
RtCommitLockProcessHeap
RtCommitLockStack
RtFreeLockedMemory
RtLockKernel
RtLockProcess
RtUnlockKernel

RTX Reference

102

RtUnmapMemory

RtUnmapMemory releases a mapping made by a previous call to RtMapMemory.

BOOL
RtUnmapMemory(

 PVOID pVirtualAddress
);

Parameters

pVirtualAddress

A pointer returned by a previous call to RtMapMemory.

Return Values
If the function is successful, it returns TRUE. Otherwise, it returns FALSE.

Comments
The virtual address passed in must be the same base address returned to the user by a
previous call to RtMapMemory.

See Also
RtAllocateLockedMemory
RtCommitLockHeap
RtCommitLockProcessHeap
RtCommitLockStack
RtFreeLockedMemory
RtLockKernel
RtLockProcess
RtMapMemory
RtUnlockKernel
RtUnlockProcess

Chapter 2: Real-Time API

103

RtWaitForMultipleObjects

RtWaitForMultipleObjects returns when one of the following occurs:

n Any one of the specified objects is in the signaled state.

n The time-out interval elapses.

n This function only supports WAIT FOR ANY object.

DWORD
RtWaitForMultipleObjects(

 DWORD nCount,
 CONST HANDLE *lpHandles,
 BOOL fWaitAll,
 DWORD dwMilliseconds
);

Parameters

nCount

Specifies the number of object handles in the array pointed to by lpHandles. The maximum
number of object handles is MAX_WFMO, as defined in RTAPI.h.

 lpHandles

Pointer to an array of object handles. For a list of the object types whose handles can be
specified, see the following Remarks section. The array can contain handles to objects of
different types. It may not contain the multiple copies of the same handle.

If one of these handles is closed while the wait is still pending, the function’s behavior is
undefined.

The handles must have SYNCHRONIZE access.

fWaitAll

Specifies the wait type. The function returns when the state of any one of the objects set to
is signaled. The return value indicates the object whose state caused the function to return.

RTSS Environment: This parameter must be FALSE, indicating WAIT FOR ANY.

dwMilliseconds

Specifies the time-out interval, in milliseconds. The function returns if the interval elapses,
even if the condition specified by the fWaitAll parameter are not met. If dwMilliseconds is
zero, the function tests the states of the specified objects and returns immediately. If
dwMilliseconds is INFINITE, the function’s time-out interval never elapses.

RTX Reference

104

Return Values
If the function succeeds, the return value indicates the event that caused the function to
return. This value can be one of the following.

5HWXUQ�9DOXH 0HDQLQJ

:$,7B2%-(&7B��WR��:$,7B2%-(&7B����Q&RXQW
����

7KH�UHWXUQ�YDOXH�PLQXV
:$,7B2%-(&7B��LQGLFDWHV�WKH
OS+DQGOHV�DUUD\�LQGH[�RI�WKH�REMHFW
WKDW�VDWLVILHG�WKH�ZDLW��,I�PRUH�WKDQ
RQH�REMHFW�EHFDPH�VLJQDOOHG�GXULQJ
WKH�FDOO��WKLV�LV�WKH�DUUD\�LQGH[�RI�WKH
VLJQDOOHG�REMHFW�ZLWK�WKH�VPDOOHVW
LQGH[�YDOXH�RI�DOO�WKH�VLJQDOOHG
REMHFWV�

:$,7B$%$1'21('B��WR
�:$,7B$%$1'21('B����Q&RXQW�����

7KH�UHWXUQ�YDOXH�PLQXV
:$,7B$%$1'21('B��LQGLFDWHV�WKH
OS+DQGOHV�DUUD\�LQGH[�RI�DQ
DEDQGRQHG�PXWH[�REMHFW�WKDW
VDWLVILHG�WKH�ZDLW�

:$,7B7,0(287 7KH�WLPH�RXW�LQWHUYDO�HODSVHG�DQG
WKH�FRQGLWLRQV�VSHFLILHG�E\�WKH
I:DLW$OO�SDUDPHWHU�DUH�QRW�VDWLVILHG�
,I�WKH�IXQFWLRQ�IDLOV��WKH�UHWXUQ�YDOXH
LV�:$,7B)$,/('��7R�JHW�H[WHQGHG
HUURU�LQIRUPDWLRQ��FDOO
*HW/DVW(UURU�

Remarks
RtWaitForMultipleObjects determines whether the wait criteria have been met. If the
criteria have not been met, the calling thread enters the wait state. It uses no processor time
while waiting for the criteria to be met.

The function modifies the state of some types of synchronization objects. Modification occurs
only for the object or objects whose signaled state caused the function to return. For example,
the count of a semaphore object is decreased by one. When fWaitAll is FALSE, and multiple
objects are in the signaled state, the function chooses one of the objects to satisfy the wait; the
states of the other objects are unaffected.

RtWaitForMultipleObjects can specify handles of any of the following object types in the
lpHandles array:

n Event

n Mutex

n Process

n Semaphore

n Thread

Chapter 2: Real-Time API

105

See Also
CreateThread
RtOpenProcess
RtCreateEvent
RtCreateMutex
RtCreateProcess
RtCreateSemaphore
RtOpenEvent
RtOpenMutex
RtOpenSemaphore
RtWaitForSingleObject

RTX Reference

106

RtWaitForSingleObject

RtWaitForSingleObject returns when one of the following occurs:

n The specified object is in the signaled state.

n The time-out interval elapses.

DWORD
RtWaitForSingleObject(

 HANDLE Handle,
 DWORD Milliseconds
);

Parameters

hHandle

The object identifier. See the list of the object types whose handles can be specified in the
Comments section.

Milliseconds

The time-out interval, in milliseconds. The function returns if the interval elapses, even if
the object’s state is non-signaled. If Milliseconds is zero, the function tests the object’s state
and returns immediately. If Milliseconds is INFINITE, the function’s time-out interval never
elapses.

Return Values
If the function succeeds, the return value indicates the event that caused the function to
return.

If the function fails, the return value is WAIT_FAILED. To get extended error information,
call GetLastError.

The return value on success is one of the following values:

9DOXH 0HDQLQJ

:$,7B$%$1'21(' 7KH�VSHFLILHG�REMHFW�LV�D�PXWH[�REMHFW�WKDW�ZDV�QRW�UHOHDVHG�E\
WKH�WKUHDG�WKDW�RZQHG�WKH�PXWH[�REMHFW�EHIRUH�WKH�RZQLQJ
WKUHDG�WHUPLQDWHG��2ZQHUVKLS�RI�WKH�PXWH[�REMHFW�LV�JUDQWHG�WR
WKH�FDOOLQJ�WKUHDG��DQG�WKH�PXWH[�LV�VHW�WR�QRQ�VLJQDOHG�

:$,7B2%-(&7B� 7KH�VWDWH�RI�WKH�VSHFLILHG�REMHFW�LV�VLJQDOHG�

:$,7B7,0(287 7KH�WLPH�RXW�LQWHUYDO�HODSVHG��DQG�WKH�REMHFW
V�VWDWH�LV�QRQ�
VLJQDOHG�

Comments
RtWaitForSingleObject checks the current state of the specified object. If the object’s state
is non-signaled, the calling thread enters an efficient wait state. The thread consumes very
little processor time while waiting for the object state to become signaled or the time-out
interval to elapse.

Before returning, a wait function modifies the state of some types of synchronization objects.

Chapter 2: Real-Time API

107

Modification occurs only for the object or objects whose signaled state caused the function to
return. For example, the count of a semaphore object is decreased by one.

RtWaitForSingleObject can wait for the following objects:

Semaphore
 RtCreateSemaphore or RtOpenSemaphore returns the handle. A semaphore object
maintains a count between zero and some maximum value. Its state is signaled when its
count is greater than zero and non-signaled when its count is zero. If the current state is
signaled, the wait function decreases the count by one.

Mutex
 RtCreateMutex and RtOpenMutex return handles to the mutex object which becomes
signaled when the mutex is unowned.

Event
 The RtCreateEvent or RtOpenEvent function returns the handle. An event object’s
state is set explicitly to signaled by the RtSetEvent or RtPulseEvent function. A
manual-reset event object’s state must be reset explicitly to nonsignaled by the
RtResetEvent function. For an auto-reset event object, the wait function resets the
object’s state to nonsignaled before returning.

See Also
RtCreateEvent
RtCreateMutex
RtCreateSemaphore
RtOpenEvent
RtOpenMutex
RtOpenSemaphore

RTX Reference

108

RtWprintf

RtWprintf prints formatted output to the standard output stream or console window.

INT
RtWprintf(

 LPCWSTR lpFormat [, argument, . . .]
);

Parameters

lpFormat

The format control with optional arguments.

Return Values
RtWprintf returns the number of wide characters printed. If an error occurs, it returns a
negative value.

Comments
RtWprintf is similar to wprintf, but RtWprintf does not require the C run-time library and
can work with any combination of run-time libraries. This function does not support floating
point conversions in the RTSS environment.

RtWprintf formats and prints a series of characters and values to the standard output stream,
stdout. If arguments follow the format string, the format string must contain specifications
that determine the output format for the arguments.

The format argument consists of ordinary characters, escape sequences, and (if arguments
follow format) format specifications. The ordinary characters and escape sequences are
copied to stdout in order of their appearance. The required header is <rtapi.h>.

Format specifications always begin with a percent sign (%) and are read left to right. When
RtWprintf encounters the first format specification (if any), it converts the value of the first
argument after format and outputs it accordingly. The second format specification causes the
second argument to be converted and output, and so on. If there are more arguments than
there are format specifications, the extra arguments are ignored. The results are undefined if
there are not enough arguments for all the format specifications.

Example
RtWprintf(L"Line one\n\t\tLine two\n");

produces the output:

Line one

 Line two

Chapter 2: Real-Time API

109

Format Specification Fields

See the format specification fields in the Comments section of RtPrintf for details.

See Also
RtAtoi
RtPrintf
RtWtoi

RTX Reference

110

RtWritePortBufferUchar
RtWritePortBufferUshort
RtWritePortBufferUlong

The RtWritePortBuffer* calls copy a series of one-, two-, or four-byte quanta from a buffer to
an I/O port.

VOID
RtWritePortBufferUchar(PUCHAR PortAddress, PUCHAR pBuffer, ULONG

nNumberOfBytes);
VOID
RtWritePortBufferUshort(PUSHORT PortAddress, PUSHORT pBuffer, ULONG

nNumberOfBytes);
VOID
RtWritePortBufferUlong(PULONG PortAddress, PULONG pBuffer, ULONG

nNumberOfBytes);

Parameters

PortAddress

A Port I/O address cast as a pointer to the type of data being written.

pBuffer

A pointer to a buffer of one-, two-, or four-byte quanta.

nNumberOfBytes

The size of the buffer to be written.

Comments
RtWritePortBufferUchar, RtWritePortBufferUshort, and RtWritePortBufferUlong
write a buffer of one-, two-, or four-byte quanta directly to an I/O port from the buffer.

See Also
RtDisablePortIo
RtEnablePortIo
RtReadPortBuffer* (Uchar, Ushort, Ulong)
RtReadPort* (Uchar, Ushort, Ulong)
RtWritePort* (Uchar, Ushort, Ulong)

Chapter 2: Real-Time API

111

RtWritePortUchar
RtWritePortUshort
RtWritePortUlong

The RtWritePort* calls write a one-, two-, or four-byte quantum directly to an I/O port.

VOID
RtWritePortUchar(PUCHAR PortAddress, UCHAR pBuffer);
VOID
RtWritePortUshort(PUSHORT PortAddress, USHORT pBuffer);
VOID
RtWritePortUlong(PULONG PortAddress, ULONG pBuffer);

Parameters

PortAddress

A Port I/O address cast as a pointer to the type of data being written.

pBuffer

The one-, two-, or four-byte quantum to be written to the port.

Comments
RtWritePortUchar, RtWritePortUshort, and RtWritePortUlong write a one-, two-, or
four-byte quantum directly to an I/O port.

See Also
RtDisablePortIo
RtEnablePortIo
RtReadPortBuffer* (Uchar, Ushort, Ulong)
RtReadPort* (Uchar, Ushort, Ulong)
RtWritePortBuffer* (Uchar, Ushort, Ulong)

RTX Reference

112

RtWtoi

RtWtoi converts a given string value to an integer.

INT
RtWtoi(

 LPCWSTR lpString
);

Parameters

lpString

The source Unicode string.

Return Values
This function returns the integer value of the string.

Comments
RtWtoi is similar to wtoi, but RtWtoi does not require the C run-time library and can work
with any combination of run-time libraries.

This function supports decimal digits only, and does not allow leading whitespace or signs.

See Also
RtAtoi
RtWPrintf

113

CHAPTER 3

Win32-Supported API

AbnormalTermination

AbnormalTermination indicates whether the try block of a try-finally statement terminated
normally. The function can be called only from within the finally block of a try-finally
statement.

BOOL
AbnormalTermination(VOID)

Parameters
This function has no parameters.

Return Values
If the try block of the try-finally statement terminated abnormally, the return value is TRUE.

If the try block of the try-finally statement terminated normally, the return value is FALSE.

Comments
The try block terminates normally only if execution leaves the block sequentially after
executing the last statement in the block. Statements (such as return, goto, continue, or
break) that cause execution to leave the try block result in abnormal termination of the block.
This is the case even if such a statement is the last statement in the try block.

Abnormal termination of a try block causes the system to search backward through all stack
frames to determine whether any termination handlers must be called. This can result in the
execution of hundreds of instructions, so it is important to avoid abnormal termination of a
try block due to a return, goto, continue, or break statement. Note that these statements do
not generate an exception, even though the termination is abnormal.

RTX Reference

114

CloseHandle

CloseHandle closes an open object handle.

BOOL
CloseHandle(

 HANDLE hObject
);

Parameters

hObject

An open object handle.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments
CloseHandle closes handles to thread and file objects. It invalidates the specified object
handle, decrements the object’s handle count, and performs object-retention checks. Once the
last handle to an object is closed, the object is removed from the operating system.

Note: In the RTSS environment, CloseHandle can also be used to close any RTX object. Use
the RtCloseHandle to close RTX objects. In the Win32 environment, CloseHandle can only
close Win objects.

See Also
RtCloseHandle

Chapter 3: Win32-Supported API

115

CreateDirectory

CreateDirectory creates a new directory. If the underlying file system supports security on
files and directories, the function applies a specified security descriptor to the new directory.

BOOL
CreateDirectory(

 LPCTSTR lpPathName,
 LPSECURITY_ATTRIBUTES lpSecurityAttributes
);

Parameters

lpPathName

A pointer to a null-terminated string that specifies the path of the directory to be created.

There is a default string size limit for paths of RTX_MAX_PATH characters. This limit is
related to how CreateDirectory parses paths.

lpSecurityAttributes

A pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned
handle can be inherited by child processes. If lpSecurityAttributes is NULL, the handle
cannot be inherited.

The lpSecurityDescriptor member of the structure specifies a security descriptor for the new
directory. If lpSecurityAttributes is NULL, the directory gets a default security descriptor.
The target file system must support security on files and directories for this parameter to
have an effect.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments
Some file systems, such as NTFS, support compression for individual files and directories.
On volumes formatted for such a file system, a new directory inherits the compression
attribute of its parent directory.

See Also
CreateFile

RTX Reference

116

CreateFile

CreateFile creates or opens two types of objects: files and directories (open only). It then
returns a handle that can be used to access the object.

HANDLE
CreateFile(

 LPCTSTR lpFileName,
 DWORD DesiredAccess,
 DWORD ShareMode,
 LPSECURITY_ATTRIBUTES lpSecurityAttributes,
 DWORD CreationDisposition,
 DWORD FlagsAndAttributes,
 HANDLE hTemplateFile
);

Parameters

lpFileName

A pointer to a null-terminated string that specifies the name of the object to create or open.

If *lpFileName is a path, the string size limit is RTX_MAX_PATH characters. This limit is
related to how CreateFile parses paths.

DesiredAccess

The type of access to the object. An application can obtain read access, write access, read-
write access, or device query access. This parameter can be any combination of the
following values.

0 (zero)

Specifies device query access to the object. An application can query device attributes
without accessing the device.

GENERIC_READ
 Specifies read access to the object. Data can be read from the file and the file pointer can
be moved. Combine with GENERIC_WRITE for read-write access.

GENERIC_WRITE
 Specifies write access to the object. Data can be written to the file and the file pointer
can be moved. Combine with GENERIC_READ for read-write access.

ShareMode

Set of bit flags that specifies how the object can be shared. If ShareMode is 0, the object
cannot be shared. Subsequent open operations on the object will fail, until the handle is
closed.

Chapter 3: Win32-Supported API

117

To share the object, use a combination of one or more of the following values:

FILE_SHARE_DELETE
 Subsequent open operations on the object will succeed only if delete access is requested.

FILE_SHARE_READ
 Subsequent open operations on the object will succeed only if read access is requested.

FILE_SHARE_WRITE
 Subsequent open operations on the object will succeed only if write access is requested.

lpSecurityAttributes (ignored by RTX)

A pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned
handle can be inherited by child processes. If lpSecurityAttributes is NULL, the handle
cannot be inherited.

The lpSecurityDescriptor member of the structure specifies a security descriptor for the
object. If lpSecurityAttributes is NULL, the object gets a default security descriptor. The
target file system must support security on files and directories for this parameter to have an
effect on files.

CreationDisposition

Specifies which action to take on files that exist, and which action to take when files do not
exist. For more information about this parameter, see the Comments section. This parameter
must be one of the following values:

CREATE_NEW
 Creates a new file. CreateFile fails if the specified file already exists.

CREATE_ALWAYS
 Creates a new file. If the file exists, CreateFile overwrites the file and clears the
existing attributes.

OPEN_EXISTING
 Opens the file. CreateFile fails if the file does not exist. See the Comments section for
information on hen to use the OPEN_EXISTING flag if using CreateFile for devices,
including the console.

OPEN_ALWAYS
 Opens the file, if it exists. If the file does not exist, CreateFile creates the file as if
CreationDisposition were CREATE_NEW.

TRUNCATE_EXISTING
 Opens the file. Once opened, the file is truncated so that its size is zero bytes. The
calling process must open the file with at least GENERIC_WRITE access. CreateFile
fails if the file does not exist.

FlagsAndAttributes

The file attributes and flags for the file.

RTX Reference

118

Valid Attributes
 Any combination of the following attributes is acceptable for the FlagsAndAttributes
parameter, except all other file attributes override FILE_ATTRIBUTE_NORMAL.

FILE_ATTRIBUTE_ARCHIVE
 The file should be archived. Applications use this attribute to mark files for backup or
removal.

FILE_ATTRIBUTE_HIDDEN
 The file is hidden. It is not to be included in an ordinary directory listing.

FILE_ATTRIBUTE_NORMAL
 The file has no other attributes set. This attribute is valid only if used alone.

FILE_ATTRIBUTE_OFFLINE
 The data of the file is not immediately available. Indicates that the file data has been
physically moved to offline storage.

FILE_ATTRIBUTE_READONLY
 The file is read only. Applications can read the file but cannot write to it or delete it.

FILE_ATTRIBUTE_SYSTEM
 The file is part of or is used exclusively by the operating system.

FILE_ATTRIBUTE_TEMPORARY
 The file is being used for temporary storage. File systems attempt to keep all of the data
in memory for quicker access rather than flushing the data back to mass storage. A
temporary file should be deleted by the application as soon as it is no longer needed.

Valid Flags
 Any combination of the following flags is acceptable for the FlagsAndAttributes parameter.

FILE_FLAG_WRITE_THROUGH
 Instructs the system to write through any intermediate cache and go directly to disk.
Windows can still cache write operations, but cannot lazily flush them.

FILE_FLAG_NO_BUFFERING
 Instructs the system to open the file with no intermediate buffering or caching. An
application must meet certain requirements when working with files opened with
FILE_FLAG_NO_BUFFERING:

n File access must begin at byte offsets within the file that are integer multiples of the
volume’s sector size.

n File access must be for numbers of bytes that are integer multiples of the volume’s
sector size. For example, if the sector size is 512 bytes, an application can request
reads and writes of 512, 1024, or 2048 bytes, but not of 335, 981, or 7171 bytes.

n Buffer addresses for read and write operations must be aligned on addresses in
memory that are integer multiples of the volume’s sector size.

FILE_FLAG_RANDOM_ACCESS
 Indicates that the file is accessed randomly. The system can use this as a hint to optimize
file caching.

FILE_FLAG_SEQUENTIAL_SCAN
 Indicates that the file is to be accessed sequentially from beginning to end. The system
can use this as a hint to optimize file caching. If an application moves the file pointer for
random access, optimum caching may not occur; however, correct operation is still
guaranteed. Specifying this flag can increase performance for applications that read large

Chapter 3: Win32-Supported API

119

files using sequential access. Performance gains can be even more noticeable for
applications that read large files mostly sequentially, but occasionally skip over small
ranges of bytes.

FILE_FLAG_DELETE_ON_CLOSE
 Indicates that the operating system is to delete the file immediately after all of its
handles have been closed, not just the handle for which you specified
FILE_FLAG_DELETE_ON_CLOSE. Subsequent open requests for the file will fail,
unless FILE_SHARE_DELETE is used.

hTemplateFile (ignored)

Return Values
If CreateFile succeeds, the return value is an open handle to the specified file. If the
specified file exists before the function call and CreationDisposition is CREATE_ALWAYS
or OPEN_ALWAYS, a call to GetLastError returns ERROR_ALREADY_EXISTS (even
though the function has succeeded). If the file does not exist before the call, GetLastError
returns ERROR_SUCCESS. If CreateFile fails, the return value is
INVALID_HANDLE_VALUE. To get extended error information, call GetLastError.

Comments
Use CloseHandle to close an object handle returned by CreateFile.

As noted above, specifying zero for DesiredAccess allows an application to query device
attributes without actually accessing the device. This type of querying is useful, for example,
if an application wants to determine the size of a floppy disk drive and the formats it supports
without having a floppy in the drive.

Files

When creating a new file, CreateFile performs the following actions:

n Combines the file attributes and flags specified by FlagsAndAttributes with
FILE_ATTRIBUTE_ARCHIVE.

n Sets the file length to zero.

n Copies the extended attributes supplied by the template file to the new file if the
hTemplateFile parameter is specified.

When opening an existing file, CreateFile performs the following actions:

n Combines the file flags specified by FlagsAndAttributes with existing file attributes.
CreateFile ignores the file attributes specified by FlagsAndAttributes.

n Sets the file length according to the value of CreationDisposition.

n Ignores the hTemplateFile parameter.

n Ignores the lpSecurityDescriptor member of the SECURITY_ATTRIBUTES
structure if the lpSecurityAttributes parameter is not NULL. The other structure
members are used. bInheritHandle is the only way to indicate whether the file handle
can be inherited.

Some file systems, such as NTFS, support compression for individual files and directories.
On volumes formatted for such a file system, a new file inherits the compression attribute of
its directory.

RTX Reference

120

Do not use CreateFile to set a file’s compression state. Setting
FILE_ATTRIBUTE_COMPRESSED in the FlagsAndAttributes parameter does nothing. Use
DeviceIoControl and the FSCTL_SET_COMPRESSION operation to set a file’s
compression state.

Directories
An application cannot create a directory with CreateFile; it must call CreateDirectory to
create a directory.

See Also
CreateDirectory
DeviceIoControl
ReadFile
WriteFile

Chapter 3: Win32-Supported API

121

CreateThread

CreateThread creates a thread to execute within the address space of the calling process.

HANDLE
CreateThread(

 LPSECURITY_ATTRIBUTES lpThreadAttributes,
 DWORD StackSize,
 LPTHREAD_START_ROUTINE lpStartAddress,
 LPVOID lpParameter,
 DWORD dwCreationFlags,
 LPDWORD lpThreadId
);

Parameters

lpThreadAttributes (ignored)

StackSize

The size, in bytes, of the stack for the new thread. If 0 is specified, the stack size defaults to
8192 bytes under RTSS or to the same size as the calling thread’s stack under Win32. The
stack is allocated automatically in the memory space of the process, and it is freed when the
thread terminates. In the Win32 environment, the stack size grows when necessary. In the
RTSS environment, the stack cannot grow.

The number of bytes specified by StackSize must be available from non-paged memory in
the kernel.

lpStartAddress

A pointer to the application-supplied function to be executed by the thread and represents
the starting address of the thread. The function accepts a single 32-bit argument and returns
a 32-bit exit value.

lpParameter

A single 32-bit parameter value passed to the thread.

CreationFlags

Additional flags that control the creation of the thread. If the CREATE_SUSPENDED flag
is specified, the thread is created in a suspended state and will not run until ResumeThread
is called. If this value is zero, the thread runs immediately after creation. At this time, no
other values are supported.

lpThreadId

A pointer to a 32-bit variable that receives the thread identifier.

Return Values
If the function succeeds, the return value is a handle to the new thread.

RTX Reference

122

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Comments
The new thread handle is created with full access to the new thread.

The thread execution begins at the function specified by lpStartAddress. If this function
returns, the DWORD return value is used to terminate the thread in an implicit call to
ExitThread.

The thread is created with a thread priority of 0. Use GetThreadPriority and
SetThreadPriority to get and set the priority value of a thread.

The thread object remains in the system until the thread has terminated and all handles to it
have been closed through a call to CloseHandle. (For threads, use CloseHandle rather than
RtCloseHandle.)

ExitProcess, ExitThread, and CreateThread, as well as a process that is starting, are
serialized between each other within a process. Only one of these events can happen in an
address space at a time.

See Also
CloseHandle
ExitProcess
ExitThread
GetThreadPriority
ResumeThread
SetThreadPriority

Chapter 3: Win32-Supported API

123

DeleteCriticalSection

DeleteCriticalSection releases all resources used by an unowned critical-section object.

VOID
DeleteCriticalSection(

 LPCRITICAL_SECTION lpCriticalSection
);

Parameter

lpCriticalSection

A pointer to the critical-section object.

Return Values
This function does not return a value.

Comments
Deleting a critical-section object releases all system resources used by the object. Once
deleted, the critical-section object cannot be specified in the EnterCriticalSection or
LeaveCriticalSection function.

See Also
EnterCriticalSection
InitializeCriticalSection
LeaveCriticalSection

RTX Reference

124

DeleteFile

DeleteFile deletes an existing file.

BOOL
DeleteFile(

 LPCTSTR lpFileName
);

Parameters

lpFileName

Points to a null-terminated string that specifies the file to be deleted.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments
If an application attempts to delete a file that does not exist, the DeleteFile function fails.

The DeleteFile function fails if an application attempts to delete a file that is open for normal
I/O or as a memory-mapped file.

To close an open file, use the CloseHandle function.

See Also
CloseHandle
CreateFile

Chapter 3: Win32-Supported API

125

DeviceIoControl

DeviceIoControl sends a control code directly to a specified device driver, causing the
corresponding device to perform the specified operation.

BOOL
DeviceIoControl(

 HANDLE hDevice,
 DWORD IoControlCode,
 LPVOID lpInBuffer,
 DWORD nInBufferSize,
 LPVOID lpOutBuffer,
 DWORD nOutBufferSize,
 LPDWORD lpBytesReturned,
 LPOVERLAPPED lpOverlapped
);

Parameters

hDevice

A handle to the device that is to perform the operation. Call CreateFile to obtain a device
handle.

IoControlCode

The control code for the operation. This value identifies the specific operation to be
performed and the type of device on which the operation is to be performed. The following
values are defined:

IOCTL_DISK_CHECK_VERIFY
 Obsolete. Use IOCTL_STORAGE_CHECK_VERIFY

IOCTL_DISK_EJECT_MEDIA
 Obsolete. Use IOCTL_STORAGE_EJECT_MEDIA

IOCTL_DISK_FORMAT_TRACKS
 Formats a contiguous set of disk tracks.

IOCTL_DISK_GET_DRIVE_GEOMETRY
 Obtains information on the physical disk’s geometry.

IOCTL_DISK_GET_DRIVE_LAYOUT
 Provides information about each partition on a disk.

IOCTL_DISK_GET_MEDIA_TYPES
 Obsolete. Use IOCTL_STORAGE_GET_MEDIA_TYPES

IOCTL_DISK_GET_PARTITION_INFO
 Obtains disk partition information.

IOCTL_DISK_LOAD_MEDIA
 Obsolete. Use IOCTL_STORAGE_LOAD_MEDIA

IOCTL_DISK_MEDIA_REMOVAL
 Obsolete. Use IOCTL_STORAGE_MEDIA_REMOVAL

RTX Reference

126

IOCTL_DISK_PERFORMANCE
 Provides disk performance information.

IOCTL_DISK_REASSIGN_BLOCKS
 Maps disk blocks to spare-block pool.

IOCTL_DISK_SET_DRIVE_LAYOUT
 Partitions a disk.

IOCTL_DISK_SET_PARTITION_INFO
 Sets the disk partition type.

IOCTL_DISK_VERIFY
 Performs logical format of a disk extent.

IOCTL_SERIAL_LSRMST_INSERT
 Enables or disables placement of a line and modem status data into the data stream.

IOCTL_STORAGE_CHECK_VERIFY
 Checks for change in a removable-media device.

IOCTL_STORAGE_EJECT_MEDIA
 Ejects media from a SCSI device.

IOCTL_STORAGE_GET_MEDIA_TYPES
 Obtains information about media support.

IOCTL_STORAGE_LOAD_MEDIA
 Loads media into a device.

IOCTL_STORAGE_MEDIA_REMOVAL
 Enables or disables the media eject mechanism.

For more detailed information on each control code, see its topic in the Microsoft
documentation. In particular, each topic provides details on the usage of the lpInBuffer,
nInBufferSize, lpOutBuffer, nOutBufferSize, and lpBytesReturned parameters.

lpInBuffer

A pointer to a buffer that contains the data required to perform the operation.

This parameter can be NULL if the IoControlCode parameter specifies an operation that
does not require input data.

nInBufferSize

The size, in bytes, of the buffer pointed to by lpInBuffer.

lpOutBuffer

A pointer to a buffer that receives the operation’s output data.

This parameter can be NULL if the IoControlCode parameter specifies an operation that
does not produce output data.

nOutBufferSize

The size, in bytes, of the buffer pointed to by lpOutBuffer.

lpBytesReturned

A pointer to a variable that receives the size, in bytes, of the data stored into the buffer
pointed to by lpOutBuffer.

Chapter 3: Win32-Supported API

127

lpOverlapped (ignored by RTX)

This parameter should be set to NULL.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

See Also
CreateFile

RTX Reference

128

DllMain

The DllMain function is an optional method of entry into a dynamic-link library (DLL). If
the function is used, it is called by the system when processes and threads are initialized and
terminated, or upon calls to LoadLibrary and FreeLibrary.

BOOL WINAPI
DllMain(

 HINSTANCE hinstDLL,
 DWORD fdwReason,
 LPVOID lpvReserved
);

Parameters

HinstDLL

A handle to the DLL. HINSTANCE of a DLL is the same as the HMODULE of the DLL,
so hinstDLL can be used in subsequent calls to functions that require a module handle.

fdwReason

Specifies a flag indicating why the DLL entry-point function is being called. This parameter
can be one of the following values:

9DOXH 0HDQLQJ

'//B352&(66B77&+ ,QGLFDWHV�WKDW�WKH�'//�LV�EHLQJ�ORDGHG�LQWR�WKH�YLUWXDO
DGGUHVV�VSDFH�RI�WKH�FXUUHQW�SURFHVV�DV�D�UHVXOW�RI�D�FDOO�WR
/RDG/LEUDU\�

'//B7+5($'B$77$&+ 7KLV�YDOXH�LV�QRW�XVHG�LQ�WKH�5766�(QYLURQPHQW�

'//B7+5($'B'(7$&+ 7KLV�YDOXH�LV�QRW�XVHG�LQ�WKH�5766�(QYLURQPHQW�

'//B352&(66B'(7$&+ ,QGLFDWHV�WKDW�WKH�'//�LV�EHLQJ�XQORDGHG�IURP�WKH�YLUWXDO
DGGUHVV�VSDFH�RI�WKH�FDOOLQJ�SURFHVV�DV�D�UHVXOW�RI�HLWKHU�D
SURFHVV�H[LW�RU�D�FDOO�WR�)UHH/LEUDU\�

lpvReserved

lpvReserved is NULL.

Return Values
When the system calls DllMain with the DLL_PROCESS_ATTACH value, the function
returns TRUE if it succeeds or FALSE if initialization fails. If the return value is FALSE,
LoadLibrary returns NULL. To get extended error information, call GetLastError.

When the system calls DllMain with any value other than DLL_PROCESS_ATTACH, the
return value is ignored.

Chapter 3: Win32-Supported API

129

Comments
RTSS calls DllMain only for thread-issuing LoadLibrary calls.

On attach, the body of the DLL entry-point function should perform only simple initialization
tasks such as creating synchronization objects, and opening files. Do not call LoadLibrary in
the entry-point function, because this may create dependency loops in the DLL load order.
This can result in a DLL being used before the system has executed its initialization code.
Similarly, do not call FreeLibrary in the entry-point function on detach because this can
result in a DLL being used after the system has executed its termination code.

Calling Win32 functions other than synchronization, and file functions may result in
problems that are difficult to diagnose. For example, calling User, Shell, COM, RPC, and
Windows Sockets functions (or any functions that call these functions) can cause access
violation errors because their DLLs call LoadLibrary to load other system components.

To provide more complex initialization, create an initialization routine for the DLL and
require applications to call the initialization routine before calling any other routines in the
DLL. Otherwise, have the initialization routine create a named mutex, and have each routine
in the DLL call the initialization routine if the mutex does not exist.

RTX Reference

130

EnterCriticalSection

EnterCriticalSection waits for ownership of the specified critical-section object. The
function returns when the calling thread is granted ownership.

VOID
EnterCriticalSection(

 LPCRITICAL_SECTION lpCriticalSection
);

Parameters

lpCriticalSection

A pointer to the critical-section object.

Return Values
This function does not return a value.

Comments
The threads of a single process can use a critical-section object for mutual-exclusion
synchronization. The process is responsible for allocating the memory used by a critical-
section object, which it can do by declaring a variable of type CRITICAL_SECTION. Before
using a critical-section, some thread of the process must call the InitializeCriticalSection
function to initialize the object.

To enable mutually exclusive access to a shared resource, each thread calls the
EnterCriticalSection function to request ownership of the critical-section before executing
any section of code that accesses the protected resource. EnterCriticalSection blocks until
the thread can take ownership of the critical-section. When it has finished executing the
protected code, the thread uses the LeaveCriticalSection function to relinquish ownership,
enabling another thread to become owner and access the protected resource. The thread must
call LeaveCriticalSection once for each time that it entered the critical-section. The thread
enters the critical-section each time EnterCriticalSection succeeds.

Once a thread has ownership of a critical-section, it can make additional calls to
EnterCriticalSection without blocking its execution. This prevents a thread from
deadlocking itself while waiting for a critical-section that it already owns.

Any thread of the process can use the DeleteCriticalSection function to release the system
resources that were allocated when the critical-section object was initialized.

After this function has been called, the critical-section object can no longer be used for
synchronization.

See Also
DeleteCriticalSection, InitializeCriticalSection, LeaveCriticalSection

Chapter 3: Win32-Supported API

131

ExitProcess

ExitProcess ends a process and all its threads.

VOID
ExitProcess(

 UINT uExitCode
);

Parameters

uExitCode (Ignored in RTSS)

The exit code for the process.

Return Values
This function does not return a value.

Comments
ExitProcess, ExitThread, CreateThread, and a process that is starting are serialized
between each other within a process. Only one of these events can occur in an address space
at a time.

See Also
CreateThread
ExitThread
GetExitCodeThread

RTX Reference

132

ExitThread

ExitThread ends a thread.

VOID
ExitThread(

 DWORD ExitCode
);

Parameters

ExitCode

The exit code for the calling thread. Use GetExitCodeThread to retrieve a thread’s exit
code.

Return Values
This function does not return a value.

Comments
ExitThread is the preferred method of exiting a thread. When this function is called (either
explicitly or by returning from a thread procedure), the current thread’s stack is de-allocated
and the thread terminates.

If the thread is the last thread in the process when this function is called, the thread’s process
is also terminated.

Terminating a thread does not necessarily remove the thread object from the operating
system. A thread object is deleted when the last handle to the thread is closed.

ExitProcess, ExitThread, CreateThread, and a process that is starting are serialized
between each other within a process. Only one of these events can occur at a time.

If the primary thread calls ExitThread, the application will exit.

See Also
CreateThread
ExitProcess
GetExitCodeThread
TerminateThread

Chapter 3: Win32-Supported API

133

FreeLibrary

FreeLibrary decrements the reference count of the loaded dynamic-link library (DLL)
module. When the reference count reaches zero, the module is unmapped from the address
space of the calling process and the handle is no longer valid.

BOOL
FreeLibrary(

 HMODULE hLibModule
);

Parameters

hLibModule

Handle to the loaded library module. The LoadLibrary function returns this handle.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments
Each process maintains a reference count for each loaded library module.

This reference count is incremented each time LoadLibrary is called and is decremented
each time FreeLibrary is called. A DLL module loaded at process initialization due to load-
time dynamic linking has a reference count of one. This count is incremented if the same
module is loaded by a call to LoadLibrary.

Before unmapping a library module, the system enables the DLL to detach from the process
by calling the DLL’s DllMain function, if it has one, with the DLL_PROCESS_DETACH
value. Doing so gives the DLL an opportunity to clean up resources allocated on behalf of the
current process. After the entry-point function returns, the library module is removed from
the address space of the current process.

It is not safe to call FreeLibrary from DllMain. For more information, see the Comments
section in DllMain.

Calling FreeLibrary does not affect other processes using the same library module.

See Also
DllMain
ExitThread
LoadLibrary

RTX Reference

134

GetCurrentProcessId

GetCurrentProcessId returns the process identifier of the calling process.

DWORD
GetCurrentProcessId(VOID)

Parameters
This function has no parameters.

Return Values
The return value is the process identifier of the calling process.

Comments
Until the process terminates, the process identifier uniquely identifies the process throughout
the system.

RTSSRun returns the value of the current process ID. In the RTSS environment, this is
equivalent to the RTSS slot number.

See Also

RtOpenProcess

Chapter 3: Win32-Supported API

135

GetCurrentThread

GetCurrentThread returns a pseudohandle for the current thread.

HANDLE
GetCurrentThread(VOID)

Parameters
This function has no parameters.

Return Values
The return value is a pseudohandle for the current thread.

Comments
A pseudohandle is a special constant that is interpreted as the current thread handle. The
calling thread can use this handle to specify itself whenever a thread handle is required.
Pseudohandles are not inherited by child processes.

This handle has the maximum possible access to the thread object.

The function cannot be used by one thread to create a handle that can be used by other
threads to refer to the first thread. The handle is always interpreted as referring to the thread
that is using it.

See Also
CloseHandle
GetCurrentThreadId

RTX Reference

136

GetCurrentThreadId

GetCurrentThreadId returns the thread identifier of the calling thread.

DWORD
GetCurrentThreadId(VOID)

Parameters
This function has no parameters.

Return Values
The return value is the thread identifier of the calling thread.

Comments
Until the thread terminates, the thread identifier uniquely identifies the thread throughout the
system.

See Also
GetCurrentThread

Chapter 3: Win32-Supported API

137

GetExceptionCode

GetExceptionCode retrieves a code that identifies the type of exception that occurred. The
function can be called only from within the filter expression or exception-handler block of a
try-except exception handler.

DWORD
GetExceptionCode(VOID)

Parameters
This function has no parameters.

Return Values

The return value identifies the type of exception. The following list shows the exception
codes that are likely to occur due to common programming errors. For more information, see
RTX Exception Handling in the RTX User’s Guide.

9DOXH 0HDQLQJ
(;&(37,21B$&&(66B9,2/$7,21 7KH�WKUHDG�DWWHPSWHG�WR�UHDG�IURP�RU�ZULWH�WR

D�YLUWXDO�DGGUHVV�IRU�ZKLFK�LW�GRHV�QRW�KDYH
WKH�DSSURSULDWH�DFFHVV�

(;&(37,21B%5($.32,17 $�EUHDNSRLQW�ZDV�HQFRXQWHUHG�

(;&(37,21B'$7$7<3(B0,6$/,*10(17 7KH�WKUHDG�DWWHPSWHG�WR�UHDG�RU�ZULWH�GDWD
WKDW�LV�PLVDOLJQHG�RQ�KDUGZDUH�WKDW�GRHV�QRW
SURYLGH�DOLJQPHQW��)RU�H[DPSOH�����ELW
YDOXHV�PXVW�EH�DOLJQHG�RQ���E\WH�ERXQGDULHV�
���ELW�YDOXHV�RQ���E\WH�ERXQGDULHV��DQG�VR
RQ�

(;&(37,21B)/7B'(1250$/B23(5$1' 2QH�RI�WKH�RSHUDQGV�LQ�D�IORDWLQJ�SRLQW
RSHUDWLRQ�LV�GHQRUPDO��$�GHQRUPDO�YDOXH�LV
RQH�WKDW�LV�WRR�VPDOO�WR�UHSUHVHQW�DV�D
VWDQGDUG�IORDWLQJ�SRLQW�YDOXH�

(;&(37,21B)/7B',9,'(B%<B=(52 7KH�WKUHDG�DWWHPSWHG�WR�GLYLGH�D�IORDWLQJ�
SRLQW�YDOXH�E\�D�IORDWLQJ�SRLQW�GLYLVRU�RI�]HUR�

(;&(37,21B)/7B,1(;$&7B5(68/7 7KH�UHVXOW�RI�D�IORDWLQJ�SRLQW�RSHUDWLRQ�FDQQRW
EH�UHSUHVHQWHG�H[DFWO\�DV�D�GHFLPDO�IUDFWLRQ�

(;&(37,21B)/7B,19$/,'B23(5$7,21 7KLV�H[FHSWLRQ�UHSUHVHQWV�DQ\�IORDWLQJ�SRLQW
H[FHSWLRQ�QRW�LQFOXGHG�LQ�WKLV�OLVW�

(;&(37,21B)/7B29(5)/2: 7KH�H[SRQHQW�RI�D�IORDWLQJ�SRLQW�RSHUDWLRQ�LV
JUHDWHU�WKDQ�WKH�PDJQLWXGH�DOORZHG�E\�WKH
FRUUHVSRQGLQJ�W\SH�

(;&(37,21B)/7B81'(5)/2: 7KH�H[SRQHQW�RI�D�IORDWLQJ�SRLQW�RSHUDWLRQ�LV
OHVV�WKDQ�WKH�PDJQLWXGH�DOORZHG�E\�WKH
FRUUHVSRQGLQJ�W\SH�

(;&(37,21B,17B',9,'(B%<B=(52 7KH�WKUHDG�DWWHPSWHG�WR�GLYLGH�DQ�LQWHJHU
YDOXH�E\�DQ�LQWHJHU�GLYLVRU�RI�]HUR�

(;&(37,21B,//(*$/B,16758&7,21 7KH�PHWKRG�KDV�WHUPLQDWHG�GXH�WR�LQYDOLG
SDUDPHWHUV�RU�SURSHUW\�YDOXHV�

RTX Reference

138

Comments
GetExceptionCode can be called only from within the filter expression or exception-handler
block of a try-except statement. The filter expression is evaluated if an exception occurs
during execution of the try block, and it determines whether the except block is executed. The
following example shows the structure of a try-except statement.

try {

/* try block */

}

except (filter-expression) {

/* exception handler block */

}

The filter expression can invoke a filter function. The filter function cannot call
GetExceptionCode. However, the return value of GetExceptionCode can be passed as a
parameter to a filter function. The return value of the GetExceptionInformation function
can also be passed as a parameter to a filter function. GetExceptionInformation returns a
pointer to a structure that includes the exception-code information. In the case of nested try-
except statements, each statement’s filter expression is evaluated until one is evaluated as
EXCEPTION_EXECUTE_HANDLER or EXCEPTION_CONTINUE_EXECUTION. Each
filter expression can invoke GetExceptionCode to get the exception code. The exception
code returned is the code generated by a hardware exception, or the code specified in the
RaiseException function for a software-generated exception.

See Also
GetExceptionInformation
RaiseException

Chapter 3: Win32-Supported API

139

GetExceptionInformation

GetExceptionInformation retrieves a machine-independent description of an exception, and
information about the machine state that existed for the thread when the exception occurred.
This function can be called only from within the filter expression of a try-except exception
handler.

LPEXCEPTION_POINTERS
GetExceptionInformation(VOID)

Parameters
This function has no parameters.

Return Values
The return value is a pointer to an EXCEPTION_POINTERS structure that contains pointers
to two other structures: an EXCEPTION_RECORD structure containing a description of the
exception, and a CONTEXT structure containing the machine-state information.

Comments
The filter expression (from which the function is called) is evaluated if an exception occurs
during execution of the try block, and it determines whether the except block is executed. The
following example shows the structure of a try-except statement.

try {

/* try block */

}

except (filter-expression) {

/* exception handler block */

}

The filter expression can invoke a filter function. The filter function cannot call
GetExceptionInformation. However, the return value of GetExceptionInformation can be
passed as a parameter to a filter function.

To pass the EXCEPTION_POINTERS information to the exception-handler block, the filter
expression or filter function must copy the pointer or the data to safe storage that the handler
can later access. In the case of nested try-except statements, each statement’s filter expression
is evaluated until one is evaluated as EXCEPTION_EXECUTE_HANDLER or
EXCEPTION_CONTINUE_EXECUTION. Each filter expression can invoke
GetExceptionInformation to get exception information.

See Also
GetExceptionCode

RTX Reference

140

GetExitCodeThread

GetExitCodeThread retrieves the termination status of the specified thread.

BOOL
GetExitCodeThread(

 HANDLE hThread,
 LPDWORD lpExitCode
);

Parameters

hThread

The thread identifier.

lpExitCode

A pointer to a 32-bit variable to receive the thread termination status.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments
If the specified thread has not terminated, the termination status returned is STILL_ACTIVE.
If the thread has terminated, the termination status returned may be one of the following:

n The exit value specified in ExitThread or TerminateThread

n The return value from the thread function

n The exit value of the thread’s process

See Also
ExitThread
TerminateThread

Chapter 3: Win32-Supported API

141

GetLastError

GetLastError returns the calling thread’s last-error code value. The last-error code is
maintained on a per-thread basis. Multiple threads do not overwrite each other’s last-error
code.

DWORD
GetLastError(VOID)

Parameters
This function has no parameters.

Return Values
The return value is the calling thread’s last-error code value. Functions set this value by
calling SetLastError.

Comments
Call GetLastError immediately when a function’s return value indicates that such a call will
return useful data. That is because some functions call SetLastError(0) when they succeed,
wiping out the error code set by the most recently failed function.

Most functions provided in RTX that set the thread’s last error code value set it when they
fail; a few functions set it when they succeed. Function failure is typically indicated by a
return value error code such as FALSE, NULL, 0XFFFFFFFF, or -1. Some functions call
SetLastError under conditions of success; those cases are noted in each function’s reference
page.

RTX Reference

142

GetProcAddress

GetProcAddress returns the address of the specified exported dynamic-link library (DLL)
function.

FARPROC
GetProcAddress(

 HMODULE hModule,
 LPCSTR lpProcName
);

Parameters

hModule

A handle to the DLL module that contains the function. The LoadLibrary function returns
this handle.

lpProcName

A pointer to a null-terminated string containing the function name, or the function’s ordinal
value.

Return Values
If the function succeeds, the return value is the address of the DLL’s exported function.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Comments
GetProcAddress is used to retrieve addresses of exported functions in DLLs.

The spelling and case of the function name pointed to by lpProcName must be identical to
that in the EXPORTS statement of the source DLL’s module-definition (.DEF) file. The
exported names of Win32 API functions may differ from the names used when calling these
functions in the code. This difference is hidden by macros used in the SDK header files. For
more information, see Win32 Function Prototypes.

The lpProcName parameter can identify the DLL function by specifying an ordinal value
associated with the function in the EXPORTS statement.

GetProcAddress verifies that the specified ordinal is in the range 1 through the highest
ordinal value exported in the .DEF file. The function then uses the ordinal as an index to read
the function’s address from a function table. If the .DEF file does not number the functions
consecutively from 1 to N (where N is the number of exported functions), an error can occur
where GetProcAddress returns an invalid, non-NULL address, even though there is no
function with the specified ordinal.

In cases where the function may not exist, the function should be specified by name rather
than by ordinal value.

Chapter 3: Win32-Supported API

143

RTSS Environment: The following information applies to the RTSS environment:

n Function lookup by ordinal value is not presently supported.

n If the exported routine name is decorated (e.g., _<fname>@<# argument bytes> as in
the __stdcall convention) the decorated name must be specified in the call to
GetProcAddress.

n DEF files are not supported.

See Also
FreeLibrary
LoadLibrary

RTX Reference

144

GetProcessHeap

GetProcessHeap obtains a handle to the heap of the calling process. This handle can then be
used in calls to HeapAlloc, HeapReAlloc, HeapFree, and HeapSize.

HANDLE
GetProcessHeap(VOID)

Parameters
This function has no parameters.

Return Values
If the function succeeds, the return value is a handle to the calling process’s heap.

If the function fails, the return value is NULL.

Comments

GetProcessHeap allows RTSS processes to allocate memory from the process heap. The
following example shows how to use this call with HeapAlloc.

HeapAlloc(GetProcessHeap(), 0, dwBytes);

See Also
HeapAlloc
HeapFree
HeapReAlloc
HeapSize

Chapter 3: Win32-Supported API

145

GetThreadPriority

GetThreadPriority returns the priority value for the specified thread. This value, together
with the priority class of the thread’s process, determines the thread’s base-priority level.

INT
GetThreadPriority(

 HANDLE hThread
);

Parameters

hThread

The thread identifier.

Return Values
If the function succeeds, the return value is the thread’s priority level.

If the function fails, the return value is THREAD_PRIORITY_ERROR_RETURN. To get
extended error information, call GetLastError.

Comments
See the Comments section in RtGetThreadPriority for details on thread priority mapping.

See Also
CreateThread
RtGetThreadPriority
RtSetThreadPriority
SetThreadPriority

RTX Reference

146

HeapAlloc

HeapAlloc allocates a block of memory from a heap. The allocated memory is not movable.

LPVOID
HeapAlloc(

 HANDLE hHeap,
 DWORD Flags,
 DWORD Bytes
);

Parameters

hHeap

The heap from which the memory will be allocated. This parameter is a handle returned by
GetProcessHeap.

Flags

The controllable aspects of heap allocation. You can specify the following flag:

HEAP_ZERO_MEMORY
 The allocated memory will be initialized to zero.

Bytes

The number of bytes to be allocated.

Return Values
If the function succeeds, the return value is a pointer to the allocated memory block.

If the function fails, the return value is NULL.

Comments
If HeapAlloc succeeds, it allocates at least the amount of memory requested. If the actual
amount allocated is greater than the amount requested, because it is rounded to page boundry,
the process can use the entire amount. To determine the actual size of the allocated block, use
HeapSize.

To free a block of memory allocated by HeapAlloc, use HeapFree. Memory allocated by
HeapAlloc is not movable. Since the memory is not movable, it is possible for the heap to
become fragmented. Note that if HEAP_ZERO_MEMORY is not specified, the allocated
memory may not be initialized to zero.

See Also
GetProcessHeap, HeapFree, HeapReAlloc, HeapSize, SetLastError

Chapter 3: Win32-Supported API

147

HeapCreate

HeapCreate creates a heap object that can be used by the calling process. The function
reserves a contiguous block in the virtual address space of the process and allocates physical
storage for a specified initial portion of this block.

HANDLE
HeapCreate(

 DWORD flOptions,
 DWORD InitialSize,
 DWORD MaximumSize
);

Parameters

flOptions

The optional attributes for the new heap. These flags will affect subsequent access to the
new heap through calls to the heap functions (HeapAlloc, HeapFree, HeapReAlloc, and
HeapSize).

You can specify one or more of the following flags:

HEAP_GENERATE_EXCEPTIONS
 Specifies that the system will raise an exception to indicate a function failure, such as an
out-of-memory condition, instead of returning NULL.

HEAP_NO_SERIALIZE
 Specifies that mutual exclusion will not be used when the heap functions allocate and
free memory from this heap. The default, occurring when the HEAP_NO_SERIALIZE
flag is not specified, is to serialize access to the heap. Serialization of heap access allows
two or more threads to simultaneously allocate and free memory from the same heap.

InitialSize

The initial size, in bytes, of the heap. This value determines the initial amount of physical
storage that is allocated for the heap. The value is rounded up to the next page boundary.

MaximumSize

If MaximumSize is a non-zero value, it specifies the maximum size, in bytes, of the heap.
HeapCreate rounds MaximumSize up to the next page boundary, and then reserves a block
of that size in the process’s virtual address space for the heap. If allocation requests made by
HeapAlloc or HeapReAlloc exceed the initial amount of physical storage specified by
InitialSize, the system allocates additional pages of physical storage for the heap, up to the
heap’s maximum size.

If MaximumSize is non-zero, the heap cannot grow, and an absolute limitation arises: the
maximum size of a memory block in the heap is a bit less than 0x7FFF8 bytes. Requests to
allocate larger blocks will fail, even if the maximum size of the heap is large enough to
contain the block.

RTX Reference

148

If MaximumSize is zero, it specifies that the heap can grow. The heap’s size is limited only
by available memory. Requests to allocate blocks larger than 0x7FFF8 bytes do not
automatically fail; the system calls VirtualAlloc to obtain the memory needed for such
large blocks. Applications that need to allocate large memory blocks should set
MaximumSize to zero.

Return Values
If the function succeeds, the return value is a handle of the newly created heap.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Comments
HeapCreate creates a private heap object from which the calling process can allocate
memory blocks by using HeapAlloc. The initial size determines the number of committed
pages that are initially allocated for the heap. The maximum size determines the total number
of reserved pages. These pages create a contiguous block in the process’s virtual address
space into which the heap can grow. If requests by HeapAlloc exceed the current size of
committed pages, additional pages are automatically committed from this reserved space,
assuming that the physical storage is available.

The memory of a private heap object is accessible only to the process that created it. If a
dynamic-link library (DLL) creates a private heap, the heap is created in the address space of
the process that called the DLL, and it is accessible only to that process.

The system uses memory from the private heap to store heap support structures, so not all of
the specified heap size is available to the process. For example, if HeapAlloc requests 64
Kilobytes (K) from a heap with a maximum size of 64K, the request may fail because of
system overhead.

If the HEAP_NO_SERIALIZE flag is not specified (the simple default), the heap will
serialize access within the calling process. Serialization ensures mutual exclusion when two
or more threads attempt to simultaneously allocate or free blocks from the same heap. There
is a small performance cost to serialization, but it must be used whenever multiple threads
allocate and free memory from the same heap.

Setting the HEAP_NO_SERIALIZE flag eliminates mutual exclusion on the heap. Without
serialization, two or more threads that use the same heap handle might attempt to allocate or
free memory simultaneously, likely causing corruption in the heap. The
HEAP_NO_SERIALIZE flag can, therefore, be safely used only in the following situations:

n The process has only one thread.

n The process has multiple threads, but only one thread calls the heap functions for a
specific heap.

n The process has multiple threads, and the application provides its own mechanism for
mutual exclusion to a specific heap.

See Also
GetProcessHeap, HeapAlloc, HeapDestroy, HeapFree,HeapReAlloc, HeapSize

Chapter 3: Win32-Supported API

149

HeapDestroy

HeapDestroy destroys the specified heap object. It uncommits and releases all the pages of a
private heap object and it invalidates the handle of the heap.

BOOL
HeapDestroy(

 HANDLE hHeap
);

Parameters

hHeap

The heap to be destroyed. This parameter should be a heap handle returned by HeapCreate.
A heap handle returned by GetProcessHeap should not be used.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments
Processes can call HeapDestroy without first calling HeapFree to free memory allocated
from the heap.

See Also
GetProcessHeap
HeapAlloc
HeapCreate
HeapFree
HeapReAlloc
HeapSize

RTX Reference

150

HeapFree

HeapFree frees a memory block allocated from a heap by HeapAlloc or HeapReAlloc.

BOOL
HeapFree(

 HANDLE hHeap,
 DWORD Flags,
 LPVOID lpMem
);

Parameters

hHeap

The heap whose memory block the function frees. This parameter is the handle returned by
GetProcessHeap.

Flags (ignored)

lpMem

A pointer to the memory block to free. This pointer is returned by HeapAlloc or
HeapReAlloc.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

See Also
GetProcessHeap
HeapAlloc
HeapReAlloc
HeapSize
SetLastError

Chapter 3: Win32-Supported API

151

HeapReAlloc

HeapReAlloc reallocates a block of memory from a heap. This function enables you to resize
a memory block and change other memory block properties.

LPVOID
HeapReAlloc(

 HANDLE hHeap,
 DWORD Flags,
 LPVOID lpMem,
 DWORD Bytes
);

Parameters

hHeap

The heap from which the memory will be reallocated. This is the handle returned by
GetProcessHeap.

Flags

The controllable aspects of heap reallocation. You can specify one or both of the following
flags:

HEAP_REALLOC_IN_PLACE_ONLY (not supported in RTSS)
 Specifies that there can be no movement when reallocating a memory block to a larger
size. If this flag is not specified and the reallocation request is for a larger size, the
function may move the block to a new location. If this flag is specified and the block
cannot be enlarged without moving, the function will fail, leaving the original memory
block unchanged. Because memory movement always occurs, this flag is not supported
in the RTSS environment.

HEAP_ZERO_MEMORY
 If the reallocation request is for a larger size, this flag specifies that the additional region
of memory beyond the original size will be initialized to zero. The contents of the
memory block—up to its original size—are unaffected.

lpMem

A pointer to the block of memory that the function reallocates. This pointer is returned by an
earlier call to HeapAlloc or HeapReAlloc.

Bytes

The new size of the memory block, in bytes. A memory block's size can be increased or
decreased by using this function.

Return Values
If the function succeeds, the return value is a pointer to the reallocated memory block.

If the function fails, the return value is NULL. It calls SetLastError. To get extended error

RTX Reference

152

information, call GetLastError.

Comments
If HeapReAlloc succeeds, it allocates at least the amount of memory requested. If the actual
amount allocated is greater than the amount requested, the process can use the entire amount.
To determine the actual size of the reallocated block, use HeapSize.

To free a block of memory allocated by HeapReAlloc, use HeapFree.

See Also
GetProcessHeap
HeapAlloc
HeapFree
HeapSize
SetLastError

Chapter 3: Win32-Supported API

153

HeapSize

HeapSize returns the size, in bytes, of a memory block allocated from a heap by HeapAlloc
or HeapReAlloc.

DWORD
HeapSize(

 HANDLE hHeap,
 DWORD Flags,
 LPCVOID lpMem
);

Parameters

hHeap

The heap in which the memory block resides. This handle is returned by GetProcessHeap.

Flags (ignored)

lpMem

A pointer to the memory block whose size the function will obtain. This pointer is returned
by HeapAlloc or HeapReAlloc.

Return Values
If the function succeeds, the return value is the size, in bytes, of the allocated memory block.

If the function fails, the return value is 0XFFFFFFFF. The function does not call
SetLastError. An application cannot call GetLastError for extended error information.

See Also
GetProcessHeap
HeapAlloc
HeapFree
HeapReAlloc
SetLastError

RTX Reference

154

InitializeCriticalSection

InitializeCriticalSection initializes a critical section object.

VOID
InitializeCriticalSection(

 LPCRITICAL_SECTION lpCriticalSection
);

Parameters

lpCriticalSection

A pointer to the critical section object.

Return Values
This function does not return a value.

Comments
The threads of a single process can use a critical section object for mutual-exclusion
synchronization. The process is responsible for allocating the memory used by a critical
section object, which it can do by declaring a variable of type CRITICAL_SECTION. Before
using a critical section, some thread of the process must call InitializeCriticalSection to
initialize the object.

Once a critical-section object has been initialized, the threads of the process can specify the
object in EnterCriticalSection or LeaveCriticalSection to provide mutually exclusive
access to a shared resource. For similar synchronization between the threads of different
processes, use a mutex object.

A critical-section object cannot be moved or copied. The process must also not modify the
object, but must treat it as logically opaque.

See Also
DeleteCriticalSection
EnterCriticalSection
LeaveCriticalSection
RtCreateMutex

Chapter 3: Win32-Supported API

155

LeaveCriticalSection

LeaveCriticalSection releases ownership of the specified critical-section object.

VOID
LeaveCriticalSection(

 LPCRITICAL_SECTION lpCriticalSection
);

Parameters

lpCriticalSection

A pointer to the critical-section object.

Return Values
This function does not return a value.

Comments
The threads of a single process can use a critical-section object for mutual-exclusion
synchronization. The process is responsible for allocating the memory used by a critical-
section object, which it can do by declaring a variable of type CRITICAL_SECTION.

Before using a critical-section, some thread of the process must call the
InitializeCriticalSection function to initialize the object. A thread uses the
EnterCriticalSection function to acquire ownership of a critical-section object. To release its
ownership, the thread must call LeaveCriticalSection once for each time that it entered the
critical-section. If a thread calls LeaveCriticalSection when it does not have ownership of
the specified critical-section object, an error occurs that may cause another thread using
EnterCriticalSection to wait indefinitely. Any thread of the process can use the
DeleteCriticalSection function to release the system resources that were allocated when the
critical-section object was initialized. After this function has been called, the critical-section
object can no longer be used for synchronization.

See Also
DeleteCriticalSection
EnterCriticalSection
InitializeCriticalSection

RTX Reference

156

LoadLibrary

LoadLibrary maps the specified executable module into the address space of the calling
process.

HPINSTANCE
LoadLibrary(

 LPCTSTR lpLibFileName
);

Parameters

LpLibFileName

Pointer to a null-terminated string that names the executable module (either a DLL or EXE
file). The name specified is the filename of the module and is not related to the name stored
in the library module itself, as specified by the library keyword in the module definition
(DEF) file.

If the string specifies a path but the path does not exist in the specified directory, the
function fails.

If the string does not specify a path, the function uses a standard search strategy to find the
file.

For RTDLLs, lplibfilename should have the extension .dll, not .rtdll. A path is not necessary
to provide, but the RTDLL should be registered.

Return Values
If the function succeeds, the return value is a handle to the module.

If the function fails, the return value is NULL. To get extended error information, call
GetLastError.

Comments
LoadLibrary can be used to map a DLL module and return a handle that can be used in
GetProcAddress to get the address of a DLL function. LoadLibrary can also be used to
map other executable modules. For example, the function can specify an EXE file to get a
handle that can be used in FindResource or LoadResource.

Note: Do not use LoadLibrary to run an EXE file.

If the module’s DLL is not already mapped for the calling process, the system calls the DLL’s
DllMain function with the DLL_PROCESS_ATTACH value.

If the DLL’s entry-point function does not return TRUE, LoadLibrary fails and returns
NULL.

Note: It is not safe to call LoadLibrary from DllMain.

Module handles are not global or inheritable. A call to LoadLibrary by one process does not

Chapter 3: Win32-Supported API

157

produce a handle that another process can use, for example, in calling GetProcAddress. The
other process must make its own call to LoadLibrary for the module before calling
GetProcAddress.

If no filename extension is specified in the lpLibFileName parameter, the default library
extension .DLL is appended. However, the filename string can include a trailing point
character (.) to indicate that the module name has no extension. When no path is specified,
the function searches for loaded modules whose base name matches the base name of the
module to be loaded. If the name matches, the load succeeds. Otherwise, the function
searches for the file in the following sequence:

1. The directory from which the application loaded.

2. The current directory.

3. The 32-bit Windows system directory. (Use the GetSystemDirectory function to get
the path of this directory. The name of this directory is SYSTEM32.)

4. The 16-bit Windows system directory. There is no function that obtains the path of
this directory, but it is searched. The name of this directory is SYSTEM. Use the
GetWindowsDirectory function to get the path of this directory. The directories that
are listed in the PATH environment variable. The first directory searched is the one
directory containing the image file used to create the calling process (for more
information, see CreateProcess in the Microsoft SDK documentation). Doing this
allows private dynamic-link library (DLL) files associated with a process to be found
without adding the process’s installed directory to the PATH environment variable.

The Visual C++ compiler supports a syntax that enables you to declare thread-local variables:
_declspec(thread). If you use this syntax in a DLL, you will not be able to load the DLL
explicitly using LoadLibrary. If your DLL will be loaded explicitly, you must use the thread
local storage functions instead of _declspec(thread).

RTSS Environment: The following information applies to the RTSS environment.

n The .exe extension and DLL names without an extension (i.e., the trailing dot
convention) are not supported.

n Any path specified as part of lpLibFileName is ignored. RTDLLs are loaded based on
whether the filename specified matches an existing, registered RTDLL.

n DLLs must be registered through "RTSSRun /dll <image name>" before they can be
successfully accessed with LoadLibrary.

n _declspec(thread) is not supported.

See Also
DllMain
GetProcAddress

RTX Reference

158

RaiseException

RaiseException raises an exception in the calling thread.

VOID
RaiseException(

 DWORD ExceptionCode,
 DWORD ExceptionFlags,
 DWORD nNumberOfArguments,
 CONST DWORD* lpArguments
);

Parameters

ExceptionCode

The application-defined exception code of the exception being raised. The filter expression
and exception-handler block of an exception handler can use GetExceptionCode to retrieve
this value.

Note that the system will clear bit 28 of ExceptionCode. This bit is a reserved exception bit,
used by the system for its own purposes. For example, after calling RaiseException with an
ExceptionCode value of 0XFFFFFFFF, Windows displays a message indicating that the
exception number is 0XEFFFFFFF.

ExceptionFlags

The exception flags. This can be either zero to indicate a continuable exception, or
EXCEPTION_NONCONTINUABLE to indicate a non-continuable exception.

A non-continuable exception causes the process to unload or freeze with a "Non-continuable
Exception" message to prevent a stack fault in RTSS.

Note: The Win32 behavior differs; it continues re-raising
EXCEPTION_NONCONTINUABLE_EXCEPTION.

nNumberOfArguments

The number of arguments in the lpArguments array. This value must not exceed
EXCEPTION_MAXIMUM_PARAMETERS. This parameter is ignored if lpArguments is
NULL.

lpArguments

A pointer to an array of 32-bit arguments. This parameter can be NULL. These arguments
can contain any application-defined data that needs to be passed to the filter expression of
the exception handler.

Return Values
This function does not return a value.

Chapter 3: Win32-Supported API

159

Comments
RaiseException enables a process to use structured exception handling to handle private,
software-generated, application-defined exceptions. Raising an exception causes the
exception dispatcher to go through the following search for an exception handler:

1. The system attempts to locate a frame-based exception handler by searching the stack
frames of the thread in which the exception occurred. The system searches the
current stack frame first, then proceeds backward through preceding stack frames.

2. If no frame-based handler can be found, or no frame-based handler handles the
exception, the system provides default handling based on the exception type. For
most exceptions, the default action is to call ExitProcess.

The values specified in the ExceptionCode, ExceptionFlags, nNumberOfArguments, and
lpArguments parameters can be retrieved in the filter expression of a try-except frame-based
exception handler by calling GetExceptionInformation.

See Also
ExitProcess
GetExceptionCode
GetExceptionInformation

RTX Reference

160

ReadFile

ReadFile reads data from a file, starting at the position indicated by the file pointer. After the
read operation has been completed, the file pointer is adjusted by the number of bytes
actually read.

BOOL
ReadFile(

 HANDLE hFile,
 LPVOID lpBuffer,
 DWORD nNumberOfBytesToRead,
 LPDWORD lpNumberOfBytesRead,
 LPOVERLAPPED lpOverlapped
);

Parameters

hFile

The file to be read. The file handle must have been created with GENERIC_READ access
to the file.

lpBuffer

A pointer to the buffer that receives the data read from the file.

nNumberOfBytesToRead

The number of bytes to be read from the file.

lpNumberOfBytesRead

A pointer to the number of bytes read. ReadFile sets this value to zero before doing any
work or error checking. If this parameter is zero when ReadFile returns TRUE on a named
pipe, the other end of the message-mode pipe called WriteFile with
nNumberOfBytesToWrite set to zero.

lpOverlapped (not supported)

This parameter must be set to NULL.

Return Values
If the function succeeds, the return value is TRUE.

If the return value is TRUE and the number of bytes read is zero, the file pointer was beyond
the current end of the file at the time of the read operation.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Chapter 3: Win32-Supported API

161

Comments
ReadFile returns when the number of bytes requested has been read, or an error occurs.

If part of the file is locked by another process and the read operation overlaps the locked
portion, this function fails.

Applications must not read from nor write to the input buffer that a read operation is using
until the read operation completes. A premature access to the input buffer may lead to
corruption of the data read into that buffer.

When a synchronous read operation reaches the end of a file, ReadFile returns TRUE and
sets *lpNumberOfBytesRead to zero.

See Also
CreateFile
WriteFile

RTX Reference

162

RemoveDirectory

RemoveDirectory deletes an existing empty directory.

BOOL
RemoveDirectory(

 LPCTSTR lpPathName
);

Parameters

lpPathName

A pointer to a null-terminated string that specifies the path of the directory to be removed.
The path must specify an empty directory, and the calling process must have delete access
to the directory.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments
RemoveDirectory does not delete any object identified by lpPathName.

See Also
CreateDirectory

Chapter 3: Win32-Supported API

163

ResumeThread

ResumeThread subtracts one from a thread’s suspend count. When the suspend count is
reduced to zero, the execution of the thread is resumed.

DWORD
ResumeThread(

 HANDLE hThread
);

Parameters

hThread

A handle for the thread to be restarted.

Return Values
If the function succeeds, the return value is the thread’s previous suspend count.

If the function fails, the return value is 0XFFFFFFFF. To get extended error information, call
GetLastError.

Comments
ResumeThread checks the suspend count of the subject thread. If the suspend count is 0, the
thread is not currently suspended. Otherwise, the subject thread’s suspend count is reduced by
one. If the resulting value is 0, then the execution of the subject thread is resumed.

If the return value is 0, the specified thread was not suspended. If the return value is 1, the
specified thread was suspended but was restarted. If the return value is greater than 1, the
specified thread is still suspended.

See Also
SuspendThread

RTX Reference

164

SetFilePointer

SetFilePointer moves the file pointer of an open file.

DWORD
SetFilePointer(

 HANDLE hFile,
 LONG lDistanceToMove,
 PLONG lpDistanceToMoveHigh,
 DWORD MoveMethod
);

Parameters

hFile

The file whose file pointer is to be moved. The file handle must have been created with
GENERIC_READ or GENERIC_WRITE access to the file.

lDistanceToMove

The number of bytes to move the file pointer. A positive value moves the pointer forward in
the file and a negative value moves it backward.

lpDistanceToMoveHigh

A pointer to the high-order word of the 64-bit distance to move. If the value of this
parameter is NULL, SetFilePointer can operate only on files whose maximum size is 2^32
- 2. If this parameter is specified, the maximum file size is 2^64 - 2. This parameter also
receives the high-order word of the new value of the file pointer.

MoveMethod

The starting point for the file pointer move. This parameter can be one of the following
values:

9DOXH 0HDQLQJ

),/(B%(*,1 7KH�VWDUWLQJ�SRLQW�LV�]HUR�RU�WKH�EHJLQQLQJ�RI�WKH�ILOH��,I�),/(B%(*,1
LV�VSHFLILHG��'LVWDQFH7R0RYH�LV�LQWHUSUHWHG�DV�DQ�XQVLJQHG�ORFDWLRQ
IRU�WKH�QHZ�ILOH�SRLQWHU�

),/(B&855(17 7KH�FXUUHQW�YDOXH�RI�WKH�ILOH�SRLQWHU�LV�WKH�VWDUWLQJ�SRLQW�

),/(B(1' 7KH�FXUUHQW�HQG�RI�ILOH�SRVLWLRQ�LV�WKH�VWDUWLQJ�SRLQW�

Return Values
If SetFilePointer succeeds, the return value is the low-order double-word of the new file
pointer, and if lpDistanceToMoveHigh is not NULL, the function puts the high-order double-
word of the new file pointer into the LONG pointed to by that parameter.

If the function fails and lpDistanceToMoveHigh is NULL, the return value is 0xFFFFFFFF.
To get extended error information, call GetLastError.

If the function fails and lpDistanceToMoveHigh is non-NULL, the return value is
0xFFFFFFFF and GetLastError will return a value other than NO_ERROR.

Chapter 3: Win32-Supported API

165

Comments
Do not use SetFilePointer with a handle to a non-seeking device, such as a pipe or a
communications device.

Use caution when setting the file pointer in a multithreaded application. For example, an
application whose threads share a file handle, update the file pointer, and read from the file
must protect this sequence by using a critical section object or mutex object.

If the hFile file handle was opened with the FILE_FLAG_NO_BUFFERING flag set, an
application can move the file pointer only to sector-aligned positions. A sector-aligned
position is a position that is a whole number multiple of the volume’s sector size. If an
application calls SetFilePointer with distance-to-move values that result in a position that is
not sector-aligned and a handle that was opened with FILE_FLAG_NO_BUFFERING, the
function fails, and GetLastError returns ERROR_INVALID_PARAMETER.

If the return value is 0xFFFFFFFF and lpDistanceToMoveHigh is non-NULL, an application
must call GetLastError to determine whether the function has succeeded or failed.

 } // end of error handler

//

// Case Two: calling the function with

// lpDistanceToMoveHigh != NULL

// try to move hFile’s file pointer some huge distance

dwPointerLow = SetFilePointer (hFile, lDistanceLow, & lDistanceHigh,
FILE_BEGIN) ;

// if we failed ...

if (dwPointerLow == 0xFFFFFFFF

 &&

 (dwError = GetLastError()) != NO_ERROR){

 // deal with that failure

 .

 .

 } // end of error handler

See Also
ReadFile
WriteFile
InitializeCriticalSection
EnterCriticalSection
LeaveCriticalSection
DeleteCriticalSection
Mutex Objects

RTX Reference

166

SetLastError

SetLastError sets the last-error code for the calling thread.

VOID
SetLastError(

 DWORD ErrCode
);

Parameters

ErrCode

The last error code for the thread.

Return Values
This function does not return a value.

Comments
Error codes are 32-bit values. (Bit 31 is the most significant bit.) Bit 29 is reserved for
application-defined error codes; no RTAPI error code has this bit set. If you are defining an
error code for your application, set this bit to indicate that the error code has been defined by
your application and ensure that your error code does not conflict with any system-defined
error codes.

Most functions provided in RTX call SetLastError when they fail. Function failure is
typically indicated by a return value error code such as FALSE, NULL, 0XFFFFFFFF, or -1.

Applications can retrieve the value saved by this function by using GetLastError. The use of
GetLastError is optional; an application can call it to find out the specific reason for a
function failure.

The last error code is kept in thread local storage so that multiple threads do not overwrite
each other’s values.

See Also
GetLastError

Chapter 3: Win32-Supported API

167

SetThreadPriority

SetThreadPriority sets the priority value for the specified thread.

BOOL
SetThreadPriority(

 HANDLE hThread,
 int nPriority
);

Parameters

hThread

The thread whose priority value is to be set.

nPriority

See the Comments section in RtGetThreadPriority for details on thread mapping priority.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

See Also
GetThreadPriority
RtGetThreadPriority
RtSetThreadPriority

RTX Reference

168

SetUnhandledExceptionFilter

SetUnhandledExceptionFilter lets an application supersede the top-level exception handler
that RTSS places at the top of each thread and process. After calling this function, if an
exception occurs in a process and the system’s scan of handlers reaches the RTSS unhandled
exception filter, that filter will call the exception filter function specified by the
lpTopLevelExceptionFilter parameter.

LPTOP_LEVEL_EXCEPTION_FILTER
SetUnhandledExceptionFilter(

 LPTOP_LEVEL_EXCEPTION_FILTER pTopLevelExceptionFilter
);

Parameters

lpTopLevelExceptionFilter

The address of a top-level exception filter function that will be called whenever the
UnhandledExceptionFilter function gets control. A value of NULL for this parameter
specifies default handling within UnhandledExceptionFilter. The filter function has syntax
congruent to that of UnhandledExceptionFilter: It takes a single parameter of type
LPEXCEPTION_POINTERS, and returns a value of type LONG. The filter function returns
one of the following values:

9DOXH 0HDQLQJ
(;&(37,21B(;(&87(B+$1'/(5 Return from UnhandledExceptionFilter and execute

the associated exception handler. This usually results in
process termination.

(;&(37,21B&217,18(
B(;(&87,21

Return from UnhandledExceptionFilter and continue
execution from the point of the exception. Note that the
filter function is free to modify the continuation state
by modifying the exception information supplied
through its lpException_Pointers parameter.

(;&(37,21B&217,18(B6($5&+ Proceed with normal execution of
UnhandledExceptionFilter. On an exception, RTSS
always displays an Application Error message box
stating that the application has been frozen or unloaded.
The Win32 UnhandledExceptionFilter semantics
provide the option to disable the exception-related pop-
up via the SetErrorMode function with the
SEM_NOGPFAULTERRORBOX flag.

Return Values
SetUnhandledExceptionFilter returns the address of the previous exception filter
established with the function. A NULL return value means there is no current top-level
exception handler.

Chapter 3: Win32-Supported API

169

Comments
Issuing SetUnhandledExceptionFilter replaces the existing top-level exception filter for all
existing and all future threads in the calling process.

The exception handler specified by lpTopLevelExceptionFilter is executed in the context of
the thread that caused the fault. This can affect the exception handler’s ability to recover from
certain exceptions, such as an invalid stack.

See Also
UnhandledExceptionFilter

RTX Reference

170

Sleep

Sleep suspends the current process for the specified time.

VOID
Sleep(

 ULONG milliSeconds
);

Parameters

milliSeconds

The amount of time to sleep, expressed as milliseconds.

Return Values
The function returns no value.

Comments
Sleep suspends the given thread from execution for the specified amount of time.

See Also
RtCreateTimer
RtDeleteTimer
RtGetClockResolution
RtGetClockTime
RtGetClockTimerPeriod
RtGetTimer
RtSetClockTime
RtSetTimer
RtSetTimerRelative

Chapter 3: Win32-Supported API

171

SuspendThread

SuspendThread suspends the specified thread.

DWORD
SuspendThread(

 HANDLE hThread
);

Parameters

hThread

The thread to suspend.

Return Values
If the function succeeds, the return value is the thread’s previous suspend count; otherwise, it
is 0XFFFFFFFF. To get extended error information, use GetLastError.

Comments
If the function succeeds, execution of the specified thread is suspended and the thread’s
suspend count is raised by one.

Suspending a thread causes the thread to stop executing.

Each thread has a suspend count (with a maximum value of
MAXIMUM_SUSPEND_COUNT). If the suspend count is greater than zero, the thread is
suspended; otherwise, the thread is not suspended and is eligible for execution. Calling
SuspendThread causes the target thread’s suspend count to be raised by one. Attempting to
increment past the maximum suspend count causes an error without incrementing the count.

ResumeThread decrements the suspend count of a suspended thread.

See Also
ResumeThread

RTX Reference

172

TerminateThread

TerminateThread terminates a thread.

BOOL
TerminateThread(

 HANDLE hThread,
 DWORD ExitCode
);

Parameters

hThread

The thread to terminate.

ExitCode

The exit code for the thread. Use GetExitCodeThread to retrieve a thread’s exit value.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments
TerminateThread is used to cause a thread to exit. When this occurs, the target thread has
no chance to execute any user-mode code. TerminateThread is a dangerous function that
should only be used in the most extreme cases. Call TerminateThread only if you know
exactly what the target thread is doing, and you control all of the code that the target thread
could possibly be running at the time of the termination.

A thread cannot protect itself against TerminateThread, other than by controlling access to
its handles.

If the target thread is the last thread of a process when this function is called, the thread’s
process is also terminated.

Terminating a thread does not necessarily remove the thread object from the system. A thread
object is deleted when the last thread handle is closed.

See Also
CreateThread
ExitThread
GetExitCodeThread

Chapter 3: Win32-Supported API

173

TlsAlloc

TlsAlloc allocates a thread local storage (TLS) index. Any thread of the process can
subsequently use this index to store and retrieve values that are local to the thread.

DWORD
TlsAlloc(VOID)

Parameters
This function has no parameters.

Return Values
If the function succeeds, the return value is a TLS index.

If the function fails, the return value is 0xFFFFFFFF. To get extended errorinformation, call
GetLastError.

Comments
The threads of the process can use the TLS index in subsequent calls to TlsFree,
TlsSetValue,or TlsGetValue.

TLS indexes are typically allocated during process or dynamic-link library(DLL)
initialization. Once allocated, each thread of the process can use a TLSindex to access its own
TLS storage slot. To store a value in its slot, athread specifies the index in a call to
TlsSetValue.The thread specifies the same index in a subsequent call to TlsGetValue, to
retrieve the stored value.

The constant TLS_MINIMUM_AVAILABLE defines the minimum number of TLS
indexesavailable in each process. This minimum is guaranteed to be at least 64 for allsystems.

TLS indexes are not valid across process boundaries. A DLL cannot assumethat an index
assigned in one process is valid in another process. A DLL mightuse TlsAlloc,
TlsSetValue,TlsGetValue, and TlsFreeas follows:

n When a DLL attaches to a process, the DLL uses TlsAllocto allocate a TLS index.
The DLL then allocates some dynamic storage and usesthe TLS index in a call to
TlsSetValue tostore the address in the TLS slot. This concludes the per-thread
initializationfor the initial thread of the process. The TLS index is stored in a global
orstatic variable of the DLL.

n Each time the DLL attaches to a new thread of theprocess, the DLL allocates some
dynamic storage for the new thread and uses theTLS index in a call to TlsSetValue
tostore the address in the TLS slot. This concludes the per-thread initializationfor the
new thread.

n Each time an initialized thread makes a DLL callrequiring the data in its dynamic
storage, the DLL uses the TLS index in a callto TlsGetValue to retrieve the address
ofthe dynamic storage for that thread.

Note: Since DllMain is only called for RTDLLs atprocess attach (and not thread attach) it can
only be used in an RTDLL to maintainper-process data for the initializing thread. It can not

RTX Reference

174

be used in an RTDLL to maintain thread local storage for anyadditional threads.

See Also
TlsFree
TlsGetValue
TlsSetValue

Chapter 3: Win32-Supported API

175

TlsFree

TlsFree releases a thread local storage (TLS) index, making it available for reuse.

BOOL
TlsFree(

 DWORD TlsIndex
);

Parameters

TlsIndex

The TLS index that was allocated by TlsAlloc.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments
If the threads of the process have allocated dynamic storage and used the TLS index to store
pointers to this storage, they should free the storage before calling TlsFree. The TlsFree
function does not free any dynamic storage that has been associated with the TLS index. It is
expected that DLLs call this function (if at all) only during their process detach routine.

For a brief discussion of typical uses of the TLS functions, see the Comments section of
TlsAlloc.

See Also
TlsAlloc
TlsGetValue
TlsSetValue

RTX Reference

176

TlsGetValue

TlsGetValue retrieves the value in the calling thread’s thread local storage (TLS) slot for a
specified TLS index. Each thread of a process has its own slot for each TLS index.

LPVOID
TlsGetValue(

 DWORD TlsIndex
);

Parameters

TlsIndex

The TLS index that was allocated by TlsAlloc.

Return Values
If the function succeeds, the return value is the value stored in the calling thread’s TLS slot
associated with the specified index.

If the function fails, the return value is zero. To get extended error information, call
GetLastError.

Note that the data stored in a TLS slot can have a value of zero. In this case, the return value
is zero and GetLastError returns NO_ERROR.

Comments
TLS indexes are typically allocated by TlsAlloc during process or DLL initialization. Once
allocated, each thread of the process can use a TLS index to access its own TLS storage slot
for that index. The storage slot for each thread is initialized to NULL. A thread specifies a
TLS index in a call to TlsSetValue, to store a value in its slot. The thread specifies the same
index in a subsequent call to TlsGetValue, to retrieve the stored value.

TlsSetValue and TlsGetValue were implemented with speed as the primary goal. These
functions perform minimal parameter validation and error checking. In particular, this
function succeeds if TlsIndex is in the range 0 through (TLS_MINIMUM_AVAILABLE - 1).
It is up to the programmer to ensure that the index is valid.

Win32 functions that return indications of failure call SetLastError when they fail. They
generally do not call SetLastError when they succeed. TlsGetValue is an exception to this
general rule; it calls SetLastError to clear a thread’s last error when it succeeds. That allows
checking for the error-free retrieval of NULL values.

See Also
GetLastError
SetLastError
TlsAlloc
TlsFree
TlsSetValue

Chapter 3: Win32-Supported API

177

TlsSetValue

TlsSetValue stores a value in the calling thread’s thread local storage (TLS) slot for a
specified TLS index. Each thread of a process has its own slot for each TLS index.

BOOL
TlsSetValue(

 DWORD TlsIndex,
 LPVOID lpTlsValue
);

Parameters

TlsIndex

The TLS index that was allocated by TlsAlloc.

lpTlsValue

The value to be stored in the calling thread’s TLS slot-specified by TlsIndex.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

Comments
TLS indexes are typically allocated by TlsAlloc during process or DLL initialization. Once
allocated, each thread of the process can use a TLS index to access its own TLS storage slot
for that index. The storage slot for each thread is initialized to NULL. A thread specifies a
TLS index in a call to TlsSetValue, to store a value in its slot. The thread specifies the same
index in a subsequent call to TlsGetValue, to retrieve the stored value.

TlsSetValue and TlsGetValue were implemented with speed as the primary goal. These
functions perform minimal parameter validation and error checking. In particular, this
function succeeds if TlsIndex is in the range 0 through (TLS_MINIMUM_AVAILABLE - 1).
It is up to the programmer to ensure that the index is valid.

See Also
TlsAlloc
TlsFree
TlsGetValue

RTX Reference

178

UnhandledExceptionFilter

UnhandledExceptionFilter displays an Application Error message box and causes the
exception handler to be executed. This function can be called only from within the filter
expression of a try-except exception handler.

LONG
UnhandledExceptionFilter(

 STRUCT_EXCEPTION_POINTERS * ExceptionInfo
);

Parameters

ExceptionInfo

A pointer to an EXCEPTION_POINTERS structure containing a description of the
exception and the processor context at the time of the exception. This pointer is the return
value of a call to the GetExceptionInformation function.

Return Values
The function returns one of the following values:

EXCEPTION_CONTINUE_SEARCH
 Control returns to the default system exception handler, which terminates the process.

EXCEPTION_EXECUTE_HANDLER
 Control returns to the exception handler, which is free to take any appropriate action.

Comments
The function displays an Application Error message box. When a thread of a multi-threaded
RTSS process causes an exception, RTSS freezes (or unloads, if so configured) all threads of
a process and produces an Application Error message box. The default behavior of Win32 is
somewhat different. In Win32, until the user responds to the box, other threads of the Win32
process continue running. When the user has responded, all threads of the Win32 process
terminate.

See Also
GetExceptionInformation
SetUnhandledExceptionFilter

Chapter 3: Win32-Supported API

179

WriteFile

WriteFile writes data to a file (synchronous operations only). The function starts writing data
to the file at the position indicated by the file pointer. After the write operation has been
completed, the file pointer is adjusted by the number of bytes actually written.

BOOL
WriteFile(

 HANDLE hFile,
 LPCVOID lpBuffer,
 DWORD nNumberOfBytesToWrite,
 LPDWORD lpNumberOfBytesWritten,
 LPOVERLAPPED lpOverlapped
);

Parameters

hFile

The file to be written to. The file handle must have been created with GENERIC_WRITE
access to the file.

lpBuffer

A pointer to the buffer containing the data to be written to the file.

nNumberOfBytesToWrite

The number of bytes to write to the file.

Windows NT and Windows 2000 interpret a value of zero as specifying a null write
operation. A null write operation does not write any bytes but does cause the time stamp to
change.

lpNumberOfBytesWritten

A pointer to the number of bytes written by this function. WriteFile sets this value to zero
before doing any work or error checking.

If lpOverlapped is NULL, lpNumberOfBytesWritten cannot be NULL.

lpOverlapped (not supported by RTX)

This parameter must be set to NULL.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE. To get extended error information, call
GetLastError.

RTX Reference

180

Comments
RTX does not support asynchronous operations.

If part of the file is locked by another process and the write operation overlaps the locked
portion, this function fails.

Applications must not read from nor write to the output buffer that a write operation is using
until the write operation completes. Premature access of the output buffer may lead to
corruption of the data written from that buffer.

Windows NT and Windows 2000 interpret zero bytes to write as specifying a null write
operation and WriteFile does not truncate or extend the file.

See Also
CreateFile
ReadFile

181

CHAPTER 4

C Run-Time API

Alphabetical List of C Run-Time APIs
The following C run-time library calls are supported in the RTSS environment.

DEV

DFRV

DVLQ

DWDQ

DWDQ�

DWRI

DWRL

DWRO

EVHDUFK

FDOORF

FHLO

FRV

FRVK

GLIIWLPH

GLY

H[LW

H[S

IDEV

IFORVH

IIOXVK

IJHWV

IORRU

IPRG

IRSHQ

ISULQWI��VWGHUU�

ISXWF

ISXWV

IUHDG

IUHH

IUH[S

IVHHN

IWHOO

IZULWH

JHWF

LVDOQXP

LVDOSKD

LVFQWUO

LVGLJLW

LVJUDSK

LVORZHU

LVSULQW

LVSXQFW

LVVSDFH

LVXSSHU

LVZDOQXP

LVZDOSKD

LVZDVFLL

LVZFQWUO

LVZFW\SH

LVZGLJLW

LVZJUDSK

LVZORZHU

LVZSULQW

LVZSXQFW

LVZVSDFH

LVZXSSHU

LVZ[GLJLW

LV[GLJLW

ODEV

OGH[S

OGLY

ORJ

ORJ��

ORQJMPS

PDLQ

PDOORF

PHPFKU

PHPFPS

PHPFS\

PHPPRYH

PHPVHW

PRGI

SHUURU

SRZ

SULQWI

SXWF

SXWFKDU

TVRUW

UDQG

UHDOORF

UHZLQG

VHWMPS

VLJQDO

VLQ

VLQK

VTUW

VUDQG

VVFDQI

VWUFDW

VWUFKU

VWUFPS

VWUFS\

VWUFVSQ

VWUHUURU

VWUOHQ

VWUQFDW

VWUQFPS

VWUQFS\

VWUSEUN

VWUUFKU

VWUVSQ

VWUVWU

VWUWRG

VWUWRN

VWUWRO

VWUWRXO

WDQ

WDQK

WRORZHU

WRXSSHU

WRZORZHU

WRZXSSHU

XQJHWF

YDBVWDUW

YVSULQWI

ZFVFDW

ZFVFKU

ZFVFPS

ZFVFS\

ZFVFVSQ

ZFVIWLPH

ZFVOHQ

ZFVQFDW

ZFVQFPS

ZFVQFS\

ZFVSEUN

ZFVUFKU

ZFVVSQ

ZFVVWU

ZFVWRG

ZFVWRN

ZFVWRO

ZFVWRXO

ZPDLQ

ZSULQWI

ZWRI

ZWRL

ZWRO

BFRQWUROIS

BISUHVHW

RTX Reference

182

183

CHAPTER 5

Windows NT Driver IPC API (RTKAPI)
Reference

RtkCloseHandle

RtkCloseHandle closes an open object handle.

BOOL RTKAPI
RtkCloseHandle(

 RTSSINST RtssInst
 PULONG pErrorCode
 HANDLE hObject
);

Parameters

RtssInst

An RTSSINST type returned from call to RtkRtssAttach.

pErrorCode

A pointer to Ulong for error returned code.

hObject

An open object handle.

Return Values
If the function succeeds, the return value is TRUE and ErrorCode if defined is set to NULL.

If the function fails, the return value is FALSE. To get any extended error information, check
the ErrorCode value. pErrorCode may be set to NULL on entry and ignored.

Comments
RtkCloseHandle closes handles to the following RTSS objects:

n Mutex

n Semaphore

n Shared memory

n Event

RtkCloseHandle invalidates the specified object handle, decrements the object’s handle
count, and performs object retention checks. Once the last handle to an object is closed, the
object is removed from the operating system.

RTX Reference

184

RtkCreateEvent

RtkCreateEvent creates an RTSS event. A handle is returned to the newly created event.

HANDLE RTKAPI
RtkCreateEvent(

 RTSSINST RtssInst,
 PULONG pErrorCode,
 LPSECURITY_ATTRIBUTES pSecurity,
 BOOL bManualReset,
 BOOL InitialState,
 PUNICODE_STRING lpName
);

Parameters

RtssInst

An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to a location where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, this location is set to
NULL if no error occurred.

pSecurity (ignored)

A pointer to a SECURITY_ATTRIBUTES structure.

bManualReset, bInitialState, lpName

A pointer to a PUNICODE_STRING specifying the name of the event object. The name is
limited to RTX_MAX_PATH characters and can contain any character except the backslash
path-separator character (\). Name comparison is case-sensitive.

Return Values
If the function succeeds, the return value is a handle to the event object. If the named event
object existed before the function call, pErrorCode is set to ERROR_ALREADY_EXISTS.

If the function fails, the return value is NULL.

Comments
The handle returned by RtkCreateEvent has EVENT_ALL_ACCESS access to the new
event object and can be used in any function that requires a handle to a event object.

Any thread of the calling process can specify the event-object handle in a call to
RtkWaitForSingleObject. This wait function returns when the state of the specified object is
signaled.

Multiple processes can have handles of the same event object, enabling use of the object for
process synchronization. The available object-sharing mechanism is: A process can specify

Chapter 5: Windows NT Driver IPC API

185

the name of a event object in a call to RtkOpenEvent or RtkCreateEvent.

RtkCloseHandle closes an event-object handle. The system closes the handle automatically
when the process terminates. The event object is destroyed when its last handle has been
closed.

See Also
RtkCloseHandle
RtkOpenEvent

RTX Reference

186

RtkCreateMutex

RtkCreateMutex creates an RTSS mutex. A handle is returned to the newly created mutex
object.

HANDLE RTKAPI
RtkCreateMutex(

 RTSSINST RtssInst,
 PULONG pErrorCode,
 LPSECURITY_ATTRIBUTES pSecurity,
 BOOL bInitialOwner,
 PUNICODE_STRING lpName
);

Parameters

RtssInst

An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to a location where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, this location is set to
NULL if no error occurred.

pSecurity (ignored)

A pointer to a SECURITY_ATTRIBUTES structure.

bInitialOwner

The initial ownership state of the mutex object. If TRUE, the calling thread requests
immediate ownership of the mutex object. Otherwise, the mutex is not owned.

lpName

A pointer to a PUNICODE_STRING specifying the name of the mutex object. The name is
limited to RTX_MAX_PATH characters and can contain any character except the backslash
path-separator character (\). Name comparison is case-sensitive.

If lpName matches the name of an existing named mutex object, this function requests
MUTEX_ALL_ACCESS access to the existing object. In this case, the bInitialOwner
parameter is ignored because it has already been set by the creating process.

If lpName matches the name of an existing semaphore, the function fails;
ERROR_INVALID_HANDLE is returned in the ErrorCode location, if defined, provided
by the caller. This occurs because mutex and semaphore objects share the same name space.

Return Values
If the function succeeds, the return value is a handle to the mutex object. If the named mutex
object existed before the function call, pErrorCode is set to ERROR_ALREADY_EXISTS.

Chapter 5: Windows NT Driver IPC API

187

If the function fails, the return value is NULL.

Comments
The handle returned by RtkCreateMutex has MUTEX_ALL_ACCESS access to the new
mutex object and can be used in any function that requires a handle to a mutex object.

Any thread of the calling process can specify the mutex-object handle in a call to
RtkWaitForSingleObject. This wait function returns when the state of the specified object is
signaled.

The state of a mutex object is signaled when it is not owned by any thread. The creating
thread can use the bInitialOwner flag to request immediate ownership of the mutex.
Otherwise, a thread must use the wait function to request ownership. When the mutex’s state
is signaled, the highest priority waiting thread is granted ownership (if more than one thread
is waiting at the same priority, they receive ownership of the mutex in the order they waited);
the mutex’s state changes to non-signaled; and the wait function returns. Only one thread can
own a mutex at any given time. The owning thread uses RtkReleaseMutex to release its
ownership.

The thread that owns a mutex can specify the same mutex in repeated wait function calls
without blocking its execution. Typically, you would not wait repeatedly for the same mutex,
but this mechanism prevents a thread from deadlocking itself while waiting for a mutex that it
already owns. However, to release its ownership, the thread must call RtkReleaseMutex
once for each time that the mutex satisfied a wait.

Two or more processes can call RtkCreateMutex to create the same named mutex. The first
process actually creates the mutex, and subsequent processes open a handle to the existing
mutex. This enables multiple processes to get handles of the same mutex, while relieving the
user of the responsibility of ensuring that the creating process is started first. When using this
technique, you should set the bInitialOwner flag to FALSE; otherwise, it can be difficult to
be certain which process has initial ownership.

Multiple processes can have handles of the same mutex object, enabling use of the object for
process synchronization. The available object-sharing mechanism is: A process can specify
the name of a mutex object in a call to RtkOpenMutex or RtkCreateMutex.

RtkCloseHandle closes a mutex-object handle. The system closes the handle automatically
when the process terminates. The mutex object is destroyed when its last handle has been
closed.

See Also
RtkCloseHandle
RtkOpenMutex
RtkReleaseMutex

RTX Reference

188

RtkCreateSemaphore

RtkCreateSemaphore creates a named semaphore object.

HANDLE RTKAPI
RtkCreateSemaphore(

 RTSSINST RtssInst,
 PULONG pErrorCode,
 LPSECURITY_ATTRIBUTES pSecurity,
 LONG lInitialCount,
 LONG lMaximumCount,
 PUNICODE_STRING lpName
);

Parameters

RtssInst

An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to a location where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, this location is set to
NULL if no error occurred.

pSecurity (ignored)

A pointer to a SECURITY_ATTRIBUTES structure.

lpSemaphoreAttributes (ignored)

A pointer to security attributes.

lInitialCount

An initial count for the semaphore object. This value must be greater than or equal to zero
and less than or equal to lMaximumCount. The state of a semaphore is signaled when its
count is greater than zero and non-signaled when it is zero. The count is decreased by one
whenever a wait function releases a thread that was waiting for the semaphore. The count is
increased by a specified amount by calling RtkReleaseSemaphore.

 lMaximumCount

The maximum count for the semaphore object. This value must be greater than zero.

lpName

A pointer to a PUNICODE_STRING specifying the name of the mutex object. The name is
limited to RTX_MAX_PATH characters and can contain any character except the backslash
path-separator character (\). Name comparison is case-sensitive.

If lpName matches the name of an existing named semaphore object, this function requests
access to the existing object. In this case, lInitialCount and lMaximumCount are ignored

Chapter 5: Windows NT Driver IPC API

189

because they have already been set by the creating process.

Return Values
If the function succeeds, the return value is a handle to the semaphore object. If lpName
matches the name of an existing semaphore, the function fails;
ERROR_INVALID_HANDLE is returned in the ErrorCode location, if defined, provided by
the caller. This occurs because mutex and semaphore objects share the same name space.

Comments
The handle returned by RtkCreateSemaphore has all accesses to the new semaphore object
and can be used in any function that requires a handle to a semaphore object.

Any thread of the calling process can specify the semaphore-object handle in a call to one of
the wait functions. The single-object wait functions return when the state of the specified
object is signaled. The multiple-object wait functions can be instructed to return either when
any one or when all of the specified objects are signaled. When a wait function returns, the
waiting thread is released to continue its execution.

The state of a semaphore object is signaled when its count is greater than zero, and non-
signaled when its count is equal to zero. lInitialCount specifies the initial count. Each time a
waiting thread is released because of the semaphore’s signaled state, the count of the
semaphore is decreased by one. Use RtkReleaseSemaphore to increment a semaphore’s
count by a specified amount. The count can never be less than zero or greater than the value
specified in lMaximumCount.

Multiple processes can have handles of the same semaphore object, enabling use of the object
for inter-process synchronization. The available object-sharing mechanism is: A process can
specify the name of a semaphore object in a call to RtkOpenSemaphore or
RtkCreateSemaphore.

Use RtkCloseHandle to close the handle. The system closes the handle automatically when
the process terminates. The semaphore object is destroyed when its last handle has been
closed.

See Also
RtkCloseHandle
RtkOpenSemaphore
RtkReleaseSemaphore

RTX Reference

190

RtkCreateSharedMemory

RtkCreateSharedMemory creates a named region of physical memory that can be mapped
by any process.

HANDLE RTKAPI
RtkCreateSharedMemory(

 RTSSINST RtssInst,
 PULONG pErrorCode,
 DWORD flProtect,
 DWORD MaximumSizeHigh,
 DWORD MaximumSizeLow,
 PUNICODE_STRING lpName,
 VOID ** location
);

Parameters

RtssInst

An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to a location where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, this location is set to
NULL if no error occurred.

flProtect (ignored by RTSS)

The protection desired for the shared memory view. This parameter can be one of the
following values:

PAGE_READONLY
 Gives read-only access to the committed region of pages. An attempt to write to or
execute the committed region results in an access violation.

PAGE_READWRITE
 Gives read-write access to the committed region of pages.

MaximumSizeHigh

The high-order 32 bits of the size of the shared memory object.

MaximumSizeLow

The low-order 32 bits of the size of the shared memory object.

lpName

A pointer to a PUNICODE_STRING specifying the name of the shared memory object. The
name is limited to RTX_MAX_PATH characters and can contain any character except the
backslash path-separator character (\). Name comparison is case-sensitive.

If this parameter matches the name of an existing named shared memory object, the function

Chapter 5: Windows NT Driver IPC API

191

requests access to the shared memory object with the protection specified by flProtect.

location

A pointer to a location where the virtual address of the shared memory will be stored.

Return Value
If the function succeeds, the return value is a handle to the shared memory object. If the
object existed before the function call, ErrorCode, if defined, contains
ERROR_ALREADY_EXISTS, and the return value is a valid handle to the existing shared
memory object (with its current size, not the new specified size).

If the function fails, the return value is NULL.

Comments
The handle that RtkCreateSharedMemory returns has full access to the new shared memory
object. Shared memory objects can be shared by name. For information on opening a shared
memory object by name, see RtkOpenSharedMemory.

To fully close a shared memory object, an application must close the physical mapping object
handle by calling RtkCloseHandle. The order in which these functions are called does not
matter.

When all handles to the shared memory object representing the physical memory are closed,
the object is destroyed and physical memory is returned to the system.

See Also
RtkCloseHandle
RtkOpenSharedMemory

RTX Reference

192

RtkOpenEvent

RtkOpenEvent returns a handle to the named RTSS event.

HANDLE RTKAPI
RtOpenEvent(

 RTSSINST RtssInst,
 PULONG pErrorCode,
 DWORD DesiredAccess,
 BOOL bInheritHandle,
 PUNICODE_STRING lpName
);

Parameters

RtssInst

An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to a location where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, this location is set to
NULL if no error occurred.

DesiredAccess (ignored)

bInheritHandle (ignored)

lpName

A pointer to a PUNICODE_STRING specifying the name of the event object. The name is
limited to RTX_MAX_PATH characters and can contain any character except the backslash
path-separator character (\). Name comparison is case-sensitive.

Return Values
If the function succeeds, the return value is a handle of the event object.

If the function fails, the return value is NULL.

Comments
RtkOpenEvent enables multiple processes to open handles of the same event object. The
function succeeds only if some process has already created the event with RtkCreateEvent.
The calling process can use the returned handle in any function that requires a handle of a
event object, such as a wait function.

Use RtkCloseHandle to close the handle. The system closes the handle automatically when
the process terminates. The event object is destroyed when its last handle has been closed.

See Also
RtkCloseHandle
RtkCreateEvent

Chapter 5: Windows NT Driver IPC API

193

RtkOpenMutex

RtkOpenMutex returns a handle to the named RTSS mutex.

HANDLE
RtOpenMutex(

 RTSSINST RtssInst,
 PULONG pErrorCode,
 DWORD DesiredAccess,
 BOOL bInheritHandle,
 PUNICODE_STRING lpName
);

Parameters

RtssInst

An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to a location where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, this location is set to
NULL if no error occurred.

DesiredAccess (ignored)

The requested access to the mutex object.

bInheritHandle (ignored)

An indicator whether the returned handle is inheritable.

lpName

A pointer to a PUNICODE_STRING specifying the name of the mutex object. The name is
limited to RTX_MAX_PATH characters and can contain any character except the backslash
path-separator character (\). Name comparison is case-sensitive.

Return Values
If the function succeeds, the return value is a handle of the mutex object.

If the function fails, the return value is NULL.

Comments
RtkOpenMutex enables multiple processes to open handles of the same mutex object. The
function succeeds only if some process has already created the mutex with RtkCreateMutex.
The calling process can use the returned handle in any function that requires a handle of a
mutex object, such as a wait function.

RTX Reference

194

Use RtkCloseHandle to close the handle. The system closes the handle automatically when
the process terminates. The mutex object is destroyed when its last handle has been closed.

See Also
RtkCloseHandle
RtkCreateMutex
RtkReleaseMutex

Chapter 5: Windows NT Driver IPC API

195

RtkOpenSemaphore

RtkOpenSemaphore returns a handle of an existing named semaphore object.

HANDLE RTKAPI
RtkOpenSemaphore(

 RTSSINST RtssInst,
 PULONG pErrorCode,
 DWORD DesiredAccess,
 BOOL bInheritHandle,
 PUNICODE_STRING lpName
);

Parameters

RtssInst

An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to a location where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, this location is set to
NULL if no error occurred.

DesiredAccess

The requested access to the semaphore object. This parameter can be any combination of the
following values:

SEMAPHORE_ALL_ACCESS
 Specifies all possible access flags for the semaphore object.

SEMAPHORE_MODIFY_STATE
 Enables use of the semaphore handle in RtkReleaseSemaphore to modify the
semaphore’s count.

SYNCHRONIZE
 Enables use of the semaphore handle in any of the wait functions to wait for the
semaphore’s state to be signaled.

bInheritHandle

This must be FALSE.

lpName

A pointer to a PUNICODE_STRING specifying the name of the mutex object. The name is
limited to RTX_MAX_PATH characters and can contain any character except the backslash
path-separator character (\). Name comparison is case-sensitive.

RTX Reference

196

Return Values
If the function succeeds, the return value is a handle of the semaphore object.

If the function fails, the return value is NULL.

Comments
RtkOpenSemaphore enables multiple processes to open handles of the same semaphore
object. The function succeeds only if some process has already created the semaphore by
using RtkCreateSemaphore. The calling process can use the returned handle in any function
that requires a handle of a semaphore object, such as a wait function, subject to the
limitations of the access specified in DesiredAccess.

Use RtkCloseHandle to close the handle. The system closes the handle automatically when
the process terminates. The semaphore object is destroyed when its last handle has been
closed.

See Also
RtkCloseHandle
RtkReleaseSemaphore

Chapter 5: Windows NT Driver IPC API

197

RtkOpenSharedMemory

RtkOpenSharedMemory opens a named physical-mapping object.

HANDLE RTKAPI
RtkOpenSharedMemory(

 RTSSINST RtssInst,
 PULONG pErrorCode,
 DWORD DesiredAccess,
 BOOL bInheritHandle,
 PUNICODE_STRING lpName,
 VOID ** location
);

Parameters

RtssInst

An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to a location where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, this location is set to
NULL if no error occurred.

DesiredAccess

The access mode. The RTSS environment always grants read and write access. This
parameter can be one of the following values:

SHM_MAP_WRITE
 Read-write access. The target shared memory object must have been created with
PAGE_READWRITE protection. A read-write view of the shared memory is mapped.

SHM_MAP_READ
 Read-only access. The target shared memory object must have been created with
PAGE_READWRITE or PAGE_READ protection. A read-only view of the shared
memory is mapped.

bInheritHandle (ignored)

lpName

A pointer to a PUNICODE_STRING specifying the name of the shared memory object. The
name is limited to RTX_MAX_PATH characters and can contain any character except the
backslash path-separator character (\). Name comparison is case-sensitive.

location

A pointer to a location where the virtual address of the mapping will be stored.

RTX Reference

198

Return Values
If the function succeeds, the return value is an open handle to the specified shared memory
object.

If the function fails, the return value is NULL.

Comments
The handle that RtkOpenSharedMemory returns can be used with RtkCloseHandle to
decrement the reference count to the shared memory object. When the reference count is
zero, the object is removed from the system.

See Also
RtkCreateSharedMemory
RtkCloseHandle

Chapter 5: Windows NT Driver IPC API

199

RtkPulseEvent

RtkPulseEvent provides a single operation that sets (to signaled) the state of the specified
event object and then resets it (to non-signaled) after releasing the appropriate number of
waiting threads.

BOOL RTKAPI
RtkPulseEvent(

 RTSSINST RtssInst,
 PULONG pErrorCode,
 HANDLE hEvent
);

Parameters

RtssInst

An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to a location where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, this location is set to
NULL if no error occurred.

hEvent

The handle which identifies the event object as returned by a preceding call to
RtkCreateEvent or RtkOpenEvent.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.

Comments
For a manual-reset event object, all waiting threads that can be released are released. The
function then resets the event object’s state to non-signaled and returns.

For an auto-reset event object, the function resets the state to non-signaled and returns after
releasing a single waiting thread, even if multiple threads are waiting.

If no threads are waiting, or if no thread can be released immediately, RtkPulseEvent simply
sets the event object’s state to non-signaled and returns.

See Also
RtkCreateEvent
RtkOpenEvent
RtkWaitForSingleObject

RTX Reference

200

RtkReleaseMutex

RtkReleaseMutex relinquishes ownership of an RTSS mutex.

BOOL RTKAPI
RtkReleaseMutex(

 RTSSINST RtssInst,
 PULONG pErrorCode,
 HANDLE hMutex
);

Parameters

RtssInst

An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to a location where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, this location is set to
NULL if no error occurred.

hMutex

The handle which identifies the mutex object as returned by a preceding call to
RtkCreateMutex or RtkOpenMutex.

Return Values
If the function succeeds, the return value is non-zero.

If the function fails, the return value is zero.

Comments
RtkReleaseMutex fails if the calling thread does not own the mutex object.

A thread gets ownership of a mutex by specifying a handle of the mutex in
RtkWaitForSingleObject. The thread that creates a mutex object can also get immediate
ownership without using one of the wait functions. When the owning thread no longer needs
to own the mutex object, it calls RtkReleaseMutex.

While a thread has ownership of a mutex, it can specify the same mutex in additional wait-
function calls without blocking its execution. This prevents a thread from deadlocking itself
while waiting for a mutex that it already owns. However, to release its ownership, the thread
must call RtkReleaseMutex once for each time that the mutex satisfied a wait.

See Also
RtkCreateMutex
RtkOpenMutex
RtkWaitForSingleObject

Chapter 5: Windows NT Driver IPC API

201

RtkReleaseSemaphore

RtkReleaseSemaphore increases the count of the specified semaphore object by a specified
amount.

BOOL RTKAPI
RtkReleaseSemaphore(

 RTSSINST RtssInst,
 PULONG pErrorCode,
 HANDLE hSemaphore,
 LONG lReleaseCount,
 PLONG lpPreviousCount
);

Parameters

RtssInst

An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to a location where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, this location is set to
NULL if no error occurred.

hSemaphore

The semaphore object. RtkCreateSemaphore or RtkOpenSemaphore returns this handle.

lReleaseCount

The amount by which the semaphore object’s current count is to be increased. The value
must be greater than zero. If the specified amount would cause the semaphore’s count to
exceed the maximum count that was specified when the semaphore was created, the count is
not changed and the function returns FALSE.

lpPreviousCount

A pointer to a 32-bit variable receives the previous count for the semaphore. This parameter
can be NULL if the previous count is not required.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.

Comments
The state of a semaphore object is signaled when its count is greater than zero and non-
signaled when its count is equal to zero. The process that calls RtkCreateSemaphore
specifies the semaphore’s initial count. Each time a waiting thread is released because of the

RTX Reference

202

semaphore’s signaled state, the count of the semaphore is decreased by one.

Typically, an application uses a semaphore to limit the number of threads using a resource.
Before a thread uses the resource, it specifies the semaphore handle in a call to one of the
wait functions. When the wait function returns, it decreases the semaphore’s count by one.
When the thread has finished using the resource, it calls RtkReleaseSemaphore to increase
the semaphore’s count by one.

Another use of RtkReleaseSemaphore is during an application’s initialization. The
application can create a semaphore with an initial count of zero. This sets the semaphore’s
state to non-signaled and blocks all threads from accessing the protected resource. When the
application finishes its initialization, it uses RtkReleaseSemaphore to increase the count to
its maximum value, to permit normal access to the protected resource.

See Also
RtkCreateSemaphore
RtkOpenSemaphore

Chapter 5: Windows NT Driver IPC API

203

RtkResetEvent

RtkResetEvent provides a single operation that sets (to signaled) the state of the specified
event object and then resets it (to non-signaled) after releasing the appropriate number of
waiting threads.

BOOL RTKAPI
RtkResetEvent(

 RTSSINST RtssInst,
 PULONG pErrorCode,
 HANDLE hEvent
);

Parameters

RtssInst

An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to a location where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, this location is set to
NULL if no error occurred.

hEvent

The handle which identifies the event object as returned by a preceding call to
RtkCreateEvent or RtkOpenEvent.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.

Comments
For a manual-reset event object, all waiting threads that can be released are released. The
function then resets the event object’s state to non-signaled and returns.

For an auto-reset event object, the function resets the state to non-signaled and returns after
releasing a single waiting thread, even if multiple threads are waiting.

If no threads are waiting, or if no thread can be released immediately, RtkPulseEvent simply
sets the event object’s state to non-signaled and returns.

See Also
RtkCreateEvent
RtkOpenEvent
RtkWaitForSingleObject

RTX Reference

204

RtkRtssAttach

RtkRtssAttach attaches a kernel device driver to RTSS.

RTSSINST RTKAPI
RtkRtssAttach(

 LONG MaxWFSO,
 PULONG pErrorCode,
);

Parameters

MaxWFSO

The count of the number of wait-for-single-objects the user requires. The required minimum
is one.

pErrorCode

A pointer to a location where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, this location is set to
NULL if no error occurred.

Return Values
If the function succeeds, the return value is a non-zero RTSSINST.

If the function fails, the return value is zero.

Comments
This call is made only once by a kernel-resident device driver. The returned instance must be
used for all subsequent RTKAPI calls. This call is usually made at, but not restricted to,
driver entry.

If the device driver caller starts at boot time - you have to, first, set RTX to start at the boot
time, and second, make this call ONCE in the Driver Dispatch routine, NEVER in the
DriverEntry() routine.

See Also
RtkRtssDetach

Chapter 5: Windows NT Driver IPC API

205

RtkRtssDetach

RtkRtssDetach detaches a kernel device driver from RTSS.

VOIDRTKAPI
RtkRtssAttach(

 RTSSINST RtssInst
 PULONG pErrorCode,
);

Parameters

RtssInst

An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to a location where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, this location is set to
NULL if no error occurred.

Return Values
The function always succeeds.

Comments
This call is made only once by a kernel-resident device driver to disconnect or detach from
RTSS. This call is usually made at, but not restricted to, driver unload.

See Also
RtkRtssAttach

RTX Reference

206

RtkSetEvent

RtkSetEvent sets the state of the specified event object to signaled.

BOOL RTKAPI
RtkSetEvent(

 RTSSINST RtssInst,
 PULONG pErrorCode,
 HANDLE hEvent
);

Parameters

RtssInst

An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to a location where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, this location is set to
NULL if no error occurred.

hEvent

The handle which identifies the event object as returned by a preceding call to
RtkCreateEvent or RtkOpenEvent.

Return Values
If the function succeeds, the return value is TRUE.

If the function fails, the return value is FALSE.

Comments
The state of a manual-reset event object remains signaled until it is set explicitly to the non-
signaled state by the RtkSetEvent function. Any number of waiting threads, or threads that
subsequently begin wait operations for the specified event object by calling the wait
functions, can be released while the object’s state is signaled.

The state of an auto-reset event object, the function resets the state to non-signaled and
returns after releasing remains signaled until a single waiting thread is released, at which time
the system automatically sets the state to non-signaled. If no threads are waiting, the event
object’s state remains signaled.

See Also
RtkCreateEvent
RtkOpenEvent
RtkWaitForSingleObject

Chapter 5: Windows NT Driver IPC API

207

RtkWaitForSingleObject

RtkWaitForSingleObject returns when one of the following occurs:

n The specified object is in the signaled state.

n The time-out interval elapses.

ULONG
RtkWaitForSingleObject(

 RTSSINST RtssInst,
 PULONG pErrorCode,
 HANDLE hHandle,
 DWORD Milliseconds
);

Parameters

RtssInst

An RTSSINST value returned from a call to RtkRtssAttach.

pErrorCode

A pointer to a location where additional error information may be returned. This location
need not be defined; the user may pass a NULL value. If defined, this location is set to
NULL if no error occurred.

hHandle

The object identifier. See the list of the object types whose handles can be specified in the
Comments section.

Milliseconds

The time-out interval, in milliseconds. The function returns if the interval elapses, even if
the object’s state is non-signaled. If Milliseconds is zero, the function tests the object’s state
and returns immediately. If Milliseconds is INFINITE, the function’s time-out interval never
elapses.

Return Values
If the function succeeds, the return value indicates the event that caused the function to
return.

If the function fails, the return value is WAIT_FAILED.

 The return value on success is one of the following values:

WAIT_ABANDONED
 The specified object is a mutex object that was not released by the thread that owned the
mutex object before the owning thread terminated. Ownership of the mutex object is
granted to the calling thread, and the mutex is set to non-signaled.

RTX Reference

208

WAIT_OBJECT_0
 The state of the specified object is signaled.

WAIT_TIMEOUT
 The time-out interval elapsed, and the object’s state is non-signaled.

Comments
RtkWaitForSingleObject checks the current state of the specified object. If the object’s state
is non-signaled, the calling thread enters an efficient wait state. The thread consumes very
little processor time while waiting for the object state to become signaled or the time-out
interval to elapse.

Before returning, a wait function modifies the state of some types of synchronization objects.
Modification occurs only for the object or objects whose signaled state caused the function to
return. For example, the count of a semaphore object is decreased by one.

RtkWaitForSingleObject can wait for the following objects:

Semaphore
 RtkCreateSemaphore or RtkOpenSemaphore returns the handle. A semaphore object
maintains a count between zero and some maximum value. Its state is signaled when its
count is greater than zero and non-signaled when its count is zero. If the current state is
signaled, the wait function decreases the count by one.

Mutex
 RtkCreateMutex and RtkOpenMutex return handles to the mutex object which
becomes signaled when the mutex is unowned.

See Also
RtkCreateMutex
RtkCreateSemaphore
RtkOpenMutex
RtkOpenSemaphor

209

Index

A

AbnormalTermination, 99

B

Bus IO APIs, 14

C

C Library-Supported Functions, 7
Matrix, 7

Call
RtGetThreadPriority, 43

CENTer, x
Clocks, 12
CreateDirectory, 101
CreateFile, 102
CreateProcess, 142
CreateThread, 107

D

DeleteCriticalSection, 109
Documentation Updates, x
DWORD, 89
DWORD nCount, 89

E

Exception Management APIs, 11
ExitCode, 118
ExitProcess, 117
ExitThread, 118

F

FreeLibrary, 119, 206
FWaitAll, 89

G

General Use APIs, 12
GetCurrentProcessId, 120
GetCurrentThread, 121
GetCurrentThreadId, 122
GetExceptionCode, 123
GetLastError, 12, 127
GetProcessHeap, 130
GetThreadPriority, 131

H

HalGetInterruptVector, 4, 32
HeapReAlloc, 137

I

Inter-Process Communication, 13

Interrupt Services, 13
Interrupt Services APIs, 13
IPC, 13

L

Like
Win32 CreateMutex, 1

LpApplicationName, 20
LpCommandLine, 20
LpCurrentDirectory, 20
LpExitCode, 126
LpProcessAttributes, 20
LpProcessInformation, 20
LpThreadAttributes, 20

M

Memory APIs, 13
Mutex, 23, 66, 89, 186

creates, 66
identifies, 66
own, 66

Mutual-exclusion synchronization, 116

N

Namespace, 23

R

Real-Time APIs, 11, 12, 13, 14
RtAllocateContiguousMemory, 1, 35, 218
RtAllocateLockedMemory, 2, 36
RTAPI, 210
RTAPI.h, 89
RtAttachShutdownHandler, 69
RtCancelTimer, 11, 224
RtCloseHandle, 12, 100
RtCommitLockHeap, 13
RtCommitLockProcessHeap, 14
RtCommitLockStack, 15
RtCreateMutex, 18
RtCreateProcess, 20
RtCreateSemaphore, 23
RtCreateSharedMemory, 25
RtCreateTimer, 27, 210, 224
RtDeleteTimer, 210, 224
RtDisableInterrupts, 30
RtDisablePortIo, 31
RTDLLs, 216
RtEnablePortIo, 33
RtFreeContiguousMemory, 35
RtFreeContiguousMemory(vAddress, 218
RtFreeLockedMemory, 36
RtGetBusDataByOffset, 195

RTX Reference

210

RtGetClockResolution, 39
RtGetClockTime, 40
RtGetClockTimerPeriod, 41
RtGetExitCodeProcess, 34
RtGetLastError, 220, 223
RtGetPhysicalAddress, 42, 218
RtGetThreadPriority, 43
RtGetThreadTimeQuantum, 46
RtGetTimer, 47
RtIsInRtss, 48
RTK API Functions, 11

Matrix, 11
RTKAPI, 190
RtkCreateEvent, 170
RtkCreateSemaphore, 174
RtkOpenEvent, 178
RtkOpenMutex, 179
RtkOpenSemaphore, 181
RtkOpenSharedMemory, 183
RtkPulseEvent, 185
RtkReleaseSemaphore, 187
RtkResetEvent, 189
RtkRtssAttach, 190, 191
RtkRtssDetach, 191
RtkSetEvent, 192
RtLockKernel, 49, 220
RtLockProcess, 50, 223
RtMapMemory, 51, 195
RtOpenEvent, 178
RtOpenMutex, 54, 179
RtOpenProcess, 55
RtOpenSemaphore, 56
RtOpenSharedMemory, 57
RtPrintf, 59
RtPulseEvent, 62
RtReadPort, 64
RtReadPortBuffer, 63
RtReadPortBufferUchar, 63
RtReadPortBufferUlong, 63
RtReadPortBufferUshort, 63
RtReadPortUchar, 64
RtReadPortUlong, 64
RtReadPortUshort, 64
RtReleaseSemaphore, 67
RtReleaseShutdownHandler, 69
RtResetEvent, 70
RtSetClockTime, 73
RtSetEvent, 74
RtSetThreadPriority, 75, 224
RtSetThreadTimeQuantum, 76
RtSetTimerRelative, 79, 224
RtSleepFt, 81
RTSS application, 20
RTSS Control Panel, 76
RTSS Environment, 76, 89, 114
RTSS mutex, 54

RTSSkill Examples, 216
RTSSrun, 120, 210
RtTranslateBusAddress, 195
RtUnlockKernel, 86, 220
RtUnlockProcess, 87
RtWaitForMultipleObjects, 89
RtWaitForSingleObject, 92
RtWprintf, 59
RtWritePortBuffer, 96
RtWritePortBufferUchar, 96
RtWritePortBufferUlong, 96
RtWritePortBufferUshort, 96
RtWritePortUchar, 97
RtWritePortUlong, 97
RtWritePortUshort, 97
RTX HAL Timer, 224
RTX IPC, 2
RTX IPC namespace, 2
RTX Timer, 224

S

SetErrorMode, 154
SetThreadPriority, 153
Sleep, 156
Sleep Calls Programming Example, 224
Support ID, x
Synchronization, 89, 116, 140
SYNCHRONIZE, 89

T

Technical Support, x
Technical Support Area, x
TerminateThread, 158
Threads, 164

Win32, 164
TimerHandler, 210
Timers APIs, 12
TlsAlloc, 159
TlsFree, 161
TlsIndex, 161, 162, 163
TlsSetValue, 163

U

Use
RTKAPI, 2
RtkReleaseSemaphore, 187

V

VenturCom Customer Support Web, x
VenturCom Web site, x

W

WAIT FOR ANY, 89
WAIT_ABANDONED_0, 89
WAIT_FAILED, 89

Index

211

WAIT_TIMEOUT, 89
Win32 namespace, 2
Win32-Supported API Overview, 2
Win32-Supported APIs, 1, 12, 13
Win32-Supported Functions, 5

Matrix, 5
Windows 2000 Driver Inter-Process

Communication API, 2
Windows 2000 Driver IPC API, 2

