A brief introduction to Model Predictive Control

Morten Hovd
Engineering Cybernetics Department, NTNU

2 March 2004

1 Introduction

Model-based predictive control (MPC) has become the most popular advanced
control technology in the chemical processing industries. There are many variants
of MPC controllers, both in academia and in industry, but they all share the
common trait that an explicitly formulated process model is used to predict and
optimize future process behaviour. Most MPC controllers are able to account for
constraints both in manipulated variables and states/controlled variables through
the formulation of the optimization problem.

When formulating the optimization problem in MPC, it is important to ensure
that it can be solved in the short time available (i.e., the sampling interval is an
upper bound on the acceptable time for performing the calculations). For that
reason, the optimization problem is typically cast into one of two standard forms:

e Linear programming (LP) formulation. In an LP formulation, both the
objective function and the constraints are linear.

e Quadratic programming (QP) formulation. In a QP formulation, the ob-
jective function is quadratic, whereas the constraints have to be linear. In
addition, to ensure that there exists a unique optimal solution that can be
found quickly with effective optimization solvers, the QP problem must be
convex!.

LP formulation may sometimes be advantageous for very large optimization
problems. However, a QP formulation generally leads to smoother control action
and more intuitive effects of changes in the tuning parameters. The connection
to ’traditional advanced control’, i.e., linear quadratic (LQ) optimal control, is
also much closer for a QP formulation than for an LP formulation. For these
reasons, we will focus on a QP formulation in the following, and describe in some
detail how a QP optimization problem in MPC may be formulated.

2 Formulation of a QP problem for MPC

A standard QP problem takes the form

min 0.50" Hv + ¢"v (1)

v

subject to the constraints
Lv <b (2)

T.e. the Hessian matrix of the QP problem must be positive definite on the subspace of the
active constraints.

Here v is the vector of free variables in the optimization, whereas H is the
Hessian matriz, that was mentioned above, and which has to be positive definite.
The vector ¢ describes the linear part of the objective function, whereas the
matrix L and the vector b describe the linear constraints. Some QP solvers
allow the user to specify separate upper and lower bounds for v, whereas other
solvers require such constraints to be included in L and b. For completeness, we
will assume that these constraints have to be included in L and b.

The formulation of the MPC problem starts from a linear, discrete-time state-
space model of the type

Tey1 = Axk—l—Buk (3)
yo = Cag (4)

where the subscripts refer to the sampling instants. That is, subscript k£ + 1
refers to the sample instant one sample interval after sample k. Note that for
discrete time models used in control, there is normally no direct feed-through
term, the measurement 1, does not depend on the input at time k, but it does
depend on the input at time k — 1 through the state z;. The reason for the
absence of direct feed-through is that normally the output is measured at time k
before the new input at time k is computed and implemented.

In the same way as is common in control literature, the state z, input u
and measurement y above should be interpreted as deviation variables. This
means that they represent the deviations from some consistent set of of variables
{zr,ur,yr} around which the model is obtained?. For a stable process, the set
{zp,ur,yr} will typically represent a steady state - often the steady state we
want to keep the process at. To illustrate, if in y; represents a temperature
of 330K, a physical measurement of 331K corresponds to a devation variable
y=1K.

A typical optimization problem in MPC might take the form

n—1
min f@0) = Y {0 = rep) Qi = wress))
1=0

+<uz - uref,i)TP(ui - uref,i)T}
+<xn - xref,n)TS<xn - xref,n)

2We do not here specify how the model is obtained, but typically it is either the result of
identification experiments performed around the values {z,ur,yr} or the result of linearizing
and discretizing a non-linear, physical model around the values {zp,ur,yr}.

subject to constraints

r9 = given
U, < 4, <Uy for0<i<n-1
Y; < Hx; <Yy for1<i<n+j (6)

In the objective function Eq. (5) above, we penalize the deviation of the states
x; from some desired reference trajectory x,.r; and the deviation of the inputs u;
from some desired trajectory w,.s;. These reference trajectories are assumed to
be given to the MPC controller by some outside source. They may be constant
or may also vary with time (subscript i), but they need to be consistent with the
plant model, i.e.
Lrefitl — Axref,i + Buref,i‘

The constraints on achievable inputs or acceptable states are usually not depen-
dent on the reference trajectories, and therefore these reference trajectories do not
appear in the constraint equations (6). Usually, the state constraints represent
constraints on process measurements (giving H = C'), but constraints on other
combinations of states are also possible (including constraints on combinations
of inputs and states).

In the following, this formulation of the optimization problem will be recast
into the standard QP formulation in Egs.(1) and (2), but first a number of remarks
and explanations to the optimization problem formulation in Eqs.(5) to (6) are
needed.

e In addition to the above constraints, it is naturally assumed that the process
follows the model in Eqs. (3) and (4).

e Note that the state constraints above are imposed on a horizon longer than
the control horizon n. The parameter j should be chosen such that if the
constraints are feasible over the horizon n + j they will remain feasible over
an infinite horizon. This issue will be discussed further below.

e The matrices @, P, and S are all assumed to be symmetric. P and S are
assumed to be positive definite, whereas () may be positive semi-definite.

e In many applications it may be more natural to put a weight (or cost) on
the actual measurements rather than the states. This can easily be done
by choosing Q = CTQC, where Q is the weight on the measurements.

e One may also put constraints on the rate of change of the inputs, giving
additional constraints on the form AU, < u; — u;—1 < AUy.

e For the output constraints in Eq. (6) to be well defined, we must specify
how the inputs u; should behave on the interval n <¢ < n+j5—1. Typical
choices for this time interval are either that u; = u,.s,; or that (u; —tyes;) =
K(z;—xyesi). The latter choice assumes that a (stabilizing) state feedback
controller is used in this time interval. Note that this controller will never
be used in practice (since the MPC calculations are re-computed at each
sample instant), but it is needed to make the constraints well defined.

o If one assumes that (u; — wpef;) = K(2; — Zpep;) forn <i <n+j—1, one
should also include the input constraints in the problem formulation for the
time interval n < ¢ < m 4 j — 1. These input constraints then effectively
become state constraints for this time interval.

e Some MPC formulations use an objective function of the form f(x,u) =
Z?ﬁo(xz - xref,i)TQ(aji - xref,i) + Z::Q(uz - uref,i)TP(ui - uref,i)a where
n, > n,, and typically assume that u; = s, for n, <i < n,. Note that
this corresponds to a particular choice for 'terminal state weight’ .S, since
z; for n, +1 < i < n, will then be given by x,,11 (and the process model).

e [t is common to introduce integral action in MPC controllers by using the
input changes at time ¢ as free variables in the optimization, rather than
the input itself. This follows, since the actual inputs are obtained by
integrating the changes in the input. This can be done within the same
framework and model structure as above, using the model

fk+1 = |: Thtl :| = A}Ek + EA’U,k
Uk
Yk = 5%

where Auy, = u, — up_1, and

~ A B ~ B ~

A:{O [}, B:[[}, C=[C 0]

e To have a stable closed-loop system, it is necessary to have at least as many
feedback paths as integrators, i.e., one needs at least as many (independent)
measurements as inputs. When the number of inputs exceeds the number
of measurements, it is common to define ’ideal resting values’ for some
inputs. This essentially involves putting some inputs in the measurement
vector, and defining setpoints for these.

In the following, we will recast the MPC optimization problem as a standard
QP problem. We will assume that w;—t,cr,, = K(2;—Zpef,) forn <i <n+j—1.

4

To start off, we stack the state references Tref,is input references Upef,iy input
deviations v; = u; — Uyes,; and state deviations x; = z; — Z,es; in long (column)
vectors Tpef, Ures, U and Xgey

Uref,0 Tref1
Uref,1 Lref 2
Uref = sy Lpef = ;
Urefn—2 Trefn—1
L Urefn—1 i L Trefmn
Vo X1
U1 X2
Vo= 7 Xdev = :
Un—2 Xn—1
L Un—1 1 L Xn i

We will use the superposition principle, which states that the total effect of
several inputs can be obtained simply by summing the effects of the individual
inputs. The superposition principle is always valid for linear systems, but
typically does not hold for non-linear systems. This allows us to first calculate
the deviation from the desired state trajectory that would result, given the initial
state zp and assuming that the nominal reference input w,.s is followed. This
results in the trajectory of state deviations xp.

Repeated use of the model equation Eq. (3) then gives

T4] T B 0 - 0 07
A2 AB B . . .
Xo = : Zo + : : 00 | Wref T Tref
At A"2B A"3B ... B 0
AT | A"'B A" 2B ... AB B |

= Axg+ BUres — Tres

Thus, we have obtained a deviation from the desired state trajectory x,.y,
which should be counteracted using deviations v; = u; — uycs; from the nominal
input trajectory. Note that yo is independent from the deviation from the
deviation from the input reference trajectory, i.e., independent of v, and may
therefore be calculated prior to solving the MPC optimization. Similarly, the
effect of the deviations from the nominal input trajectory on the states is given
by x, = Bv (which clearly does depend on the result of the MPC optimization),
and we get

Xdev = X0 T Xv (7)

from the superposition principle.
Introducing the matrices

Q0 -« 0 0 P 0 0 0
0 Q . o 0 P :

Q=00 . 00|, P=|0 o0 0 0 (8)
Lt 00 L P
(000 - 0 S| 0 0 0 P

the objective function can be written as

f(ZL', u) - f(Xdeva X U) = (xO - xref,())TQ(xO - CCref,o)'f‘
(xo +x0) QX0 + xu) + 0" Pu

= (20 = ref0)" Qo — Trepo) + Xo QX0+

QXgQXU + XUTQX'U +v" Pv

which should be minimized using the vector v as free variables.

Now, the terms (29— Zref.0)T Q(To+Zres0) + X3 Qxo Will not be affected by the
optimization, and may therefore be removed from the objective function. This
is because we are primarily interested in finding the inputs that minimize the
objective function, and not in the optimal value of the objective function. Thus,

the objective function is in the form of a standard QP problem as defined in Eq.
(1) if we define

H = B"QB+P (9)
¢ = xoQB
It now remains to express the constraints in the MPC problem in the form of

a standard QP problem. The lower and upper constraints on the manipulated
variable from 0 < i < n — 1 simply become

UL

Iv > Do = ey (10)
UL
Uy

—Iv > -— + Upef (11)
Uy

Similarly, the constraints on the measurements/states for 1 < i < n become

6

Al

=
S e s o
= o

SR~
oo e e o

s
&
l_l
=
Al
! =
0 OH_
HOO OH
oo
SERSS
HO OOH
L _HO o
| L
1 _
V,:L. V.:L.

T o
SR~
HO o
I_I
VW V:U.

[H 0 0]
0
: Bv > (12)
: H 0
| 0 0 H
BN TH 0 - - 0]
) 0)))
i P (Xo + Trey)
: : H 0
| YL] | 0 0 H |
[H 0 0]
0
- Bv > (13)
: H 0
| 0 0 H |
[Yy]| [H 0 0]
0 H :
=t s e (Xo + Trer)
: : H 0
| Yy | 0 0 H |
We found above that
Ty = A”:co—i—[A"*IB A?B ... AB B](uref+v)
= Xo,n%—xref,n—l—[A"_lB A" 2B ... AB B]U

The process model and the assumed control action (u; —tefn) = K(Ti—Zrefn)
for the time period n < i < n+j—1 gives, after trivial, but tedious manipulation

i—n—1

r; = (A+ BK) "z, + { Z (A+ BK)Z} B(trefn — Kpefn)

=0
Ui — Upefn = K(T;— Trepn) = K(A+ BK)i_”xn

i—n—1
{ (A + BK)l} B(Uref,n - eref,n) - xref,n]

k=0

+K

8

which combined with the above expression for x,, results in

- % -
K(A+ BK)*
: [A'B A"2B ... AB Bluv>
K(A+ BK)’*
K(A+ BK)i
_ UL - _ i -
U K(A+ BK)*
- (XO,n+ xref,n)
U K(A+ BE)~!
| UL | | K(A+BK) |
(T I 7 0 0 --- 0 0]r K T)
I I 0 . 0 K(A+ BK)!
IR E ' : B
L I | i]] .. I 0] L K(A+BK) |)
x[1 —K] {“f"]
Trefn

K
K(A+ BK)!

K(A+BK)'™!
K(A+ BK)

H(A+ BK)
H(A+ BK)?

H(A+ BK)'™!
H(A+ BKY

oy
Y
YL
YL

10

[A1B An2B AB Blu>
_ UU - I -
Uy K(A+ BK)*
+ (XO,n+
Uy K(A+ BK)™!
Uy K(A+ BKY
0 0 K .
) K(A+ BK)!
: : B3 x
0 0 K(A+BK)™!
J
1o L Ka+BRY |
[I _K} |:uref,n:|
Trefn
[A'B A"2B AB Bluv>
H(A+ BE)
H(A+ BK)?
- (XO,n + xref,n)
H(A+BEK)y™
H(A+ BK)]

xref,n)

H(A+ BK)
H(A+ BK)?
- : [A"'B A"2B ... AB Blv> (17)
H(A+ BK)'™!
H(A+ BK)’
vy | [H(A+ BK)
Yy H(A+ BK)?
- + (XO,n + xref,n)
Yir H(A+ BK)i~!
Yo H(A+ BK)’

The overall set of constraints for the MPC problem is now obtained by simply
stacking equations (10,11,12,13,14,15,16,17). All these constraint equations have
a left hand side consisting of a matrix multiplied with the vector of free variables
in the optimization, and a right hand side which is vector-valued (and which can
be evaluated prior to the optimization), and are hence a set of linear constraints
as in Eq. 2. Note that the introduction of non-zero (and possibly time-varying)
reference trajectories significantly complicate the expressions, in particular for
the constraints in the period n <i <n+ j.

There is a slight difference between the state constraint equations and the
input constraint equations, in that Egs. (10) and (11) include an input constraint
at time zero (the present time), whereas the state constraint equations (Egs. (12)
and (13)) do not. This is because the state constraints cannot be enforced if
they are violated at time zero, since the present state is unaffected by present and
future inputs. Note also that Eqgs. (14) and (15) covers the input constraints
from time n until n + j, whereas Egs. (16) and (17) covers the state constraints
from time n + 1 until n + j. The state constraints for time n is covered by Egs.

(12) and (13).

3 Step response models

In industrial practice, process models based on step response descriptions have
been very successful. Whereas step response models have no theoretical ad-
vantages, they have the practical advantage of being easier to understand for
engineers with little background in control theory.

With a soild understanding of the material presented above, the capable
reader should have no particular problem in developing a similar MPC formu-
lation based on a step response model. Descriptions of such formulations can

11

also be found in available publications, like Garcia and Morshedi’s [4] original
paper presenting ”Quadratic Dynamic Matrix Control”. Alternatively, step re-
sponse models may also be expressed in state space form (with a larger number
of states than would be necessary in a ”minimal” state space model), see e.g. [6]
for details.

The reader should beware that step-response models have ”finite memory”,
and hence should only be used for asymptotically stable processes, that is, pro-
cesses where the effect of old inputs vanish over time. Most industrially successful
MPC controllers based on step response models are modified to handle also inte-
grating processes, whereas truly unstable processes cannot be handled. Handling
unstable processes using step response models would require more complex mod-
ifications to the controllers and model description, and would thereby remove the
step response model’s advantage of being easy to understand.

Partly due to these reasons, MPC controllers are seldom used on unstable
processes. If the underlying process is unstable, it is usually first stabilised by
some control loops, and the MPC controller uses the setpoint of these loops as
"manipulated variables”.

In academia, there is widespread resentment against step response models
- and in particular against their use in MPC controllers. Although there are
valid arguments supporting this resentment, these are usually of little practi-
cal importance for asymptotically stable processes - although in some cases the
computational burden can be reduced by using a state space model instead.

Step response identification is another matter. A step input has Laplace
transform u(s) = %, and hence excites the process primarily at low frequencies.
The resulting model can therefore be expected to be good only for the slow
dynamics (low frequencies). If medium to high bandwidth control is desired for
an MPC application, one should make sure that any identification experiment
excites the process over the whole desired bandwidth range for the controller.

4 Updating the process model

The MPC controller essentially controls the process model, by optimizing the use
of the inputs in order to remove the predicted deviation from some desired state
(or output) trajectory. Naturally, good control of the true process will only
be obtained if the process model is able to predict the future behaviour of the
true process with reasonable accuracy. Model errors and unknown disturbances
must always be expected, and therefore it will be necessary to update the process
model to maintain good quality predictions of the future process behaviour.

The most general way of doing this is through the use of a state estimator,
typically a Kalman filter. The Kalman filter may also be modified to estimate
unmeasured disturbances or model parameters that may vary with time. The

12

Kalman filter is described in advanced control engineering courses and in numer-
ous textbooks, and will not be described further here.

The Kalman filter is, however, a tool that is valid primarily for linear prob-
lems, and may in some cases estimate state values that defy physical reason. For
example, a Kalman filter may estimate a negative concentration of a chemical
component in a process. In the rare cases where it is necessary to take physical
constraints (and possibly non-linearities in the model) explicitly into account, it
is possible to use an 'MPC-like’, optimization-based approach to the estimation
problem, resulting in what is known as 'moving horizon estimation’. To this au-
thor’s knowledge, moving horizon estimation is not frequently used in industrial
applications, and is to some extent still a research issue. However, it is an active
research area. A recent overview can be found in Allgéwer et al. [1].

For asymptotically stable systems, a particularly simple model updating strat-
egy is possible for MPC formulations that only use process inputs and measure-
ments in the formulation (i.e., when unmeasured states do not appear in the
objective function or in the constraints). In such cases, it would be natural to
calculate the predicted deviations from the desired output trajectory (which may
be called, say, ¥4,), rather than the predicted deviations from the desired state
trajectory Ygep- Then, the model can be 'updated’ by simply adding the present
difference between process output and model output to the model’s prediction
of the future outputs. This is known as a 'bias update’, and is widespread in
industrial applications. Note, however, that the bias update

e is only appliccable to asymptotically stable systems, and may result in poor
control performance for systems with very slow dynamics, and that

e it may be sensitive to measurement noise. If a measurement is noisy, one
should attempt to reduce the noise (typically by a simple low-pass filter)
before calculating the measurement bias.

5 Feedforward from disturbances

With MPC it is very simple to include feedforward from measured disturbances,
provided one has a model of how the disturbances affect the states/outputs.
Feedforward is naturally used to counteract the future effects of disturbances
on the controlled variables (it is too late to correct the present value). Thus,
feedforward in MPC only requires that the effect on disturbances on the controlled
variables are taken into account when predicting the future state trajectory in
the absence of any control action. Thus, in the formulation developed above,
feedforward from disturbances results from taking the disturbances into account
when calculating xge-

13

The benefit obtained by using feedforward will (as always) depend on what
bandwidth limitations there are in the system for feedback control. Further-
more, effective feedforward requires both the disturbance and process model to
be reasonably accurate.

6 Feasibility and constraint handling

For any type of controller to be acceptable, it must be very reliable. For MPC
controllers, there is a special type of problem with regards to feasibility of the
constraints. An optimization problem is infeasible if there exists no exists no set
of values for the free variables in the optimization for which all constraints are
fulfilled. Problems with infeasibility may occur when using MPC controllers, for
instance if the operating point is close to a constraint, and a large disturbance
occurs. In such cases, it need not be possible to fulfill the constraint at all
times. During startup of MPC controllers, one may also be far from the desired
operating point, and in violation of some constraints. Naturally, it is important
that the MPC controller should not ’give up’ and terminate when faced with an
infeasible optimization problem. Rather, it is desirable that the performance
degradation is predictable and gradual as the constraint violations increase, and
that the MPC controller should effectively move the process into an operating
region where all constraints are feasible.

If the constraints are inconsistent, i.e., if there exists no operating point where
the MPC optimization problem is feasible, then the problem formulation in mean-
ingless, and the problem formulation has to be modified. Physical understanding
of the process is usually sufficient to ensure that the constraints are consistent.
A simple example of an inconsistent set of constraints is if the value of the min-
imum value constraint for a variable is higher than the value of the maximum
value constraint.

Usually, the constraints on the inputs (manipulated variables) result from
true, physical constraints that cannot be violated. For example, a valve cannot
be more than 100% open. On the other hand, constraints on the states/outputs
often represent operational desireables rather than fundamental operational con-
straints. State/output constraints may therefore often be violated for short
periods of time (although possibly at the cost of producing off-spec products or
increasing the need for maintenance). It is therefore common to modify the MPC
optimization problem in such a way that output constraints may be violated if
necessary. There are (at least) three approaches to doing this modification:

1. Remove the state/output constraints for a time interval in the near future.
This is simple, but may allow for unnecessarily large constraint violations.
Furthermore, it need not be simple to determine for how long a time in-
terval the state/output constraints need to be removed - this may depend

14

on the operating point, the input constraints, and the assumed maximum
magnitude of the disturbances.

2. To solve a separate optimization problem prior to the main optimization in
the MPC calculations, if the MPC problem is infeasible. This initial opti-
mization minimizes some measure of how much the output/state constraints
need to be moved in order to produce a feasible optimization problem. The
initial optimization problem is usually a LP problem, which can be solved
very efficiently.

3. Introducing penalty functions in the optimization problem. This involves
modifying the constraints by introducing additional variables such that the
constraints are always feasible for sufficiently large values for the additional
variables. Such modified constraints are termed soft constraints. At
the same time, the objective function is modified, by introducing a term
that penalizes the magnitude of the constraint violations. The additional
variables introduced to ensure feasibility of the constraints then become
additional free variables in the optimization. Thus, feasibility is ensured
by increasing the size of the optimization problem.

The two latter approaches are both rigorous ways of handling the feasibility
problem. Approach 3 has a lot of flexibility in the design of the penalty function.
One may ensure that the constraints are violated according to a strict list of
priorites, i.e., that a given constraint will only be violated when it is impossible
to obtain feasibility by increasing the constraint violations for less important
constraints. Alternatively, one may distribute the constraint violations among
several constraints. Although several different penalty functions may be used,
depending on how the magnitude of the constraint violations are measured, two
properties are desireable:

e That the QP problem in the optimization problem can still be solved ef-
ficiently. This implies that the Hessian matrix for the modified problem
should be positive definite, i.e., that there should be some cost on the square
of the magnitude of the constraint violations.

e That the penalty functions are exact, which means that no constraint viola-
tions are allowed if the original problem is feasible. This is usually obtained
by putting a sufficiently large weight on the magnitude of the constraint
violations (i.e., the linear term) in the objective function.

The use of penalty functions is described in standard textbooks on optimiza-
tion (e.g. [3]), and is discussed in the context of MPC in e.g. [2, 9, 5].

Feasibility at steady state is discussed in more detail in the section on "Target
calculation” below. The techniques used there closely resemble those that are

15

applied to the dynamic optimization problem in MPC, with the simplification
that only steady state is addressed i.e., there is no prediction horizon involved
and the variation in constraint violations over the prediction horizon is not an
issue. Thus, only the techniques of points 2 and 3 above are relevant for target
calculation.

In addition to the problem with feasibility, hard output constraints may also
destabilize an otherwise stable system controlled by an MPC controller, see [11].
Although this phenomenon probably is quite rare, it can easily be removed by
using a soft constraint formulation for the output constraints [2]. The following
section will discuss closed loop stability with MPC controllers in a more general
context.

7 Closed loop stability with MPC controllers

The objective function in Eq. (5) closely resembles that of discrete-time Linear
Quadratic (LQ) - optimal control, which in this context (since in many MPC
applications the states will not be directly measured) may be seen as the con-
trol subproblem of LQG-optimal control. Infinite horizon LQ-optimal control is
known to result in a stable closed loop system. However, we get additional re-
quirements for ensuring stability whenever not all states are measured. It is well
known that stability of the overall system requires the system to be detectable3.
The requirement for detectability carries over to MPC, note however that the
requirement for detectability does not only imply that unstable modes must be
detectable from the physical measurements (i.e., that (C, A) is detectable), but
also that the unstable modes must affect the objective function, i.e., (Q'/2, A)
must be detectable.

With the stabilizability and detectability requirements fulfilled, a finite hori-
zon LQG-optimal controller is stable provided the weight on the 'terminal state’,
S, is sufficiently large. How large S needs to be is not immediately obvious, but
it is quite straight forward to calculate an S that is sufficiently large. In the
MPC context, this can be done by designing a stabilizing state feedback controller
K (typically, one would choose the infinite horizon LQG-optimal controller, ob-
tained by solving a Riccati equation), and then calculate the S that gives the
same contribution to the objective function that would be obtained by using the
controller K, and summing the terms (¥; — Zyefn)? Q(Ti — Tpesn) from i = n to
infinity. Since the controller K results in an asymptotically stable system, this
sum is finite, and hence S is finite. The value of S can be obtained by solving a
discrete Lyapunov equation

3Stabilizability is a weaker requirement than the traditional state controllability requirement,
since a system is stabilizable if and only if all unstable modes are controllable, i.e., a system can
be stabilizable even if some stable modes are uncontrollable. Similarly, a system is detectable
if all unstable modes are observable.

16

S—(A+BK)'S(A+BK)=Q

With a sufficiently large S, obtained as described above, the remaining re-
quirement for obtaining closed loop stability is that constraints that are feasible
over the horizon n < i < n + j will remain feasible over an infinite horizon (as-
suming no new disturbances enter). Rawlings and Muske [8] have shown how to
calculate a sufficiently large j. First arrange all state constraints forn < i < n-+4j
(including input constraints that effectively become state constraints through the
assumption that a state feedback controller is used) on the form

and diagonalize the autotransition matrix A + BK:

A+ BK =TAT!

where A is a diagonal matrix (which may have complex-valued elements if
A+ BK contains oscillatory modes). Then, a sufficiently large value of j can be
calculated from

Pmin
T(H)Y(T) |||

. 0 Ina
= max
J U I A

where %min is the smallest element in h, E(ﬁ[) is the maximum singular value

of H, 4(T) is the condition number of T (ratio of largest to smallest singular
value), ||z,|| = (272,)"/2, and Apax is the magnitude of the largest element in A,
i.e., the largest eigenvalue of A+ BK.

The problem with the above estimate of j is that it depends on x,, which
can only be predicted when the result of the optimization is available. If the
optimization is performed with too small a value for j, one will then have to
re-calculate the optimization with an increased 7, in order to be able to give any
strict stability guarantee. In practice, a constant value for j based on simulations
will be used.

The above results on how to find values for S and j to guarantee stability,
are not very useful if, e.g., a step response model is used, since the values of
the states are then unavailable. Step response-based MPC controllers therefore
do not have a terminal state weight S, but rather extend the prediction of the
outputs further into the future than the time horizon over which the inputs are
optimized (corresponding to n, > n, in the comments following Eq. (6). Al-
though a sufficiently large prediction horizon n, compared to the "input horizon”

17

n, will result in a stable closed loop system (the open loop system is assumed
asymptotically stable, since a step response model is used), there is no known way
of calculating the required n,. Tuning of step-response based MPC controllers
therefore typically rely heavily on simulation. Nevertheless, the industrial suc-
cess of step response-based MPC controllers show that controller tuning is not a
major obstacle in implementations.

8 Target calculation

It is common for MPC controllers to perform a ’target calculation’ prior to the
main optimization described above. The purpose of this target calculation is
to determine consistent steady-state values for the state references x,.f., and
input references et .. Most MPC implementation have infrequently changing
setpoints, and will use target values that are constant throughout the prediction
horizon, i.e. Tyefi = TrefooVl and Upef; = UpefooVi. This covers industrial prac-
tice in the majority of installations, but will not be applicable to some problems,
e.g. batch processes or cyclically operated plants. We will also use a linear
plant model, which is also common industrial practice. Extending the following
to non-linear plant models should in principle not be difficult for the competent
reader. However, performing the target calculation at each timestep means that
one should be concerned with being able to do the calculations quickly and reli-
ably, and using linear models makes it much simpler to acertain that is actually
the case.

One prerequisite for offset-free control is that the minimum value of the ob-
jective function is at the desired targets, and to ensure that one desires that

(I = A)vepoo = Blpesoo + B (18)
Z//\Tef,oo = 651;7"ef,oo + ﬁdoo (19>

Here .1 is the desired steady state value of some measurements, and the
“is used to emphasise that the steady state targets may in general be chosen
based on other measurements than what are used in the regular control (in the
MPC setting, the regular measurements y are used at each time step to update
the model). The variable vector d, is the expected/predicted/estimated steady
state value of the disturbances affecting the process. In the (rare) unconstrained
case, and with as many inputs u as controlled outputs 7, the state and input
targets can be found from a simple matrix inversion

18

=] = [T R] e
-7 R o

Clearly, for the targets Z,cf oo and Uyef oo to be well defined, the matrix M
above needs to be of full rank.

Many factors may make it impossible to obtain the targets by the simple
calculations above:

e There may be more inputs than outputs.
e There may be more controlled variables than inputs.

e In addition to desired values for the controlled variables, one may wish to
keep the inputs close to specific values.

e Achieving the desired values for the controlled variables may be impossible
(or otherwise unacceptable) due to constraints.

When such problems of concern (and if they are not, there is probably little
reason to use MPC in the first place), the target calculations are performed by
solving an optimization problem or a series of such problems. In the following,
we will use the subscript 4 to denote desired values of controlled variables 7 and
inputs u, whereas the subscript ,.; will still refer to the reference values or targets
used in the MPC calculations. The desired values are set by operators or higher
level plant optimization, whereas the MPC targets are the result of the target
calculation.

The most straightforward formulation will cast the target calculation as a QP
problem:

min (s — Ctresoo — Fdo)" QG — Ctpefoo — Fidoo) (22)

Lref,cosUref oo

+(ud - uref,oo)TW(ud - uref,oo)

subject to given values for yy, ug and ds , the model equations Eq. (18)
and the relevant maximum and minimum value constraints on @, f,c. and Uyef,oo-
The matrix @) is assumed to be positive definite. A positive definite W will in
general result in offset in the controlled variables even in cases when the desired
values 7, can be achieved. The matrix W may therefore be chosen to be positive

19

semi-definite. Muske [7] shows how to specify a semi-definite W which does not
introduce offset in the controlled variables. Note, however, that when there are
more inputs than controlled variables, the number of inputs without any weight
in the optimization problem must not exceed the number of controlled variables.
Also, in many cases there may be reasons for keeping the inputs close to a specified
value, and in such cases the inputs concerned should be given a weight in the
optimization problem above. Ideally, the target values should comply with the
same maximum and minimum value constraints as that of the MPC problem, c.f.
Eq. (6), but there may also be other constraints, e.g. on elements of 3 that are
not present in y. Let us assume that all such constraints can be described by
the inequality

V24 { refio0] >b (23)
Uref,00

Difficulties will arise whenever there is no feasible region in which the con-
straints of Eq. (18) and Eq. (23) can all be fulfilled. This is indeed often the
case when operating in a highly constrained region (which is the major advan-
tage of MPC), but may also result from operators specifying overly stringent
constraints. For any sort of control to be feasible in such a case, it becomes
necessary to relax some of the constraints. It should be obvious that the process
model Eq. (18) cannot be relaxed, since it is given by the physics of the problem
at hand. Likewise, most input constraints are hard constraints that cannot be
relaxed, such as actuator limitations. On the other hand, many state or output
constraints represent operational desireables rather than physical necessities, and
violation of such constraints may be possible without putting the safety of the
plant in jeopardy. Allowing violations in selected constraints can be achieved by
introducing additional variables into the optimisation problem. Thus, instead of
Eq. (22) we get

min (Ga = Ctresoo — Fdod) " Q@a — Ctpefoo — Fdso) (24)

Tref,00sUref,005P

+<ud - uref,oo>TW<ud - Uref,oo) + lTp + pTZp

where [is a vector of positive constraint violation costs and Z is positive def-
inite. The vector p gives the magnitude of the constraint violations. The model
equations in Eq. (18) are assumed to hold as before, whereas the constraints in
Eq. (23) are modified to

ﬁ[f’freﬁw]mp > 3 (25)
Uref,00
p > 0

20

The matrix L determines which constraints are relaxed. Its elements will
take the values 0 or 1, with exactly one element equal to 1 for each column, and
at most one element equal to 1 for each row. If a row of L contains an element
equal to 1, this means that the corresponding constraint may be relaxed.

For a sufficiently large [, the optimal solution to Eq. (24) is also the optimal
solution to Eq. (22), provided a feasible solution for Eq. (22) exists.

The target calculation formulation in Eqgs. (24 - 25) will distribute the con-
straint violations between the different relaxable constraints. If one instead
wishes to enforce a strict priority among the constraints, so that a given con-
straint is violated only if feasibility cannot be achieved even with arbitrarily large
constraint violations in the less important constraints, this may be achieved by
solving a series of LP problems, followed by a QP problem for the target calcu-
lation. The following algorithm may be used:

1. Simple inspection at the design stage will often ensure that the non-relaxable
constraints are always feasible. If not, it may be necessary to check that
there exists a feasible solution to the problem when only considering the
non-relaxable constraints. Set H, to the rows of H corresponding to the
non-relaxable constraints, and b, to the corresponding elements of b. Set
¢ to [o011 }T where the leading zeros should be interpreted as
zero vectors of dimensions corresponding to the dimensions of the state and
input vectors, respectively. Solve the LP problem

Tref,00
min cf Upef,00
Tref,cosUref oosP
P
subject to the constraints
=N Lref 0o R
[Hr [] Uref oo Z br
P

p =2 0

If the optimal value for this LP problem is larger than 0, the non-relaxable
constraints are infeasible, which would indicate serious mistakes in the con-
straint specifications or abnormally large disturbances (the latter of which
could affect /b\r) Proceed to the next step in the algorithm if the non-
relaxable constraints are feasible, if not, there is reason to activate an alarm
to get operator attention.

21

2. Add the most important of the remaining relaxable constraints and find
the minimum constraint violation in that constraint only which results in
a feasible solution. This is done by adding the corresponding row of H
and b to H, and b,, respectively, using a scalar ’dummy variable’ p, and
setting ¢, to [0 01 }TThe zeros in ¢, are still zero vectors of appropriate
dimension, whereas the 1 is scalar. The LP problem to solve at this stage
becomes

Lref,00
min CTT Upref oo
Lref, o0 Uref,00sP
p
subject to the constraints
0
. . xref,oo R
Hr) Uref,00 Z br
0 p
1
p =20

3. Move the contribution of the dummy variable p into ZT. That is, set E

— ET + [0O --- 01]T p. If there are more relaxable constraints, go to
point 2 above.

4. When all constraints are accounted for, and a feasible solution is known to
exist, solve the QP problem for target calculation with modified constraints.

Instead of solving a series of LP problems, the solution may be found by
solving a single LP problem [10]. However, the required LP problem is quite
complex to design. Although this design problem is solved off-line, it will need
to be modified whenever the constraint specifications change. At the time of
writing, no reliable software is known to exist for solving this LP design problem.

9 Robustness of MPC controllers

The main advantage of MPC controllers lie in their ability to handle constraints.
On the other hand, they may be sensitive to errors in the process model. There
have been tales about processes which are controlled by MPC controllers when
prices are high (and it is important to operate close to the process’” maximum

22

throughput), but are controlled by simple single-loop controller when prices are
low (and production is lower, leading to no active constraints). The potential
robustness problems are most easily understood for cases when no constraints are
active, i.e., when we can study the objective function in Eq. (1) with H and ¢
from Eq. (9). We then want to minimize

f(w) =v"(B"QB + P)v+ x4, A"QBv

with respect to v. The solution to this minimization can be found analytically,
since no constraints are assumed to be active. We get?

o= —(BTOB + P) BT OAx,

Clearly, if the model contains errors, this will result in errors in B and E,
and hence the calculated trajectory of input moves, v, will be different from
what is obtained with a perfect model. If the Hessian matrix BTQB + P is
ill-conditioned®, the problem is particularly severe, since a small error in the

Hessian can then result in a large error in its inverse. For a physical motivation
for problems with ill-conditioning consider the following scenario:

e The controller detect an offset from the reference in a direction for which
the process gain is low.

e To remove this offset, the controller calculates that a large process input is
needed in the low gain input direction.

e Due to the model errors, this large input actually slightly "misses” the low
gain input direction of the true process.

e The fraction of the input that misses the low gain direction, will instead
excite some high gain direction of the process, causing a large change in the
corresponding output direction.

Now, there are two ways of reducing the condition number of ETQE + P

1. Scaling inputs and states in the process model, thereby changing B.

2. Modifying the tuning matrices @ and P.

Scaling inputs and states (or outputs, if the objective function uses outputs
instead of states) is essentially the same as changing the units in which we measure

4Note that @ = @T, and that the assumptions on @, S and P ensures that (§T@§ +]3) is
of full rank, and hence invertible.

5 A matrix is ill-conditioned if the ratio of the largest singular value to the smallest singular
value is large. This ratio is called the condition number.

23

these variables. In some cases this is sufficient, but some processes have inherent
ill-conditioning that cannot be removed by scaling.

__ In theory, one may use non-zero values for all elements in the tuning matrices
() and P with the only restriction that Q should be positive semi-definite® and
P should be positive definite (and hence both should be symmetric). However,
little is known on how to make full use of this freedom in designing Q and P
and in practice they are obtained from @, P and S as shown in Eq. (8), and
typically () and P are diagonal. It is common to try to reduce the ill-conditioning
of the Hessian matrix by multiplying all elements of P by the same factor. If
this factor is sufficiently large, the condition number of the Hessian matrix will
approach that of P - which can be chosen to have condition number 1 if desired.
However, increasing all elements of P means that the control will become slower
in all output directions, also in directions which are not particularly sensitive to
model uncertainty.

If the above ways of reducing the condition number of the Hessian matrix
are insufficient or unacceptable, one may instead modify the process model such
that the controller ”does not see” offsets in the low gain directions. Inherent ill-
conditioning (which cannot be removed by scaling) is typically caused by physical
phenomena which make it difficult to change the outputs in the low gain direction.
Fortunately, this means that disturbances will also often have a low gain in the
same output direction. It may therefore be acceptable to ignore control offsets
in the low gain output directions. In terms of the MPC formulation above,
the controller can be forced to ignore the low gain directions by modifying B by
setting the small singular values of B to zero. This is known as singular value
tresholding, since we remove all singular values of B that is smaller than some
treshold. If we term this modified matrix B for B,,, we find that the trajectory of
input moves calculated by the (unconstrained) MPC optimization now becomes

= —(BpQBn + P) "' BLQA e = —(B},QBn + P) !

Note that the conditioning of the Hessian matrix is not improved by setting
the small singular values of B to zero, but the vector x,, does not show any
control offset in the corresponding output directions, and hence the vector v will
contain no input moves in the corresponding input directions.

Singular value tresholding is effective in improving robustness to model errors,
but it clearly causes nominal control performance (the performance one would
get if the model is perfect) to deteriorate, since the controller ignores control

offsets in some output directions. Removing too many singular values from B
will result in unacceptable control performance.

6The lower right diagonal block of @, corresponding to the terminal state weight .S, should
be strictly positive definite (and sufficiently large).

24

10 Using rigorous process models in MPC

Most chemical processes are inherently nonlinear. In some cases, rigorous dy-
namical models based on physical and chemical relationships are available, and
the process engineers may wish to use such a model in an MPC controller. This
would for instance have the advantage of automatically updating the model when
the process is moved from one operating point to another.

However, to optimize directly on the rigorous model is not straight forward.
The non-linearity of the model typically results in optimization problems that
are non-convex. Optimization of non-convex problems is typically a lot more
time consuming than optimization of convex problems and the time required to
find a solution can vary dramatically with changing operating point or initial
states. This means that direct optimization of non-linear models is usually ill-
suited for online applications like MPC. Furthermore, it is often the case that
the most important 'non-linearities’ in the true system are the constraints, which
are handled effectively by MPC.

This does not mean that rigorous models cannot be utilized by MPC con-
trollers, but it means that one can make only partial use of such models. The
idea is to utilize these models to the extent that the available time permits.
One may then approximate the true optimization problem by a modified, convex
problem, or a series of such problems.

Predict using the rigorous model. The simplest way of (partially)
accounting for non-linearity in the process model, is to calculate the deviation
from the desired state (or output) trajectory from a rigorous, non-linear model,
whereas the other parts of the optimization formulation uses a linearized model.
In this way, the calculated input trajectory v will to some extent account for the
non-linearities.

Line search If greater accuracy is needed, one may do a line search using
the non-linear model to optimize what multiple of v should be implemented, i.e.,
perform a search to optimize (while taking the constraints into account)

min f(x,u) = min f(xg, Upes + av) (26)

where « is a positive real scalar. Such line searches are a standard part of
most non-linear optimization methods, and are covered in many textbooks on
optimization e.g. in [3]. When performing the minimization in Eq. (26) above,
the full non-linear model is used to calculate future states from (zg, ter + o).

Iterative optimization. FEven with the optimal value of a;, one probably
has not found the optimal solution to the original non-linear optimization prob-
lem. Still better solutions may be found by an iterative procedure, where the

25

predicted deviation from the desired state trajectory x,.s is found using the best
available estimate of the future input trajectory. That is, for iteration number £,
use the model to calculate the resulting vector x4, when the input trajectory
Uref + v¢ is applied, where v, = Zf;ol vy, and minimize

min f(v) = (v, +)" (BTQB + P)(vr + 0k) + xgupu AT QB (v + v1)

subject to constraints that should be modified similarly. It is also assumed that a
line search is performed between each iteration. The iterations are initialized by
setting vg = 0, and are performed until v approaches zero, or until the available
time for calculations is used up. The iterative procedure outlined above need not
converge to a globally optimal solution for the original problem, it may end up in
a local minimum. Furthermore, there is no guarantee that this is a particularly
efficient way of solving the original optimization problem (in terms of the non-
linear model). It does, however, have the advantage of quickly finding reasonable,
and hopefully feasible, input sequences. Whenever this is the case, even if the
optimization has to terminate before the optimization has converged, a ’good’
input has been calculated and is available for implementation on the process.

Linearize around a trajectory. If the operating conditions change signif-
icantly over the time horizon (n) in the MPC controller, the linearized model may
be a reasonable approximation to the true process behaviour for only a part of
the time horizon. This problem is relatively rare when constant reference values
are used, but may be relevant when moving from one operating point to another.
It is then possible to linearize the process around the predicted process trajectory
(@ef + Xo) rather than around a constant state. One then gets a time-varying
(but still linear) model, i.e., a "new model” for each time interval into the future.
Conceptually, linearizing around a trajectory does not add much complexity com-
pared to linearizing around a constant state, but it does add significantly to the
notational complexity that is necessary in the mathematical formulation of the
optimization problem. Furthermore, analytical representations of the linearized
models are typically not available, and the linearization has to be performed by
numerically perturbing the process around the predicted process trajectory. This
can clearly add significantly to the computational burden. Linearizing around a
trajectory can be combined with iterative optimization as outlined above - which
would further add to the computational burden.

References

[1] F. Allgéwer, T. A. Badgewell, J. S. Qin, J. B. Rawlings, and S. J. Wright.
Nonlinear model predictive control and moving horizon estimation - an in-

26

troductory overview. In Advances in Control. Highlights of the ECC"99.
Springer, 1999.

N. M. C. de Olivieira and L. T. Biegler. Constraint handling and stability
properties of model-predictive control. AIChE Journal, 40(7):1138-1155,
July 1994.

R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, 2nd
edition, 1987.

C. E. Garcia and A. M. Morshedi. Quadratic programming solution of dy-
namic matrix control (QDMC). Chem. Eng. Commun., pages 73-87, 1986.

M. Hovd and R. D. Braatz. Handling state and output constraints in MPC
using time-dependent weights. In Proceedings of the American Control Con-
ference, 2001.

M. Hovd, J. H. Lee, and M. Morari. Truncated step response models for
model predictive control. J. Proc. Cont., 3(2):67-73, 1993.

K. R. Muske. Steady-state target optimization in linear model predictive
control. In Proc. American Control Conference, pages 3597-3601, 1997.

J. B. Rawlings and K. R. Muske. The stability of constrained receding
horizon control. [EEE Transactions on Automatic Control, 38(10):1512—
1516, 1993,

P. O. M. Scokaert and J. B. Rawlings. Feasibility issues in linear model
predictive control. AIChE Journal, 45(8):1649-1659, August 1999.

J. Vada. Prioritized Infeasibility Handling in Linear Model Predictive Con-
trol: Optimality and Efficiency. PhD thesis, Engineering Cybernetics De-
partment, NTNU, 2000.

E. Zafiriou and A. L. Marchal. Stability of SISO quadratic dynamic matrix
control with hard output constraints. AIChE Journal, 37(10):1550-1560,
October 1991.

27

