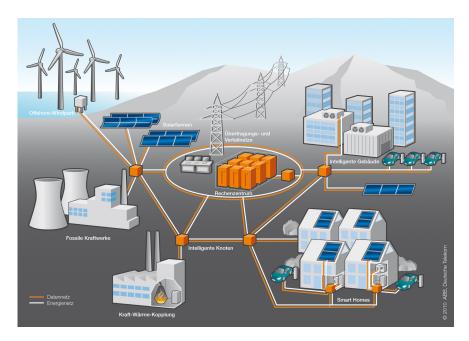


Introduction to the Unit Commitment Problem in Electric Power Production

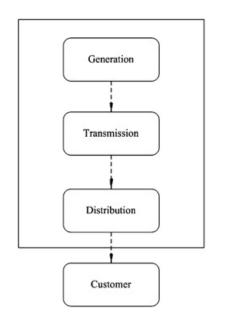

Outline

- 1. Problem definition.
- 2. The structure of electric power generation
 - 1. Norway.
 - 2. The US.
- 3. The unit commitment and economic dispatch problem.
 - Various extension.
- 4. Solution approaches.

Unit commitment

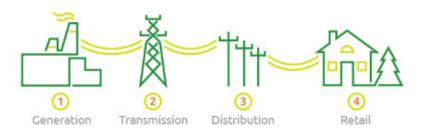
Basic definition:

To find the least cost dispatch of available generation resources to meet an estimated electric power demand over a given time horizon.


Source: abb.de

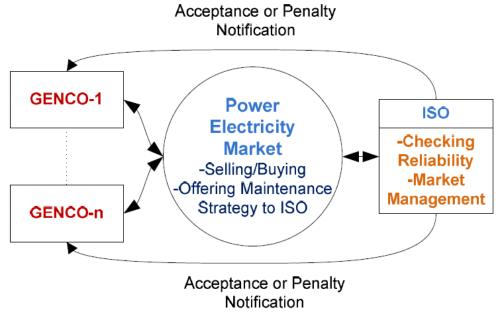
A variety of versions: integration, constraints, emissions, cost, profit etc.

Trading power


Regulated markets

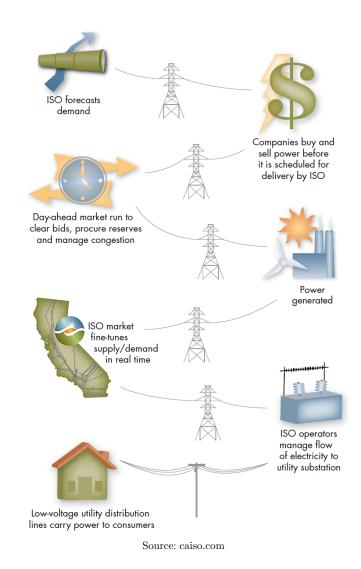
- **One** utility controlling the power production for a whole region.
- Minimizing cost = maximizing profit.
- Vertical integration (monopoly)

Deregulated markets

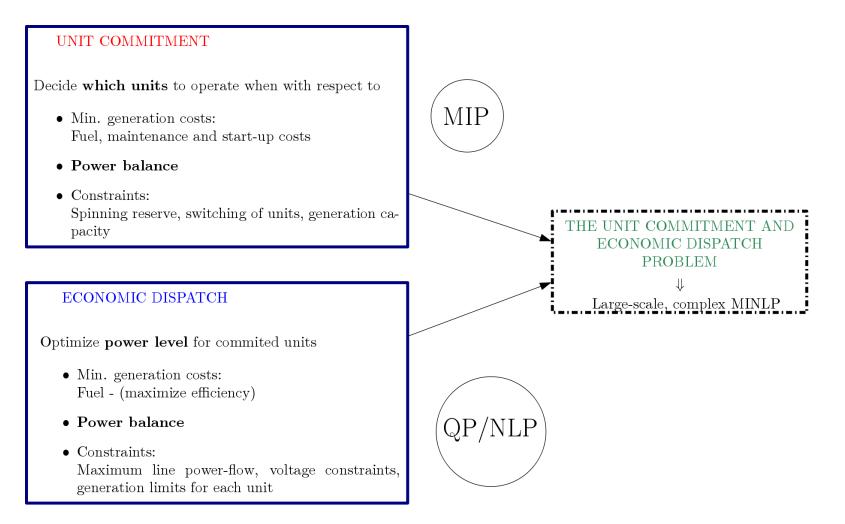

- Several utilities competing of being the most attractive provider of electricity.
- Different providers for different services.
- Generating companies (GENCOs) try to maximize their profit: revenue from sales minus generation cost.

Source: xenogyre.com/

Partly deregulated markets


- Some of the energy production is controlled by governmental regulations.
- Independent system operators (ISO) coordinate, control and monitor the operations of the electrical power systems.
- Many variants in integration of ISOs and GENCOs:
 - Bid and auction system.

Source: Manbachi et.al 2010


Different horizons – different markets

- 1. Day ahead market
 - 24 hours hourly dispatch plans.
- The need for adjustment of power levels and units committed:
 - Consumption differs from forecasted demand.
 - Intermittent, stochastic resources (wind mills, solar cells etc.)
- 2. Look-ahead unit commitment
 - Adjust status of fast-starting units to meet system changes within the next 3-6 hours.
- 3. The real-time market:
 - Recommit very fast units (water, natural-gas) based on actual system operating conditions.
 - Time frame: 15 minutes to 2 hours.

Unit commitment and economic dispatch

Given a <u>forecasted demand</u> d_k from an independent system operator (ISO)

The conventional unit commitment problem

- Objective function: minimize total costs.
- Constraints shared by all units (global constraints):
 - Power demand.
 - Spinning reserve.
- Constraints for each unit:
 - Power capacity (\min/\max) .
 - Minimum up down-time constraints.
 - Ramping constraints.

Extension of the unit commitment problem 1:

Emission-constrained unit commitment

- 1. Hard upper bound (constraints) on allowed emissions.
- 2. Penalty/cost on emissions in the objective function.
- 3. Emission allowance system (cap and trade).

Source: pennenergy.com

Extension of the unit commitment problem 2:

Stochastic unit commitment:

- 1. Uncertainty in demand.
- 2. Intermittent renewable generation resources.
- 3. Capacity of generators
 - Generators dropping out.
- 4. Varying fuel prices.

Extension of the unit commitment problem 3:

Security-constrained unit commitment

- Sufficient spinning reserves:
 - Abrupt changes in load.
 - Units dropping out.
- Transmission capacity.
- Natural-gas availability.

Source: http://buildipedia.com/

Source: forbes.com