TTK16 Optimization in Energy and Oil\&Gas Systems

 Fall 2015Norwegian University of Science and Technology
Exercise 2
Department of Engineering Cybernetics
MILP algorithms and modeling techniques

Problem 1

Consider the linear integer program (IP)

$$
\begin{equation*}
J^{*}=\min _{y}\left\{c^{T} y: y \in X\right\} \tag{1}
\end{equation*}
$$

where X is the set of feasible integer points

$$
\begin{equation*}
X=\left\{y \in \mathbb{Z}_{+}^{p}: B y \geq d\right\} \tag{2}
\end{equation*}
$$

and B is an $m \times p$ matrix. We denote as usual $P=\left\{y \in \mathbb{R}_{+}^{p}: B y \geq d\right\}$ as the LP formulation for X obtained by relaxing the integrality restriction on y, with $X \subseteq P$. The separation problem as shown in lecture 2 is a general definition for the problem of generating a valid inequality $\pi y \leq \pi_{0}$ from a family of valid inequalities, in order to cut off a fractional LP solution from P. See Pochet and Wolsey (2006, p. 102) with extensions to MILPs. One of these families is the Chvátal-Gomory (CG) cuts, which were shown in lecture 2 to be inequalities of the form

$$
\begin{equation*}
\left\lfloor u^{T} B\right\rfloor y \leq\left\lfloor u^{T} d\right\rfloor, \tag{3}
\end{equation*}
$$

where $u \in \mathbb{R}_{m}^{+}$is a vector of multipliers, and $\lfloor\cdot\rfloor$ denotes the largest integer less than or equal to its argument. Consequently, the CG separation problem for (1) is defined as follows:

Definition 1. Given any point $\hat{y} \in P$, find (if any) a CG cut that is violated by \hat{y}, i.e. find a multiplier $u \in \mathbb{R}_{m}^{+}$such that $\left\lfloor u^{T} B\right\rfloor \hat{y}>\left\lfloor u^{T} d\right\rfloor$, or prove that no such u exists.
a) The CG separation problem described above can be formulated as the MILP (Bonami et al., 2006)

$$
\begin{array}{lll}
\max _{\pi, u} & \pi^{T} \hat{y}-\pi_{0} & \\
\text { s.t. } & \pi_{i} \leq u^{T} b_{i}, & \forall i=1, \ldots, p \\
& \pi_{0}+1-\epsilon \geq u^{T} d, & \tag{4}\\
& u_{j} \geq 0, & \forall j=1, \ldots, m \\
& \pi_{i} \text { integer, } & \forall i=0, \ldots, p
\end{array}
$$

where \hat{y} is the (input) fractional LP solution we want to cut off, b_{i} for $i=1, \ldots, p$ are the columns of matrix B, and ϵ is a small nonnegative constant. Go through problem (4) in detail and explain why solving this MILP gives a CG cut.
b) At the end of definition 1 , it says "....or prove that no such u exists.". How is this "property" of the separation problem retained when solving (4) to generate CG cuts?
c) In lecture 2, we considered the IP

$$
\begin{array}{ll}
\max _{y} & 4 y_{1}-y_{2} \\
\text { s.t. } & -7 y_{1}-y_{2} \leq 14 \\
& y_{2} \leq 3 \tag{5}\\
& 2 y_{1}-2 y_{2} \leq 3 \\
& y \in \mathbb{Z}_{+}^{2}
\end{array}
$$

It was shown that using the multipliers $u^{T}=[0.571,0.143,0]$ from the LP relaxation and the rounding procedure to obtain a CG cut result in the valid inequality $4 y_{1}-$ $y_{2} \leq 8$, cutting off the LP solution $\hat{y}=(2.86,3)$. Implement the CG separation problem (4) for the IP (5) in e.g. Matlab using YALMIP, with input $\hat{y}=(2.86,3)$. Why do we obtain a different CG cut when solving(4)?
d) Draw the feasible region for (5), together with the cut (valid inequality) obtained when solving (5) and the cut $4 y_{1}-y_{2} \leq 8$. Which of the cuts are strongest? What more can you say about the cut obtained when solving (4)?

Problem 2

Consider the 0-1 knapsack problem

$$
\begin{array}{rl}
J^{*}=\max _{y} & 17 y_{1}+10 y_{2}+25 y_{3}+17 y_{4} \\
\text { s.t. } & 5 y_{1}+3 y_{2}+8 y_{3}+7 y_{4} \leq 12 \tag{6}\\
& y \in \mathbb{B}^{4}
\end{array}
$$

with optimal solution $y^{*}=(0,1,1,0)$.
a) Solve (6) using branch-and-bound with
(i) Best-bound as node-selection strategy.
(ii) Depth-first as node-selection strategy.

Which of these two node-selection strategies give fewest number of nodes explore to prove optimality? Which one gives the first integer solution?
b) Consider the inequalities

$$
\begin{align*}
& y_{3}+y_{4} \leq 1 \tag{7a}\\
& y_{1}+y_{3} \leq 1 \tag{7b}
\end{align*}
$$

Are these valid inequalities for (6) (hint: set y_{3} and y_{4} to one a check for feasibility)? What happens with the number of nodes needed in the BB tree if you add these inequalities a priori to (6)?

References

Bonami, P., Cornuéjols, G., Dash, S., Fischetti, M., and Lodi, A. (2006). Projected Chvátal-Gomory cuts for mixed integer linear programs. Mathematical Programming, 113(2):241-257.

Pochet, Y. and Wolsey, L. A. (2006). Production Planning by Mixed Integer Programming. Springer, New York.

