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Decision support systems for operational decisions can 

be divided into a sequence of components

From sensors to decisions

Data

Models

Optimization

Decisions

Automation level within 

process industry

 Arriving at a decision is still the 

task of an experienced engineer

 Computer models help the 

engineers analyse and reason 

about the systems behaviour

 However, the methods often fail 

to provide satisfactory results

 Increased level of automation 

can improve the efficiency and 

quality of the decisions made1

2

3

4

Sensors

5



Simulators have entered many engineering disciplines, 

due to their contribution in modelling complex systems

Simulation-based optimization

The industry uses simulators in a 

variety of ways: 

 Combine simulators 

with state-of-the-art 

optimization techniques 

 Add optimization 

functionality onto 

simulators with certain 

structural properties

The IO Center approach:

 “What-if” analyses of different 

solutions or alternative courses of 

action

 Sensitivity analyses, if 

derivatives are available

 Optimization approaches that can 

build directly on simulators, as 

the models usually scale up well



Daily production optimization process

 Several tools and individuals are 

involved in the process

 The time horizon are equal to a period 

where changes in the reservoir are 

negligible (days up to a week)

 State-of-the-art decision support tools 

are frequently imprecise and slow at 

computing recommendations

 We present efficient simulation-based 

optimization strategies that provide 

reliable suggestions to optimal 

production strategies

A key challenge in offshore petroleum field operations is 

to decide on the optimal day-to-day production strategy



A key challenge in offshore petroleum field operations is 

to decide on the optimal day-to-day production strategy

“The decision pyramid for short-term production optimization”

Data

Models

Decisions

State of the art

 A significant amount of 

manual work

 Software tools are imprecise 

and slow

1

2

3

4

New IO Center techniques:

 Enable optimization of larger 

and complex systems

 Substantial reduction in 

solution time

 On the fly recommendations 

Sensors

5

Optimization
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12 well production system with artificial gas lift 

6 subsea wells and 6 satellite wells

Case example



The production optimization problem aim to find the 

optimal operating plan for a production asset

About the optimization problem

 The production optimization 

problem aims to find the best 

short term production strategy

 Thus, it will provide optimal 

values on the relevant variables

 While at the same time fulfilling 

the requirements of mass 

balances, capacities and pressure 

constraints

 The time horizon should be equal 

to a period where changes in the 

reservoir are negligible, and 

pipeline dynamics can be 

assumed steady-state



The Black box simulator is a complex calculator giving 

output values based on some input values

The Black box simulator in details

   yxqppqq ,,,f,, GLWBBMLW 

The whole network simulated as 

one simulator:

Inputs:

 Wellhead pressures, 𝐩𝑊

 Gas lift 𝐪𝐺𝐿

 Routing of all wells, 𝐱 and on/off 𝐲

Outputs:

 Production rates from all wells, 𝐪𝑊

 Pipeline pressures at the subsea 

manifold, 𝐩𝑀

 Pipeline flow rates, 𝐪𝐿



Maximize oil production

Maximize NPV (Net Present Value)

Minimize operational cost

Production choke opening

Gas lift flow rate

Well routing

ESP speed 

Pressure constraints

Water, gas, liquid and gas lift capacities

Erosion or velocity constraints 

Pressure-Temperature envelope - hydrates

Alternative participants of an optimization problem 

Objectives

Variables

Constraints

Production optimization problem, objective and relevant 

variables and constraints depends on the case 



Pressure balances

Objective function
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Capacity constraints

Black box simulator

Routing

   yxqppqq ,,,f,, GLWBBMLW 

Mass balances and discrete decisions handled inside the box, 

pressure balances and capacity constraints treated outside

“The Black box optimization problem”
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tJj

sJj



 A black box simulator represent the whole 

network

 Routing decisions are handled inside the 

black box simulator

 Additional constraints represent the 

boundary conditions

 Black box simulators usually only allow an 

optimization algorithm to make queries 

with discrete values on routing and on/off 

decisions

 Therefore it is only possible to get 

gradients for continuous variables

 The problem must then be solved with 

derivative-free algorithms

The traditional method optimize by simulate the network 

as one large black box

An overview of the Black box approach

Optimization

Simulation



 The decision space is split in one integer 

subspace and one continuous subspace

 Still the mathematical formulation stays 

similar to the traditional approach

 However, it facilitates the use of 

optimization algorithms in two layers

 A derivative-free algorithm decides upon 

the routing and on/off decisions

 For each iteration of the derivative-free 

algorithm, a gradient-based algorithm 

communicates with the network simulator 

to find the optimal solution of the 

continuous subspace

2-layer approach enables production optimization for complex 

systems by decomposing the problem and simulator

Splitting the decision space

Integer 

optimization

Continuous 

optimization

Simulation

2-layer approach



The SmartOpt approach enables production optimization for 

complex systems by decomposing the problem and simulator

 The decision space is first split into integer 

and continuous subspaces

 It utilizes the information in the  network 

structure and the simulator is decomposed  

into component simulators for wells and 

pipelines

 Mass and pressure balances can be treated 

inside the optimization algorithm

 The decomposition enables relaxation of 

all integer variables

 And facilitate the utilization of Branch & 

Bound and gradient based search 

algorithms

Splitting up the decision space and the network simulator

SmartOpt

Integer 

optimization

Continuous 

optimization

Component based 

simulation



SmartOpt utilizes the production network structure and separates 

the simulations into smaller parts, one for each well and pipeline

SmartOpt simulation strategy

Splits network into simulators for 

each well and pipeline...

),( GLWWW qpfq 

)( LLM qfp 

 Well

 Pipeline

…while mass balance and pressure 

relations are treated as explicit 

algebraic constraints



Objective function
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Capacity constraints

“The SmartOpt problem”

By splitting up the simulator, discrete decisions are treated in 

analytical constraints, enabling Brach & Bound

Pressure and mass balance

Well and pipeline
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Well and pipeline simulator data

The simulators for each well and pipeline is of much

lower dimension than the complete network simulator

Oil production from well: Pressure drop over pipeline:



Gas and water production equations

Gas and water production rates from each well are

calculated using the GOR, WC and oil production rate

Gas and water production:
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The gas-to-oil ratio (GOR) and

the water cut (WC) are assumed

constant for each well…

 GL
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W
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W
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W
jo q,pfq 

Oil production from well:
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The simplest 2-layer approach divides the search space in a 

derivative free master problem and a continuous sub-problem

Recap 2-layer approach

 One integer subspace and one continuous 

subspace

 Mathematical formulation similar to the 

traditional approach

 Optimization algorithms in two layers

 A derivative-free algorithm solves the 

integer master-problem

 For each iteration of the derivative-free 

algorithm, a gradient-based algorithm 

solves the continuous sub-problem

Integer 

optimization

Continuous 

optimization

Simulation



SmartOpt 2-layer method includes the network simulator, 

the algorithm does not see what happens in the simulator

How wells and pipes are simulated, modeled and optimized

Simulator invoked by 

Interior Point with 

necessary input 

values, return function 

values and gradients

Optimization 

model 

implemented 

in C++ 

Mixed Integer 

Nonlinear Problem 

MINLP

For each MADS 

iteration the 

continuous problem is 

solved by an Interior 

Point algorithm

Integer master 

problem solved by 

MADS



The more “sophisticated” SmartOpt approach further 

utilize the network structure to decompose the simulator

 The decision space is split into integer and 

continuous subspaces

 The network simulator is decomposed  into 

component simulators for wells and 

pipelines

 Mass and pressure balances are treated 

inside the optimization algorithm

 This facilitate the utilization of Branch & 

Bound and gradient based search 

algorithms

Recap SmartOpt

Integer 

optimization

Continuous 

optimization

Component based 

simulation



The more “sophisticated” SmartOpt approach further 

utilize the network structure to decompose the simulator

 It is more efficient to call the specific 

component simulator as one needs 

information of that part of the system, than 

to call the entire network simulator each 

time

 This also opens up to the possibility of 

sampling the simulators prior to running 

the optimization algorithm, and use data 

tables and/or proxy models during the 

optimization

 Several representations of the component 

simulators will be presented 

Recap SmartOpt

Integer 

optimization

Continuous 

optimization

Component based 

simulation

Play SmartOpt movie..



SmartOpt simulation strategies

SmartOpt 
Simulation

SmartOpt 
Interpolation

SmartOpt 
Algebraic

SmartOpt 
SOS2

Well and pipeline simulators can be represented in several 

ways, either simulated directly or through approximations



Well and pipeline simulators can be represented in several 

ways, either simulated directly or through approximations

SmartOpt simulation strategies

SmartOpt 
Simulation

SmartOpt 
Interpolation

SmartOpt 
Algebraic

SmartOpt 
SOS2



SmartOpt simulation method includes simulators - the 

algorithm does not see what happens inside the simulator

How wells and pipes are simulated, modeled and optimized

Simulators invoked by 

Interior Point with 

necessary input 

values, return function 

values and gradients

Mixed Integer 

Nonlinear Problem 

MINLP

Solved by Branch 

& Bound and 

Interior Point 

algorithms

Optimization 

model 

implemented 

in C++ 
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Capacity constraints

Pressure and mass balance

Well and pipeline
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“The SmartOpt problem”

By splitting up the simulator, discrete decisions are treated in 

analytical constraints, enabling Brach & Bound

Simulators are called directly;  function 

value and gradients are returned 



SmartOpt simulation strategies

SmartOpt 
Simulation

SmartOpt 
Interpolation

SmartOpt 
Algebraic

SmartOpt 
SOS2

Well and pipeline simulators can be represented in several 

ways, either simulated directly or through approximations
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Wells and pipelines

The SmartOpt enables use of pre-generated data tables 

and interpolation techniques to reduce evaluation time

 The SmartOpt formulation decomposes 

the network simulator into smaller 

component simulators

 With the model parameters fixed, the 

well and pipeline simulator only have 2 

or 3 degrees of freedom left

 Due to few variables the component 

simulators can be sampled and 

represented as data tables

 The data tables can be used for 

interpolation or pre-generation of proxy 

models

How wells and pipes simulators can be represented



Including real simulators will affect the evaluation times, 

an alternative is to approximate the simulator

How wells and pipes are simulated, modeled and optimized

A numerical solver will 

only be faced with

Simulators
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 The parameters 𝑚1, … , 𝑚𝑛 are 

describing the plant. 

 They introduce complexity in 𝐹𝑗𝑜.

 𝑚1, … , 𝑚𝑛are known and 

constant during optimization. 

 Desirable to create a analytical 

replacement  𝑓𝑗𝑝, that is easily 

integrated in a optimization software 

and has short evaluation times.
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Approximation
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Objective function
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Pressure and mass balance

Well and pipeline
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“The SmartOpt problem”

By splitting up the simulator, discrete decisions are treated in 

analytical constraints, enabling Brach & Bound

Simulators are approximated, and a surrogate 

model returns function value and gradients



Well and pipeline simulators can be represented in several 

ways, either simulated directly or through approximations

SmartOpt simulation strategies

SmartOpt 
Simulation

SmartOpt 
Interpolation

SmartOpt 
Algebraic

SmartOpt 
SOS2



SmartOpt SOS2 becomes a linear and convex 

formulation of the production optimization problem

How wells and pipes are simulated, modeled and optimized

The data tables are 

used to construct 

piecewise linear SOS2 

approximations of 

wells and pipelines

Solved by Branch 

& Bound and 

Simplex algorithms

Mixed Integer 

Linear Problem 

MILP

Sampled well and 

pipeline simulators 

for multiple flow and 

pressure combinations

Optimization 

model 

implemented 

in MOSEL



“The SmartOpt nonlinear problem”

To obtain a linear model all nonlinear constrains must be 

reformulated; by “Big M” and SOS2
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“The SmartOpt SOS2 problem”

To obtain a linear model all nonlinear constrains must be 

reformulated; by “Big M” and SOS2
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These plots is piecewise linearized

The component simulators are represented through data 

tables and piecewise linear SOS2 approximations 

Well: Pipeline:

)q,q,q(fPp L
lw

L
lg

L
lo

L
l

SM
l 



Special ordered sets of type 2

 Defining the weighting variables as 

SOS2 means that at most two points can 

be non-zero, and they have to be 

adjacent 

 This allows for interpolation between 

the two associated breakpoints

 Relaxing the neighboring requirements 

might lead to poor function 

approximations as seen in the figure

 SOS 2 can also be used when 

linearizing multidimensional functions 

SOS 2 formulation example for a fixed number of 

breakpoint values for x and y given by the curve y=x2

𝒙

𝒚

Without neighbor requirements…

𝒙

𝒚

With neighbor requirements…



Special ordered sets of type 2

Introduction to piecewise linearization through SOS2; a 

simple “one to one dimension” example y=x2

𝑥 = 0𝜆0 + 1𝜆1 + 2𝜆2 + 2.5𝜆3

𝒙

𝒚

A(1,1)

B(2,4)

C(2.5,6.25)

𝑦 = 0𝜆0 + 1𝜆1 + 4𝜆2 + 6.25𝜆3

𝜆0 + 𝜆1 + 𝜆2 + 𝜆3 = 1

𝜆0 ≤ 𝛼0

𝜆1 ≤ 𝛼0 + 𝛼1

𝜆2 ≤ 𝛼1 + 𝛼2

𝜆3 ≤ 𝛼2

𝜆𝑖 ∈ 0,1 , 𝑖 ∈ {0, … , 3}

𝛼𝑖 ∈ {0,1}, 𝑖 ∈ {0, … , 2}

 A fixed number of breakpoint values for 

x and y can be defined and nonnegative 

weighting variables 𝜆𝑖 are assigned to 

each breakpoint 𝑖

 Linear segments can be drawn between 

the data points 

Piecewise linearization of 

function y=x2



“The SOS 2 formulation for the well simulator”

Well simulators are approximated through pre-generated 

data tables and linear pieces between the data points
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“The SOS 2 formulation for the pipeline simulator”

Pipeline simulators are approximated through pre-generated 

data tables and linear pieces between the data points
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𝛿(𝑙)𝑘𝑛𝑟

𝛾(𝑙)𝑟
𝑅 𝑖𝑠 𝑆𝑂𝑆 2 𝑓𝑜𝑟 𝑟

𝛾(𝑙)𝑛
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12 well production system, 6 subsea wells and 6 

satellite wells, with artificial gas lift 

TEST CASE



1 base case and 5 similar cases are defined for available gas 

lift, gas and water handling capacities and separator pressure

OPTIMIZATION PROBLEM

By adjusting:

 Well head pressures

 Gas lift 

 Subsea well routing

 Total handling capacity on 

water and gas production

 Total gas lift compression 

capacity

 Minimum separator pressure

And obeying:

 Maximize total oil production
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Solution approach Description

Traditional method

Black box simulator

Algebraic piecewise 

nonlinear 

approximations

SOS2 formulations

Convex problem

Solutions taken as 

global optimum

Six of the strategies presented are demonstrated on a 

real petroleum production problem

One discrete and one 

continuous problem

Black- Box

SmartOpt

SOS2

SmartOpt

Algebraic

A
p
p

ro
x

im
at

io
n

SmartOpt

Interpolation
(Linear and cubic spline)

2-layer

Solution 

algorithm

Problem 

class

Simulator 

approximation

Interpolation algorithm

Returns function value 

and derivatives

MINLP 

“simulation”

MILP

MADS

MADS 

+ Interior point

Branch & Bound + 

Simplex

Simulation

S
im

u
la

ti
o

n

MINLP 

“simulation”

AMPL

MOSEL

Implementation 

language

MINLP

Discrete and 

continuous subspaces

Component simulators

Well and pipeline 

models sampled 

upfront

Component simulators 

represented by 

approximations

Branch & Bound + 

Interior point

C++



Base case optimal solutions in % of SOS2 solution 

The graph present oil production from each well and 

indicate small differences between the methods

75

80

85

90

95

100

105

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Total production 

( % of optimum)

Black box 2-layer

SmartOpt Linear interpolation SmartOpt Cubic spline

SmartOpt Algebraic SmartOpt SOS2



Approaches

Black- Box

SmartOpt

Linear 

interpolation

SmartOpt

SOS2

SmartOpt

Algebraic

Solution time
Base case

Performance 
Base case

S
im

u
la

ti
o

n
A

p
p

ro
x

im
at

io
n
s

1 

second

14 

seconds

463

seconds

237

seconds

99.4 %

102 %

84.7 %

100 %

The SmartOpt simulation approaches are very fast, but 

can be sensitive to staring point if not solved globally

SmartOpt

Cubic spline

107

seconds
100 %

2-layer
151

seconds
99.7%

Variance 
Base case six initial points

± 6.4 %

± 0.3 %

± 9.1 %

± 0.0%

± 0.0 %

± 18.4 %



Best objective functions and variations given in % of SOS2 solution

The SmartOpt simulation approaches are very fast, but 

can be sensitive to staring point if not solved globally

Base 

case

Case 1

Case 2

Case 3

Case 4

Case 5

84.7± 9.1 % 99.7±18.4 % 99.4± 6.4 % 100.0±0.0 % 102.0±0.3 % 100 %

95.0±21.5 % 99.7±18.7 % 97.8±13.1 % 100.0±0.0 % 102.1±0.2 % 100 %

89.5±15.3 % 99.7±18.9 % 99.0± 7.3 % 100.1±0.0 % 102.1±0.0 % 100 %

92.5±18.3 % 99.8±18.3 % 99.3± 7.8 % 100.0±0.0 % 101.9±0.0 % 100 %

88.0±10.9 % 99.7±18.5 % 97.6± 3.2 % 100.1±0.0 % 102.0±0.1 % 100 %

92.3±17.8 % 99.7±18.0% 98.2± 9.6 % 100.1±0.0 % 101.9±0.0 % 100 %

Black- Box

SmartOpt

Linear int.

SmartOpt

SOS2

SmartOpt

Algebraic

SmartOpt

Cubic spline2-layer
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Six of the strategies presented are demonstrated on a 

real petroleum production problem

EVALUATION CRITERIA

 Discrete decisions

 Solution time and 

scalability

 Model exactness

 Solution quality

 Robustness

 Modelling effort

 Automation

Evaluate and compare:

Data

Models

Optimization

Decisions

1

2

3

4

Sensors

5



DISCRETE DECISIONS

 Enables the use of Branch & Bound 

for efficient treatment of discrete 

decisions

 Optimal solution two orders of 

magnitude faster than the Black box 

approach

 Facilitates instant re-optimization

 Enable production engineers to focus 

on other important questions

 Simulators only allow the 

optimization algorithm to make 

queries with discrete values on the 

routing and on/off decisions

 Excludes the use of Branch & Bound 

based algorithms that rely on relaxing 

the integer requirements

 Must solve using derivative-free 

solution algorithms

 Leads to slow convergence and 

increased solution times

SmartOpt Traditional approach

There are pros and cons to all SmartOpt approaches, 

witch one to choose depends on problem and preferences



SmartOpt Traditional approach

SOLUTION TIME & SCALABILITY

 The SmartOpt approaches sees a speed 

up compared to the traditional 

approach, thus much is gained by 

including explicit structural constraints

 SmartOpt SOS2 is highly sensitive to 

an increase in data points and network 

components due to the subsequent 

increase in SOS2 variables

 SmartOpt interpolation methods scale 

better as the interpolation is quick

 Evaluations of more proxy models will 

have a noticeable effect on the solution 

speed of SmartOpt algebraic

 The Black box approach solves the 

petroleum production problem with 

reasonable solution times

 An increase in the number of decision 

variables that follows a larger 

production network is likely to slow 

down the derivative-free black box 

approach

There are pros and cons to all SmartOpt approaches, 

witch one to choose depends on problem and preferences



MODEL EXACTNESS

 Black box, 2-layer and SmartOpt 

interpolation approaches provide 

realistic portrayals of the production 

network

 The number of data point and the 

interpolation scheme will affect the 

accuracy of SmartOpt interpolation 

 More detailed discretization will result 

in a better match with the reality

 SmartOpt SOS2 experience a trade off 

between solution time and accuracy

 Algebraic proxy models have been 

created based on visual inspections 

combined with least square fits. In this 

case the solutions are proven slightly 

infeasible, undermining the accuracy of 

the approximations used
(Some well approximations overestimating the oil production for certain 

wellhead pressures and gas lift allocations, while pipeline 

approximations at the same time underestimate the pressure losses over 

the pipelines for the resulting flows)

There are pros and cons to all SmartOpt approaches, 

witch one to choose depends on problem and preferences

Simulator & interpolation based: Algebraic based:



SmartOpt Traditional approach

SOLUTION QUALITY

 All SmartOpt approaches provide 

better solutions than the traditional 

approach

 SmartOpt SOS2 provide global 

optimal solutions 

 The cubic spline interpolation scheme 

proves very good and finds the same 

solutions as the SOS2 approximations, 

i.e. the optimal solution

 Clearly sensitive to the exactness of the 

proxy models the SmartOpt algebraic 

solutions surpasses the optimal values

 The Black box approach provide 

inferior solutions

 The 2-layer approach lead to a 

significant improvement in objective 

function values 

There are pros and cons to all SmartOpt approaches, 

witch one to choose depends on problem and preferences



ROBUSTNESS

 The SmartOpt Cubic spline 

interpolation can be efficiently 

convexified, proves very robust 

 The SmartOpt linear interpolation 

method proves dependent on starting 

point, this can be solved by multi start

 The Black box and 2-layer methods are 

also highly dependent of starting point, 

multi start is not so attractive due to 

solution time 

 Linearization and convexification of the 

optimization problem makes SmartOpt 

SOS2 the most robust approach

 Almost convex proxy models makes 

SmartOpt algebraic method essentially 

independent of initial starting point

Simulator & interpolation based: Algebraic based:

There are pros and cons to all SmartOpt approaches, 

witch one to choose depends on problem and preferences



Solution approach

Black- Box

Linear 

interpolation

SOS2

AlgebraicS
m

ar
tO

p
t

Computational study and results  indicate that SmartOpt 

performs well compared to traditional approach

Cubic spline 

interpolation

2-layer

Discrete 

decisions

Component 

simulators

Model  

exactness

Solution 

time/ 

scalability

Solution 

quality Robustness

Modelling 

effort Automation
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Petrobras decides to implement a SmartOpt SOS2 

model to optimize gas lift allocation among 13 wells

Petrobras field test of SmartOpt MILP model 

Campos basin - 1.2 % increased production

Alex Teixeira 2013, Petrobras 



Petrobras decides to implement a SmartOpt SOS2 

model to optimize gas lift allocation among 13 wells

GOR and water cut evolution, and unexpected compressor shut downs 

Why is it difficult to find the best production settings manually?

…because wells and operational conditions changes all the time.

Alex Teixeira 2013, Petrobras 


