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Decision support systems for operational decisions can
be divided Into a sequence of components

From sensors to decisions

Automation level within
e / Decisions process industry
) Q Arriving at a decision is still the

e / Optimization \ task of an experienced engineer

Q Computer models help the
engineers analyse and reason
e Models about the systems behaviour

O However, the methods often falil
e / Data \

to provide satisfactory results
can improve the efficiency and
G Sensors quality of the decisions made

O Increased level of automation
. \ ¥ /
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Simulators have entered many engineering disciplines,
due to their contribution in modelling complex systems

Simulation-based optimization

The industry uses simulators in a

: : The 10 Center approach:
variety of ways:
O “What-if” analyses of different = Combine simulators
solutions or alternative courses of with state-of-the-art
action optimization techniques

O Sensitivity analyses, if
derivatives are available

= Add optimization

functionality onto
O Optimization approaches that can simulators with certain

build directly on simulators, as structural properties
the models usually scale up well
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A key challenge in offshore petroleum field operations is
to decide on the optimal day-to-day production strategy

Daily production optimization process

O Several tools and individuals are
involved in the process

O The time horizon are equal to a period
where changes in the reservoir are
negligible (days up to a week)

Production

O State-of-the-art decision support tools it il Simiaions
are frequently imprecise and slow at £ e
computing recommendations

Production data

X Offline models
from asset

O We present efficient simulation-based

Short term

optimization strategies that provide production Operator

strategy

reliable suggestions to optimal
production strategies
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A key challenge in offshore petroleum field operations is
to decide on the optimal day-to-day production strategy

“The decision pyramid for short-term production optimization”

State of the art

e / Decisions \ QO Asignificant amount of

manual work

° Optimizati O Software tools are imprecise
“ ptimization and slow

New 10O Center techniques:
e Models o
— Q Enable optimization of larger
e / Data O Substantial reduction in
= solution time

\ and complex systems
Q On the fly recommendations
G Sensors
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12 well production system with artificial gas lift
6 subsea wells and 6 satellite wells

Case example

LD

=TT

Topside Wells Subsea Wells




The production optimization problem aim to find the
optimal operating plan for a production asset

About the optimization problem

a The production optimization
problem aims to find the best
short term production strategy

Q Thus, it will provide optimal .
values on the relevant variables T

w 14
9jp !

O While at the same time fulfilling
the requirements of mass P,
balances, capacities and pressure
constraints

W
9jp

NENNNN BNENBNN

TTT .
0 The time horizon should be equal R“L { H H H H { ‘ ‘ L L L
to a period where changes in the o
reservoir are negligible, and Topde el ubses el
pipeline dynamics can be
- @ assumed steady-state
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The Black box simulator Is a complex calculator giving
output values based on some input values

The Black box simulator in details

The whole network simulated as
one simulator:

oW L NG em W L M)_¢BB(.W . GL
!’ q q \\< ~7 (q ’q !p )_ f (p 1q ,X,Y)
,I, ( >(,
y AN
7 \ Inputs:
i \ O Wellhead pressures, p¥
M .
i P 0 Gaslift q°t
1\ - ‘,5 0 Routing of all wells, x and on/off y
\ / Outputs:
\ / .
X I I111. . /0 Production rates from all wells, g
\\\ pW; qGLJ X pW: qGLJ y /,, . -
> U4
~JTIITT 1111 L a Plpe_llne pre;sures at the subsea
ToBeide Wells Subsea Wells =™ " manlfold, p

-~ -
- -
————————————

O Pipeline flow rates, q*
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Production optimization problem, objective and relevant
variables and constraints depends on the case

Alternative participants of an optimization problem

Maximize oil production
Objectives Maximize NPV (Net Present Value)
Minimize operational cost

Production choke opening
Gas lift flow rate

Well routing

ESP speed

Variables

Pressure constraints

Water, gas, liquid and gas lift capacities
Erosion or velocity constraints
Pressure-Temperature envelope - hydrates

Constraints

0
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Mass balances and discrete decisions handled inside the box,
pressure balances and capacity constraints treated outside

“The Black box optimization problem”

Objective function Black box simulator
L W
max;qkﬁ;qjo (qw ’qL’pM): fBB(pW ’qGL’X’y)
€ Jed;
Capacity constraints Pressure balances Routing
L W .
querijpSCp leSp\JN jelds ZYﬂSl J€Js
el jed; leL

S.W jed
DD astyy+ ) astxg scet Prspy IS5

jedg lel jed,
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The traditional method optimize by simulate the network
as one large black box

An overview of the Black box approach

O ADblack box simulator represent the whole
network

O Routing decisions are handled inside the
black box simulator

O Additional constraints represent the Optimization
boundary conditions

O Black box simulators usually only allow an
optimization algorithm to make queries
with discrete values on routing and on/off
decisions

O Therefore it is only possible to get
gradients for continuous variables

Q The problem must then be solved with
derivative-free algorithms

0
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2-layer approach enables production optimization for complex
systems by decomposing the problem and simulator

Splitting the decision space

2-layer approach

Q The decision space is split in one integer
subspace and one continuous subspace Integer

O Still the mathematical formulation stays optimization N
similar to the traditional approach

O However, it facilitates the use of Continuous
optimization algorithms in two layers optimization

a Aderivative-free algorithm decides upon
the routing and on/off decisions

Q For each iteration of the derivative-free
algorithm, a gradient-based algorithm
communicates with the network simulator
to find the optimal solution of the
continuous subspace

0
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The SmartOpt approach enables production optimization for
complex systems by decomposing the problem and simulator

Splitting up the decision space and the network simulator

SmartOpt

Q The decision space is first split into integer
and continuous subspaces Integer

Q It utilizes the information in the network optimization \
structure and the simulator is decomposed \ /
into component simulators for wells and Continuous

pipelines optimization

QO Mass and pressure balances can be treated Tl S IEE

inside the optimization algorithm Ill Fj!jl F'!j] |

O The decomposition enables relaxation of j| o4
all integer variables ]

Q And facilitate the utilization of Branch & Component based
Bound and gradient based search simulation
algorithms
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SmartOpt utilizes the production network structure and separates
the simulations into smaller parts, one for each well and pipeline

SmartOpt simulation strategy

Splits network into simulators for
Platform each well and pipeline...

o Well qV =tV (p", g%

a Pipeline  pY =f"(@@")

X7
\\¢’\/
...while mass balance and pressure
5 TTTT relations are treated as explicit
Reservoit E” mm L L L L L L algebraic constraints

Topside Wells Subsea Wells
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By splitting up the simulator, discrete decisions are treated in

analytical constraints, enabling Brach & Bound

“The SmartOpt problem”

Objective function

maqu,'a + Zq‘l’-\éxj

lelL j€d;

Capacity constraints

ﬁ) Pty =>p
Zq +qux < C

leL j€d;

GL GL GL
PR TED I T
jedg lel jed;

Pressure and mass balance

Zq\%YjI:qllf) Zy,-.sl Jeds

je‘]s lelL
o' yj < p} J€Js

Well and pipeline
W wW(.W _GL
% = 15 (o ")

p - P° = fi"(dio . Gig . Aiw )




The simulators for each well and pipeline i1s of much
lower dimension than the complete network simulator

Well and pipeline simulator data

Oil production from well:

Pressure drop over pipeline:

1%
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Gas and water production rates from each well are
calculated using the GOR, WC and oil production rate

Gas and water production equations

Oil production from well: Gas and water production:
q = fW(pW qGL) W W.W |, GL
jo = Tjo \Fj A 0jg = GORY}' o + 0
w
g —qu| _WC
S ol

The gas-to-oil ratio (GOR) and
the water cut (WC) are assumed
constant for each well...

eeeeeeeeeeeeeeee
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The simplest 2-layer approach divides the search space in a
derivative free master problem and a continuous sub-problem

Recap 2-layer approach

O One integer subspace and one continuous
subspace

Integer
O Mathematical formulation similar to the /I optimization
traditional approach \
O Optimization algorithms in two layers Continuous

0 Aderivative-free algorithm solves the optimization
Integer master-problem

a For each iteration of the derivative-free
algorithm, a gradient-based algorithm
solves the continuous sub-problem
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SmartOpt 2-layer method includes the network simulator,
the algorithm does not see what happens in the simulator

How wells and pipes are simulated, modeled and optimized

Mixed Integer Opgrrlnzatlon

Nonlinear Problem  |f=——3 _mo €

VNI implemented \1,
in C++

Integer master
problem solved by
MADS

Simulator invoked by For e_ach MIADE
: NV iteration the
Interior Point with : .
&= CONtinuous problemis g

necessary Inpuit —| S0lved by an Interior
values, return function . y i
Point algorithm

values and gradients

O
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The more “sophisticated” SmartOpt approach further
utilize the network structure to decompose the simulator

Recap SmartOpt

a The decision space is split into integer and
continuous subspaces

Integer
Q The network simulator is decomposed into / optimization \
component simulators for wells and
pipelines \ Continuous /
optimization
Component based
simulation

O Mass and pressure balances are treated
inside the optimization algorithm

a This facilitate the utilization of Branch &
Bound and gradient based search
algorithms

0
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The more “sophisticated” SmartOpt approach further
utilize the network structure to decompose the simulator

Recap SmartOpt

a It is more efficient to call the specific
component simulator as one needs

) _ Integer

information of that part of _the system, than / optimization \

to call the entire network simulator each

time \ _ /
Continuous

optimization

il

a This also opens up to the possibility of
sampling the simulators prior to running
the optimization algorithm, and use data
tables and/or proxy models during the

Il

optimization =
Q Several representations of the component
simulators will be presented Component based
simulation

i© Play SmartOpt movie..
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Well and pipeline simulators can be represented in several
ways, either simulated directly or through approximations

SmartOpt simulation strategies

Platform

SmartOpt

Simulation

SmartOpt
Interpolation

p;” SmartOpt
q" Algebraic
Jp

] :
=TT S
SOS2
Topside Wells Subsea Wells

0
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Well and pipeline simulators can be represented in several
ways, either simulated directly or through approximations

SmartOpt simulation strategies

——————
- g T
-

Platform

( SmartOpt
\

Simulation ’

SmartOpt
Interpolation

SmartOpt
Algebraic

-
ke LT T T pe—————

L L SmartOpt
S0OS2

|

Topside Wells Subsea Wells

|

|

0
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SmartOpt simulation method includes simulators - the
algorithm does not see what happens inside the simulator

How wells and pipes are simulated, modeled and optimized

Mixed Integer Optimization
Nonlinear Problem b3 model
MINLP implemented \1,
in C++
Solved by Branch
& Bound and
Interior Point
algorithms
Simulators invoked by
Interior Point with
necessary input <€ T
values, return function
values and gradients

iO
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By splitting up the simulator, discrete decisions are treated in
analytical constraints, enabling Brach & Bound

“The SmartOpt problem”

Objective function Pressure and mass balance
L W .
max ) dis + Y ajx; Ddbyi=as Y yyst Jelds
leL jed; jedg leL
o' yj < p} J€Js
Capacity constraints :
pacity ijS < p\JN 1€ Jy
L Wiy
Zq'P i qupxl =Cp Well and pipeline
leL j€d;
W wWi(.W _GL
o W e Ajp = Tjp (pj aj )
ZZQ] le"'ij xj<C ) )
jedslel iy p" —P> = f;"(ai5.qi5 .Aiw )

7 Simulators are called directly; function
C‘) value and gradients are returned
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Well and pipeline simulators can be represented in several
ways, either simulated directly or through approximations

SmartOpt simulation strategies

Platform

p jw
w
djp

i 1111

Topside Wells

0
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Subsea Wells

|

SmartOpt

Simulation

= =
PN My

4 c
/ Interpolation

" SmartOpt \\

Y

AY

SmartOpt

/4
[}
I
I
i
: Algebraic
\
\
\
\

\ SmartOpt
\ SOS2

~
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The SmartOpt enables use of pre-generated data tables
and interpolation techniques to reduce evaluation time

How wells and pipes simulators can be represented

Q The SmartOpt formulation decomposes Wells and pipelines
the network simulator into smaller
component simulators = Y g

O With the model parameters fixed, the
well and pipeline simulator only have 2
or 3 degrees of freedom left

O Due to few variables the component
simulators can be sampled and
represented as data tables

0 The data tables can be used for
Interpolation or pre-generation of proxy \\ A

p" —P® = f,"(ai5.aig A )

models

iO
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Including real simulators will affect the evaluation times,
an alternative iIs to approximate the simulator

How wells and pipes are simulated, modeled and optimized

Simulators

W Wil .W _GL
qjp = Fip (Pj q] ’ml’---’mn)

A numerical solver will
only be faced with

o The parameters my4, ..., m,, are
describing the plant.

o They introduce complexity in Fj,.

o mq,.., myare known and
constant during optimization.

Q% = £ (o oS

o Desirable to create a analytical
replacement fjp, that is easily
Integrated in a optimization software
and has short evaluation times.

Approximation

6% = approx {14 (% )= 13 (p% ")



By splitting up the simulator, discrete decisions are treated in
analytical constraints, enabling Brach & Bound

“The SmartOpt problem”

Objective function Pressure and mass balance
L W .
max ) dis + Y ajx; Ddbyi=as Y yyst Jelds
leL jed; jedg leL
o' yj < p} J€Js
Capacity constraints :
pacity ijS < p\JN J € Jq
L Wiy
Zq'P i qupxl =Cp Well and pipeline
leL j€d;
W wWi(.W _GL
o W e Ajp = Tjp (pj aj )
ZZQ] le"'ij xj<C ) L
jedslel iy p" —P> = f;"(ai5.qi5 .Aiw )

Simulators are approximated, and a surrogate
C‘) model returns function value and gradients
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Well and pipeline simulators can be represented in several
ways, either simulated directly or through approximations

SmartOpt simulation strategies

Platform

SmartOpt

Simulation

SmartOpt
Interpolation

-
ke LT T T pe—————

SmartOpt
Algebraic
i : D ”,A"s .=-=—T~
Reservoir WEH H H H H H H H "/ SmartOpt \
\ SOS2 Y

Topside Wells Subsea Wells

~~ -
-
-~ -
i ——

0
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SmartOpt SOS2 becomes a linear and convex
formulation of the production optimization problem

How wells and pipes are simulated, modeled and optimized

The data tables are
Sampled well and used to construct
pipeline simulators > Piecewise linear SOS2
for multiple flow and approximations of \1,
pressure combinations wells and pipelines

Mixed Integer
Linear Problem

MILP

Solved by Branch Optimization
model

& Bound and €< <€

- _ iImplemented
Simplex algorithms in MOSEL

O
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To obtain a linear model all nonlinear constrains must be
reformulated; by “Big M” and SOS2

“The SmartOpt nonlinear problem”

Objective function Pressure and mass balance
L W .
max ) dis + Y ajx; Ddbyi=as Y yyst Jelds
leL jed; jedg leL
o' yj < p} J€Js
Capacity constraints :
pacity ijS < p\f’ J € Jq
L Wiy
Zq'P i qupxl =Cp Well and pipeline
leL j€d;
W wWi(.W _GL
o W e Ajp = Tjp (pj ] )
ZZQ] le"'ij xj<C ) )
jedslel iy p" —P> = f;"(ai5.qi5 .Aiw )

iO
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To obtain a linear model all nonlinear constrains must be
reformulated; by “Big M” and SOS2

“The SmartOpt SOS2 problem”

Objective function Pressure and mass balance

L \\%
maXEQIo+EQjo WL _ 4L
T P D alih=dfl je 2l =aip
leL Jeds
Capacity constraints

) " Zyj'lﬁl jeJs alip <QYpyji ieds
ZQIp""ijpSCp leL
leL jed;
W W ied
Zq?LSCGL quSijXj J&<%
jed
Pressure balance Well and pipeline
M wW MAX i W W wW GL
P =p; +BTTA-Yy) jes quzfjp(pj aj )
P <p} +P3(1-xj) jeJ pi" —P® = fi"(ais.aig.qiw )
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The component simulators are represented through data
tables and piecewise linear SOS2 approximations

These plots is piecewise linearized

Well: Pipeline:

Q% = £ (o a5 p — P = f"(ak.aly.ai)

T it
) I
I
2

0N

£ 304

AN Lt

i | 500

v o0 °
P

W
200

100 5000

Gas Lt | Rati Liquid Flow
Wellhead Pressure Gas to oil Ratio q

I\.
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SOS 2 formulation example for a fixed number of
breakpoint values for x and y given by the curve y=x2

Special ordered sets of type 2

. o ) With neighbor requirements...
o Defining the weighting variables as

SOS2 means that at most two points can y
be non-zero, and they have to be
adjacent

o This allows for interpolation between
the two associated breakpoints

o Relaxing the neighboring requirements X
might lead to poor function Without neighbor requirements ...
approximations as seen in the figure

o SOS 2 can also be used when
linearizing multidimensional functions

y

iO *
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Introduction to piecewise linearization through SOS2; a
simple “one to one dimension” example y=X?

Special ordered sets of type 2

Piecewise linearization of o A fixed number of breakpoint values for
function y=x2 x and y can be defined and nonnegative
weighting variables A; are assigned to
x = 049 + 12, + 21, + 2.5 each breakpoint i
Y = 04g + 11, + 44, + 6.251, o Linear segments can be drawn between

the data points
/10"‘/11"‘/12"‘/13 = 1

Ao < g y
M <ay+a
Ah<a+a
A3 < a,

C(2.5,6.25)

B(2,4)
A; €0,1],i € {0,...,3}
a; € {0,1},i € {0, ..., 2}

T8, .

A(L1)

Vv
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Well simulators are approximated through pre-generated
data tables and linear pieces between the data points

“The SOS 2 formulation for the well simulator”

q%% = 1% (pY .aSt )

K .
9p = z z Qipyeniyien N = z A(iykn NGk is SOS 2 for k
e nev 778’)11 isSOS 2 forn
wo_ w
pPj _Zzp(j)kl(j)kn 77N _2/1()
keK neN Um — Nkn N K
— kek NG My = 0
- z Z Qi A¢iien
keK neN
Z Z Aykn =1
keK neN




Pipeline simulators are approximated through pre-generated
data tables and linear pieces between the data points

“The SOS 2 formulation for the pipeline simulator”

M S L L L L
\\ 44 pi” =P~ = 17(dio.Gig »Aiw )
Z z z FiyknrS@yknr = P5 — pi’
keK neN TeR
L __ (0] .
ah =D > > Q8ybanr Vo= ) Sapnr Yf) is SOS 2 for r
keK neN TeR keK neN
N .
L ZZEEQG 5 Yyn is SOS 2 forn
qig On®Dknr N
keK neN reR Yion = Z Z Syknr y(’g)k isSOS2 fork
W keK TreR
CIlLo = Z Z Z Q(l)r6(l)knr
keK neN TeR K _ R N K
Yok = z z 5(l)knr Yor Yo Yr = 0
Z Z Z 5 =1 neN rer
(Dknr
keK neN TeR
6(l)knr =0
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12 well production system, 6 subsea wells and 6
satellite wells, with artificial gas lift

TEST CASE

Platform

={{{iT MM

Topside Wells Subsea Wells

u
I\
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1 base case and 5 similar cases are defined for available gas
lift, gas and water handling capacities and separator pressure

OPTIMIZATION PROBLEM

O Maximize total oil production
N —

By adjusting:
a Well head pressures
O Gas lift
O Subsea well routing

And obeying:
O Total handling capacity on
water and gas production

O Total gas lift compression
capacity

QO Minimum separator pressure

iO
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Six of the strategies presented are demonstrated on a
real petroleum production problem

Simulator Implementation Problem Solution

| Solutions taken as

Solution approach Description approximation  language class algorithm
Traditional method i
S Bl 2o Black box simulator | | | | MADS
= ; o ; ; MINLP |
=g T 'E' Simulation i i “simulation” i" """"""""""""
-:% One discrete and one | Ct+ MADS
2-layer continuous problem | ; |+ Interior point
SmartOpt Discrete and | Interpolation algorithm |
Interpolation continuous subspaces i Returns function value ! | |
: i spli t and derivatives i i i
g (BTl Al Component simulators i ____________________________ _i ____________________ ’E MINLP i Branch & Bound +
= i i i i Interior point
- SmartOpt Well and pipeline i Algebraic piecewise | AMPL |
< Alaebraic models sampled i nonlinear | i
g_ g upfront { approximations ; ;
= T s b b
< Component simulators | SOS2 formulations ! |
SmartOpt represented by | Convex problem | MOSEL | MILP  Branch & Bound +
SOS2 approximations ' i i i Simplex

CENTER
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The graph present oil production from each well and
Indicate small differences between the methods

Base case optimal solutions in % of SOS2 solution

m Black box m 2-layer
Total production = SmartOpt Linear interpolation SmartOpt Cubic spline
( % of optimum) .
SmartOpt Algebraic SmartOpt SOS2

105

100

95 -

90 -

85 -

80 -

75 -

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
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The SmartOpt simulation approaches are very fast, but
can be sensitive to staring point if not solved globally

Simulation

(72]
=
=
©
E
X
o
L=
S
o}
<

Approaches

Black- Box

2-layer

SmartOpt
Linear
interpolation

SmartOpt
Cubic spline

SmartOpt
Algebraic

SmartOpt
SOS2

Solution time Performance Variance
Base case Base case . Base case six initial points :
463 o o
seconds 84.7 % +9.1 %
____________________________________________________________________________________ 41
151 |
(0] 0]
seconds 99.7% + 18.4 %
1
99.4 % + 6.4 %
second
107
(0) 0]
seconds 100 % + 0.0 %
14
(0) (0)
seconds 102 % +0.3%
237
(0) (0)
seconds 100 % + 0.0%




The SmartOpt simulation approaches are very fast, but
can be sensitive to staring point if not solved globally

Best objective functions and variations given in % of SOS2 solution

SmartOpt SmartOpt  SmartOpt SmartOpt
Black- Box 2-layer Linear int. Cubic spline  Algebraic SOS2
84.7+9.1% 99.7+184%  99.4+6.4% 100.0+0.0%  102.0+0.3 % 100 %
95.0+£21.5% 99.7+18.7%  97.8+13.1%  100.0£0.0%  102.1+0.2 % 100 %
89.5+£15.3% 99.7+£189%  99.0+7.3% 100.1+0.0%  102.1+0.0 % 100 %
925+18.3% 99.8+£18.3%  99.3+7.8% 100.0£0.0%  101.9+0.0% 100 %
88.0£109% 99.7+£185%  97.6+3.2% 100.1+0.0%  102.0+0.1 % 100 %
92.3+17.8%  99.7+£18.0% 98.2+ 9.6 % 100.1+0.0%  101.9+0.0% 100 %

iO
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Six of the strategies presented are demonstrated on a
real petroleum production problem

EVALUATION CRITERIA

e/ Decisions \ Evaluate and compare:

O Discrete decisions
a / Optimization \ O Solution time and
scalability

°

Model exactness
Solution quality

U 00 0D0

Robustness
e/ Data \ Modelling effort

Automation
G / Sensors \

iO
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There are pros and cons to all SmartOpt approaches,
witch one to choose depends on problem and preferences

DISCRETE DECISIONS

SmartOpt

o Enables the use of Branch & Bound
for efficient treatment of discrete
decisions

o  Optimal solution two orders of
magnitude faster than the Black box
approach

o  Facilitates instant re-optimization

o Enable production engineers to focus
on other important questions

Traditional approach

o Simulators only allow the
optimization algorithm to make
queries with discrete values on the
routing and on/off decisions

o Excludes the use of Branch & Bound
based algorithms that rely on relaxing
the integer requirements

o Must solve using derivative-free
solution algorithms

o Leads to slow convergence and
increased solution times




There are pros and cons to all SmartOpt approaches,
witch one to choose depends on problem and preferences

SOLUTION TIME & SCALABILITY

SmartOpt Traditional approach

o The SmartOpt approaches sees a speed o The Black box approach solves the
up compared to the traditional petroleum production problem with
approach, thus much is gained by reasonable solution times

including explicit structural constraints ) ) ..
g exp o An increase in the number of decision

0 SmartOpt SOS2 is highly sensitive to variables that follows a larger
an increase in data points and network production network is likely to slow
components due to the subsequent down the derivative-free black box
increase in SOS2 variables approach

o SmartOpt interpolation methods scale
better as the interpolation is quick

o Evaluations of more proxy models will
have a noticeable effect on the solution
speed of SmartOpt algebraic

Te,
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There are pros and cons to all SmartOpt approaches,
witch one to choose depends on problem and preferences

MODEL EXACTNESS

Simulator & interpolation based: Algebraic based:

o Black box, 2-layer and SmartOpt o More detailed discretization will result
interpolation approaches provide in a better match with the reality
realistic portrayals of the production o SmartOpt SOS2 experience a trade off
network between solution time and accuracy

o The number of data point and the o Algebraic proxy models have been
interpolation scheme will affect the created based on visual inspections
accuracy of SmartOpt interpolation combined with least square fits. In this

case the solutions are proven slightly
infeasible, undermining the accuracy of
the approximations used

(Some well approximations overestimating the oil production for certain
wellhead pressures and gas lift allocations, while pipeline
approximations at the same time underestimate the pressure losses over
the pipelines for the resulting flows)

Te,
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There are pros and cons to all SmartOpt approaches,
witch one to choose depends on problem and preferences

SOLUTION QUALITY

SmartOpt Traditional approach

o All SmartOpt approaches provide o The Black box approach provide
better solutions than the traditional inferior solutions
APETAL _ o The 2-layer approach lead to a

o SmartOpt SOS2 provide global significant improvement in objective
optimal solutions function values

o The cubic spline interpolation scheme
proves very good and finds the same
solutions as the SOS2 approximations,
I.e. the optimal solution

o Clearly sensitive to the exactness of the
proxy models the SmartOpt algebraic
solutions surpasses the optimal values
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There are pros and cons to all SmartOpt approaches,
witch one to choose depends on problem and preferences

ROBUSTNESS

Q

Simulator & interpolation based:

The SmartOpt Cubic spline
interpolation can be efficiently
convexified, proves very robust

The SmartOpt linear interpolation
method proves dependent on starting
point, this can be solved by multi start

The Black box and 2-layer methods are
also highly dependent of starting point,
multi start is not so attractive due to
solution time

Algebraic based:

o Linearization and convexification of the
optimization problem makes SmartOpt
SOS2 the most robust approach

o Almost convex proxy models makes
SmartOpt algebraic method essentially
independent of initial starting point
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Computational study and results indicate that SmartOpt

performs well compared to traditional approach

Solution

time/ Solution Modelling
quality Robustness  effort  Automation

scalability

Model
exactness

Discrete  Component
decisions simulators

Solution approach
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Petrobras decides to implement a SmartOpt SOS2
model to optimize gas lift allocation among 13 wells

Petrobras field test of SmartOpt MILP model

Total Oil Produced [m3/d]
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Alex Teixeira 2013, Petrobras

Campos basin - 1.2 % increased production
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Petrobras decides to implement a SmartOpt SOS2
model to optimize gas lift allocation among 13 wells

GOR and water cut evolution, and unexpected compressor shut downs

Why is it difficult to find the best production settings manually?
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Unexpected shutdown of a compressor!!!
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Alex Teixeira 2013, Petrobras

...because wells and operational conditions changes all the time.




