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CONSTRAINED OPTIMIZATION
LARS IMSLAND

Introduction to course TTK16 Mixed integer optimization in energy 

and oil and gas systems
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TTK16 – overview 

• This introduction lecture

• One week intensive course
– Starting october 16th 

– Lecturer: Professor Eduardo 
Camponogara

– Teaching assistant: Marco Aguiar

– Lectures and practise sessions

• Implementation project
– Oral presentation

• Exam: TBD?, Oral
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Outline this presentation

• General constrained optimization

– KKT

– Convexity

• Semi-definite programming, LMIs

• (Mixed) integer programming
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Background material this presentation

General optimization

• Part of the material are from Prof. Moritz Diehl, Freiburg (and coworkers). 
He has also written a note:

– http://www.syscop.de/files/2015ws/numopt/numopt_0.pdf

• Books:
– J. Nocedal and S.J. Wright. Numerical Optimization. Springer, 2nd edition, 2006

– S. Boyd and L. Vandenberghe. Convex Optimization. University Press, Cambridge, 
2004

Semidefinite programming

• Books:
– S. Boyd et al., Linear Matrix Inequalities in System and Control Theory, SIAM, 1994

– C. Scherer and S. Weiland. Lecture Notes DISC Course on Linear Matrix Inequalities 
in Control, 1999.

Mixed integer optimization

• Slides by Brage Knudsen, Eduardo Camponogara, …
– Introductory example found many places

• Books&articles:
– Wolsey. Integer programming. Wiley, 1998

– Articles by I. Grossmann and co-authors

http://www.syscop.de/files/2015ws/numopt/numopt_0.pdf
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What is optimization?

6

Constrained optimization
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Simple example: Ball hanging on a string
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Feasible set
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Local and global optima

10

Derivatives
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Unconstrained optimality conditions

12

Ball on a spring without constraints
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Ball on a string with constraints

14

Ball on a string with two active constraints
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Multipliers are shadow prices

16

The Lagrangian
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Constrained optimality conditions

18

SQP algorithms for nonlinear programming

• Nonlinear programming problem:

• Idea in SQP: Solve sequential quadratic approximations:

• SQP = Sequential Quadratic Programming

– (Major alternative to SQP: Interior point (IP) methods)
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Properties of SQP method

• If we use the exact Hessian of the Lagrangian

the SQP method is a Newton-method for the KKT conditions

– With quadratic convergence

• Often, we use approximate update-formulas for H, for example 

BFGS (called Quasi-Newton methods)

– The right update-formulas leads to superlinear convergence

• Global convergence can be achieved by an appropriate stepsize 

selection strategy

20

Prototype SQP algorithm

0. Start with          , start value and    

1. Compute 

2. If feasible and 

then stop – convergence achieved!

3. Solve quadratic problem and get 

4. Perform line search and get stepsize

5. Iterate

6. Update Hessian

7. , goto step 1
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What characterize an optimization problem?

• Degrees of freedom n; the number of optimization 

variables

• Continuous or discrete (integer) search space

• Properties of the objective function

– Linear, nonlinear, quadratic, ... 

• Convex?

– Smoothness (continuity, differentiability)

• Properties of the constraints

– Equalities or inequalities

– Types: bounds, linear, nonlinear, cone (e.g. semi-definite), 

differential equations (optimal control), ...

• Do they define a convex feasible set?

– Smoothness (continuity, differentiability)

22

Types of optimization problems

• Linear programming

– Convex problem

– Feasible set polyhedron

• Quadratic programming

– Convex problem if 

– Feasible set polyhedron

• Nonlinear programming

– In general non-convex!

• But today’s topics are two other types: 

– Semidefinite programming (briefly!)

– Integer programming
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When is an optimization problem difficult?

For convex optimization problems, we can efficiently find global minima.

LP, QP, SDP, SOCP

For non-convex, but smooth problems, we can efficiently find local minima.

Iterative use of (typically) QP, e.g. SQP

For integer programs that are convex (in particular linear) when integer 

variables are relaxed, we can (fairly) efficiently find global minima

MILP

“The great watershed in optimization isn't between 

linearity and nonlinearity, but convexity and nonconvexity” 

– R. Tyrrell Rockafellar

24

Convexity

If the line segment between any two points 
within a set is inside the set, the set is convex.

A function is convex if the
epigraph is a convex set.

Wikipedia.org

• A convex optimization problem: Both f(x) and the feasible set convex

• Convex optimization problems are preferable!

– For convex optimization problems, every local minimum is also a global 

minimum. Sufficient to look for a local minimum!

– For many convex optimization problems, it is easy to find derivatives, exploit 

structure, etc. such that the optimization problem is well behaved.

– They may have «guaranteed complexity».
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Semidefinite programming
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Positive semidefiniteness

• A symmetric, square matrix P is positive semidefinite if

• The cone (set) of positive semidefinite matrices is convex
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Semidefinite programming formulations

• The LMI formulation (common in control community)

• Also:

• Mathematicians (SDP standard form):

• LP and (convex) QP are special cases of SDP

– Which again is a special case of an even more general class of convex 

problems called Second-Order Cone Programming (SOCP)

28

Example: Lyapunov stability

• Lyapunov: 

• Formulate as LMI

• This is linear in elements of P (the variable), and is therefore an LMI

• Fortunately, we usually don’t have to find/define the Fi matrices ourselves, 

modeling software does this for us!

– Excellent Matlab toolbox: Yalmip

• Implementation detail: Numerical solvers don’t handle strict inequalities

– Related problem: 0 is a «marginal solution», must «dehomogize»

– That is: Constrain such that 0 is not a solution (e.g.            ,               , etc.)

• (Better methods exists for this problem; e.g. check eigenvalues, or solve Lyapunov equation)
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Example 2: State feedback synthesis

• Problem:

• Lyapunov:

• Problem: Not linear!

• Trick #1: Congruence: Multiply with Q = P-1 on both sides

• Still not linear. Trick #2: Introduce W = KQ.

• Linear in Q and W! Solve as LMI. Find P = Q-1 and K = WQ-1

– Note that Q is invertible since it is positive definite

• (In general: A number of different tricks and variable transformations exists)

– Schur complements, S-procedure, ...

30

On solvers for SDPs

• Simplex-algorithm for LPs performs usually quite well, but have 
exponential worst-case performance

• Much research effort in 70s and 80s (Karmarkar) resulted in new class 
of methods for LPs called interior point methods (IPM) that have 
polynomial worst-case performance

• Nesterov and Nemirovskii (80s) shows that these methods can be used 
for more general classes of convex programs (including SDPs)

• Many classical control problems can be formulated as LMIs/SDPs, led 
to huge interest for these methods in control community in 90s and 00s 

– Lyapunov (1890s),Yakubovich (60s), Willems (70s), Boyd and others (90s)

• In parallel, numerical mathematicians developed efficient algorithms on 
basis of N&Ns work

– Matlab’s LMI toolbox (early, but not good!), Sedumi, SDPT3, MOSEK, ...

• Methods also discovered by other communities (operations research, 
combinatorics, ...) in 90s, 00s, ... 
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(Mixed) Integer Programming
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Example

• Consider

What type of optimization problem is this?

• Consider now

What type of optimization problem is this?
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(Linear) Integer Programming, example

• Consider

• Q1: What is the optimal integer solution?

• Q2: What is the optimal relaxed solution?

– That is, the linear programming solution?

• Q3: Can we use linear programming 

to solve the integer program?

1 2 3 4 5

1

2

3

4

5

x

y

(Linear) Integer Programming, example
Solving via LP and rounding?

• Relax IP, solve LP to get

• Round to get

Infeasible!

• Truncate to get

Same solution at (0,3)

• Optimal solution is

1 2 3 4 5

1

2

3

4

5

x

y
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Types of integer programs

• (Pure) integer programs: All variables are integers

• Binary integer programs: variables are 0 or 1

– However,

– That is, binary programs special case of integer programs, and usually 

not treated separately

– But binary variables are common; often used to model logics (Boolean)

• Mixed integer programs

– Only some of the variables are integer

• Linear, quadratic, nonlinear, semi-definite (mixed) integer programs: 

As before, only with (some) variables integer

– MILP, MIQP, MINLP, MISDP, ...

36

Why (mixed) integer programs?

• Advantages of restricting (some) variables to take on 

integer values

– Flexibility! You can model (and solve) more realistic problems

• Disadvantages

– More difficult to model?

• But modelling software helps: AMPL, GAMS, Yalmip, …

– Can be much more difficult to solve!
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On computation for (mixed) integer (linear) 

programs

• Much, much harder to solve than LPs

• But very good solvers can solve (some) very large problems

– Like 50 000 variables, 2 million non-zeros

– Good solvers: CPLEX, Gurobi, ...?

• Hard to predict if a problem will be solved quickly, in a long time, or 

not at all (before the universe dies)

38

What is fundamentaly different from 

continuous optimization?

• The feasible region consists of a set of 

disconnected integer points.

• Gradient-based algorithms cannot be 

directly applied. 

• No conditions similar to the KKT 

conditions to prove first order optimality.

Source: http://www.zib.de/en/optimization/mip/projects-long/exactip.html
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Operations research

• Designing airline crew schedules: 
– Pair (assign duty periods) airline crews that cover every flight leg at the least cost.

– Must satisfy legal rules such as limited total flying time, minimum rest time, etc. 

• Train scheduling:
– Find a feasible train schedule that secures sufficient transit time for passengers with 

connections, assigning trains to single tracks such that train collisions are avoided (hard 

constraint!), and minimize excessive wait time for trains.

• Production planning:
– Given a set of X products to be produced in Y factories, with final shipment  to Z sales areas.  

– Products are produced in batches, with both fixed and marginal costs.

– Maximize profit/ minimize cost with respect to seasonal demands. 

• Allocating lecture halls at NTNU: 

Source: Wikipedia

40

Electric power production

The hydro-thermal unit-commitment (UC) dispatch problem:

Given a set of electric-power generating units with different characteristics: 

– Maximum output power (e.g. 400 MW).

– Efficiency curves.

– Start-up cost, start-up time and minimum up/down times.

– Emission level constraints.

Given a certain planning horizon (e.g. 24 hours): Select units such that

– The power demand is satisfied for all time periods    . 

– Fuel costs or emissions are minimized, or profit is maximized.

– The generating units have a certain excess reserve capacity       due to demand uncertainty.

– The unit schedule must satisfy a certain security level.

Source:  powerop.co.uk
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Chemical engineering

• Optimal design of distillation columns: Separation of 

components in a mixture passed through distillation 

units. Decision variables can be selecting the number of  

trays and feed locations, and the location of output 

streams (products).

• Used extensively in process design and synthesis, e.g. 

Optimal reactor selection and configuration: 

Source: intechopen.com

Source: Grossmann and Trespalacios (2013)
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Petroleum production optimization

• Optimization of gas flow and routing in the 

natural-gas value chain: Meet seasonal 

varying gas demands, contractual obligations, 

minimize fuel consumption of compressors, 

etc.

• Maximize revenues of oil and gas subject to 

constraints in the reservoir and wells, and the 

gathering system, for instance the capacity of 

separators and compressors.

Source: sintef.no

Source: Knudsen et. al 2014
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Motion control and hybrid systems

• Collision avoidance in trajectory-

planning for aircrafts, UAVs and 

vehicles:

– Avoid multiple vehicles colliding.

– Obstacle avoidance for single vehicles.

• General hybrid model predictive control: 

MPC with discrete variables. Numerous 

applications in chemical, mechanical 

and electrical engineering. See: 

http://cse.lab.imtlucca.it/~bemporad/teac

hing/mpc/imt/6-hybrid-examples.pdf

Source: staff.blog.utm.my/vse/?p=276
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Definitions of problems with discrete variables

Comments on notation:

• The expression mixed integer program and mixed integer problem is used 

interchangeably, both referring to a mathematical problem with continuous and 

discrete variables.

http://cse.lab.imtlucca.it/~bemporad/teaching/mpc/imt/6-hybrid-examples.pdf


08.09.2017

23

45

Definitions: 

General MILP

46

Mixed binary linear program:

(Linear) Integer program (IP):
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Examples on formulating integer programs (IPs):

Problem can be formulated as the linear integer program (IP):
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Numerical example: GAP

• Find input matrices for intlinprog in Matlab!
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General model formulations requiring 

integer variables

Fixed costs: 

50

Implications and conditions:
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Systematical 

derivation of linear 

inequalities from 

logic propositions

52

Example
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Assignment: modeling logical conditions with 

binaries

54

Disjunctive constraints:

Source: Grossmann and Trespalacios (2013)
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Example with disjunctive constraints:

Source: Grossmann and Trespalacios (2013)

Given the structure of a reactor and raw material selection with
the following specifications:

• Objective: maximize profit of selling product P with
price 10.

• To produce P, the options are:
1. Buy reactor R1 with cost C = 5*F (flow), and with 

90% conversion of material A and 70% of B.
2. Buy reactor R2 with cost C = 4.6*F (flow), and with 

85% conversion of material A and 80% of B.
• The cost of raw material A is 1.1, and available feed rate 

is 5.
• The cost of raw material B is 1, and available feed rate is 

7.

Assignment:
1. Formulate the optimization problem using linear 

disjunctions.
2. Formulate the corresponding MILP using big-M 

reformulation.
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How to solve?

• Total enumeration (if possible): 

– Solve LP in x for all possible y’s, select solution with smallest optimum

– Possible for (very) small problems, but quickly becomes infeasible

– This is always «worst case» solution, illustrates «NP-hardness» of problem

• Can do much better if we use problem geometry to iteratively cut away parts of 
the feasible set

– Methods: «branch-and-bound», «cutting-plane», «branch-and-cut», ...

– There has been a tremendous development in these methods last ~20 years

– Solvers: CPLEX, Gurobi, ...

#binary variables (n) 2 10 20 30

#LPs to solve (2n) 4 1024 > 1 million > 1 billion


