08.09.2017

Introduction to course TTK16 Mixed integer optimization in energy
and oil and gas systems

CONSTRAINED OPTIMIZATION

LARS IMSLAND

@ NTNU

TTK16 — overview

This introduction lecture
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Outline this presentation

* General constrained optimization
— KKT
— Convexity

+ Semi-definite programming, LMIs
* (Mixed) integer programming

g @& NTNU

Background material this presentation

General optimization
» Part of the material are from Prof. Moritz Diehl, Freiburg (and coworkers).
He has also written a note:
—  http://www.syscop.de/files/2015ws/numopt/numopt_0.pdf
* Books:
— J. Nocedal and S.J. Wright. Numerical Optimization. Springer, 2" edition, 2006
- g(.)(litl)yd and L. Vandenberghe. Convex Optimization. University Press, Cambridge,

Semidefinite programming
» Books:
— S. Boyd et al., Linear Matrix Inequalities in System and Control Theory, SIAM, 1994

— C. Scherer and S. Weiland. Lecture Notes DISC Course on Linear Matrix Inequalities
in Control, 1999.

Mixed integer optimization

» Slides by Brage Knudsen, Eduardo Camponogara, ...
— Introductory example found many places

+ Books&articles:
— Wolsey. Integer programming. Wiley, 1998
— Atrticles by I. Grossmann and co-authors

@ @& NTNU


http://www.syscop.de/files/2015ws/numopt/numopt_0.pdf

What is optimization?

@ Optimization = search for the best solution

@ In mathematical terms:

08.09.2017

» Minimization or maximization of an objective function f(x)
depending on variables x subject to constraints
» Equivalence of maximization and minimization problems:

(from now on only minimization):

F(X)

Constrained optimization

\

S

@& NTNU

@ Often variable x must satisfy certain constraints, e.g.:

» x>0
> x12+x22:C

@ General formulation:

minimize

subject to  g(x)

f(x)

=0
h(x) >0

» f objective function / cost function

» g equality constraints
» h inequality constraints

6 @ NTNU
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Simple example: Ball hanging on a string

To find position at rest, minimize
potential energy!

minimize x> +x2+ mx
1 2

spring gravity
subjectto 1+4+x31+x >0
3—x1+x>0

v @ NTNU

Feasible set

Feasible set = collection of all
points that satisfy all constraints:

Example feasible set is intersection
.~ ofgrey and blue area

N h(x):= X, 20

— ()= 1-x'-x7=0

The " feasible set” Qis {x € R"||g(x) = 0, h(x) > 0}.

8 ® NTNU
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Local and global optima

fx)

Local Minimum

Local Minimum

Global Minimum:

@ The point x* € R" is a "global minimizer” iff x* € Q2 and
¥x € Q2 f(x) > f(x*)

@ The point x* € R" is a "local minimizer” iff x* € 2 and there exists a
neighborhood A of x* (e.g. an open ball around x*) so that
¥x € QNN f(x) > f(x*).

o @ NTNU

Derivatives

@ First and second derivatives of the objective function or the constraints play
an important role in optimization

@ The first order derivatives are called the gradient (of the resp. function) and
the second order derivatives are called the Hessian matrix

Vi(x)

9Ff 9*f &f . O
Dxq ('jxl2 Ox10x2 Ox10xp
of O*f of L O
Ixa Oxo0x1 x2 Ox0 Ixp
V2f(x) = :
A Ff P O
Xn OxpOx1 OxpO0x0 Ox2

@ NTNU
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Unconstrained optimality conditions

minimize  f(x)
xeRr

Assume that f is twice differentiable.
We want to test a point x*for local
optimality.

® necessary condition: /

Vi(x*)=0 (stationarity) >

_sk
e sufficient condition: ] :
x*stationary and V4f(x*) positive definite
1 @ NTNU
Ball on a spring without constraints
minimize X12 + x22 + m x>
xeR?
contour lines of f(x)
7 gradient vector
/ VF(x)=(2x.2x, +m)
unconstrained minimum:
0= V() & (x.3) = (0.-T)
12 @ NTNU



Ball on a string with constraints

min /(x)
h(x)=1+x+x, 2
hy(x)=3-x+x,

v

- gradient Vh, of active constraint

v inactive constraint h,

constrained minimum:

Vf ()= 1 Vh ()
/

Lagrange multiplier

Ball on a string with two active constrai

@ NTNU

nts

min / (x)
h(x)=14+x+x, =2
hy(x)=3-x+x, =

,equilibrium of forces®

Vix)= 1V hy (x)+ 1V, (x)

My, iy 20

~

constraint forces”

@ NTNU
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Multipliers are shadow prices

What happens if we relax a constraint?
Feasible set becomes bigger,

so new minimum f(x.*) becomes smaller.
How much would we gain?

S(x)=f(x")—ue

old constraint: h(x)>0

Multipliers show the hidden
new constraint: h(x) + €20 cost of constraints.

@& NTNU

The Lagrangian
For constrained problems, introduce modification of objective function:
L(xa j'nu) = f(X*) _Z j’qg;(x) - Zlaihi (X)

e equality multipliers 4, may have both signs in a solution

@ inequality multipliers &, cannot be negative (cf. shadow prices)
e for inactive constraints, multipliers ; are zero

@ NTNU
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Constrained optimality conditions

Karush-Kuhn-Tucker necessary conditions (KKT-conditions):
® x feasible

® there exist A", & such that

VLA, u)=0

(< "Equilibrium"Vf = Zﬁ,Vgi + ZyFVhf )
e u =20 holds
@ and it holds the complementarity condition

4 h(x")=0
i.e. 17=0 or h;(x)=0 foreachi

@& NTNU

SQP algorithms for nonlinear programming

Nonlinear programming problem:
minimize f(z)
subject to g(x) =0
hiz) =0
Idea in SQP: Solve sequential quadratic approximations:
Inilgmize V()T Aw + %A.’ETH(.’E;;)A;'L’
subject to g(x*) + Vg(z*)TAz =0
h(z®) + Vh(z")TAz > 0

SQP = Sequential Quadratic Programming
— (Major alternative to SQP: Interior point (IP) methods)

@ NTNU



Properties of SQP method

+ If we use the exact Hessian of the Lagrangian

H =V?L(x,\ )
the SQP method is a Newton-method for the KKT conditions
— With quadratic convergence

+ Often, we use approximate update-formulas for H, for example
BFGS (called Quasi-Newton methods)
— The right update-formulas leads to superlinear convergence

» Global convergence can be achieved by an appropriate stepsize
selection strategy

® NTNU
Prototype SQP algorithm
0. Start with k& = 0, start value ="and H° = I
1. Compute f(a*), g(z"), h(a®), Vf(«"), Vg(«"), Vh(z")
2. If " feasible and
IVL(" NF, ub)|| < e
then stop — convergence achieved!
3. Solve quadratic problem and get Az*
4. Perform line search and get stepsize o*
5. lterate
2t = 2F 4 oF AL
6. Update Hessian
7. k=Fk-+1,gotostep 1
® NTNU

08.09.2017

10



What characterize an optimization problem?

+ Degrees of freedom n; the number of optimization
variables

+ Continuous or discrete (integer) search space

» Properties of the objective function
— Linear, nonlinear, quadratic, ...
+ Convex?
— Smoothness (continuity, differentiability)
* Properties of the constraints
— Equalities or inequalities
— Types: bounds, linear, nonlinear, cone (e.g. semi-definite),
differential equations (optimal control), ...
» Do they define a convex feasible set?
— Smoothness (continuity, differentiability)

®@NTNU

Types of optimization problems

. . RN
+ Linear programming minimize ¢’z WA

— Convex problem subject to Az <b YOouT Tc

— Feasible set polyhed b A

easible set polyhedron C_L' _ d

* Quadratic programming . 1+ -

— Convex problem if P > 0 minimize 5z Pr+q'x

— Feasible set polyhedron subject to Az <b

Cr=d

* Nonlinear programming

— In general non-convex! minimize f(z)

subject to g(z) =0
h(z) > 0

» But today’s topics are two other types:
— Semidefinite programming (briefly!)
— Integer programming

@& NTNU
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When is an optimization problem difficult?

“The great watershed in optimization isn't between
linearity and nonlinearity, but convexity and nonconvexity”
— R. Tyrrell Rockafellar

For convex optimization problems, we can efficiently find global minima.
LP, QP, SDP, SOCP

For non-convex, but smooth problems, we can efficiently find local minima.
Iterative use of (typically) QP, e.g. SQP

For integer programs that are convex (in particular linear) when integer
variables are relaxed, we can (fairly) efficiently find global minima

MILP
23 ®@NTNU
Convexity
@ : :; |
If the line segment between any two points A function is convex if the
within a set is inside the set, the set is convex. epigraph is a convex set.

* A convex optimization problem: Both f(x) and the feasible set convex

+ Convex optimization problems are preferable!
— For convex optimization problems, every local minimum is also a global
minimum. Sufficient to look for a local minimum!
— For many convex optimization problems, it is easy to find derivatives, exploit
structure, etc. such that the optimization problem is well behaved.

— They may have «guaranteed complexity».

2 @& NTNU
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Semidefinite programming

@& NTNU

Positive semidefiniteness

* A symmetric, square matrix P is positive semidefinite if

Pr0 <= a2'"Pr>0, YzeR" <« Pecs"

* The cone (set) of positive semidefinite matrices is convex

PReS" =2 (aP+(1-a)Q)z=az"Pr+(1—a)z'Qr >0
=aP+(1-a)Q e S

2 @ NTNU
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Semidefinite programming formulations

* The LMI formulation (common in control community)
Find x such that

Flz):=Fy+ o By +aFo+ ...+ a2, F, =0

+ Also: ) -
min c¢

st. Flx)=Fy+x1Fi+xF+...+x,F, =0
» Mathematicians (SDP standard form):

m)}n (C, X)) AB)=tA'B = AiiBij

s.t. {Aé,X}ibi, @:l,K
X=0

+ LP and (convex) QP are special cases of SDP

— Which again is a special case of an even more general class of convex
problems called Second-Order Cone Programming (SOCP)

@ NTNU

Example: Lyapunov stability

* Lyapunov:
i = Ax asymptotically stable <= 3P > 0 such that ATP + PA <0

P 0 =0
0 —ATP—PA

» This is linear in elements of P (the variable), and is therefore an LMI

* Formulate as LMI

+ Fortunately, we usually don’t have to find/define the F; matrices ourselves,
modeling software does this for us!
— Excellent Matlab toolbox: Yalmip

* Implementation detail: Numerical solvers don’t handle strict inequalities
— Related problem: 0 is a «marginal solution», must «dehomogize»
— Thatis: Constrain such that 0 is not a solution (e.g. P = I, trP = 1, etc.)

(Better methods exists for this problem; e.g. check eigenvalues, or solve Lyapunov equation)

@ NTNU
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Example 2: State feedback synthesis

Problem:
Find matrix K s.t. & = Ax + Bu with u = Kz is a.s.
Lyapunov:
3P >~ 0, K such that (A+ BK)"P+ P(A+ BK) <0
Problem: Not linear!

Trick #1: Congruence: Multiply with Q = P-1 on both sides

3Q = 0, K such that Q(A+ BK)" + (A+ BK)Q <0
Still not linear. Trick #2: Introduce W = KQ.

3Q = 0, W such that QAT + WTBT + AQ + BW <0
Linear in Q and W! Solve as LMI. Find P = Q! and K = WQ!

— Note that Q is invertible since it is positive definite

(In general: A number of different tricks and variable transformations exists)

— Schur complements, S-procedure, ...

On solvers for SDPs

Simplex-algorithm for LPs performs usually quite well, but have
exponential worst-case performance

® NTNU

Much research effort in 70s and 80s (Karmarkar) resulted in new class

of methods for LPs called interior point methods (IPM) that have
polynomial worst-case performance

Nesterov and Nemirovskii (80s) shows that these methods can be used

for more general classes of convex programs (including SDPSs)

Many classical control problems can be formulated as LMIs/SDPs, led
to huge interest for these methods in control community in 90s and 00s

— Lyapunov (1890s), Yakubovich (60s), Willems (70s), Boyd and others (90s)

In parallel, numerical mathematicians developed efficient algorithms on

basis of N&Ns work
— Matlab’s LMI toolbox (early, but not good!), Sedumi, SDPT3, MOSEK, ...

Methods also discovered by other communities (operations research,

combinatorics, ...) in 90s, 00s, ...

@& NTNU
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(Mixed) Integer Programming

@& NTNU

Example

» Consider
max 3z + 4y

subject to 5z + 8y < 24
r>0,y=>0

What type of optimization problem is this?

* Consider now

max 3x + 4y
subject to bax + 8y < 24
x>0,y>0, zandy integers

What type of optimization problem is this?

32 @ NTNU
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(Linear) Integer Programming, example

+ Consider
max Jx + 4y
subject to Hax + 8y < 24
x>0,y >0, zandy integers

Q1: What is the optimal integer solution?

Q2: What is the optimal relaxed solution?
— That is, the linear programming solution?

N W A <

* Q3: Can we use linear programming
to solve the integer program?

3 @ NTNU

(Linear) Integer Programming, example
Solving via LP and rounding?

* Relax IP, solve LP to get

I:%7 y=0 max 3z + dy
g s.t. br+8y <24
value: 145 x>0, y>0, zandy integers
* Round to get
r=25, y=0 y
Infeasible!
* Truncate to get >
r=4, y=0 4
value: 12 3
Same solution at (0,3) 2
+ Optimal solution is !
r=3, y=1
value: 13

@ NTNU
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Types of integer programs

(Pure) integer programs: All variables are integers

Binary integer programs: variables are 0 or 1
— However,
re{0,1} <= wxinteger, 0<x <1

— That is, binary programs special case of integer programs, and usually

not treated separately

— But binary variables are common; often used to model logics (Boolean)

Mixed integer programs
— Only some of the variables are integer

Linear, quadratic, nonlinear, semi-definite (mixed) integer programs:

As before, only with (some) variables integer
— MILP, MIQP, MINLP, MISDP, ...

Why (mixed) integer programs?

® NTNU

» Advantages of restricting (some) variables to take on

integer values

— Flexibility! You can model (and solve) more realistic problems

Disadvantages
— More difficult to model?

* But modelling software helps: AMPL, GAMS, Yalmip, ...

— Can be much more difficult to solve!

@& NTNU
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On computation for (mixed) integer (linear)
programs

* Much, much harder to solve than LPs

» But very good solvers can solve (some) very large problems
— Like 50 000 variables, 2 million non-zeros
— Good solvers: CPLEX, Gurobi, ...?

» Hard to predict if a problem will be solved quickly, in a long time, or
not at all (before the universe dies)

Running time to optimality (CPLEX)

1,000,000 e<1Hour »>1hour +Notyetsolved

a .
g r . . o
L]
S 100,000
Q . *
- L] .
o -
5 v e a . ™ *
= . L] L]
£ P 0
S 10,000 ¢ * e
c . 3 4 B* ®
s . e
* *
R a8 ga “e o Instances are taken
L . ‘. * from MIP Lib
- L]

1,000 10,000 100,000 1,000,000
it @\

What is fundamentaly different from
continuous optimization?

» The feasible region consists of a set of °e ¢ e & o @
disconnected integer points.

» Gradient-based algorithms cannot be
directly applied. o

* No conditions similar to the KKT
conditions to prove first order optimality.

@ NTNU
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Operations research

» Designing airline crew schedules:

— Pair (assign duty periods) airline crews that cover every flight leg at the least cost.
— Must satisfy legal rules such as limited total flying time, minimum rest time, etc.

Source: Wikipedia

L]

Train scheduling:

— Find a feasible train schedule that secures sufficient transit time for passengers with
connections, assigning trains to single tracks such that train collisions are avoided (hard
constraint!), and minimize excessive wait time for trains.

L]

Production planning:
— Given a set of X products to be produced in Y factories, with final shipment to Z sales areas.
— Products are produced in batches, with both fixed and marginal costs.
— Maximize profit/ minimize cost with respect to seasonal demands.

Allocating lecture halls at NTNU:

@ NTNU

Electric power production

Source: powerop.co.uk

The hydro-thermal unit-commitment (UC) dispatch problem:

Given a set of electric-power generating units with different characteristics:
— Maximum output power (e.g. 400 MW).
— Efficiency curves.
— Start-up cost, start-up time and minimum up/down times.
— Emission level constraints.

Given a certain planning horizon (e.g. 24 hours): Select units such that
— The power demand ¢, is satisfied for all time periods /.
— Fuel costs or emissions are minimized, or profit is maximized.
— The generating units have a certain excess reserve capacity ¥; due to demand uncertainty.
— The unit schedule must satisfy a certain security level.

@ NTNU
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Chemical engineering

» Optimal design of distillation columns: Separation of
components in a mixture passed through distillation
units. Decision variables can be selecting the number of
trays and feed locations, and the location of output
streams (products).

» Used extensively in process design and synthesis, e.g.
Optimal reactor selection and configuration:

F.

Fy

F,
e
_—

Source: Grossmann and Trespalaci

R1
: @
R2
4 @
3)

Petroleum production optimization

* Optimization of gas flow and routing in the
natural-gas value chain: Meet seasonal
varying gas demands, contractual obligations,
minimize fuel consumption of compressors,
etc.

+ Maximize revenues of oil and gas subject to
constraints in the reservoir and wells, and the
gathering system, for instance the capacity of ., .
separators and compressors.

Source: Knuden et 212010

a2 @ NTNU
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Motion control and hybrid systems

Collision avoidance in trajectory-
planning for aircrafts, UAVs and
vehicles: =D o
— Avoid multiple vehicles colliding. =
— Obstacle avoidance for single vehicles.

General hybrid model predictive control:
MPC with discrete variables. Numerous
applications in chemical, mechanical
and electrical engineering. See:
http://cse.lab.imtlucca.it/~bemporad/teac
hing/mpc/imt/6-hybrid-examples.pdf

D~ (D i -

@ NTNU

Definitions of problems with discrete variables

Comments on notation:

R’ is the n-dimensional space of all non-negative real numbers:

R} ={z e R":x >0}

Zﬁ_ is the p-dimensional space of all non-negative integers:

Zt =y e 27y >0)

B is the g-dimensional space of all binary variabls:

B?={y:ye{0,1}7}

The expression mixed integer program and mixed integer problem is used
interchangeably, both referring to a mathematical problem with continuous
discrete variables.

and

@ NTNU
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Definitions:
General MILP

J*=min z+d'y
(z.y)
s.t.
Az + By > b
(z,y) e R x Zﬂ

e A is an m x n matrix
e B is an m x p matrix

b is an m-dimensional vector

¢ is and n-dimensional vector

d is an p-dimensional vector

We define X as the set of feasible solutions:

X ={(z,y) €R} xZE : Az + By > b}

Mixed binary linear program:

J*=min cTz+dy

(z,y)
s.t.
Ar+ By > b
x e R
y € {0,1}

(Linear) Integer program (IP):

J*=min dTy
y

st. By>b
y ezl

@ NTNU

@ NTNU
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Examples on formulating integer programs (IPs):

The generalized assignment problem (GAP): Given n assignments/tasks and m

agents/servers/vehicles to carry out the tasks:

i=1,...,n :index of tasks
j=1,...,m : index of available agents
d;j : cost of assigning task i to agent j
b; : resource available from agent j
aij : resource required by agent j to do task i
Yij : a binary variable equal to 1 if agent j is assigned to do task
Problem can be formulated as the linear integer program (IP):
n m
minz Z di;iij
et
s.t.
Z yii = 1, i=1...n : Each task is assigned to exactly one agent
i=1
n
Zaijyij <bj, j=1l...m : Total assignment for agent j cannot exceed its capacity
i=1
Yij € {ﬂ, 1}
47 @ NTNU
Numerical example: GAP
Construct and solve the GAP with following specifications:
n = 3 tasks and m = 2 machines
. . ; 13
Available resources for machines j : b; = 1
1 Je
e )92
Costs : di; = o1 2
iz 3 8
J1oJ2
. ) L ii 6 8
Assigment costs for task ¢ to machine j : a;; = i 7T 5
2
iz 9 6
Minimize total costs, assigning each task to one machine.
* Find input matrices for intlinprog in Matlab!
48 @ NTNU
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General model formulations requiring
integer variables

Fixed costs:
A fixed cost «, only present if > 0. cmaipr_—

The cost increases with Sa: /,

5%

a+fzr fO<ae<U

0 otherwise R

ofx) =

By introducing a binary y € {0,1}, we can model this as

c=ay+ Bz
0<e<Uy

Similarly for variables that are zero or only in a certain range:

Ly<z<Uy

y e {0,1} ’ .

L U

@ NTNU

Implications and conditions:

Conditions and constraints given by a Boolean Y
e Condition 1, modeled by Y; = True
e Condition 2, modeled by Y5 = True

Given expression of the type:

* Yl = YQ (lf 1’1 then Yz)
Y1 VY, (Y] or Y3)
* ok ok VielY, (if and only if)

Replace Boolean Y with binary y € {0,1}. The given logical conditions can be
defined by the constraints
< Yo,
y1+y2 = 1,
o k = Y2,
respectively. General rules for reformulations logical conditions exist, see

Raman, R., & Grossmann, 1. E. (1994). Modelling and computational techniques for logic
based integer programming. Computers and Chemical Engineering, 18(7), 563-578.

@ NTNU
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Systematical

derivation of linear

inequalities from
logic propositions

Example

Goal: convert logical expressions to
QLAQaN...AQy, (1)
where each logical clause consists of expressions
Qi VY V.. VY, (2
Steps:
1. Replace implication by disjunction:

=Y & SNV

2. If necessary, (particularly with several logical terms), apply DeMorgan’s
rules to move negation inward
(VYY) & YA,
(Y1 AYz) & oY v oY)
3. If more than two Booleans, recursively distribute OR operator over AND
to get expressions of the form (1)-(2)
MAY2) VY3 & (Y VYA (Yo vY) (3)
4. Replace Booleans Y; with binary y;. Each clause with only OR operators

defines linear inequalities. An AND operator as in (3) gives an additional
inequality, i.e., (3) results in the constraints

nt+ys=1
Y2tz 21

@ NTNU

If product A is chosen, product B cannot be chosen while product €' have
to be chosen. Define Booleans Y], for i = A, B, C'.

1. Replace implication by disjunction:

Y/l = _'YH A Y(‘;

Y = Ve ¥V Ya T
2. If necessary, (particularly with several logical terms), apply DeMor- =YaV (_‘YB AYe )
gan's rules to move negation inward
S(Y; v Ya) = oY AT, ﬁ

(Y] AYy) & ¥V -Yh

@

(Y1 AY2)VYy & (Y1 V¥3)A(YeV Ys) (1)

mtys =1
yatus =1

. If more than two Booleans, recursively distribute OR operator over
AND to get expressions of the form (1)-(2)

. Replace Booleans Y; with binary y;. Each clause with only OR oper-
ators defines linear inequalities, An AND operator as in (3) gives an
additional inequality, i.e., (3) results in the constraints

(=YaV=Yg) A (=YaVYe)

Replace Y;’s with binaries and
rewrite as linear constraints:

T—ya+1l—yp=1|{1-yazu
1—ya+uyc>1 Yo = A

@ NTNU
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Assignment: modeling logical conditions with
binaries

(From Waolsey (1998)). Suppose you are interested in choosing a set of invest-

ments {1,...,7}. Model the following constraints:
1. You cannot invest in all of them.
2. You must choose at least one of them.
3. Investment 1 cannot be chosen if investment 3 is chosen.
4. Investment 4 can be chosen only if investment 2 is also chosen.
5. You must choose either both investments 1 and 5 or neither.

®@NTNU
Given z € R with lower and upper bound, 0 < z < U, and two linear constraints:
laz < b)Y [dr < €]
—— S——
R1 R2
where only one must hold:
ar < b+ M(1—1y) A @
dr < e+ M(1—1y2) R1
Y1ty =1
1, y2 € {0, 1}
B
where M is a sufficiently large big-\ parameter, M > max(b, ¢).
R2
Alternatively, use the extended, but tighter, convex hull reformulation of linear
disjuncitons (more on this later): e e
r =z + 23,
az < by,
dzy < eys,
nty=1
0<z <Uy, i=12
y1.y2 € {0,1}
@ NTNU
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Example with disjunctive constraints:

Given the structure of a reactor and raw material selection with
the following specifications:
* Objective: maximize profit of selling product P with

price 10.
* To produce P, the options are: A
1. Buy reactor R1 with cost C = 5*F (flow), and with
90% conversion of material A and 70% of B. R1
2. Buy reactor R2 with cost C = 4.6*F (flow), and with
85% conversion of material A and 80% of B. B @
* The cost of raw material Ais 1.1, and available feed rate
is 5. R2
* The cost of raw material B is 1, and available feed rate is
7. Source: Grossmann and Trespalacios (2013)
Assignment:
1. Formulate the optimization problem using linear
disjunctions.
2. Formulate the corresponding MILP using big-M
reformulation.
55 @ NTNU
How to solve?
J*=min Tx+dTy
(z.y)
s.t. Ar+ By >b
(z,y) e R} x Z’jr
« Total enumeration (if possible):
— Solve LP in x for all possible y’s, select solution with smallest optimum
— Possible for (very) small problems, but quickly becomes infeasible
#LPs to solve (2") 4 1024 > 1million > 1 billion
— This is always «worst case» solution, illustrates «NP-hardness» of problem
« Can do much better if we use problem geometry to iteratively cut away parts of
the feasible set
— Methods: «branch-and-bound», «cutting-plane», «branch-and-cut, ...
— There has been a tremendous development in these methods last ~20 years
— Solvers: CPLEX, Gurobi, ...
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