
Merging Optimization and Control

Bjarne Foss and Tor Aksel N. Heirung

February 18, 2014

Department of Engineering Cybernetics
Norwegian University of Science and Technology

Contents

Contents ii

1 Introduction 1

2 Optimization 2

2.1 Classes of optimization problems 2
2.2 Solution methods . 7

3 Optimization of dynamic systems 10

3.1 Discrete time models . 11
3.2 Objective functions for discrete time systems 13
3.3 Dynamic optimization with linear models 14
3.4 The choice of objective function in optimal control 17

3.4.1 Norms in the objective function 24
3.5 Optimal open loop optimization examples 24
3.6 Dynamic optimization with nonlinear discrete time models 29

4 Optimal control 31

4.1 Model predictive control . 31
4.2 Linear MPC . 33

4.2.1 Ensuring feasibility at all times 35
4.2.2 Stability of linear MPC 36
4.2.3 Output feedback . 37
4.2.4 Reference tracking and integral action 39

4.3 Linear Quadratic control . 43
4.3.1 Finite horizon LQ control 44
4.3.2 Moving horizon LQ control 49

4.4 In�nite horizon LQ control . 50
4.4.1 State feedback in�nite horizon LQ control 51
4.4.2 Output feedback in�nite horizon LQ control 54
4.4.3 Stability of linear MPC with in�nite horizon LQ control . 55

4.5 Nonlinear MPC . 57
4.6 Comments . 58

4.6.1 The control hierarchy and MPC 58
4.6.2 MPC performance . 61
4.6.3 Feedforward control . 62
4.6.4 MPC models . 64
4.6.5 Practical MPC formulations 64

Bibliography 66

ii

1 Introduction

This note is a supplement to the course TTK4135 � Optimization and Control.
Key learning outcomes of this course are the ability to formulate appropriate
engineering problems as a mathematical optimization problem, and analyze and
solve such optimization problems. Important optimization problem classes are
presented and optimality conditions are discussed. Further, algorithms for solv-
ing optimization problems are treated including some information on relevant
software. This material is for the most part covered by the optimization text-
book Nocedal and Wright (2006).

The course TTK4135 � Optimization and Control also covers Model Predic-
tive Control (MPC). Instead of introducing an MPC textbook like Rawlings and
Mayne (2009), Goodwin et al. (2004), Rossiter (2003), or Maciejowski (2002)
we have written this note. The rationale is to provide a smooth transition from
optimization to MPC via open loop optimal control. This approach is not taken
in any available textbook on MPC.

The outline of this note is as follows. Section 2 repeats key concepts in opti-
mization before Section 3 treats optimization of discrete time dynamic systems.
This section shows how optimization based on static models easily can be ex-
tended to include dynamic time discrete models. This section introduces two
important concepts, dynamic optimization and open loop optimization. This
provides a foundation for the optimal control section, in which the MPC con-
cept is introduced. Section 4 discusses linear MPC, which is extensively used
in practice. Linear quadratic control is an interesting case, which is treated
separately. This section also includes material on state estimation, nonlinear
MPC and comments related to practical use of MPC.

1

2 Optimization

This section presents relevant background on optimization. It �rst classi�es op-
timization problems and discusses some basic properties. Subsequently solution
methods and computational issues are discussed.

2.1 Classes of optimization problems

Mathematical optimization problems include three main components, an objec-
tive function, decision variables and constraints. The objective function is a
scalar function which describes a property that we want to minimize or maxi-
mize. The decision variables may be real variables, integers or binary variables,
or belong to other spaces like function spaces. In this note the decision variables
will mostly be limited to the Euclidean space, i.e., vectors of real variables. Con-
straints are normally divided into two types, equality constraints and inequality
constraints. This background allows us to de�ne an optimization problem, the
nonlinear program (NLP).

min
z∈Rn

f(z) (1a)

subject to

ci(z) = 0, i ∈ E (1b)

ci(z) ≥ 0, i ∈ I (1c)

Some further explanation is required. f takes an n-dimensional vector and
projects it onto the real axis. Further, the decision variables are de�ned on a
Euclidean space since z ∈ Rn which excludes integer or binary decision variables.
E and I are disjunct index sets, i.e., E ∩ I = ∅, for the constraints. Due to the
constraints the decision variables z may be selected from a subset of Rn. This
subset is called the feasible region or the feasible set and is de�ned by the
constraints ci. More precisely the feasible set is de�ned by

Ω =
{
z ∈ Rn

∣∣ (ci(z) = 0, i ∈ E
)
∧
(
ci(z) ≥ 0, i ∈ I

)}
(2)

In some cases the feasible set may be further limited by the domain of f
itself. A function like

√· is only de�ned for positive arguments. Such cases are,
however, not considered in this note.

Example 1 (Optimization problem and feasible area)
Consider the optimization problem

min
z∈R2

f(z) = z2
1 + 3z2 (3a)

s.t. c1(z) = z2
1 + z2

2 − 1 = 0 (3b)

c2(z) = z1 + z2 ≥ 0 (3c)

Here, we have that E = {1} and I = {2}. The feasible area for this problem is

Ω =
{
z ∈ R2

∣∣ c1(z) = 0 ∧ c2(z) ≥ 0
}

=
{
z ∈ R2

∣∣ z2
1 + z2

2 = 1 ∧ z1 + z2 ≥ 0
}

(4)

2

The feasible area Ω is a half circle (not a half-disc) with radius 1, marked with
red in Figure 1. 4

z1

z2z1 + z2 = 0

z21 + z22 = 1

0.5−0.5

0.5

−0.5

Ω

Figure 1: Feasible area (thick red curve) for Example 1.

The optimization problem in (1) is stated as a minimization problem. Some
problems, where for instance the objective function represents pro�t, are clearly
maximization problems. One should observe that any maximization problem
can be translated into a minimization problem by observing that `max f(z)' and
`min−f(z)' provide equal solutions apart from the opposite sign of the objective
function value. The feasible set may be empty, i.e., Ω = ∅. In this case there is no
solution, or no feasible points, to the optimization problem in (1). f(z) has to be
bounded below for all feasible solutions meaning that f(z) 6= −∞ for all z ∈ Ω.
This has no practical consequence since all reasonable engineering problems will
be constrained such that the objective function remains bounded.

A point z∗ ∈ Ω is the solution of (1) if

f(z∗) ≤ f(z), for all z ∈ Ω

Such a point is a global minimizer. There may be several such minimizing points.
In the case of only one single global minimizer the global minimizer is a strict
global minimizer. A local minimizer z∗ provides a minimum value within some
neighborhood rather than the whole feasible region and is de�ned by

f(z∗) ≤ f(z), for all z ∈ ‖z − z∗‖ < ε

where z can take values in a feasible open set about z∗. A strict local minimizer
is de�ned by replacing ≤ with < above.

A key question is how to identify a minimization point. Provided certain
smoothness conditions and regularity conditions are satis�ed the Karush-Kuhn-
Tucker (KKT) conditions de�ne necessary conditions for optimality. First, how-
ever, we need to de�ne the Lagrange function and active constraints.

L(z, λ) = f(z)−
∑
i∈E∪I

λici(z) (5)

where λi are the Lagrange multipliers.

3

An active constraint is a constraint for which ci(z) = 0, which implies that
all equality constraints are active at a feasible point. An inequality constraint,
however, may either be active or not active at a feasible point.

Since the KKT conditions is a key results in constrained optimization we
state this result in some detail.

Theorem 1 (First order necessary conditions).
Assume that z∗ is a local solution of (1) and that f and all ci are di�erentiable
and their derivatives are continuous. Further, assume that all the active con-
straint gradients are linearly independent at z∗ (meaning that LICQ1 holds).
Then there exists Lagrange multipliers λ∗i for i ∈ E ∪ I such that the following
conditions (called the KKT conditions) hold at (x∗, λ∗);

∇zL(z∗, λ∗) = 0 (6a)

ci(z
∗) = 0, i ∈ E (6b)

ci(z
∗) ≥ 0, i ∈ I (6c)

λ∗i ≥ 0, i ∈ I (6d)

λici(z
∗) = 0, i ∈ I (6e)

The KKT conditions are necessary conditions for a local solution. Su�cient
conditions, however, can be derived through second order conditions.

Theorem 2 (Second order su�cient conditions).
Suppose that for some feasible point z∗ ∈ Rn there exists Lagrange multipliers
λ∗ such that the KKT conditions (6) are satis�ed, and that f and all ci are
twice di�erentiable and their derivatives are continuous. Assume also that

∇zzL(z∗, λ∗) � 0 (7)

Then z∗ is a strict local solution of (1).2

∇zzL(z∗, λ∗) needs only be positive in certain directions, more speci�cally
in directions de�ned by the critical cone3. Hence, the theorem above can be
relaxed by requiring w>∇zzL(z∗, λ∗)w > 0 where w ∈ C(x∗, λ∗). For further
discussion on this we refer to Chapter 12 in Nocedal and Wright (2006).

A major divide in optimization is between convex and nonconvex problems.
Convex problems hold the following key property.

A local minimizer of a convex optimization problem is also a global minimizer.

This implies that Theorem 1 provides necessary conditions and Theorem 2 suf-
�cient conditions for a global solution for convex problems. It is therefore im-
portant to be able to identify convex problems.

An optimization problem is convex if it satis�es the following two conditions:

• The objective function is a convex function.

1LICQ stands for Linear Independence Constraint Quali�cation.
2The notation � 0 means a positive de�nite matrix. Similarly, � 0, ≺ 0, and � 0 mean

positive semide�nite, negative de�nite, and negative semide�nite, respectively.
3The critical cone is loosely speaking directions that do not violate the constraints locally,

see also Chapter 12 in Nocedal and Wright (2006).

4

• The feasible set Ω is a convex set.

If a problem is strictly convex there will always only exist one (global) solution.
For de�nitions of convex functions and convex sets we refer to Nocedal and
Wright (2006).

We will now discuss some speci�c optimization problems de�ned by (1).

• If the objective function f is linear and all constraints ci are linear, (1) is
a linear program (LP) which is be de�ned by

min
z∈Rn

d>z (8a)

subject to

ci(z) = a>i z − bi = 0, i ∈ E (8b)

ci(z) = a>i z − bi ≥ 0, i ∈ I (8c)

Since all constraints are linear the feasible set is convex, and since f is
linear it is also a convex function. Hence, LP problems are convex prob-
lems. LP problems are, however, not strictly convex since there may exist
many solutions with equal optimal objective function values.

(8) can be formulated in various ways. In particular all LP problems can
be written on the standard form which is shown below, see e.g., Chapter
13 in Nocedal and Wright (2006).

min
z∈Rn

d′>z (9a)

subject to

c′i(z) = a′
>
i z − b′i = 0, i ∈ E ′ (9b)

c′i(z) = zi ≥ 0, i ∈ I ′ (9c)

(8) and (9) are hence equivalent problems provided all vectors and sets
are chosen appropriately. It may be noted that a constant term may be
added to (8) or (9) without changing the solution except for the optimal
objective function value. Hence, such a bias term is usually removed.

It is worth mentioning that the KKT conditions are both necessary and
su�cient conditions for the LP problem. Moreover, since the LP problem
is convex the KKT conditions de�ne a global solution.

• When the objective function f is a quadratic function and all constraints
ci are linear, (1) is a quadratic program (QP) which is de�ned by

min
z∈Rn

z>Qz + d>z (10a)

subject to

ci(z) = a>i z − bi = 0, i ∈ E (10b)

ci(z) = a>i z − bi ≥ 0, i ∈ I (10c)

Again all constraints are linear. Hence, the feasible set is convex. A
constant term may be added to (10a). QP problems may be convex or
nonconvex depending on the quadratic form z>Qz and the constraints. Q
is an n-dimensional symmetric matrix and the following statement holds.

5

� If Q is positive semide�nite, i.e., Q � 0, then (10) is a convex prob-
lem.

It may noted that Q = 0 is a positive semide�nite matrix. In this case (10)
turns into a LP problem which indeed is a convex problem. The Q � 0
condition may be relaxed as follows, see also Chapter 16 in Nocedal and
Wright (2006).

� If Z>QZ is positive semide�nite where Z spans the null space of the
active constraints, then (10) is a convex problem.

The KKT conditions are both necessary and su�cient conditions for a con-
vex QP problem. Moreover, the KKT conditions de�ne a global solution
in this case.

• If the objective function f is a convex function, all the equality constraints
are linear and −ci are convex functions for i ∈ I, then (1) is a convex
programming problem. Hence, the optimization problem is convex. It
is useful to note that nonlinear equality constraints always give rise to
nonconvex problems.

• If there are no constraints, i.e., both E and I are empty sets, (1) is an
unconstrained problem meaning that Ω = Rn.

• If the objective function is some arbitrary nonlinear function or the con-
straints ci are nonlinear functions, then (1) is a nonconvex problem.

Sketches of convex and nonconvex sets are shown in Figure 2 while convex
and nonconvex functions are depicted in Figure 3. Note that the region above
the graph of a convex function is a convex region, and that the region above the
graph of a nonconvex function is a nonconvex region.

z1

z2

(a) A convex set.

z1

z2

(b) A nonconvex set.

Figure 2: Comparison of a convex and a nonconvex set.

For completeness some comments on mixed integer formulations are in-
cluded. A mixed integer nonlinear program (MINLP) is de�ned by

min
z∈Rn,y∈Zq

f(z, y) (11a)

subject to

ci(z, y) = 0, i ∈ E (11b)

ci(z, y) ≥ 0, i ∈ I (11c)

6

z2z1
z

f(z)

(a) A convex function.

z2z1
z

f(z)

(b) A nonconvex function.

Figure 3: Comparison of a convex and a nonconvex function.

where Zq de�nes a vector of integer variables. It is quite common to replace
integer variables by binary variables, i.e., y ∈ {0, 1}q. By the de�nition of con-
vex sets (11) is always a nonconvex problem since Zq is a disconnected set.
Integer variables are useful to describe discrete decisions such as a routing deci-
sion. One example is a stream which can be routed to one out of two pipelines
and a second example are on-o� valves, which are either fully open or closed.
An important sub-class of problems are mixed integer linear programs (MILP)
where the problem is convex except for the integer variables. Another important
class of problems are integer programs (IP) with only discrete decision variables
meaning that z is removed from (11) (Nemhauser and Wolsey, 1999).

2.2 Solution methods

Solution methods for optimization problems do in principle vary from explicit
solution to complex iterative schemes. Explicit solutions are however only avail-
able for some simple problems. We will encounter one such relevant problem
later, namely the linear quadratic control (LQ) problem. Otherwise the solution
approach is always an iterative algorithm. There are di�erent ways of categoriz-
ing such algorithms. We will start of by describing the structure of many such
algorithms.

Algorithm 1 Iterative solution procedure

Given initial point z0 and termination criteria
while termination criteria not satis�ed do
Compute the next iteration point

end while

Iterative algorithms need an initial value for z to start o�. Some algorithms
require a feasible initial point while this is no requirement for other algorithms.
The well known Simplex method for solving LP problems and the active set
method for solving QP problems require an initial feasible point while for in-
stance the sequential quadratic programming (SQP) method does not require
an initial feasible point.

Algorithms also need termination criteria4. These will include one or several
of the following criteria: (i) a maximum allowed number of iterations, (ii) one

4Also called stopping criteria.

7

or several progress metrics, and (iii) a characterization of the optimal point.
A progress metric may be the change in objective function value, its gradient
(∇f), or the gradient of the Lagrange function (∇L) from one iteration to the
next. Optimal points may characterized by ‖∇f‖ < ε or ‖∇L‖ < ε where ε > 0
is a small number.

Item 2 in Algorithm 1 is usually the most extensive point and there are
a variety of methods. A large class of methods are gradient based methods
in which the new iteration point uses gradient information to compute a new
iterate according to the following scheme.

zk+1 = zk + αkpk (12)

k denotes the iteration number, while pk ∈ Rn is the search direction and
αk ∈ R+ is a positive line search parameter. The search direction pk depends
on gradient information. Several alternatives exist, one alternative being the
steepest descent direction in which pk = −∇f(zk) and the Newton direction
where pk = −(∇zzf(zk))−1∇f(zk). In the latter case ∇zzf is the Hessian of
f . A key point in all gradient based schemes is that pk points in a descent
direction for f(zk). Therefore the directional derivative should be negative, i.e.,
∇f(zk)pk < 0. It should be noted that both the derivative and Hessian infor-
mation is required in Newton schemes. In practice, however, a Quasi-Newton
method is usually applied which means that the Hessian matrix is approximated,
i.e., Bk ≈ ∇zzf(zk), and pk = −B−1

k ∇f(zk). The calculation of Bk will be fast
compared to the Hessian matrix since Bk uses gradient information only. Fur-
ther, positive de�niteness of Bk can be controlled. The latter is important since
Bk � 0 implies that −B−1

k ∇f(zk) is a descent direction. A robust and e�cient
Quasi-Newton algorithm, which computes B−1

k , is the BFGS algorithm.
Gradients can be computed using �nite di�erencing and automatic di�er-

entiation. Finite di�erencing is based on Taylor's theorem and the gradient is
estimated using perturbations. Approximation accuracy varies. A central dif-
ference scheme is for instance more accurate than forward di�erencing. The
computation time for the former is, on the other hand, roughly the double of
the latter. Accuracy also depends on the perturbation size. Automatic di�eren-
tiation is an e�cient way of computing derivatives. It basically adopts the chain
rule by dividing complex functions into elementary operations. This approach
is gaining popularity and is gradually implemented in optimization packages,
see also Chapter 8 in Nocedal and Wright (2006) for more information.

Some methods exploit structural properties in order to compute the next
iteration point. This is the case for the Simplex method, which uses the fact
that it is su�cient to look for a solution in vertexes of the feasible polytope given
by the linear constrains in LP problems. Hence, the iterates zk jump from one
feasible vertex to another until the KKT conditions, which are both necessary
and su�cient conditions for a solutions, are met.

There are many derivative free methods (Conn et al., 2009), i.e., methods
where no explicit gradient information is used in the search. These methods
can be divided into two main groups, pattern search methods and model based
methods. Examples of pattern search techniques are the Hooke Jeeves direct
search (Hooke and Jeeves, 1961), the Nelder Mead algorithm (Conn et al.,
2009), generalized pattern search (Torzcon, 1997) and the mesh adaptive di-
rect search (Audet and Dennis JR., 2006). These methods are applicable to

8

problems with a limited number of decisions variables, typically less than a few
hundred optimization variables. They are, however, fairly easy to implement
in a distributed computing environment, a measure that improves e�cientcy.
Model based methods approximate f in the vicinity of zk by a simple, typically
quadratic, model. These methods are called trust region derivative free meth-
ods, cf. Conn et al. (2009). An advantage of the trust region methods is that it
is possible to establish stringent convergence proofs for these algorithms.

Derivative free methods are popular since they are easily understood and
straightforward to implement. To elaborate further, evaluating the objective
function will in some cases require extensive computations. This is for instance
the case if the equality constraints are embedded in a simulator. One example,
among many, is a simulator of the electricity grid in Southern Norway where
the decision variables are capacitors placed in di�erent locations of the grid.
The objective would typically be to keep the voltage within upper and lower
bounds by changing the capacitor load. In this case the simulator must be
run once in order to compute the objective function once. Now, simulators do
not usually supply gradients. Hence, one may be forced to use a derivative free
method. To reiterate, a parallel implementation in this case may reduce runtime
signi�cantly.

9

3 Optimization of dynamic systems

Dynamic systems are characterized by changes over time which means that
variables are functions of time. On the other hand, static systems are time
independent. Dynamic systems are modeled in many di�erent ways, for instance
with di�erential equations, and there are di�erent approaches to optimization
of such systems. Two main categories, quasi dynamic optimization and dynamic
optimization, are explained below.

• Quasi dynamic optimization: Optimize a dynamic system by repetitive
optimization on a static model. The idea is that the dynamic changes can
be compensated for by frequent reoptimizing on a static model. This ap-
proach works well for slowly varying systems and systems that are mostly
in steady state.

• Dynamic optimization: Optimize on a dynamic model. In this case the
solution will be a function of time, i.e., all decision variables will be func-
tions of time. Dynamic optimization is necessary when dynamics plays a
major role, which quite often is the case for systems with frequent changes
in the operating conditions.

This note will focus on dynamic optimization. Before discussing this, how-
ever, we illustrate an example of quasi dynamic optimization.

Example 2 (Optimizing oil production)
Assume that 5 wells are producing according to the sketch in Figure 2. The well
streams contain gas, oil and water. Further, the mass fraction of gas, oil and
water in a well varies slowly with time. Hence, a well will produce according to

qi(t) = agi(t)qgi(t) + aoi(t)qoi(t) + awi(t)qwi(t), i = 1, . . . , 5

where t de�nes time. qi(t) is the total rate from well i while qgi(t), qoi(t), qwi(t)
are gas, oil and water rates, respectively. Since we use mass rates the mass
fractions always add up to one, i.e., agi(t) + aoi(t) + awi(t) = 1.

Assume that the goal is to maximize oil production while honoring opera-
tional constraints like gas processing and water processing capacities on a plat-
form, and rate limits in each well. This may be formulated as an LP problem
as in (8).

min
z∈R20

(0, 0, 1, 0, . . . , 0, 0, 1, 0)z (13a)

subject to

qi(t)− agi(t)qgi(t)− aoi(t)qoi(t)− awi(t)qwi(t) = 0, i = 1, . . . , 5 (13b)

agi(t) + aoi(t) + awi(t) = 1, i = 1, . . . , 5 (13c)

qi(t) ≤ qmax
i , i = 1, . . . , 5 (13d)

qg1(t) + · · ·+ qg5(t) ≤ qmax
gas (13e)

qw1(t) + · · ·+ qw5(t) ≤ qmax
water (13f)

where
z = (q1, qg1, qo1, qw1, . . . , q5, qg5, qo5, qw5)> (13g)

10

Pipeline

Wells Wells

Oil export

Gas export

Water disposal

Processing facilities

Figure 4: Sketch of oil production system for Example 2.

This is a simple LP problem, which is easily solved. One interesting question,
however, is how to account for variations in time. One approach is to take
a snapshot at a given time t0 and solve (13) assuming static conditions, i.e,
constant mass fractions. This solution is denoted by z∗(t0). After some time,
i.e., t1 > t0, the mass fractions may have changed signi�cantly, thus, z∗(t0) is
no longer an (optimal) solution and it may even be infeasible. Hence, a new
solution z∗(t1) is computed. A valid strategy is therefore to compute a new
solution once the mass fractions have changed signi�cantly5.

A second approach is to is to treat the problem as a dynamical system.
Let us assume that the �ow dynamics associated with changes in �ow rates
are important. One operational example of the latter is during start up of a
well, i.e., starting production after the well has been closed in for some time.
Such a start up may take several hours. This behavior is not included in the
description above since it requires a model with �ow dynamics. Such a model
may for instance be based on di�erential equations. 4

We will from now on only consider dynamic optimization and start by cat-
egorizing these problems by model type and control parametrization, i.e., how
the control input is de�ned. Model formats are many and range from di�erential
or di�erential algebraic (DAE) systems to transfer functions and further state
space models. In this note we use state space models, see e.g., Chen (1999),
since this is a fairly general class of system and such models are frequently used
in dynamic optimization. The presentation is limited to discrete time models
since continuous time models require quite di�erent solution methods.

3.1 Discrete time models

A discrete time system is sampled at discrete points in time. These sampling
points are usually equidistant in time. Such a system can be described by a
�nite di�erence model in the following form

xt+1 = g(xt, ut) (14a)

5The meaning of �signi�cantly� in terms of a quantitative measure will have to be chosen
in each individual case.

11

where system dimensions are given by

ut ∈ Rnu (14b)

xt ∈ Rnx (14c)

The function g maps an (nu + nx)-dimensional vector onto Rnx . The sub-
script t is a discrete time index. A slightly more general model is obtained if
g is an explicit model in time, i.e., gt(xt, ut). The control input ut is assumed
to be piecewise constant, i.e., it is constant on the continuous time [t, t+ 1〉,
and hence the change from ut to ut+1 occurs in a stepwise manner at t+ 1. As
opposed to the control inputs the states xt are only de�ned at discrete points
in time, and not in between these sampling points.

Note that subscript t is used above. It refers to discrete time, i.e., discrete
points in time, as opposed to subscript k which is used as an iteration index,
see e.g., (12).

The linear equivalent of (14) is obtained by replacing g with a linear function,

xt+1 = Axt +But (15)

Equation (15) represents a linear time invariant (LTI) system since the
matrices A and B are constant while the more general formulation below shows
a linear time variant (LTV) since A and B are functions of time.

xt+1 = Atxt +Btut (16)

The LTV and LTI models are often used since nonlinear systems may be
approximated by linear ones. The link between (14) and the linear models is
established by the following approximation.

Assume that x̄t, ūt is a stationary point for g

xt+1 = x̄t = g(x̄t, ūt) (17)

and that g is at least one time di�erentiable. Further, de�ne a perturbation
about the stationary point by δxt, δut. This situation may be approximated, or
modeled, using a �rst-order Taylor series expansion.

xt+1 = g(xt, ut) = g(x̄t + δxt, ūt + δut)

≈ g(x̄t, ūt) +
∂g(x̄t, ūt)

∂xt
δxt +

∂g(x̄t, ūt)

∂ut
δut

By de�ning a perturbation on the next state xt+1 = x̄t + δxt+1 we obtain
the following expression

xt+1 = x̄t + δxt+1 ≈ g(x̄t, ūt) +
∂g(x̄t, ūt)

∂xt
δxt +

∂g(x̄t, ūt)

∂ut
δut

which reduces to

δxt+1 ≈
∂g(x̄t, ūt)

∂xt
δxt +

∂g(x̄t, ūt)

∂ut
δut (18)

This is equivalent to an LTV model if we replace the Jacobian matrices, i.e.,
∂g(x̄t,ūt)
∂xt

and ∂g(x̄t,ūt)
∂ut

, by At and Bt, and de�ne δxt as the states and δut as the
control inputs. A few observations are however in order:

12

• If g is highly nonlinear the linear approximation (18) will be poor. Hence,
it makes sense to use the nonlinear model (14) in such cases.

• If g is mildly nonlinear (18) may su�ce.

• If g is mildly nonlinear and the the range in which xt and ut varies is
small, an even coarser approximation than (18) may be used, namely an
LTI model like in (15).

The discussion above may be repeated for non-stationary points by replacing
(17) with x̄t+1 = g(x̄t, ūt) and xt+1 = x̄t+1 + δxt+1.

3.2 Objective functions for discrete time systems

The dynamic optimization problem always stretches over time meaning that the
objective function will include time. We therefore de�ne the following objective
function.

f(x1, . . . , xN , u0 . . . , uN) =
N∑
t=0

ft(xt+1, ut) (19)

This objective function will now be explained.

• The objective function is de�ned on a time horizon from t = 0 to t = N
where subscript t is the discrete time index. The time span from 0 to N is
called the prediction horizon. It should be noted that it is straightforward
to replace the prediction horizon by a time horizon which starts at time
t = j and continues until t = j + N . In this note we assume equidistant
times, i.e., all the sampling times are equal.

• The number of decision variables (x1, . . . , xN , u0 . . . , uN) increases linearly
with the prediction horizon N .

• The objective function is structured such that it sums the contributions
from each time step through ft(xt+1, ut).

• The initial state x0 is not a decision variable since it is assumed to be
given. It is either known exactly or it may be estimated. xt+1 is the state
at the end of the control interval for ut, i.e., at the end of the continuous
time interval [t, t+ 1〉. This is why we pair xt+1, ut and therefore use
ft(xt+1, ut) instead of ft(xt, ut).

• ft may focus on di�erent types of desired properties. Some examples are
mentioned below.

� Economic measures like revenue and cost may be maximized or min-
imized over the time horizon. One example is an objective function
which mimimizes the energy consumption of an airplane or a ship
on its journey between two destinations. Another example could be
minimizing energy use in a building.

� A system may need to follow a reference trajectory. Examples include
a vessel that needs to follow a prescribed route, or a batch chemical
reactor where the temperature pro�le over time is critical for product
quality.

13

� A system should reach a given state at the end of the time horizon.
An example is a rocket that should reach a certain altitude.

� Limit wear and tear on equipment while honoring operational con-
straints. An example is minimizing valve movements while maintain-
ing required control performance.

There are problems which are not covered by (19), e.g., the minimal time
case. An example of the latter is a �ghter plane that should move from one
location to another as fast as possible. In this case the prediction horizon N
also becomes a decision variable.

3.3 Dynamic optimization with linear models

Given the options above a variety of dynamic optimization problems may be
formulated. We start o� with linear models and assume a quadratic objective
function since this is a commonly used formulation.

Objective function (19) may now be written as

f(z) =

N∑
t=0

ft(xt+1, ut) =

N−1∑
t=0

1

2
x>t+1Qt+1xt+1 + d>xt+1xt+1 +

1

2
u>t Rtut + d>utut

with Qt � 0 and Rt � 0, which gives rise to the following QP problem.6

min
z∈Rn

f(z) =

N−1∑
t=0

1

2
x>t+1Qt+1xt+1 + dxt+1xt+1 +

1

2
u>t Rtut + dutut (20a)

subject to

xt+1 = Atxt +Btut, t = 0, . . . , N − 1 (20b)

x0, u−1 = given (20c)

xlow ≤ xt ≤ xhigh, t = 1, . . . , N (20d)

ulow ≤ ut ≤ uhigh, t = 0, . . . , N − 1 (20e)

−∆uhigh ≤ ∆ut ≤ ∆uhigh, t = 0, . . . , N − 1 (20f)

Qt � 0 t = 1, . . . , N (20g)

Rt � 0 t = 0, . . . , N − 1 (20h)

where

∆ut = ut − ut−1 (20i)

z> = (x>1 , . . . , x
>
N , u

>
0 . . . , u

>
N−1) (20j)

n = N · (nx + nu) (20k)

In the interest of simplifying the notation, we will not specify the set of times t
for the constraints whenever a special case of (20) is stated later in this note.

Several comments are included to explain the formulation.

6It is common to include 1
2
as a part of the quadratic terms in dynamic optimization. The

reason is that some results, in particular linear quadratic control (LQ), which will be discussed
later, uses this convention.

14

• The reason for using index t + 1 for the states xt is that the states of
interest are x1, . . . , xN since x0 is �xed. This is di�erent for the control
input since u0 de�nes the control on the time interval [0, 1〉 and uN−1 the
control on [N − 1, N〉. Hence, we cover the whole prediction horizon.

• The discrete time model appears as an equality condition in the op-
timization problem. Further, we observe that it is repeated N times,
once for each time step on the horizon. The reason why t runs only to
N − 1 is the fact that xN is given by information at time N − 1 since
xN = AN−1xN−1 +BN−1uN−1.

• An initial value x0, i.e., the state at the beginning of the prediction hori-
zon, is required. It is given as an equality constraint meaning that x0 is
no free variable for optimization.

• Similarly, u−1 is a parameter in the optimization problem. We need the
previous input u−1 in order to calculate ∆u0 = u0 − u−1 which is con-
strained in (20f). In cases where we have no constraints on ∆ut, we do
not need the u−1 in the optimization problem. Note that u−1 is the con-
trol applied to the plant at the previous time step; that is, the time step
right before the beginning of our current horizon. We can think of this
as feedback from both the state x and the previous control input u−1.
This can be achieved by augmenting the state vector with the extra state
xnx+1 = u−1 when ∆ut is included in the formulation.

• Upper and lower bounds are placed on the states. These could be temper-
ature or pressure limits, or for instance speed constraints. The constraints
are repeated N times while no limit is set on x0 since it is given by (20c).
xlow and xhigh are vectors and if no speci�c limits exists for certain states
the corresponding elements of xlow and xhigh may be set to −∞ and +∞,
respectively.

• Constraint (20d) may well be generalized by placing limits on some con-
trolled variable γt instead of the states, i.e., by replacing xt with γt = h(xt)
and constraining this function. An example of the latter may be limits on
product quality, say viscosity of paint, which can be modeled as a function
of the states which may include temperature, humidity and concentration
of certain species. If h is a linear function then γt = Hxt.

• The objective function (20a) may weight the controlled variable γt instead
of xt. For a linear model, γt = Hxt, the objective function is then given
by

f(z) =

N−1∑
t=0

1

2
γ>t+1Qt+1γt+1 + d>γt+1γt+1 +

1

2
u>t Rtut + d>utut

=

N−1∑
t=0

1

2
x>t+1H

>Qt+1Hxt+1 + d>γt+1Hxt+1 +
1

2
u>t Rtut + d>utut

(21)

where H>Qt+1H replaces Qt+1 in (20a). In this case we typically choose
Qt � 0 since γt has been selected to include only important controlled
variables.

15

• The objective function is of LTV type since Qt and Rt are time varying.
It is common to use an LTI objective where these matrices do not vary
with time.

• The control input is limited by upper and lower bounds. An obvious
example of this is a valve with a range from closed to fully open. The
control input constraints run from 0 till N − 1 since uN−1 de�nes the
control input on the time horizon t ∈ [N − 1, N〉.

• The change in the control input is restricted by (20f). This is very often an
issue since for instance valves or motors do have limits on their dynamic
performance, i.e., the speed with which the control input may change.

• (20) is called en open loop optimization problem since it does not include
feedback control. Feedback control is a central topic in Section 4.

Discrete time models usually have many more states than control inputs, i.e.,
nx � nu. Hence, the number of decision variables are essentially governed by the
state dimension and the prediction horizonN . An example of a typical size could
be N = 20, nx = 25, nu = 4 meaning that the number of decision variables
is 580 since n = N · (nx + nu) = 20 · (25 + 4) = 580. According to (20b) and
(20c), there are 525 equality constraints. Viewing this from a control viewpoint
the future state trajectory x1, . . . , xN is given by the initial state x0 and the
control trajectory u0, . . . , uN−1 through the discrete time model. Therefore the
states may be eliminated by substituting x0, . . . , xN in the objective function
and the state constraints with u0, . . . , uN−1 using (20b) and (20c). At the end
we are then left with 20 × 4 = 80 decision variables instead of 580. There is a
penalty to be paid, however, since the matrices in the latter reduced space case
are dense. The full space formulation will, however, be sparse since the Karush-
Kuhn-Tucker (KKT) matrix is sparse7. All e�cient solvers take advantage of
this property. In this case, however, the reduced QP problem is probably the
preferred choice due to the noticeable reduction in problem size. The reduced
problem formulation is presented as the null space method in Chapter 16.2 in
Nocedal and Wright (2006).

We have so far studied how a dynamic optimization problem can be con-
verted into a QP problem. Two important questions still need attention. First,
why is the quadratic objective function a reasonable option and, second, will
(20) be a convex QP problem?

The quadratic objective function (20a) is a reasonable option and it is by
far the most widely used objective function. Reasons for these are:

1. Economic measures like revenue or cost are often linear in one or several
states and one or several control inputs, respectively. The typical structure
of such terms are thus dxtxt and dutut where dxt and dut include sales
prices and the cost of input factors, respectively. This is a special case of
(20a).

2. A system may need to follow a reference trajectory, one example being a
vessel which has been issued a prescribed route. In this case the following

7In a sparse matrix the majority of elements are 0. The KKT matrix K is de�ned in
Chapter 16.1 in Nocedal and Wright (2006).

16

term where Q � 0 makes sense

1

2
(xt − xreft)>Q(xt − xreft), Q � 0 (22a)

This term can be rewritten as

1

2
x>t Qxt − (xreft)>Qxt +

1

2
(xreft)>Qxreft (22b)

Hence, in the tracking case the objective function term includes a quadratic
term, a linear term, and a constant. Often we replace xt by the output
variable γt, which was discussed in conjunction with (21), and which does
not change the problem structure.

There is one common extension to (20a), which is to include the following term

1

2
∆u>t R∆t∆ut (23)

with R∆t � 0. This penalizes control moves8 and thereby wear and tear on
actuators like valves.

In dynamic optimization Qt in (20) will almost always be diagonal. Further,
it is always positive semide�nite. The same holds for Rt and R∆t.

The conclusion from the above discussion is that a convex QP problem, or
alternatively an LP problem, is a useful formulation in dynamic optimization.
Hence, the theory and solution methods discussed in Chapter 16 in Nocedal
and Wright (2006), and in Chapter 13 for LP problems, do indeed provide an
excellent platform for solving dynamic optimization problems.

An interesting observation is that the use of an LTI or LTV model in (20)
is quite similar from a solution point of view. In both cases the problem is
convex. The only di�erence is that the linear model calculations in (18) are
more involved in the LTV case since A0, . . . , AN−1, B0, . . . , BN−1 are required
instead of just A,B. This may be an important di�erence if each Jacobian
matrix computation is demanding.

3.4 The choice of objective function in optimal control

In the following two subsections we will discuss the choice of objective function
and its links to closed loop system performance. Further, we provide some
examples. The discussion will be quite concrete and for simplicity center on
SISO systems9.

Consider the two sets of system and control trajectories in Figure 5. For both
of these cases, the state reference point for the controllers is xreft ≡ 0. Looking
at the two di�erent closed loop systems, it is clear that both controllers are
successful in getting the state xt close to zero by six time steps. However, it is
not clear whether one system performs better than the other.

The state response shown in Figure 5a is somewhat oscillating, while the
response in Figure 5b is smoother. If we have a case where the plant we wish

8A control move is de�ned by ∆ut = ut − ut−1.
9A SISO system is a Single Input Single Output system. It has one input (nu = 1) and

one output, which in this subsection is the state variable. As discussed earlier the output may
also be an auxiliary variable, e.g., γt = Hxt, instead of the states.

17

(a) Oscillating state and control pro-
�les.

(b) Smooth but slower control and
state pro�les.

Figure 5: Two di�erent control strategies ut that lead to very di�erent system
responses xt. Which one is better?

to control does not operate safely whenever the state xt is outside the region
[−1, 1], the �rst response is the better one since the state reaches the desired
region at t = 1, i.e., xt ∈ [−1, 1] ∀ t ≥ 1, while the state response in Figure 5b is
slower in reaching the desired region [−1, 1]. On the other hand, if an overshoot
like the one in Figure 5a is unacceptable, the state behavior in Figure 5b is the
better one out of the two.

If we have no concern for neither a safe region nor overshoots, but simply
want the state xt to be close to the reference point (zero), we can compare the
two responses by evaluating the state's deviation from its reference. The most
common way of comparing two state trajectories like the ones shown in Figure 5
is to compare a norm function of the form

N∑
t=0

‖xt − xreft ‖2 (24)

evaluated for each of the two trajectories. Here, N is the �nal time of interest
(6 in our example). Sometimes the sum starts at t = 1 instead of t = 0; this is
because the initial x0 is given and can therefore be left out since it contributes
the same amount regardless of trajectory. Instead of letting the sum over xt go
from t = 1 to t = N , we can take the sum over xt+1 from t = 0 to t = N − 1.
That is,

N∑
t=1

‖xt − xreft ‖2 =

N−1∑
t=0

‖xt+1 − xreft+1‖2 (25)

The relevance of this indexing convention will be apparent later.
Since xreft ≡ 0, we compare

6−1∑
t=0

‖xt+1‖2 (26)

for the two cases. Note that we have not yet speci�ed which norm we want to
use for our comparison. The choice can for instance depend on the system we
are studying or what kind of controller we want to design. We will later discuss

18

di�erent choices of norm, but for now we will use the 2-norm, which is the most
common choice. Calculating the performance measure

6−1∑
t=0

‖xt+1‖22 =

5∑
t=0

x2
t+1 = x2

1 + x2
2 + x2

3 + x2
4 + x2

5 + x2
6 (27)

for each of our example responses in Figure 5 we get 0.9 for the oscillating state
trajectory in Figure 5a and 2.4 for the smoother state trajectory in Figure 5b.
Hence, if our goal is to have the state close 0 as measured by the 2-norm squared,
the oscillating trajectory in Figure 5a is best.

The above discussion shows that there is no single answer to the question
of which trajectory is best. Determining the best trajectory is only meaningful
with respect to a measure of performance � no trajectory can be universally
best or optimal. When discussing optimality in control we need to decide on
a performance measure (an objective function) and compare trajectories based
on that. The trajectory that is optimal with respect to one objective function
may not be optimal with respect to another. In the following we will discuss
several possible objective functions for control and provide some reasons for the
most common choice of objective.

(a) Identical response to that of Fig-
ure 5b.

(b) The state approaches zero slower
due to less control usage.

Figure 6: Another pair of di�erent control strategies ut that lead to di�erent
system responses xt. Which one is better?

If we compare the two state trajectories in Figure 6, many would say that
one in Figure 6a (the one where the state goes to zero fastest) is the best one.
This is certainly true if we use an objective function like (24). However, we can
imagine a system where it is potentially bad if the state is moved too quickly,
for instance if rapid changes may cause damage; in a case like that the state
trajectory in Figure 6b may be the best. If we want to include the control input
as part of our performance measure or objective function, we might have more
reasons to argue that the system behavior in Figure 6b is the one we prefer out
of the two. Think of cases where the use of input ut has a high cost associated
with it; two examples are vehicles that run on expensive jet fuel and circuits
powered by small batteries. In such cases we may want the state to approach
its reference as fast as possible, but the cost associated with the use of input
might be more important to us.

Looking at the two control input sequences ut in Figure 6, it is clear that
the controller in Figure 6a works the hardest (�spends the most fuel�). Since

19

we want a systematic way of comparing control input sequences, we also here
need a measure of performance. Again, there are many possible choices, but
we will for now use a quadratic measure and discuss alternatives later. In fact,
the measure we will use is almost identical to the one we used for the state
trajectories:

N−1∑
t=0

‖ut‖2 (28)

Note that it is possible to include a reference input ureft that we want to stay
close to, just like in (24)10. If we compare (26) and (28) we see that the sums go
to t = N and t = N − 1, respectively. This is due to the fact that the last state
we include in our performance measure is xN , which depends on uN−1 since the
discrete-time dynamic systems we study can be written as

xt+1 = g(xt, ut) (29)

Hence, the control uN a�ects the state xN+1, a quantity we are not interested in
(since it does not appear in the sum in (26)). Evaluating the control performance
measure

5∑
t=0

‖ut‖22 =

5∑
t=0

u2
t = u2

0 + u2
1 + u2

2 + u2
3 + u2

4 + u2
5 (30)

for the two input sequences in Figures 6a and 6b results in 21.3 and 5.3, re-
spectively. These numbers quantify the amount of work done by each of the
controllers and con�rm that the controller in Figure 6a works more than the
other.

We now have a way of evaluating how well a closed loop system performs,
both in terms of how much the state deviates from its reference point and how
much work the controller does to achieve this. Both of these quantities should
be as small as possible � we want to minimize them. When the two quantities
are minimized we get a state trajectory that stays close to its reference and a
controller that achieves this with a small amount of work.

The task of determining the best performance gets more complicated when
we simultaneously consider both state and control trajectories. The answer to
which of the closed loop systems in Figure 6 has the best performance depends
whether we prioritize the state being close to its reference or a small input signal.
We can argue that Figure 6a performs best if one mainly cares about how close
the state is to its reference, and that Figure 6b is best if how much input is
being used is our main concern.

Let us consider combining the two performance measures (one for the state
and one for the control input) into one objective function f by adding them
together:

f =

N−1∑
t=0

x2
t+1 +

N−1∑
t=0

u2
t

=

N−1∑
t=0

x2
t+1 + u2

t (31)

10The use of the reference control input uref is also mentioned in Section 4.2.4.

20

This objective function takes both state error and control usage into account.
However, it does not allow us to place any emphasis on what is most important
to us � control design. We can specify our priority by introducing the weight
parameters q and r and use an objective function of the form

f =

N−1∑
t=0

qx2
t+1 + ru2

t (32)

The (positive) weights q and r are chosen by the control designer as a way
to specify the desired system behavior and tune controller. In cases where a
small state error is more important than low use of control input we make sure
that q is large enough relative to r; similarly, when minimizing control input
usage takes precedence over keeping the state close to its reference we increase r
and/or decrease q until we are happy with the overall performance. An example
will clarify the e�ect of the weights.

Example 3 (Di�erent objective function values)
We consider the simple example system

xt+1 = 0.9xt + 0.5ut (33)

with initial condition x0 = 4. As above, we want to control the state xt to 0
without using too much input u, and we still study N = 6 time steps. First,
assume that it is very important that the state reaches 0 quickly and stays very
close, and that we do not worry much about how much control input we use.
We can specify this by choosing a value of q that is large relative to the value of
r. We choose q = 5 and r = 1 and see if the system behavior that minimizes the
resulting objective function is acceptable. The optimal system response with
respect to this choice of weights is shown in Figure 7. We see that the state
fairly quickly goes to 0, and that there is a fairly liberal use of control input
to achieve this, especially for the �rst few time steps. We can quantify the
performance through

N−1∑
t=0

x2
t+1 = 1.9,

N−1∑
t=0

u2
t = 23.6 (34)

Figure 7: Optimal system behavior with respect to the weights q = 5 and r = 1.

If we decide that in Figure 7 the state goes to 0 faster than strictly necessary,
or that the large values of the input is not worth the quick state response, we can

21

reconsider our choices of q and r. That is, we want to put less emphasis on the
state's quick convergence to 0. We can specify this by decreasing q, increasing
r, or both. For simplicity, we just decrease q to q = 2 and leave r = 1. The
response shown in Figure 8 is optimal with respect to the objective function
(32) with q = 2 and r = 1. If we compare this response with the one shown in
Figure 7 that resulted from q = 5, we see that the state now approaches 0 slower
(it is very close to 0 at t = 6) and that the magnitude of the control input is
smaller. This is also seen through the quantities

N−1∑
t=0

x2
t+1 = 4.8,

N−1∑
t=0

u2
t = 14.7 (35)

Figure 8: Optimal system behavior with respect to the weights q = 2 and r = 1.

Let us assume that we have changed our minds, and now put even less
emphasis on how quick the state goes to 0, as long as it is decreasing, and put
a bigger emphasis on how much control input is used. This can be expressed
through the choice q = 1 and r = 2. The system behavior shown in Figure 9 is
optimal with respect to this choice. The state is no longer close to 0 by t = 6,
but the control usage now has a very small magnitude; speci�cally,

N−1∑
t=0

x2
t+1 = 14.3,

N−1∑
t=0

u2
t = 5.3 (36)

Figure 9: Optimal system behavior with respect to the weights q = 1 and r = 2.

22

Note that no one out of these three system responses is better than the
others � they are all optimal with respect to a speci�c choice of objective
function weights. It is not always easy to predict what kind of response any
given choice of q and r will produce, and it it often necessary to try many
di�erent combinations before a good combination is found. 4

In the discussion above we measured control performance in terms of control
usage, meaning we wanted to minimize the the magnitude of the control signal.
We mentioned a few examples where this makes sense, one being when the use
of control input is directly related to consuming a resource, such as electricity
from a battery or fuel. In many applications, a large control signal magnitude
has no direct cost. Examples of such cases include the rudder angle of a ship
and the valve opening in a pipe. In these examples we often want to minimize
how much the control signal changes from one time step to the next, often due
to the wear and tear associated with large and frequent changes in the actuator
set point.

We de�ne the change in input at time t as, cf. (20i),

∆ut = ut − ut−1 (37)

which is simply the di�erence between the input at time t and the input at the
previous time t − 1. The quantity ∆ut is as mentioned earlier referred to as
a control move. If we want to limit how much the control input changes, we
may include this in the objective function we minimize. This is usually done by
adding the square of the term (37) to the sum in the objective function (32),
commonly with an associated (positive) weight that we will call r∆

11. This leads
to the objective function12

f =

N−1∑
t=0

qx2
t+1 + ru2

t + r∆(∆ut)
2 (38)

As an exercise, �nd the value of

N−1∑
t=0

r∆(∆ut)
2 (39)

for each of the two input sequences in Figure 10 when r∆ = 1, N = 6, and
u−1 = 0. The answer can be found in the footnote.13

As with the other terms in the objective function, we could have achieved
reduction in the control moves in di�erent ways. The approach we presented
here is the most common in the literature, and using the square of the change
in input from one time instant to the next is the most consistent with the rest
of the objective function. Alternatives to this approach is beyond the scope
of this text; furthermore, the main goal of this brief discussion of the topic is
to demonstrate that the chosen approach makes sense and to help build some
intuition for why it makes sense.

11The notation is consistent with (23).
12The ` 1

2
' term is skipped below.

13Answers to the exercise:

Thesumin(39)is5forthecontrolinputinFigure10b.
Thesumin(39)is1(not0!)forthecontrolinputinFigure10a.

23

(a) A constant input sequence. (b) An on-o� input sequence.

Figure 10: Two di�erent control input sequences.

3.4.1 Norms in the objective function

All of our objective functions discussed here were based on the 2-norm. We
mentioned above that other norms can be used but the 2-norm is by far the
most common in optimal control. The 1-norm is used in certain applications,
meaning performance is measured through absolute values, rather than squares.
As we will see in the subsequent sections, optimizing the performance of linear
systems using a quadratic objective function is done by formulating quadratic
programming problems. If we instead use the 1-norm, the objective function
is not quadratic and the resulting optimization problem is no longer a QP. In
order to solve an optimization problem where the objective function is a sum
of absolute values of the variables, and the constraints are linear, it is possible
to reformulate the problem and obtain a linear programming problem. That is,
using the 1-norm as a performance measure in optimal control of linear systems
leads to linear programming problems. The technique used to reformulate a
1-norm objective function involves introducing extra variables, but the details
of this is outside the scope of this text.

3.5 Optimal open loop optimization examples

We continue this section with two examples of open loop optimization prob-
lems. The �rst example uses a SISO system while the second discusses a MIMO
system14.

Example 4 (Finite horizon optimal open loop control for a SISO system)
Consider the scalar dynamic discrete-time system

xt+1 = axt + but (40)

Our goal is to keep the state xt as close to zero as possible while using a minimal
amount of input. This can be formulated as minimizing some combination of
qx2
t and ru

2
t for all time instants t, where q and r are non-negative scalars that

re�ect how we prioritize the two objectives relative to each other. Assume we
care more about keeping the state close to zero than about how much input we

14A MIMO system is a Multiple Input Multiple Output system. Thus, it has more than
one input (nu > 1) and more than one output.

24

use; this would be the case if performance is critical and fuel is cheap. We could
then choose values like

q = 4, r = 1 (41)

for every value of t provided the values of xt and ut are similar15. If the time
horizon for optimization is of length N , we can formulate the objective as min-
imization of

f(z) =

N−1∑
t=0

1

2
qt+1x

2
t+1 +

1

2
rtu

2
t (42)

where
z = (x1, . . . , xN , u0, . . . , uN−1)> (43)

That is, z is a vector containing all variables. For the remainder of this example,
we choose the rather short horizon length N = 4. We then have that

z = (x1, x2, x3, x4, u0, u1, u2, u3)> (44)

With this de�nition of z, the objective function (42) can be written

f(z) =
1

2
z>

q1 0 0 0 0 0 0 0
0 q2 0 0 0 0 0 0
0 0 q3 0 0 0 0 0
0 0 0 q4 0 0 0 0
0 0 0 0 r1 0 0 0
0 0 0 0 0 r2 0 0
0 0 0 0 0 0 r3 0
0 0 0 0 0 0 0 r4

︸ ︷︷ ︸

G

z (45)

where we call the big matrix G. If we write out the quadratic form,

f(z) =
1

2
z>Gz =

1

2

(
q1x

2
1 +q2x

2
2 +q3x

2
3 +q4x

2
4 +r0u

2
0 +r1u

2
1 +r2u

2
2 +r3u

2
3

)
(46)

it is clear that (42) and (45) are equivalent.
We now rewrite the state Equation (40) as

− axt + xt+1 − but = 0 (47)

With this formulation, we can write the state equation for each time instant t:

−ax0 + x1 − bu0 = 0 (48a)

−ax1 + x2 − bu1 = 0 (48b)

−ax2 + x3 − bu2 = 0 (48c)

−ax3 + x4 − bu3 = 0 (48d)

This set of the equations can then be written in this fashion.

x1 −bu0 = ax0

−ax1 +x2 −bu1 = 0
−ax2 +x3 −bu2 = 0

−ax3 +x4 −bu3 = 0

15Similar values for xt and ut are obtained by scaling these variables.

25

This suggests the matrix formulation

1 0 0 0 −b 0 0 0
−a 1 0 0 0 −b 0 0

0 −a 1 0 0 0 −b 0
0 0 −a 1 0 0 0 −b

︸ ︷︷ ︸

Aeq

x1

x2

x3

x4

u0

u1

u2

u3

︸ ︷︷ ︸
z

=

ax0

0
0
0

︸ ︷︷ ︸
beq

(49)

i.e., the set of system equations can be written as an equality constraint of the
form

Aeqz = beq (50)

Bounds on the states and controls are written

xlow ≤ xt ≤ xhigh (51a)

ulow ≤ ut ≤ uhigh (51b)

We can write these constraints in terms of z as

x1

x2

x3

x4

u0

u1

u2

u3

≥

xlow

xlow

xlow

xlow

ulow

ulow

ulow

ulow

, −

x1

x2

x3

x4

u0

u1

u2

u3

≥ −

xhigh

xhigh

xhigh

xhigh

uhigh

uhigh

uhigh

uhigh

(52)

The problem is fairly easy to implement and solve in MATLAB using this
formulation. For simplicity we let the system be stable and choose a = 0.9 and
b = 0.5; we also set x0 = 4, xlow = −10, xhigh = 10, ulow = −2, uhigh = 2, as
well as the tuning parameters q = 4 and r = 1 for all t. The resulting optimal
open loop state and control sequences are shown in Figure 11. Note that the
�rst two control inputs are at the lower bound, and that the state does not reach
zero at the end of the horizon. 4

The next example is more general than the previous one, and extends the
formulation to MIMO systems.

Example 5 (Finite horizon optimal open loop control for a MIMO system)
Consider the MIMO system

xt+1 = Atxt +Btut (53)

where xt ∈ R2 and ut ∈ R2. Again, we wish to keep both states at zero with
minimal use of input. This can be formulated as minimizing some combination
of x>t Qxt and u

>
t Rut for all time instants t, where Q and R are matrices that

re�ect how we prioritize the di�erent objectives relative to each other. We have
here assumed that Q and R do not vary with time. If there are two states and

26

Figure 11: Open loop optimal state trajectory and control sequence for Exam-
ple 4.

two control inputs and we for instance care more about keeping the �rst state
of xt small than we care about keeping the second state of xt small, we could
use

Q =

[
2 0
0 1

]
(54a)

If we care very little about how large the inputs are, we could choose

R =

[
0.1 0
0 0.1

]
(54b)

If the time horizon for optimization is of length N , we then formulate the ob-
jective as minimization of

f(z) =

N−1∑
t=0

1

2
x>t+1Qxt+1 +

1

2
u>t Rut (55)

where z now is
z = (x>1 , . . . , x

>
N , u

>
0 , . . . , u

>
N−1)> (56)

Note that here, x1 is the state vector x at t = 1. We now choose a very short
horizon length, N = 2, and write the objective as

f(z) =
1

2
x>1 Qx1 +

1

2
u>0 Ru0 +

1

2
x>2 Qx2 +

1

2
u>1 Ru1 (57)

where
z = (x>1 , x

>
2 , u

>
0 , u

>
1)> (58)

27

Since nx = 2, nu = 2, and N = 2, z contains 8 variables. The objective can be
written in the matrix form f(z) = 1

2z
>Gz with

G =

Q1 0 · · · · · · · · · 0

0
. . .

. . .
...

...
. . . QN

. . .
...

...
. . . R0

. . .
...

...
. . .

. . . 0
0 · · · · · · · · · 0 RN−1

(59)

Note that this kind of matrix is called block diagonal. For our example, with
the weight matrices in (54), we get

G =

Q1 0 0 0
0 Q2 0 0
0 0 R0 0
0 0 0 R1

 =

2 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0.1 0 0 0
0 0 0 0 0 0.1 0 0
0 0 0 0 0 0 0.1 0
0 0 0 0 0 0 0 0.1

(60)

For some arbitrary horizon length N , we can write the state equations as the
equality constraint Aeqz = beq with

Aeq =

I 0 · · · · · · 0 −B0 0 · · · · · · 0

−A1 I
. . .

... 0
. . .

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . .

. . . 0
0 · · · 0 −AN I 0 · · · · · · 0 −BN

(61a)

and

beq =

A0x0

0
...
0

 (61b)

For our short horizon (N = 2), we then get

Aeq =

[
I 0 −B0 0
−A1 I 0 −B1

]
, and beq =

[
A0x0

0

]
(62)

Regardless of the number of states, control inputs, and the horizon length,
this formulation is fairly simple to implement in MATLAB. 4

28

3.6 Dynamic optimization with nonlinear discrete time

models

In Section 3.3 the system dynamics were given by a linear dynamic model. Now
a nonlinear dynamic model is introduced. This changes (20) to

min
z∈Rn

f(z) =

N−1∑
t=0

1

2
x>t+1Qtxt+1 + d>xt+1xt +

1

2
u>t Rtut + d>utut (63a)

subject to

xt+1 = g(xt, ut) (63b)

x0, u−1 = given (63c)

xlow ≤ xt ≤ xhigh (63d)

ulow ≤ ut ≤ uhigh (63e)

−∆uhigh ≤ ∆ut ≤ ∆uhigh (63f)

Qt � 0 (63g)

Rt � 0 (63h)

The comments that apply to (20) and were discussed above are equally rele-
vant in this case. There is however one key di�erence and that is the nonlinear
discrete time model which introduces nonlinear equality constraints. Hence,
(20) is an NLP problem and thus also a nonconvex problem. This complicates
matters since solution methods require much more runtime. Further, solution
methods are less robust in the sense that a solution, if it exists, may not be
found, and �nally, there are few ways to determine the quality of a solution16.

An NLP solver is needed to solve (63). There are two main classes of
solver, sequential quadratic programming (SQP) and interior point methods as
discussed in Chapter 18 and 19 in Nocedal and Wright (2006), respectively.

From a control viewpoint the future state trajectory x1, . . . , xN is given by
the initial state x0 and the control trajectory u0, . . . , uN−1 through the nonlinear
discrete time model. Therefore the states may be eliminated by substituting
x0, . . . , xN in the objective function and the state constraints with u0, . . . , uN−1

using (63b) and (63c). As in the linear case this reduces the number of decision
variables signi�cantly when nx � nu. There is, however, an additional penalty
to be paid in the nonlinear case. The linear state constraints (63d) are nonlinear
in the control inputs. As an example the state constraints at t = 1

xlow ≤ x1 ≤ xhigh

change to two nonlinear constraints in u0. (Remember that x0 is �xed.)

xlow ≤ g(x0, u0) ≤ xhigh

Problem (63) may be generalized by using ft(xt, ut) instead of the quadratic
term x>t Qtxt + dxtxt + u>t Rtut + dutut. As argued above the quadratic term
covers most practical cases. Further, for linear models, ft(xt, ut) transform a

16The quality of a solution may for instance be measured by the duality gap.

29

convex QP problem, or an LP problem17, into an NLP problem. Thus, this
enforces a heavy penalty in terms of runtime and reliability. For nonlinear
models the penalty by introducing ft(xt, ut) instead of the quadratic term will
be less since (63) is an NLP problem in the �rst place.

17If Qt = 0 and Rt = 0.

30

4 Optimal control

In this chapter we attempt to bridge the gap between dynamic optimization and
control. This will be done by �rst presenting a concept which merges feedback
control with dynamic optimization; Model Predictive Control (MPC). Second,
linear MPC in which a convex QP problem is the core component is reviewed.
Third, the linear MPC problem is relaxed by removing inequality constraints.
This is known as the linear quadratic (LQ) controller where the solution is given
by a linear controller. Fourth, nonlinear MPC (NMPC), which uses a nonlinear
dynamic model, is brie�y treated before this section ends with some additional
comments.

4.1 Model predictive control

In Sections 3.3 and 3.6 we presented dynamic optimization where a discrete time
model is optimized on a time horizon from t = 0 till t = N . This is an open
loop optimization problem since there is no feedback present in the solution. In
other words the solution is computed at time t = 0 and this solution is used
throughout the prediction horizon. There is an alternative to this, closed loop
optimization, in which the optimal solution is recomputed at every time step t
to include feedback control. Mayne et al. (2000) formulate the MPC principle
as

Model predictive control is a form of control in which the current
control action is obtained by solving, at each sampling instant, a
�nite horizon open loop optimal control problem, using the current
state of the plant as the initial state; the optimization yields an
optimal control sequence and the �rst control in this sequence is
applied to the plant.

A basic MPC algorithm is given below.

Algorithm 2 State feedback MPC procedure

for t = 0, 1, 2, . . . do
Get the current state xt.
Solve a dynamic optimization problem on the prediction horizon from t to
t+N with xt as the initial condition.
Apply the �rst control move ut from the solution above.

end for

The dynamic optimization problem referenced in the algorithm may be the
convex QP problem (20) or the nonconvex NLP problem (63).

One remark is in order. We will always assume that the constraints, which
in (20) and (63) are de�ned on the time intervals 0, . . . , N − 1 and 1, . . . , N , are
aligned with tmeaning that they are shifted to t, . . . , t+N−1 and t+1, . . . , t+N
at time t.

The concept is illustrated in Fig. 12 and it essentially solves a similar op-
timization problem over and over again at each time step. Hence, MPC uses
a moving horizon18 approach in which the prediction horizon changes from
t, . . . , t+N to t+ 1, . . . , t+N + 1 from one time step to the next.

18The name receding horizon is also used.

31

xt′

xt

ut

t

t′ t′ +N

← Past Future →

Present

Plant

xt′

xt

ut′

t′

ut

Solution to the open loop
optimization problem at t = t′

(measured history)
(most recent measurement)
(control history)
(most recent control input)

(most recent measurement)
(predicted)
(predicted)

First control input
ut′ from solution

Measured
state at t′

Figure 12: Illustration of the MPC principle.

One obvious question is �What is the advantage of MPC vs. the open loop
solution?� The brief answer is that MPC couples open loop optimization with
feedback control in the following way: At each time step MPC requires a new
solution of the dynamic optimization problem. This solution z∗t contains the
future states x∗t+1, . . . , x

∗
t+N . Recalling (20c) or (63c) the optimization problem

at t + 1 requires an initial value, i.e., xt+1. A key question is how to select
this initial value. One option is to use the prediction x∗t+1 computed at t.
However, this prediction does not account for errors in the discrete time model
and disturbances that occur on the time interval between t and t + 1. Hence,
a better option is to compute a state estimate x̂t+1 which relies on the latest
available measurements and use this instead of x∗t+1. State estimation extends
Algorithm 2 as follows.

Algorithm 3 Output feedback MPC procedure

for t = 0, 1, 2, . . . do
Compute an estimate of the current state x̂t based on the measured data
up until time t.
Solve a dynamic optimization problem on the prediction horizon from t to
t+N with x̂t as the initial condition.
Apply the �rst control move ut from the solution above.

end for

Before moving on we reiterate on the di�erence between Algorithm 2 and
Algorithm 3. Algorithm 2 requires an exact measure of the state at each time

32

step and is for this reason called state feedback MPC. Algorithm 3 relies on a
state estimate which uses available measurements, i.e., available output data,
and is for this reason denoted output feedback MPC.

To clarify, the term measured data in Algorithm 3 includes both the control
input ut and the measured output. The latter will be de�ned in conjunction
with state estimation (72).

Several books are available on MPC. Arguably the most comprehensive ref-
erence is Rawlings and Mayne (2009)19.

4.2 Linear MPC

Linear MPC applies the MPC concept to problems with quadratic objective
functions and linear constraints. Hence, a convex QP problem, like (20), is
solved at each time step. We make two changes to this QP problem before
stating the algorithm. First, it runs for all times, i.e., t = 0, 1, . . ., and second,
it includes control input changes, i.e., ∆ut, in the objective function since this
is common in MPC.

min
z∈Rn

f(z) =

N−1∑
t=0

1

2
x>t+1Qt+1xt+1 + dxt+1xt+1

+
1

2
u>t Rtut + dutut +

1

2
∆u>t R∆tut (64a)

subject to

xt+1 = Atxt +Btut (64b)

x0, u−1 = given (64c)

xlow ≤ xt ≤ xhigh (64d)

ulow ≤ ut ≤ uhigh (64e)

−∆uhigh ≤ ∆ut ≤ ∆uhigh (64f)

Qt � 0 (64g)

Rt � 0 (64h)

R∆t � 0 (64i)

z and ∆ut is de�ned as in (20).
The state feedback linear MPC algorithm is given by Algorithm 4.

Algorithm 4 Linear MPC with state feedback

for t = 0, 1, 2, . . . do
Get the current state xt.
Solve the convex QP problem (20) on the prediction horizon from t to t+N
with xt as the initial condition.
Apply the �rst control move ut from the solution above.

end for

We will now discuss this algorithm starting with a simple example, and
address the non zero reference case as in (22) later.

19This book is freely available for download at http://www.nobhillpublishing.com.

33

Example 6 (Comparing MPC with an open loop strategy)
Consider the unstable scalar system

xt+1 = axt + but (65)

with a = 1.2, and b = 0.5, and objective function

f(z) =

N−1∑
t=0

1

2
qx2
t+1 +

1

2
ru2
t (66)

with N = 4, q = 1, and r = 4. Figure 13 shows all open loop solutions with
a prediction horizon length of N = 4 in a simulation of 15 time instants. The
open loop solution at t = 0 is shown with one �lled blue dot at t = 1 and three
un�lled blue dots at t = 2, 3, 4. The same holds for the control input. The same
coloring scheme is repeated for each time step. 4

Figure 13: Simulation of the system (65) with MPC using the objective function
(66).

There are some important observations to be made from this idealized ex-
ample where the state is assumed to be known and where there are no model
errors20, i.e., the model used in the MPC algorithm equals the model which
drives the real system.

The open loop solution computed at t = 1, i.e., for t = 2, 3, 4, 5, clearly
di�ers from the open loop solution calculated at t = 0, both for the state xt

20Model errors occur when the actual system di�ers from the MPC model. This is always
the case in a practical application.

34

and the control input ut. This is seen by for instance comparing the �lled and
un�lled blue dots at t = 2. The same also holds for all later time steps. Hence,
the open loop solution and the MPC solution, which are marked as �lled dots,
di�er even in this case with no uncertainty in the discrete time model or noisy
measurements.

4.2.1 Ensuring feasibility at all times

Returning to Algorithm 4 a relevant question is: �Will there always exist a
feasible point?� The answer is clearly no and a simple example illustrates why.

Example 7 (Infeasible solution)
Imagine a vehicle that moves along one axis and therefore has two states, po-
sition and velocity. It is controlled by Algorithm 4. Further, there are linear
control input constraints as well as linear state constraints, which must be satis-
�ed at each time step, see (64d) and (64e). The control input constraints could
refer to a power limit while the state constraints may refer to limits in allowable
vehicle position. Now, imagine a severe disturbance occurring between time
step t− 1 and t, which moves the vehicle beyond the state constraint limits. In
this case no feasible point may exist at t since the state constraints at t + 1,
and possibly at consecutive time steps, may be violated for all feasible control
inputs. 4

The example shows that a feasible point may not exist and that a control
input may not available. This is an unacceptable situation. To avoid this we
soften the state constraints in (64) by using slack variables. This is shown below
where the time index t runs inde�nitely as in Algorithm 4.

min
z∈Rn

f(z) =

N−1∑
t=0

1

2
x>t+1Qtxt+1 + d>xt+1xt+1 +

1

2
u>t Rtut + d>utut

+
1

2
∆u>t R∆tut + ρ>ε+

1

2
ε>Sε (67a)

subject to

xt+1 = Atxt +Btut (67b)

x0, u−1 = given (67c)

xlow − ε ≤ xt ≤ xhigh + ε (67d)

ulow ≤ ut ≤ uhigh (67e)

−∆uhigh ≤ ∆ut ≤ ∆uhigh (67f)

where

ε ∈ Rnx ≥ 0

ρ ∈ Rnx ≥ 0

S ∈ diag {s1, . . . , snx} , si ≥ 0, i = {1, . . . , nx}

The slack variable ε and the tuning parameters ρ and s1, . . . , snx
are de�ned

such that all their elements are positive. Two terms have been added to the

35

original QP problem, ρ>ε and 1
2ε
>Sε. These are both positive terms, hence there

is a desire to drive these terms to zero. More precisely the slack variables should
be nonzero only if the corresponding constraints are violated. This corresponds
to the de�nition of an exact penalty function in Chapter 15.4 in Nocedal and
Wright (2006). The function (67) will be an exact penalty function in this sense
provided the ρ elements are big enough. Again referring to Chapter 15.4 in
Nocedal and Wright (2006) the quadratic term 1

2ε
>Sε alone can never guarantee

an exact penalty function, no matter how large the elements s1, . . . , snx
are. In

practice an application will either use the linear term or the quadratic term.
The slack variable ε may be time dependent by for instance selecting di�er-

ent variables for the �rst part of the horizon and the latter part, respectively.
The reason is to prevent unnecessary constraint violation during the latter pre-
diction horizon since constraint violation tends to appear early on the prediction
horizon. Such an approach increases the number of slack variables and hence
computation time.

The output constraints may be widened during the �rst time steps of the
prediction horizon, or remove these output constraints altogether, in order to
limit the use of slack variables.

4.2.2 Stability of linear MPC

A second relevant question for Algorithm 4 is: �Will the linear MPC controller
always be stable?�, or which assumptions must be made in order to guarantee
stability21 of linear state feedback MPC? The somewhat surprising answer is
that stability cannot be guaranteed even if a feasible solution exists for all
t = 0, 1, A simple example illustrates this.

Example 8 (Stability of linear MPC)
Assume the following objective function

f(x1, u0) =
1

2
(x2

1 + ru2
0), r > 0 (68a)

subject to

xt+1 = 1.2xt + ut (68b)

x0 = 1 (68c)

There are no inequality constraints and the optimal control input at any time
step t, i.e., ut, can therefore be written as an explicit function of xt as follows:

ut = − 1.2

r + 1
xt (68d)

By inserting (68d) into (68b) we obtain the closed loop system dynamics.

xt+1 =

(
1.2− 1.2

r + 1

)
xt = αxt (69)

The open loop system (68b) has an eigenvalue 1.2 and is therefore an open loop
unstable system. The closed loop eigenvalue in (69) exceeds 1, i.e., α > 1, if
r < 5, meaning that the closed loop system is unstable for these choices of r. 4

21By stability we mean asymptotic stability, see e.g., Khalil (2002)

36

This simple example illustrates the fact that an MPC controller may give rise
to an unstable closed loop system, even though a feasible point exists at every
time step. This rather confusing fact was an important reason why stability
analysis of MPC lagged behind practical applications for many years. Early
references of practical MPC applications dates back to the late 70's and early
80's, see e.g. Richalet et al. (1978) and Cutler and Ramaker (1980), while the
�rst sound stability proof was published in the early 90's. An excellent review
of these topics is given in Rawlings and Muske (1993).

It is beyond the scope of this note to discuss stability in detail. We will
however include some theoretical as well as practical comments.

The example above shows that feasibility of MPC is no guarantee for closed
loop stability. Stability can, however, be proven by reformulating the MPC
problem. There are several approaches. We will discuss a reformulation where
the following equality constraint is added to (64):

xN = 0 (70)

In this case Algorithm 4 gives a stable closed loop solution provided a feasible
solution is available at all times and that there are no model errors. Since there
are no model errors, i.e., the MPC model and the actual system are identical,
this is a nominal stability result. Adding (70), however, may cause infeasibility
problems, in particular for short prediction horizons. An alternative to (70) is
to increase the weight on the �nal state constraint, i.e., QN , which has a similar
e�ect to the equality constraint xN = 0. We refer to Rawlings and Mayne
(2009) for more theory on stability of linear MPC with state feedback. If we
use Algorithm 4 with output feedback instead of state feedback, stability proofs
are very involved and of limited use for practical algorithms. The key problem
comes from the interaction between the dynamics of the estimation loop and
the control loop. Some results are available, see e.g., Imsland et al. (2003). We
will return with some comments on stability analysis in the later Section 4.4.3.

If we return to Example 8 stability is easily achieved by increasing the pre-
diction horizon. As a general rule the prediction horizon must be at least as long
as the dominant dynamics22 23. In practice stability is no major issue provided
the MPC controller is designed and tuned according to sound principles. This
includes the choice of model and the length of prediction horizon. In addition
MPC is seldom used to control unstable processes as will be discussed later.

4.2.3 Output feedback

As discussed several times state feedback is no realistic option. Output feedback
is needed meaning that Algorithm 4 changes to Algorithm 5.

The state estimate x̂t is needed. In linear MPC di�erent estimators are used
depending on the model type. Since we focus on state space models there are
two main estimator classes, Kalman �lter based estimators and Moving horizon
estimators (MHE). The celebrated Kalman �lter was �rst proposed by Kalman
(1960) and has been widely used since.

22The dominant dynamics is a qualitative term, which may be de�ned by the longest time
constant of a stable system.

23Example 8 is an unstable system. In this case the time constant is not de�ned. However,
the unstable eigenvalue gives an indication of the minimum prediction horizon, which in this
case is about 5 time steps.

37

Algorithm 5 Linear MPC with output feedback

for t = 0, 1, 2, . . . do
Compute an estimate of the current state x̂t based on the measured data
up until time t.
Solve the convex QP problem (20) on the prediction horizon from t to t+N
with x̂t as the initial condition.
Apply the �rst control move ut from the solution above.

end for

The structure of output feedback linear MPC is shown in Figure 14 and the
estimator equations are given by

x̂t+1 = Ax̂t +But +KF (yt − ŷt) (71a)

ŷt = Cx̂t (71b)

x̂0 = given (71c)

where KF is the Kalman gain and C is the measurement matrix, i.e., data yt is
measured at each sample. We assume a linear measurement model

yt = Cxt (72)

The real system is de�ned within the dashed lines marked �System� while the
estimator is marked by the �Estimator� dashed lines. The estimator receives
measurements yt and control signals ut, and computes estimated states x̂t that
are used by the controller. The system in the �gure is an LTI system. In the
case of an LTV system the appropriate choice is a time varying Kalman gain24.
The controller solves the convex QP problem (20).

xt+1

A

CBQP

x̂t+1

A

CB

KF

xt

x̂t

yt

ŷt

ut

−

System

Estimator

Controller

Figure 14: The structure of an output feedback linear MPC.

Using a Kalman �lter complicates tuning of the MPC controller since the
Kalman �lter itself needs tuning. A rule of thumb is to make the estimator

24Even in the LTI case a time varying Kalman gain can be applied by using the �nite horizon
formulation instead of the in�nite (stationary) Kalman �lter solution. This is, however, rarely
done.

38

dynamics signi�cantly faster than the linear MPC feedback loop to limit inter-
action between the estimator and the control loop.

As a remark the Kalman �lter is based on a stochastic model description by
adding noise terms to the dynamic model equation as well as the measurement
model

xt+1 = Axt +But + vt (73a)

yt = Cxt + wt (73b)

where vt and wt are process noise and measurement noise terms, respectively,
and the noise covariances of these terms determine the Kalman gain KF . Hence,
these covariances are used to tune the �lter gain. If for instance the process noise
covariance is much larger than the measurement noise covariance we rely a lot
on the measurements, which in Kalman �lter terms imply a large Kalman �lter
gain. In the opposite case the Kalman �lter gain will be small. Kalman �lter
theory is described in many books, for instance in the comprehensive textbook
Brown and Hwang (2012).

MHE is an estimator type that computes x̂t by solving an optimization prob-
lem (Rao et al., 2003). It uses recent data, i.e., data at times {t−M, . . . , t},
to estimate the current state xt. Hence, MHE uses data on a time horizon
backwards in time as opposed to MPC, which computes the control based on
predictions forward in time. An advantage of MHE is that it easily accommo-
dates state constraints. Examples of the latter are bounds on velocity, position,
temperature and pressure. The MHE optimization problem is a convex QP
problem in linear MPC. Hence, it can be solved by the same algorithm as the
MPC problem.

4.2.4 Reference tracking and integral action

MPC should handle di�erent types of control problems like disturbance rejection
and setpoint tracking. The linear MPC formulation (64) may be regarded as
a basic formulation and extensions are therefore needed to account for some
control problems. In the following two key problems will be discussed; setpoint
tracking and integral action.

A system may need to follow a reference trajectory, i.e., we may track some
output variable, e.g., the position of a vessel or pressure in a reactor. This
situation is covered by (64) as discussed in conjunction with (22)25. To be more
explicit, however, assume that the goal is to track a variable γt, which depends
linearly on the states, i.e., γt = Hxt. γt is usually called a controlled variable26.
A suitable objective function, derived from (64), may be

f(z) =

N−1∑
t=0

1

2
(γt − γreft)>Q(γt − γreft) +

1

2
∆u>t R∆ut (74)

where Q � 0 and R � 0.
An important question is whether the reference trajectory is feasible. To simplify

25If dxt = 0 and dut = 0 the origin is the optimal solution and hence the setpoint is 0 in
this case.

26The term controlled variable, or CV, is discussed later in conjunction with practical as-
pects, see Section 4.6.5.

39

the discussion let us assume a �xed setpoint γreft = γref, an LTI system and
subsequently pose the question: Is the stationary point feasible? This can be
analyzed as follows:

A stationary point (xs, γs, us) is found by setting xt+1 = xt in the system
model.

xs = Axs +Bus

γs = Hxs

Since the control input ut is constrained by lower and upper bounds as in (64e),
there may not exist a stationary state xs such that γref = γs. This can easily
be checked since the model and constraints are all linear. A simple example
illustrates this.

Example 9 (Feasibility of a stationary point)
Assume the following stable linear system:

xt+1 =

[
0.8 0.4
−0.1 0.9

]
xt +

[
1.0 0.5
0.0 2.0

]
ut

γt =
[
1.0 −1.0

]
xt

0 ≤ ut ≤ 1

A stationary point is given by

xs =

[
1.67 14.17
−1.67 5.83

]
us

γs =
[
3.33 8.33

]
us

Any reference γref < 0 or γref > 11.66 will be infeasible since 0 ≤ ut ≤ 1. 4

It is useful to note that the number of controlled variables usually is smaller
than the number of states, hence, there may exist several xs that satisfy γref =
γs. If the dimension of the control input ut is larger than the dimension of the
output γt, there may likewise exist several stationary controls us that satisfy
γref = γs. In this case we may specify preferred values for some of the control
inputs.

f(z) =

N−1∑
t=0

1

2
(γt − γref)>Q(γt − γref)

+ (ut − uref)>R(ut − uref) +
1

2
∆u>t R∆ut (75)

uref de�nes reference control input values and R � 0. It may be noted that this
objective is covered by (64a). We will subsequently explore the extra degrees of
freedom by returning to the example above.

Example 10 (Feasibility of a stationary point � revisited)
Assume a feasible reference output γref = 2.0 in the previous example. This
may be realized by an (in�nite) number of control input combinations. Three

of these options are us =

[
0.00
0.24

]
or us =

[
0.17
0.17

]
or us =

[
0.60
0.00

]
. In this case the

40

second choice will usually be preferred since both control inputs then operate
away from their limits, i.e., none of the control input constraints are active.
Hence, in the case of a dynamic disturbance both control inputs can move in
both directions to compensate for the disturbance. 4

The selection of reference outputs is not treated herein, apart from a discus-
sion in the later Section 4.6.1 where it is treated in the context of the control
hierarchy.

Integral action is an important feature of PID controllers and provides the
means to compensate for disturbances with a bias component. In other words we
want some controlled variables, which are measured, to converge to a constant
reference value despite a constant disturbance27.

We will now discuss how integral action can be embedded in an MPC con-
troller and show one way of doing this. We impose integral action on the con-
trolled variables γt, meaning that we want γt to approach a constant reference
γref in spite of a constant disturbance. The online measurements are as earlier
de�ned by the output vector yt, and we make the common assumption that inte-
gral action is imposed on all or some of the variables that are measured. Viewing
the output model and the model for the controlled variables, respectively,

yt = Cxt (76a)

γt = Hxt (76b)

Since we impose integral action on all or some of the measured variables yt,
then H will contain a subset of the rows of C.

The basis for the approach taken here is to extend the dynamic model with
a disturbance model, [

xt+1

dt+1

]
=

[
A Ad
0 I

] [
xt
dt

]
+

[
B
0

]
ut

yt =
[
C Cd

] [xt
dt

]
and the idea is to accurately estimate the disturbance. We observe that the
disturbance model is an integrating model. The augmented model, including
the states and disturbances, are estimated using a state estimator as discussed
in Section 4.2.3. Taking a stochastic viewpoint, as brie�y commented upon in
that section, noise is added to the dynamic model and the output model, and
thus the state estimator updates an augmented state vector (xt, dt)

> as shown
below. [

x̂t+1

d̂t+1

]
=

[
A Ad
0 I

] [
x̂t
d̂t

]
+

[
B
0

]
ut +

[
KF

Kd

]
(yt − ŷt) (77a)

ŷt =
[
C Cd

] [x̂t
d̂t

]
(77b)

An estimate of the controlled variable is then given by

γ̂t = Hx̂t (78)

27One may seek zero o�set for a time varying reference signal. This is, however, beyond the
scope of this exposition.

41

and integral action is obtained by replacing the measured control variable γt
with its estimate γ̂t given by (77) and (78) in an appropriate objective function.
A typical objective is given below.

f(z) =

N−1∑
t=0

1

2
(γ̂t − γref)>Q(γ̂t − γref) +

1

2
∆u>t R∆ut (79)

It may be useful to compare (79) with (74). There are two di�erences. First,
we use a constant reference in (79) instead of a time varying reference since
we focus on the constant reference case. Second, the measured output yt is
corrupted by the disturbance dt, and thus this also holds for the controlled
variables γt. Therfore we use the estimate γ̂t in the objective function.

We use a simple example to explain the importance of the noise model in
the state estimator.

Example 11 (Integral action and noise model)
Assume a �rst order model, which is open loop stable.

xt+1 = axt + but

yt = xt + nt

|a| < 1

γt = xt

nt is the measument noise and the controlled variable equals the state. We
assume constant noise nt = n̄ and constant control ut = ū. The stationary
solution is given by

x̄ =
b

1− aū

ȳ = x̄+ n̄ =
b

1− aū+ n̄

γ̄ = x̄ =
b

1− aū

We will now test two di�erent estimators starting with the simplest option.

x̂t+1 = ax̂t + but + k(yt − ŷt)
ŷt = x̂t

The stationary value of the state estimate is given by

ˆ̄x = aˆ̄x+ bū+ k(ȳ − ˆ̄y)

ˆ̄y = ˆ̄x

⇓

ˆ̄x =
b

1− aū+
k

1− a+ k
n̄

ˆ̄γ =
b

1− aū+
k

1− a+ k
n̄

and we immediately observe that ˆ̄γ di�er γ̄ from when n̄ 6= 0. Thus, there will
be a bias in the state estimate in this case and therefore a bias in the controlled
variables, i.e., γ̄ 6= γref.

42

The estimator will subsequently be extended with a noise model

x̂t+1 = ax̂t + but + k(yt − ŷt)
d̂t+1 = d̂t + kd(yt − ŷt)
ŷt = x̂t + d̂t

where d̂t is an estimate of the measurement noise. In this case the stationary
value of the state estimate is given by

ˆ̄x = aˆ̄x+ bū+ k(ȳ − ˆ̄y)

ˆ̄d = ˆ̄d+ kd(ȳ − ˆ̄y)

ˆ̄y = ˆ̄x+ ˆ̄d

⇓

ˆ̄x =
b

1− aū+
k

1− a+ k
(n̄− ˆ̄d)

ˆ̄d = ˆ̄d+ kd(ȳ − ˆ̄y)

⇓

ˆ̄x =
b

1− aū+
k

1− a+ k
(n̄− ˆ̄d)

ˆ̄d = ˆ̄d+
kdb

1− aū+ kdn̄− kd ˆ̄x− kd ˆ̄d

⇓

ˆ̄x =
b

1− aū+
k

1− a+ k
(n̄− ˆ̄d)

ˆ̄d = n̄

⇓

ˆ̄γ = ˆ̄x =
b

1− aū

Hence, the constant disturbance does not a�ect the estimate of the controlled
variable and it is thus an accurate estimate. If we apply objective function
(79) and replace γk with its estimate, the (stationary) solution is ˆ̄γk = γref and
∆ut = 0 provided (possible) inequality constraints allow for this solution. Since
there is no bias in the stationary estimate, integral action is guaranteed, that
is, γ̄ = γref. 4

Integral action on γt will not always be feasible. First, the dimension of γt,
i.e., the number of variables with integral action, cannot exceed the number of
control inputs. Second, if some of the control inputs saturate, some degrees of
freedom are lost. One may thus loose integral action on some of the control vari-
ables. Useful material on tracking and integral action can be found in Rawlings
and Mayne (2009).

4.3 Linear Quadratic control

In this section we remove the inequality constraints altogether. First, the �nite
horizon LQ problem is presented and analyzed. Thereafter it is compared to the

43

linear MPC case. Second, the in�nite horizon LQ problem is discussed. This
problem is subsequently discussed in the context of output feedback.

4.3.1 Finite horizon LQ control

We now remove all inequalities from (64) and pose the following problem.

min
z∈Rn

f(z) =

N−1∑
t=0

1

2
x>t+1Qt+1xt+1 +

1

2
u>t Rtut (80a)

subject to

xt+1 = Atxt +Btut (80b)

x0 = given (80c)

where

z> = (x>1 , . . . , x
>
N , u

>
0 . . . , u

>
N−1) (80d)

n = N · (nx + nu) (80e)

The linear terms and the quadratic ∆ut term have also been removed from
the objective function in addition to the inequality constraints. This will be
commented later. (80) is usually called the LQ problem. Referring to Chapter
16.1 in Nocedal and Wright (2006) we should expect an explicit solution in this
case as opposed to linear MPC which includes inequality constraints. We will
now show that the solution of the LQ problem can be written in closed form.
Moreover, this closed form is given as a linear state feedback controller, i.e.,
ut = Ktxt.

Theorem 3 (LQ control and the Riccati equation).
The solution of (80) with Qt � 0 and Rt � 0 is given by

ut = −Ktxt (81a)

where the feedback gain matrix is derived by

Kt = R−1
t B>t Pt+1(I +BtR

−1
t B>t Pt+1)−1At, t = 0, . . . , N − 1 (81b)

Pt = Qt +A>t Pt+1(I +BtR
−1
t B>t Pt+1)−1At, t = 0, . . . , N − 1 (81c)

PN = QN (81d)

Proof. Part 1: KKT conditions
De�ne the Lagrange function

L(z, λ1, .., λN) =

N−1∑
t=0

1

2
x>t+1Qt+1xt+1 +

1

2
u>t Rtut

−
N−1∑
t=0

λ>t+1(xt+1 −Atxt −Btut)

44

The KKT conditions, see e.g., Chapter 12 in Nocedal and Wright (2006),
are given by28

∂

∂ut
L(z, λ1, .., λN) = Rtut +B>t λt+1 = 0, t = 0, . . . , N − 1 (82a)

∂

∂xt
L(z, λ1, .., λN) = Qtxt − λt +A>t λt+1 = 0, t = 1, . . . , N − 1 (82b)

∂

∂xN
L(z, λ1, .., λN) = QNxN − λN = 0 (82c)

and (80b) and (80c).29

Since Rt is positive de�nite, it is also invertible. Then, (82a) gives

ut = −R−1
t B>t λt+1 (83)

We use (82c) to postulate that the Lagrange multipliers λt depend linearly on
the states xt.

λt = Ptxt (84)

This gives

PN = QN (85)

We substitute (83) and (84) into (80b)

xt+1 = Atxt +Bt(−R−1
t B>t Pt+1xt+1)

and, solving for xt+1, we obtain

xt+1 = (I +BtR
−1
t B>t Pt+1)−1Atxt (86)

Then, we substitute (84) into (82b)

Qtxt − λt +A>t λt+1 = Qtxt − Ptxt +A>t Pt+1xt+1 = 0 (87)

Now xt+1 can be removed from (87) by using (86)

Qtxt − Ptxt +A>t Pt+1(I +BtR
−1
t B>t Pt+1)−1Atxt = 0

Since xt is a common factor, we can write

(Qt − Pt +A>t Pt+1(I +BtR
−1
t B>t Pt+1)−1At)xt = 0

This equality must hold for any xt, in particular it must hold for xt 6= 0. This
gives

Qt − Pt +A>t Pt+1(I +BtR
−1
t B>t Pt+1)−1At = 0,

which we recognize as (81c).

28We skip the de�nition of the index set, e.g., t = 0, . . . , N − 1, many places below to
simplify notation.

29Equation (82b) can be di�cult to apprehend Hence, it may be useful to derive it from
scratch for a simple example.

45

Now, (83), (84) and (86) give

ut = −R−1
t B>t Pt+1xt+1

= −R−1
t B>t Pt+1(I +BtR

−1
t B>t Pt+1)−1Atxt

= −Ktxt

This shows that (81) satis�es the KKT conditions.

Part 2: Second order conditions
Note that the states x1, . . . , xN can be written:

χ =

x1

x2

...
xN−1

xN

 =

A0

A1A0

...
AN−2 · . . . ·A0

AN−1 · . . . ·A0

x0

+

B0 0 · · · 0 0

A1B0 B1
. . .

...
...

...
...

. . . 0 0
AN−2 · . . . ·A1B0 AN−2 · . . . ·A2B1 · · · BN−2 0
AN−1 · . . . ·A1B0 AN−1 · . . . ·A2B1 · · · AN−1BN−2 BN−1

 v

= Âx0 + B̂v (88)

where

v> = (u>0 , .., u
>
N−1)

We de�ne the following matrices

Q̂0 =

Q1 0 · · · 0 0

0 Q2
. . .

...
...

0 0
. . . 0 0

...
...

. . . QN−1 0
0 0 · · · 0 QN

(89a)

R̂0 =

R0 0 · · · 0 0

0 R1
. . .

...
...

0 0
. . . 0 0

...
...

. . . RN−2 0
0 0 · · · 0 RN−1

(89b)

By using (88) and (89) the objective function (80a) may be written as a function
of v instead of z, meaning that the states x1, . . . , xN are eliminated through the
equality constraints.

46

f(z) = g(v) =
1

2
χ>Q̂0χ+

1

2
v>R̂0v +

1

2
x>0 Q0x0

=
1

2
(Âx0 + B̂v)>Q̂0(Âx0 + B̂v) +

1

2
v>R̂0v +

1

2
x>0 Q0x0

=
1

2
v>(R̂0 + B̂>Q̂0B̂)v + x>0 Â

>Q̂0B̂v +
1

2
x>0 (Q0 + Â>Q̂0Â)x0.

Thus, minimizing g(v) without equality constraints is equal to the original LQ

problem. Note that R̂0 + B̂>Q̂0B̂ is positive de�nite since R̂0 is positive def-
inite30 and B̂>Q̂0B̂ is positive semide�nite31. Hence, g(v) is a strictly convex
function and second order conditions are therefore satis�ed.32

Part 3: Summing up
We choose to use Theorem 12.6 in Nocedal and Wright (2006) to show suf-

�ciency.

a) (81) satis�es the KKT conditions.

b) In Part 2 of the proof we showed that g(v) is a strictly convex function
and (12.65) in Nocedal and Wright (2006) will hence be satis�ed.

c) The LQ problem is a strictly convex problem; hence the solution is a
unique global solution.33

There are several interesting features related to the LQ solution. We note
that the solution can be formulated as a state feedback controller as shown
in Figure 15. The controller is a linear time varying (LTV) controller. It is
important to note that the gain matrix Kk can be computed independently of
the states. It only depends on the system matrices (At, Bt) and the weighting
matrices in the objective function (Qt, Rt). It can hence be computed and stored
prior to the actual use of the solution.

(81c) is the well known discrete Riccati equation. It is a discrete time non-
linear matrix equation. A special feature of this equation is the fact that the
boundary condition is given at the end of the optimization horizon as shown in
(81d). This implies that the sequence of matrices (P1, P2, ..., PN−1) is computed
by iterating (81c) backwards in time. Note that these matrices are necessary to
obtain the gain matrices (K0,K1, ...,KN−1) as shown in (81b).

The matrices (P1, P2, ..., PN) are known as the Riccati matrices. They are
symmetric positive semide�nite matrices. To ensure that this property is re-
tained during computation (81d) it is usually substituted by some equivalent
equation with improved numerical properties. One example is

Pt = Qt +A>t (P−1
t+1 +BtR

−1
t B>t)−1At.

30Remember that Rt is assumed to be positive de�nite.
31The reason is that Q̂0 is positive semide�nite and hence B̂>Q̂0B̂ will be positive semidef-

inite
32Theorem 12.6 in Nocedal and Wright (2006) will for instance be satis�ed.
33As opposed to a local solution as in Theorem 12.6 in Nocedal and Wright (2006).

47

In the event of an LTI system and constant weight matrices (81) is slightly
simpli�ed.

Kt = R−1B>Pt+1(I +BR−1B>Pt+1)−1A, t = 0, . . . , N − 1 (90a)

Pt = Q+A>Pt+1(I +BR−1B>Pt+1)−1A, t = 0, . . . , N − 1 (90b)

PN = Q (90c)

It is important to note that the feedback gain (Kt) is time varying even
though the system and weighting matrices are time invariant.

The tuning parameters of the LQ controller are the weighting matrices (Qt,
Rt). To make an analogy, in a SISO PI controller we adjust the gain and integral
time as opposed to the weighting matrices in a LQ controller. As a side remark
we note that the LQ controller is a MIMO controller since the dimensions of
the control input and states usually are greater than one.

xt+1

A

B−K xtut

SystemController

Figure 15: Solution of the LQ control problem, i.e., with state feedback.

A deeper understanding of how to select weighting matrices can only be
achieved through experience. Some insight can be obtained by inspection of
the equations. In particular increased values of the (diagonal) elements of Rt
reduces the gain of the LQ controller. This becomes quite clear by noting that
Kt = R−1

t B>t Pt+1(I +BtR
−1
t B>t Pt+1)−1At ≈ R−1

t B>t Pt+1At when Rt is large.
To provide some additional insight we present a simple example similar to an
example used earlier.

Example 12 (LQ control and tuning)
Assume a simple �rst order system

xt+1 = 1.2xt + ut (91a)

x0 = 1 (91b)

and an objective function where N = 11.

f(z) =

10∑
t=0

1

2
x2
t+1 +

1

2
ru2
t , r > 0 (91c)

The Riccati equation is given by

Pt = 1 + 1.2Pt+1(1 + r−1 · Pt+1)−11.2

= 1 +
1.44 r Pt+1

Pt+1 + r
, t = 0, . . . , 10 (92a)

P11 = 1 (92b)

48

and the gains are computed by

Kt = r−1Pt+1(1 + r−1Pt+1)−11.2 = 1.2
Pt+1

Pt+1 + r
, t = 0, . . . , 10 (92c)

The controller may be written as

ut = −Ktxt, t = 0, . . . , 10 (92d)

Figure 16 shows the Riccati matrix, which is a scalar in this example, and
the controller gain. The controller gain is clearly time varying even though
the system and weight matrices are time invariant. Further, the controller gain
increases with a reduced value of r. Figure 17 shows the state xt and the
control input ut. It is quite apparent from this �gure that the bandwidth of the
controller increases with a decrease in r. 4

Figure 16: The �gure shows Pt and the controller gain Kt. Solid line: r = 0.1.
Dashed line: r = 1. Dotted line: r = 20.

As in Section 3.3 we may include a reference trajectory by including a term
like (xt+1−xreft+1)>Qt+1(xt+1−xreft+1) in the objective function. This will however
extend the optimal solution with a feedforward term from the reference34.

4.3.2 Moving horizon LQ control

Linear MPC, and �nite horizon LQ control as discussed above, do have signif-
icant similarities. By removing the inequality constraints from linear MPC we
�nd a simple closed form solution for the LQ problem. Hence, the computation
at each time step is reduced to a simple matrix multiplication instead of solving

34The solution will in this case actually require knowledge of the future reference trajectory
at a given time t, see e.g., Anderson and Moore (1990).

49

Figure 17: The �gure shows the state xt and the control input ut. Solid line:
r = 0.1. Dashed line: r = 1. Dotted line: r = 20.

a QP problem. This is observed by comparing (81a) with Algorithm 2, i.e. state
feedback MPC.

The LQ controller is the solution of an open loop optimization problem even
though the solution appears as a state feedback controller. The structure of the
solution, however, accommodates a closed loop solution in a straightforward
way. We just repeat the solution on a moving horizon. In this case Kt will be
constant for all t for an LTI system with constant weight matrices, cf. (90), as
opposed to the open loop solution in which Kt varies from one time step to the
next.

In the output feedback case (81a) is replaced by

ut = −Ktx̂t (93)

where x̂t is the state estimate. The algorithm is shown in Algorithm 6.

Algorithm 6 Output feedback moving horizon LQ

for t = 0, 1, 2, . . . do
Compute an estimate of the current state x̂t based on the data up until
time t.
Compute and apply the control ut = −Ktx̂t. Kt will be constant for all t
for an LTI system and an objective function with constant weight matrices.

end for

4.4 In�nite horizon LQ control

In the above section the optimal controller was an LTV controller. We will
now develop an even simpler controller by seeking a controller with a constant
feedback gain, that is ut = −Kxt. We start with the state feedback case.

50

4.4.1 State feedback in�nite horizon LQ control

To guide the search we observe from Figure 16 that the gain seems to settle to
some stationary value after some iterations.35 This is a general property of the
Riccati equation provided the system satis�es certain conditions to be de�ned
later. By increasing the horizon su�ciently it should therefore be possible to
obtain an optimal controller with a constant gain matrix within any time interval
of interest provided A, B, Q and R do not vary with time. This is the basis for
the in�nite horizon LQ controller where we optimize on an in�nite time horizon,
i.e., N →∞. The problem is formulated as follows:

min
z
f∞(z) =

∞∑
t=0

1

2
x>t+1Qxt+1 +

1

2
u>t Rut (94a)

subject to equality constraints

xt+1 = Axt +But (94b)

x0 = given (94c)

and

Q � 0 (94d)

R � 0 (94e)

where system dimensions are given by

ut ∈ Rnu (94f)

xt ∈ Rnx (94g)

z> = (u>0 , . . . , u
>
∞, x

>
1 , . . . , x

>
∞) (94h)

There are some issues that need clari�cation before presenting the solution.

• Problem (94) is an in�nite dimensional QP problem since n→∞ in (94a).
Hence, it cannot be solved using a conventional method since the KKT
matrix is in�netely large and hence not well de�ned36.

• The objective function must be bounded above, i.e., f∞(z) <∞, for some
feasible z. Inspection of the objective function shows that this implies
that ut → 0 when t→∞. Otherwise f∞(z)→∞.

If the system (94b) is stabilizable37 there will always exist a well de�ned
solution of (94). Stabilizability is a weaker form of controllability38. It means
that at least all the unstable modes of a system must be controllable. The
relationship between controllability and stabilizability is therefore as follows:

System (A,B) is controllable⇒ System (A,B) is stabilizable

We may now state a formal result on the existence of a solution to (94a)�
(94b).

35Remember that the Riccati matrix and thereby the gain is computed backwards in time.
36See e.g. Chapter 16 in Nocedal and Wright (2006) for a de�nition of the KKT matrix.
37System (A,B) is stabilizable if all the uncontrollable modes are asymptotically stable.
38System (A,B) is controllable if for any initial state x0 and any �nal state xN , there exists

a �nite number of inputs u0, . . . , uN−1 to transfer x0 to xN .

51

Theorem 4.

Let (94b) be stabilizable. Then there exists a static solution to (90b), i.e., Pt →
P when t → −∞. This solution is equal to the unique positive semide�nite
solution of the algebraic Riccati equation (95c).

Proof. See Chapter 2 in Lewis (1986).

Provided the above theorem is satis�ed the in�nite LQ controller is given as
follows:

Theorem 5.

The solution of (94) is given by

ut = −Kxt for 0 ≤ k ≤ ∞ (95a)

where the feedback gain matrix is derived by

K = R−1B>P (I +BR−1B>P)−1A (95b)

P = Q+A>P (I +BR−1B>P)−1A (95c)

P = P> � 0 (95d)

Proof. See Chapter 2 in Lewis (1986).

The in�nite horizon LQ controller ut = −Kxt is often called the Linear
Quadratic Regulator or just LQR.

It should be noted that the algebraic Riccati-equation (95c) is a quadratic
equation in the unknown matrix P . Thus, there may exist several solutions
to this equation. Only one solution, however, will be positive semide�nite and
therefore satisfy (95d).

Returning to Example 12 the Riccati equation was equal to

Pt = 1 +
1.44 r Pt+1

Pt+1 + r

The algebraic version, i.e., (95c) is obtained by choosing Pt = Pt+1 = P .

P 2 + (r − 1− 1.22r)P − r = 0

This equation has two solutions; one is positive and the other is negative. Hence,
the positive solution is chosen.

A key di�erence between the �nite and in�nite LQ problem is the fact that
the in�nite LQ problem is de�ned on an in�nite time horizon. Hence, stability
becomes an important issue. We therefore formulate the following question:
Under which conditions will the closed loop system

xt+1 = Axt +But = Axt −BKxt = (A−BK)xt (96)

be stable? By stability we mean asymptotic stability, which implies that the
states xt → 0, and thereby ut → 0, when t→∞.39 The answer is given by the
following theorem.

39The system xt+1 = Axt is asymptotically stable if the absolute value of the eigenvalues
of A are less than 1, i.e., |λi(A)| < 1 for all 1 ≤ i ≤ nx, where λi(A) is the ith eigenvalue of
A.

52

Theorem 6.

Given problem (94). Let system (A,B)40 be stabilizable and (A,D)41 detectable.
D is de�ned by Q = D>D. Then the closed loop system given by the optimal
solution is asymptotically stable.

Proof. See Chapter 2 in Lewis (1986).

This theorem deserves some comments.

• Detectability42 is a milder form of observability43. This implies that an
observable system always is detectable. The opposite is however not nec-
essarily true.

• Since Q is positive semide�nite it will always be possible to �nd a D

de�ned by Q = D>D. As an example if Q =

[
0 0
0 1

]
� 0 we choose

D =
[

0 1
]
.44

The two conditions in Theorem 6 do have an intuitive interpretation. The
stabilizabity condition tells us that we must be able to in�uence all unstable
modes. A system with unstable modes that cannot be in�uenced by the control
input will namely remain unstable for all control designs. The objective function
must be sensitive to all the unstable modes to satisfy the detectability condition.
In the opposite case a state may go to in�nity without in�uencing the value of the
objective function. Hence, unboundedness of such a state cannot be guaranteed
in this situation.

Example 13 (Stability on an in�nite horizon LQ controller)
To elaborate on Theorem 6 we study the following system

xt+1 =

[
1.2 0
0 0.8

]
xt +

[
b1
b2

]
ut, x0 =

[
1
1

]
(97)

with the weight matrices

Q = I =

[
1 0
0 1

]
, R = 1 (98)

It may be noted that (97) is an open loop unstable system since one of the
eigenvalues is outside the unit circle.

If b1 6= 0 and b2 6= 0 the system (A,B) is stabilizable. It is even controllable.

Further, (A,D) is detectable, and also observable since Q =

[
1 0
0 1

]
and

thereby D =

[
1 0
0 1

]
. Therefore the in�nite LQ controller will stabilize the

system, i.e., the eigenvalues of (A−BK) will lie inside the unit circle.

40xt+1 = Axt +But
41The system xt+1 = Axt or xt+1 = Axt +But is observed through the output yt = Dxt
42System (A,D) is detectable if all the unobservable modes are asymptotically stable.
43 System (A,D) is observable if the state xN can be determined from the system model,

its inputs and outputs for a �nite number of steps.
44Since rank(Q) = 1 in this case, D will be a 1× 2 matrix. Hence, a 2× 2 matrix is no valid

decomposition as opposed to (98) where rank(Q) = 2.

53

The system will not be stabilizable if b1 = 0 since the �rst state will grow
independently of the control action, i.e., x1,t → ±∞ as t → ∞ provided x0 6=
0. As a side remark one may note that the system is stabilizable, but not
controllable, if b1 6= 0 and b2 = 0.

The objective function will not be in�uenced by the �rst state x1,t if Q is

changed to Q =

[
0 0
0 1

]
since system (A,D), where D =

[
0 1

]
, will not

be detectable. In the latter case D is a 2 × 2 matrix. If Q =

[
1 0
0 0

]
then

D =
[

1 0
]
and (A,D) is detectable. The system is, however, not observable

in this case.
4

A further analysis of the closed loop system, provided Theorem 6 is satis-
�ed, can be of interest. The in�nite horizon LQ controller has excellent stability
margins. Safonov and Athans (1977) showed that the controller has a 60 degree
phase margin and 6 dB gain margin. This result depends on one critical as-
sumption, however, a state feedback controller. As argued in the MPC section
the states must be estimated and thus an output feedback algorithm, similar to
Algorithm 3, will in practice be the only realistic option. In this case nominal
stability can be proven, although without any stability margin. This was shown
in an elegant paper by Doyle (1978). The combination of an LQ controller
and a Kalman �lter is usually denoted a linear quadratic Gaussian (LQG) con-
troller since the Kalman �lter initially was based on stochastic linear models
with Gaussian white noise.

4.4.2 Output feedback in�nite horizon LQ control

To gain further insight on LQ control we analyze the output feedback case in
an LTI setting. We combine the system (94b),(94c) with a measurement model
yt = Cxt, the output feedback LQ controller ut = −Kx̂t, and the Kalman �lter
(71).

xt+1 = Axt +But (99a)

yt = Cxt (99b)

ut = −Kx̂t (99c)

x0 = given (99d)

x̂t+1 = Ax̂t +But +KF (yt − ŷt) (99e)

ŷt = Cx̂t (99f)

x̂0 = given (99g)

These equations can be rewritten in a compact form

ξt+1 =

[
xt+1

x̃t+1

]
=

[
A−BK BK

0 A−KFC

]
ξt (100)

x̃t = xt − x̂t
ξ0 = given

where the dimension of the augmented state is given by

ξt ∈ R2nx

54

and x̃t refers to the error in the state estimates. The overall structure of the
LQG controller is shown in Figure 18.

xt+1

A

CB−K

x̂t+1

A

CB

KF

xt

x̂t

yt

ŷt

ut

−

System

Estimator

Controller

Figure 18: Structure of the LQG controller, i.e., output feedback LQ control.

Several comments and observations can be made from this.

• The dimension of the system and the state estimator is 2 · nx, i.e., double
the size of the original system. This reason is that the estimator introduces
dynamics. To repeat, in the state feedback case the closed loop system has
nx eigenvalues while in the output feedback case the closed loop system
has 2 · nx eigenvalues.

• The dynamics of the matrix in (100) are given by the eigenvalues of A−BK
and A−KFC, respectively, since there is a 0 matrix in the lower left corner.
Hence the eigenvalues are given by the dynamics of state feedback LQ
control, i.e., A−BK, and the estimator dynamics A−KFC. This simpli�es
tuning since the estimator and controller can be tuned separately. As
discussed earlier the estimator dynamics should be signi�cantly faster than
the LQ controller dynamics to limit interaction between these loops.

• (100) de�nes the system dynamics in an idealized case since the estimator
model equals the system model. In practice there will always be model
errors. Model errors corrupt the matrix structure by for instance introduc-
ing non negative terms in the lower left matrix. Nevertheless, separation
of dynamics according to (100) provide guidelines for tuning the estimator
and controller provided the model is of a reasonable quality.

• The equation ξ0 = given deserves a comment. The latter nx elements of
this vector de�nes the initial values for the errors in the state estimates.

4.4.3 Stability of linear MPC with in�nite horizon LQ control

Based on the in�nite horizon LQ stability result in Theorem 6 we continue the
stability discussion of linear MPC in Section 4.2.2. We �rst simplify the linear
MPC formulation (64) by removing the linear terms and the ∆ut term from

55

the objective function, and select constant weight matrices and an LTI system.
Further, we assume state feedback. Finally, (64) is changed by extending the
prediction horizon to in�nity.

min
z
f∞(z) =

∞∑
t=0

1

2
x>t+1Qxt+1 +

1

2
u>t Rut (101a)

subject to

xt+1 = Axt +But (101b)

x0 = given (101c)

xlow ≤ xt ≤ xhigh (101d)

ulow ≤ ut ≤ uhigh (101e)

where

Q � 0 (101f)

R � 0 (101g)

z> = (u>0 , . . . , u
>
∞, x

>
1 , . . . , x

>
∞) (101h)

We �rst note that the origin is the only stationary point for the system.
Otherwise the objective function will be unbounded.

This optimization problem may be split into two parts by dividing the pre-
diction horizon into two parts: {1, . . . , N − 1} and {N,N + 1, . . .} (Muske and
Rawlings, 1993; Chmielewski and Manousiouthakis, 1996; Scokaert and Rawl-
ings, 1998). The idea is to choose N such that the problem is unconstrained on
the latter in�nite horizon {N,N + 1. . . .}. Provided the system is controllable
and N is large enough the system can be driven to a state xN ∈ X ′. X ′ is a
set from where the latter optimal trajectory is unconstrained (Gilbert and Tan,
1991). This means that none of the state or control input constraints are active.
The optimal objective function value on the latter horizon, usually referred to
as the value function, is given then by

f∞N (z∗) =
1

2
x>NPxN (102a)

where

P = (A−BK)>P (A−BK) +K>RK +Q (102b)

K is the in�nite horizon feedback gain, cf. (95b). The in�nite horizon problem
(101) may now be reformulated into a �nite dimensional QP problem.

min
z
f∞(z) =

N−1∑
t=0

1

2
x>t+1Qxt+1 +

1

2
u>t Rut + f∞N (z∗) (103a)

subject to

xt+1 = Axt +But (103b)

x0 = given (103c)

xlow ≤ xt ≤ xhigh (103d)

ulow ≤ ut ≤ uhigh (103e)

56

where

z> = (u>0 , . . . , u
>
N−1, x

>
1 , . . . , x

>
N) (103f)

Provided the problem is feasible at all times stability is guaranteed, more
speci�cally the origin is asymptotically stable (Rawlings and Muske, 1993). This
is proved by showing that the value function for the whole horizon is a Lyapunov
function and that this function decays towards the origin.

The proof requires a choice for N , which is di�cult, if not impossible, in
practice. A proof like this, and similar stability proofs, should therefore be used
to provide insight into problems and solutions rather than precisely de�ne an
MPC algorithm.

4.5 Nonlinear MPC

Similar to the open loop optimization case the extension from linear MPC to
nonlinear MPC is in principle straightforward. We rewrite (64) similar to (63).

min
z∈Rn

f(z) =

N−1∑
t=0

1

2
x>t+1Qt+1xt+1 + dxt+1xt+1

+
1

2
u>t Rtut + dutut +

1

2
∆u>t R∆tut (104a)

subject to

xt+1 = g(xt, ut) (104b)

x0, u−1 = given (104c)

xlow ≤ xt ≤ xhigh (104d)

ulow ≤ ut ≤ uhigh (104e)

−∆uhigh ≤ ∆ut ≤ ∆uhigh (104f)

Qt � 0 (104g)

Rt � 0 (104h)

R∆t � 0 (104i)

The state feedback linear MPC algorithm is given by Algorithm 7. In the
output feedback case an estimate of the state is needed, i.e., x̂t.

Algorithm 7 Nonlinear MPC with state feedback

for t = 0, 1, 2, . . . do
Get the current state xt.
Solve the optimization problem (104) on the prediction horizon from t to
t+N with xt as the initial condition.
Apply the �rst control move ut from the solution above.

end for

It is beyond the scope of this note to discuss NMPC in any detail. We will
however provide a few comments.

57

The key di�erence, and in fact the only di�erence between (64) and (104), is
the nonlinear model (104b). This turns the convex QP problem for linear MPC
into a nonlinear and nonconvex problem. This complicates solution procedures
signi�cantly since an NLP solver is needed instead of a QP solver. This is
exactly the same change as discussed in conjunction with dynamic optimization
of nonlinear systems in (63).

In the output feedback case state estimation plays a key role. Estimators
for nonlinear dynamic models tend to be more complex than for linear mod-
els and an exact solution of the nonlinear state estimation problem is in fact
intractable. Hence, approximations must be made. The Kalman �lter, as dis-
cussed in Section 4.2.3, is also used for nonlinear systems. However, alternatives
that address nonlinear behavior directly and thereby improve performance have
been developed. The extended Kalman �lter (EKF) was proposed in order to
apply the Kalman �lter to nonlinear spacecraft navigation problems (Bellantoni
and Dodge, 1967) and is probably the most used method in applied nonlinear
state estimation. The EKF is based on a linearization of a nonlinear model at
each time step. Hence, it uses the time varying Jacobian matrices, cf. (18), to
compute a new �lter matrix at each time step. Another approach, which approx-
imates the nonlinear �lter solution more accurately, is the unscented Kalman
�lter (UKF), see Julier and Uhlmann (2004). The MHE, which was discussed
in Section 4.2.3, is also applicable to nonlinear systems.

4.6 Comments

There are many aspects of dynamic optimization and MPC, some of which
have been covered in the earlier sections. Subsequently we comment on some
important topics to provide further insight.

4.6.1 The control hierarchy and MPC

A control system is often structured according to layers as shown in Figure 19.
The controlled system, at the bottom, provides realtime data to the control
system through sensors and communication channels to controllers in the next
layer, the regulatory control layer. The controllers are conventional controllers,
often PID controllers45, and they are used to control properties like pressure,
�ow rate, temperature, power, voltage, speed and heading depending on the
application. These controllers are embedded in a distributed control system
(DCS) or industrial programmable logic controllers (PLCs). The regulatory
control layer needs setpoints, for instance for �ow rates, temperatures, power,
voltages, position and heading. These setpoints are supplied by the advanced
process control (APC) layer where the use of MPC is spreading rapidly (Qin
and Badgwell, 2003). Hence, MPC controls a process through a regulatory layer
and may communicate with the DCS through a network based on for instance
the OPC communication protocol.

In Figure 19 the upper scheduling and optimization layer may include pro-
duction plans of di�erent products based on some manual analysis technique or
as an output from an optimization application. Such applications are usually
based on static models and the oil optimization case in Example 2 is an example
of this.

45A PID controller will often only activate its proportional and integral action.

58

Scheduling
and optimization

Advanced process control

Regulatory control

Sensors, transmitters, analyzers

Process

Figure 19: Typical control hierarchy.

As mentioned earlier MPC applications are located in the APC layer of
Figure 19. The information �ow is such that measurements yt are passed from
the lower regulatory control layer while setpoints (γt) and (possibly) varying
constraints are transferred from the upper scheduling and optimization layer.
The output from the MPC application, i.e., the computed control inputs (ut),
are sent to the lower layer as setpoints for low level controls.

To elaborate further, the sampling frequence decreases upwards in the hier-
archy. Regulatory control may compute new control inputs every second while
the APC sampling time is a minute or more, and rescheduling may be done once
a day.

The control hierarchy is valid for many sectors and two examples are given
below.

• In re�neries an optimization application based on static models may be
used to schedule production for a whole re�nery. Such an application
solves a large LP or NLP problem where models of the complete re�nery
are included. The APC layer will include linear MPC applications for con-
trolling key parts of the re�nery like distillation columns. The APC layer
also includes simpler control strategies, e.g., heuristic based control logic.
The solution from the upper optimization problem provides some of the
setpoints and constraints that are used in the APC layer. The regulatory
control layer includes a large number of PID controller for controlling basic
variables like �ow rates, pressures, temperature, levels and concentrations
where the setpoints are supplied by the controllers in the APC layer.

• A ship or an airplane may use an optimization application to decide on a
route from A to B. This information is transferred to an MPC application.
Hence, the MPC controller may be used to keep the ship or plane close
to the initial trajectory, or it may even change the trajectory based on
recent information. The latter may for instance save time or fuel. The
regulatory control layer will include basic controllers, e.g., for heading
control and pitch control.

59

To home in on MPC applications a speci�c example is presented below.

Example 14 (MPC applications as part of a large control system)
To elaborate we use Figure 20, which shows the Eko�sk complex in the North
Sea. Much of this large installation is controlled by ABB DCS systems that
communicate with sensors and actuators, performs control operations with PID
controllers or other logic, include procedures for start-up and shutdown of sys-
tems, to mention some important functions. Thus, the regulatory layer is in its
entirety implemented in the DCS system, and safety critical controllers are for
instance placed in this layer. Sensor data from more than 10000 tags are sam-
pled every second. Some data is �ltered and transferred to an external realtime
data base, in this case a PI realtime database46. This data is used for di�erent
purposes.

If future MPC applications were installed, they would most probably com-
municate with a realtime database, rather than the a DCS system directly,
by reading appropriate tags from the database and checking data quality before
solving the appropriate optimization problems. Subsequently the result, i.e., the
control input, would be written to the PI database. This data is available to
the DCS system, which can read it and adjust the appropriate setpoints. Since
the MPC applications are non-critical, communication requirements are limited
and the OPC protocol is typically used. The �eld operators and �eld engineers
would observe the MPC applications through their conventional graphical user
interface (GUI), i.e., there is no need for additional screen pictures. It should
be remembered, however, that a control specialist might need special access to
the MPC applications to recon�gure the controllers by for instance changing
constraints or models.

It may be added that MPC applications are rare in the upstream oil and gas
business, i.e., production systems that include oil and gas wells, manifolds and
pipelines, and topside processes47. MPC technology has however a signi�cant
potential in this area, similar to the process industries. Thus, MPC is also
expected to penetrate this sector. 4

The APC layer may be missing, meaning that no automatic high-level con-
trollers are in use. In this case low-level setpoints are set manually by operators
instead through APC applications.

The above seems to allude to the fact that MPC is unsuited for safety critical
applications and for fast applications where the sampling time is in the millisec-
ond region or even faster. This is, however, untrue and there is currently much
research on moving MPC into safety critical and/or fast applications. There are
alternative solutions. One is obviously to embed MPC applications in the DCS
or PLC, which by design use highly reliable software, communication protocols
and hardware. Another option is tailored hardware. See Ling et al. (2008) and
Jerez et al. (2011) for a couple of examples of how to run MPC algorithms on
�eld-programmable gate arrays (FPGA) to gain speed by massive parallelization.
The latter paper also addresses the issue of power consumption, which can be
critical in certain applications. This line of development opens new application
areas for MPC like robotics, power generation and distribution, vehicles, and
low-level control such as stabilizing controllers.

46The PI realtime database is a OSIsoft product.
47Topside processes include gas oil water separators, pumps, scrubbers, compressors etc,

and the key function is to separate reservoir �uid into gas, oil and water.

60

MPC$
applica*ons$

Data$$
transfer$

Data$$
transfer$

Figure 20: This �gure shows the Eko�sk o�shore complex. ABB DCS systems
control part of this large o�shore production system where some data is stored in
PI realtime databases. An probable architecture for a future MPC application
is included.

4.6.2 MPC performance

An important reason for the industrial success of MPC is improved perfor-
mance through increased disturbance rejection and better tracking performance.
Hence, MPC helps systems comply with tighter performance speci�cations from
worldwide competition and increasing constraints from environmental and safety
considerations, and thereby improves economy. We will now elaborate further
on this.

A well tuned MPC application usually improves control as illustrated in
Figure 21. In this case, after the MPC controller is switched on, control perfor-
mance improves since disturbance rejection increases signi�cantly. Now, given
an operational limit, which must be satis�ed, a constraint supplied by the upper
optimization layer may be increased due to improved control as shown towards
the end of the time interval. This is often called �squeeze and shift�. The op-
erational limit may for instance be temperature in an exothermic reactor, oil
production rate, or the distance between a vessel and an oil platform. In all these
cases improved MPC performance may improve the economics of the reactor,
the oil production system or vessel operations. In terms of the control hierarchy
in Figure 19 this discussion is related to the two upper layers where the MPC
controller receives some of its inputs, in particular some of its constraints, from
the top layer.

Most processes are limited by constraints. A distillation column, for in-
stance, may be constrained by boiler capacity, limits on the pressure di�erential
across the column, or product purity speci�cations. It is di�cult, if not im-
possible, to dynamically track the constraints that limit production without
resorting to mathematical optimization. In this sense MPC provides a tool that

61

Figure 21: An MPC controller improves performance and may therefore operate
closer to an operational limit. This is often called �squeeze and shift�. The
setpoint is provided by a higher level in the control hierarchy.

automatically adjusts the control strategy to push against, and thereby exploit,
the constraints that limit production according to the chosen objective function.

MPC performance also depends on the performance of the regulatory con-
trollers. It is always important to have well tuned controllers in the regulatory
control layer, e.g., well tuned PID controllers. The e�ect of this is shown in
Figure 22 and it is similar to the �squeeze and shift� e�ect discussed above. The
key observation is thus that all low level controller must be well tuned to gain
the full bene�t of MPC.

4.6.3 Feedforward control

Feedforward control is an e�cient way to improve performance when disturbance
measurements are available. This is commonly used in regulatory control where
for instance a level controller for a tank may include a feedforward term from an
upstream measurement. Thereby the level control can react before a disturbance
a�ects the tank level. Feedforward action can easily be embedded into MPC by
extending the dynamic model with a disturbance model. Focussing on linear
MPC, cf. (64), feedforward is included by extending the linear model (64b) as
shown below

xt+1 = Atxt +Btut + Cvt (105)

where vt are measured disturbances. The downside of this is a more complex
model since a disturbance model Cvt is needed. However, this extension hardly
a�ects computation time.

62

Figure 22: The performance of an MPC controller depends on low-level con-
troller tuning. This �gure compares the performance of a system with well tuned
low-level controllers from Figure 21 and with poorly tuned low-level controllers
(the red dashed output). Since the poor tuning of the regulatory controllers
lead to larger oscillations it is necessary to use a more conservative setpoint to
ensure that the operational limit is respected. The setpoints are provided by a
higher level in the control hierarchy.

63

One example of feedforward MPC is its use in distillation column control
where the in�ow rate, and possibly composition and temperature, is used as
feedforward measurements.

4.6.4 MPC models

An MPC controller needs a dynamic model. In this note we have focussed
on state space models. In principle there are two approaches to modeling;
experimental models48 and �rst principles models49. Experimental models are
developed from data and are popular in linear MPC applications, in particular
the step response model since this is a model that is easy to identify from
experimental data. These models are usually formulated in an input output
form rather than a state space model.

First principles models usually require more development cost than exper-
imental models (Foss et al., 1998). They do, however, have certain distinct
advantages. First, since these models are based on physics, e.g., mass and
energy conservation laws, they tend to provide better prediction capabilities
than experimental models, in particular beyond the operating range covered
by experimental data. Second, physics based models need less data for model
identi�cation and validation.

4.6.5 Practical MPC formulations

The basic linear MPC problem (64) is not used directly in industrial applica-
tions. We have already discussed several extensions like ensuring feasibility at
all times and feedforward control. There are many other extension, some of
which are listed below.

Control input blocking is commonly used and shown in Figure 23. It is useful
to compare this �gure with the upper part of Figure 12 where the number of
control input decision variables is N · nu. Control input blocking reduces this
number considerably. N may typically be 20 while the number of control moves
with control input blocking may be 4 or 5. Control input blocking reduces run-
time. This reduction may however marginal for linear MPC since the number of
states is much large than the control input dimension as discussed in Section 3.3.
Practice has shown, however, that control input blocking works well. In NMPC
applications control input blocking may reduce runtime signi�cantly and may
therefore be an important contribution to secure a robust NMPC application.

Some terms, which are extensively used in practice, are explained below.

• CV refers to a controlled variable. This is equal to γt, which has been
discussed several times in this note. We emphasize again that CV, or γt,
di�ers from the measured data yt as discussed in conjunction with (76).

• MV refers to a manipulated variable and is the equivalent of the control
input ut.

• DV refers to a disturbance variable and equals the measured disturbance
vt in (105).

48Experimental models are also called black box models and data driven models.
49First principles models are also called physics based models, mechanistic models and white

box models.

64

xt′

xt

ut

t

t′ t′ +N

← Past Future →

Present

Plant

xt′

xt

ut′

t′

ut

Solution to the open loop
optimization problem at t = t′

(measured history)
(most recent measurement)
(control history)
(most recent control input)

(most recent measurement)
(predicted)
(predicted)

First control input
ut′ from solution

Measured
state at t′

Figure 23: Illustration of the MPC with control input blocking.

65

Bibliography

Anderson, B. D. O. and Moore, J. B. (1990). Optimal Control: Linear Quadratic
Methods. Prentice Hall.

Audet, C. and Dennis JR., J. E. (2006). Mesh adaptive direct search algorithms
for constrained optimization. SIAM Journal on Optimization, 17(1):188�217.

Bellantoni, J. F. and Dodge, K. W. (1967). A square root formulation of the
Kalman-Schmidt �lter. AIAA Journal, 5(7):1309�1314.

Brown, R. G. and Hwang, P. Y. C. (2012). Introduction to Random Signals and
Applied Kalman Filtering. Wiley, fourth edition.

Chen, C.-T. (1999). Linear System Theory and Design. Oxford Universtiy Press,
third edition.

Chmielewski, D. and Manousiouthakis, V. (1996). On constrained in�nite-time
linear quadratic optimal control. Systems & Control Letters, 29(3):121�129.

Conn, A. R., Scheinberg, K., and Vicente, L. N. (2009). Introduction to
Derivative-Free Optimization. SIAM.

Cutler, C. R. and Ramaker, B. L. (1980). Dynamic matrix control � A computer
control algorithm. In Joint Automatic Control Conference, San Francisco, CA.

Doyle, J. C. (1978). Guaranteed margins for LQG regulators. IEEE Transac-
tions on Automatic Control, 23(4):756�757.

Foss, B. A., Lohmann, B., and Marquardt, W. (1998). A �eld study of the
industrial modeling process. Journal of Process Control, 8(5-6):325�338.

Gilbert, E. G. and Tan, K. T. (1991). Linear systems with state and control
constraints: the theory and application of maximal output admissible sets.
IEEE Transactions on Automatic Control, 36(9):1008�1020.

Goodwin, G. C., Seron, M. M., and Doná, J. A. (2004). Constrained Control
and Estimation: An Optimisation Approach. Springer.

Hooke, R. and Jeeves, T. A. (1961). �Direct Search� solution of numerical and
statistical problems. Journal of the ACM, 8(2):212�229.

Imsland, L., Findeisen, R., Bullinger, E., Allgöwer, F., and Foss, B. A. (2003).
A note on stability, robustness and performance of output feedback nonlinear
model predictive control. Journal of Process Control, 13(7):633�644.

Jerez, J. L., Constantinides, G. A., Kerrigan, E. C., and Ling, K. V. (2011).
Parallel MPC for real-time FPGA-based implementation. In 18th IFAC World
Congress, pages 1338�1343, Milan, Italy.

Julier, S. J. and Uhlmann, J. K. (2004). Unscented �ltering and nonlinear
estimation. Proceedings of the IEEE, 92(3):401�422.

Kalman, R. E. (1960). A new approach to linear �ltering and prediction prob-
lems. Journal of Basic Engineering, 82(1):35�45.

66

Khalil, H. K. (2002). Nonlinear Systems. Prentice-Hall, third edition.

Lewis, F. L. (1986). Optimal Control. Wiley.

Ling, K. V., Wu, B. F., and Maciejowski, J. M. (2008). Embedded model
predictive control (MPC) using a FPGA. In 17th IFAC World Congress,
pages 15250�15255, Seoul, Korea.

Maciejowski, J. M. (2002). Predictive Control with Constraints. Pearson Pren-
tice Hall.

Mayne, D. Q., Rawlings, J. B., Rao, C. V., and Scokaert, P. O. M. (2000).
Constrained model predictive control: Stability and optimality. Automatica,
36(6):789�814.

Muske, K. R. and Rawlings, J. B. (1993). Model predictive control with linear
models. AIChE Journal, 39(2):262�287.

Nemhauser, G. L. and Wolsey, L. A. (1999). Integer and Combinatorial Opti-
mization. Wiley.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. Springer, second
edition.

Qin, S. J. and Badgwell, T. A. (2003). A survey of industrial model predictive
control technology. Control Engineering Practice, 11(7):733�764.

Rao, C. V., Rawlings, J. B., and Mayne, D. Q. (2003). Constrained state
estimation for nonlinear discrete-time systems: Stability and moving horizon
approximations. IEEE Transactions on Automatic Control, 48(2):246�258.

Rawlings, J. B. and Mayne, D. Q. (2009). Model Predictive Control: Theory
and Design. Nob Hill Publishing.

Rawlings, J. B. and Muske, K. R. (1993). The stability of constrained receding
horizon control. IEEE Transactions on Automatic Control, 38(10):1512�1516.

Richalet, J., Rault, A., Testud, J. L., and Papon, J. (1978). Model predictive
heuristic control: applications to industrial processes. Automatica, 14(5):413�
428.

Rossiter, J. A. (2003). Model-Based Predictive Control: A Practical Approach.
CRC Press.

Safonov, M. G. and Athans, M. (1977). Gain and phase margin for multiloop
LQG regulators. IEEE Transactions on Automatic Control, 22(2):173�179.

Scokaert, P. O. M. and Rawlings, J. B. (1998). Constrained linear quadratic
regulation. IEEE Transactions on Automatic Control, 43(8):1163�1169.

Torzcon, V. (1997). On the convergence of pattern search algorithms. SIAM
Journal on Optimization, 7(1):1�25.

67

	Contents
	Introduction
	Optimization
	Classes of optimization problems
	Solution methods

	Optimization of dynamic systems
	Discrete time models
	Objective functions for discrete time systems
	Dynamic optimization with linear models
	The choice of objective function in optimal control
	Norms in the objective function

	Optimal open loop optimization examples
	Dynamic optimization with nonlinear discrete time models

	Optimal control
	Model predictive control
	Linear MPC
	Ensuring feasibility at all times
	Stability of linear MPC
	Output feedback
	Reference tracking and integral action

	Linear Quadratic control
	Finite horizon LQ control
	Moving horizon LQ control

	Infinite horizon LQ control
	State feedback infinite horizon LQ control
	Output feedback infinite horizon LQ control
	Stability of linear MPC with infinite horizon LQ control

	Nonlinear MPC
	Comments
	The control hierarchy and MPC
	MPC performance
	Feedforward control
	MPC models
	Practical MPC formulations

	Bibliography

