NTNU - Trondheim
Norwegian University of

Science and Technology

MILP algorithms: branch-and-bound
and branch-and-cut



Content

e The Branch-and-Bound (BB) method.

— the framework for almost all commercial software for
solving mixed integer linear programs

e Cutting-plane (CP) algorithms.
 Branch-and-Cut (BQ)

— The most efficient general-purpose algorithms for
solving MILPs

Direction of minimization

P

5% °
A C)qu )

Y

01 2 3 4 5 6 7 8"

® NTNU Norwegian University of Science and Technology



Basic idea of Branch-and-bound

BB is a divide and conguer approach: break
problem into subproblems (sequence of LPs)
that are easier to solve

Consider MILP:
J* = %nn% clo+dly
m?y

st. (r,y) e X

where X is the set of feasible solutions,

X ={(z,y) eR} xZ : Ax + By > b}

Let X = X;UXoU...UXg be a decomposition of the feasible
solution set X into smallers sets X}, and let J* = min{cTz+dTy :

(x,y) € Xi} for k=1,..., K. Then J* = ml?,XJk.
(Wolsey (1998), Prop. 7.1).
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Decomposing the initial formulation P

Let (z%,y®) € P be the solution of the initial LP relaxation,

Jr =min ¢z +dly
(z,y)

st. (x,y)eP (1)
P = {(z,y) e R} xRE : Az + By > b}

If y ¢ Z, i.e. some y; is fractional, we try to eliminate this solution by decom-
posing the formulation in terms of adding bounds on integer variables.

Direction of minimization

Let y}{' ¢ Z be a chosen variable that is fractional

in LP solution. A feasible solution (z,y) € X must Y2

then satisfy F (z8, yR)
\ a Y

y; < ly;') or vi > [y;] ’ ;
We can then search for the optimal solution in the 2./ .y
two disjoint sets //

Ph:=Pn{y:y; < lyj']},

P?:=Pn{y:y; > [y},

by solving two new LP relaxations.
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Enumeration tree

IP example 1:
J*=min —1y; — 2ys
Yy
i 1 N <11
S-' —— —
291 Y2 = 5

4dy; + dy2 < 26
Ty + 3y2 < 32
y € 72

y = (2.31] 3.35)
JR = _9.01
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Implicit enumeration: Utilize
solution bounds

Let (z*,y*) optimal solution with objective value J*.
J*=min cTz+dly
(2,y)
st. Ax+By>b
(z,y) € R} x Z%

e LP relaxation is a convex problem: A lower bound on J* is provided by
the LP relaxation with objective value Jg.

e Any integer feasible solution, (Z,7) with objective value .J, provides an
upper bound on .J.

Consequently, we have a lower and an upper bound on J*:

Jr < J*<J

Defines the duality gap:

J—J
DG := [100%)] - |7 = Jup|
]

where Ji,p is the best lower bound on J*.

@ NTNU Norwegian University of Science and Technology



Pruning

Utilize convexity of the LP relaxations to prune the enumeration
tree.

1. Pruning by optimality : A solution is integer feasible; the solution
cannot be improved by further decomposing the formulation and
adding bounds.

2. Pruning by bound: A solution .J¢ in a node i is worse than the best
known upper bound, i.e. J!>J

3. Pruning by infeasibility : A solution is (LP) infeasible.

(Remember lower and upper bounds on J): O

Jr < J* < J ® o 6066
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Branching: choosing a fractional variable

If J* < J and y* ¢ Z% after obtaining the LP solution in a node, the branch
cannot be pruned.

4 TR

21 ) Y = (2.31,3.35)

We need to divide (or branch) the formulation further s St

_</, @
Which variable to choose? f'“”(ﬁ/ <E ) ¥ = (3:28)

—84 —8.6
Branching rules

e Most fractional variable: branch on variable with fractional
part closest to 0.5.

e Strong branching: tentative branch on each fractional
variable (by a few iterations of the dual simplex) to check
progress before actual branching is performed-.

e Pseudocost branching: keep track of success variables
already branched on.

e Branching priorities-.
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Node selection

Each time a branch cannot be pruned. two
new children-nodes are created-

Node selection rules concerns which node
(and hence which LP) to solve neéF:

e Depth-first search. d ®
e Breath-first search. O O ®
e Best-bound search. O 000 O @

@@ 0000

@ NTNU Norwegian University of Science and Technology



Algorithm 4.1 Branch-and-Bound

1: Initialization
L is a list of with the nodes e 7 _ Ip1

Initialize upper bound-. —

Assume LP is bounded

J = oo
Assume Jp > —o0
2: Termination?

IF L ={0}:
IF P = {0}:
Solve and check LP relaxation - Infeasible problem.
in root node ELSE:

The solution with (z,y) € X
with objective value J is optimal.

STOP
Select node a solve new LP 3- Node Selection
with added branching constraint Select and delete a formulation P? from L.

Solve the LP relaxation. If the problem is infeasible, go to step 2,
otherwise let (x',y") € P' be the solution and Jj
the objective value of the LR in node 1.
4: Pruning
IF Jj, > J:
Go to step 2
Check if solution can be pruned.=—» IF Jj, < J-
Removed nodes from L where the IF y* € ZP:
solution is dominated by the best Theupper bounddsdmproved.
lower bound Set J := J*. Remove possibly dominated programs from L.
Go to step 2.
ELSE:
Go to step 5.

5. Branching _
Choose branching variable- Select a variable y; among the indices j € {1---p} for which Y5 & Z.

add nodes to the list L of —_ Define the two disjoint sets _
pPl= PN {(r,y) € Ry xRY - y; < |y}
PP =P n{(r,y) eRT xRY :y; = [yj]}
Set L := LU {P P}
Go to step 2.

unsolved nodes

IV IA
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Earlier IP example

* Branching rule:
* Node selection rule: best-bound

y® =(2.313.35

ptimal solution

y?" = (_1 _)
infeasible
IP: Ji = -8
J* — min 1y — 2y integer sol.
Yy <9 > 3
1 11 Y2 = Y2 =
st. —=y1 +y2 < —

291 Y2 = 5 -

4y1 + byz < 26 ooy Y= (- —)

7y1 + 3y2 S 32 pruned by bound infeasible

2
y €725

No more nodes: search is finished
E NTNU Norwegian University of Science and Technology

11



Software

Optimization modeling languages:

e Matlab through YALMIP ‘4‘L
. e ous

e GAMS: Generalized Algebraic Modeling System HE

e AMPL: A mathematical programming language

MILP software:

e (CPLEX
e Gurobi
e Xpress-MP
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BB example in GAMS:
The generalized assignment problem (GAP):

Given n assignments/tasks and m agents/servers/vehicles to carry out the
tasks:

1 =1. . index of tasks

9] = 1 . index of available agents

dij . cost of assigning task ¢ to agent j

b; . resource available from agent j

@ij . resource required by agent j to do taks ¢

Yij . a binary varible equal to 1 if agent j is assigned to do task ¢
mm Z Z dijYij

i=1 53=1
s.t.

Z vij; = 1, 1=1...n : Each task is assigned to exactly one agent

Z a;jyi; <bj, jg=1...m : Total assignment for agent j cannot exceed its capacity

yij €{0,1}
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Recall the LP relaxation:

Given IP
min J=dy
Y
st. By>b
y ez

with fractional solution y® of the LP relaxation. The two
basic approaches for eliminating this solution are

e Decompose the solution space (BB).

e Add valid inequalities that is valid for all integer fea-
sible points y € X, but violated at y®. Such valid
inequalities are called cuts.

Adding such valid inequalities means that we cut off the
integer infeasible point.

The above procedure is called the separation problem:

Given a fractional solution ¢ € P, find a valid in-
equality my < mg, from a family of valid inequali-
ties, or prove that no such inequality exists.
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The Cutting-plane algorithm

Direction of minimization

IP:
myin J=dly
st. By>b (1)
y € 2

where X = {y € ZP : By > b}.

Repeat recursively:
Solve the LP relaxation over a given formulation P*. If
the relaxation is unbounded or infeasible, or the optimal

solution of the LR 3* belongs to X, then STOP.
Otherwise, find a cutting plan 7'y < « separating y* from

X _ ‘ ‘ yR—(231335]
Set Pl = Pin{y: 'y < m{} and repeat for formulation 001
pitl Frist cut tdd((l

’ \\( ak
Second cut added (2.48, 3.20)
. . _ (strong/facet)
The same algorithm can be applied to MILPs,  —(2.3) = —8.88
: : : Y= (2

only with different cutting-planes R
integer sol.
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Generating valid inequalities

e Whenever an LP solution (z°,3') ¢ X, then there exist infinitely many
cutting planes separating (z¢,y?) from X.

e Many families of valid inequalities for linear integer and mixed integer
sets have be developed. Some of these are

AN I

6.

Chvatal-Gomory cuts (IPs)
Gomory mixed integer cuts

Mixed integer rounding inequalities
Lift-and-project

Cover inequalities

Split and intersection cuts

e The quality of the cuts generated by a separation algorithm is often closely
related to the time spent on the cut generation.

Several of the above families of valid inequalities are closely related. See
Cornuejols G. 2007, Valid inequalities for mixed integer linear programs, Math-
ematical Programming, 112(1), 3-44.
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Example on cut generation:
Chvatal-Gomory valid inequalities

The Chvatal-Gomory procedure to generate valid inequalities for the set X =
PNZY where P ={y € R} : Ay <b,}, Ais an m X n matrix with columns
{a1az - - a,} and v € R’ are any nonnegative weights:

1. The inequality
ZuTajyj <u'b (1)
j=1

is valid for P (i.e. the formulation for X)

2. The inequality

n

> uTa]y; <uh 2)

j=1

is also valid for P as y > 0.

3. The inequality

z u aj Tbj (3)

j=1

is valid for X as y is integer, and thus 22‘1:1 [uTa,jJ y; s integer.
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Branch-and-cut

e Pure cutting plane algorithms applied to MILPs often show slow conver-
gence.

e By recursively adding cuts, the resulting LP may become very large, caus-
ing numerical difficulties for an LP solver.

e The cutting plane approach for solving MILPs is hence normally integrated
within the branch-and-bound algorithm as variations of the branch-and-

cut scheme. o R
Direction of minimization

Y2
T Optimal solutiong
Y

oo ooo\o %
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Earlier IP example: Branch-and-Cut

* Branching rule:
* Node selection rule: best-bound

‘ —_ ptimal solution

Add cu

y?" = (_1 _)

infeasible
- . 'y?l. = (21 3)
% 1 > 3 p 5 Ji = -8
" integer sol.
Ip: Integer solution: no need to branch further.
J*=min  —1ly; — 2u List of remaining nodes to check is empty, L = {0}
Yy
1 11 . .
st =oYY< = Optimal solution

4y1 + dys < 26
Ty1 + 3ys < 32
y € Zi
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The GAP problem in GAMS with
Branch and Cut

@ NTNU Norwegian University of Science and Technology

20



Choice of LP algorithm in Branch
and Bound

e Very important for the numerical efficiency of Root node

branch-and-bound methods. I.P relaxation

. Re-use optimal basis from one node to the next.

LP: Jip = miﬂm{CTfL' P Ar =b,z € Ri}

Dual LP: Jprp = maxy{A\Tb: \TA < ¢, A € R™}

Primal simplex requires a primal feasible starting point (phase 1 problem)
= Adding a bound y > Lyjj to eliminate fractional LP solution makes solution
from parent node primal infeasible as starting point

Solution from parent node is still dual feasible

Use dual simplex = requiring few iterations to regain primal feasibility
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Solution of large-scale MILPs

Important aspects of the branch-and-cut algorithm:

e Presolve routines O
e Parallelization of branch-and-bound Q O
e Efficiency of LP algorithm o P Q
O 00 O @
Utilize structures in problem: 9o 0000
e Decomposition algorithms = = -
A
e Apply heuristics to generate a £
feasible solution E?
EJ
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MINLP: challenges

J*=min f(z,y)

,y 0
st.  g(x,y) <0,

r € RY,

y €1{0,1}",

e Major difference in approach if g(x,y) < 0 is convex.

e Nonlinear model, e.g. ;1 = f(zk, yx): automatically nonconvex MINLP

Nonconvex = Lower bound obatined by NLP relaxation is no longer valid lower
bound on J*

U
No duality gap
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MINLP: solution approaches

J*=min f(z,y)

T,y

s.t. - g(z,y) <0,
r e RY,
y € {0,1}%,

If the NLP relaxation, y € [0,1]”, renders a convex NLP:

e Nonlinear branch-and-bound: Solve NLP in each node, solution returned
is globally optimal.

e Several other approaches, e.g. Outer approximation, Extended cutting-
plane.

e Software: Bonmin, SBB, DICOPT, Knitro, etc.

If NLP relaxation is a nonconvex NLP:

e Piecewise linearization of nonlinearities: MINLP = approximated MILP.

e Ignore the fact that the NLP solution is no valid lower bound.

e Apply rigorous global optimization algorithms, e.g. spatial branch-and-
bound (BARON)
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Conclusions

e Branch-and-bound defines the basis for
all modern MILP codes.

e Pure cutting-plane approaches are
ineffective for large MILPs.

e BB 1is very efficient when integrated with
advanced cut-generation. leading to
branch-and-cut methods-

e Solving large-scale MINLPs are
significantly more difficult than MILPs.
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