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Overview of module:

e Introduction and motivation.

 Fundamentals concepts and mathematics in mixed
Integer linear programming.

* The basic algorithms:

— Branch-and-bound
— Branch-and-cut

* Introduction to decomposition approaches in large-scale

MILP:

— Petroleum production optimization.
— Unit commitment in electric power production.

Software.

@ NTNU Norwegian University of Science and Technology



Learning outcome of course module

1. Basic understanding of mixed integer linear
programming.

2. Know the basic differences between integer and
continuous optimization.

3. Be able to formulate a MIP model based on a problem
with discrete decision variables.

4. Knowledge of applications of MIP in control
engineering, energy systems and economics.
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What is fundamentaly different from
continuous optimization?

* The feasible region consists of a set of © e e e 0
disconnected integer points.

» Gradient-based algorithms cannot be
directly applied. 0

* No conditions similar to the KKT
conditions to prove first order optimality.
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Motivation

e Mixed integer programming is used to solve
optimization problems with discrete decisions in a wide
range of disciplines:

Operations research (production planning, management
science, finance, logistics)

Electric power production
Chemical engineering
Petroleum production
Control engineering

 The next slides contain particular examples of mixed
Integer programming applications in these disciplines.
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Operations research

* Designing airline crew schedules:

— Pair (assign duty periods) airline crews that cover every flight leg at the least cost.

— Must satisfy legal rules such as limited total flying time, minimum rest time, etc.

e Train scheduling:

— Find a feasible train schedule that secures sufficient transit time for passengers with
connections, assigning trains to single tracks such that train collisions are avoided (hard
constraint!), and minimize excessive wait time for trains.

e Production planning:

— Given a set of X products to be produced in Y factories, with final shipment to Z sales areas.

— Products are produced in batches, with both fixed and marginal costs.

— Maximize profit/ minimize cost with respect to seasonal demands.

([

Allocating lecture halls at NTNU:
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Electric power production

Source: powerop.co.uk

The hydro-thermal unit-commitment (UC) dispatch problem:

Given a set of electric-power generating units with different characteristics:
— Maximum output power (e.g. 400 MW).
— Efficiency curves.
— Start-up cost, start-up time and minimum up/down times.
— Emission level constraints.

Given a certain planning horizon (e.g. 24 hours): Select units such that
— The power demand (; is satisfied for all time periods .
— Fuel costs or emissions are minimized, or profit is maximized.
— The generating units have a certain excess reserve capacity 7"; due to demand uncertainty.
— The unit schedule must satisfy a certain security level.
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Chemical engineering

Distillation Retification Dehydration

« Optimal design of distillation columns: Separation of R~y (
components in a mixture passed through distillation | |
units. Decision variables can be selecting the number of
trays and feed locations, and the location of output
streams (products).

Source: intechopen.com

* Used extensively in process design and synthesis, e.g.
Optimal reactor selection and configuration:

R1
Fy S1 Fyy
R2 E, Fe

A Fs — Fio
——} ey
Source: Grossmann and Trespalacios (2013) F-?- F9
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Petroleum production optimization

Optimization of gas flow and routing in the
natural-gas value chain: Meet seasonal
varying gas demands, contractual obligations,
minimize fuel consumption of compressors,
etc.

Maximize revenues of oil and gas subject to
constraints in the reservoir and wells, and the
gathering system, for instance the capacity of
separators and compressors.

Nellhead
choke,
R

urce: Knudsen et. al 2014
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Motion control and hybrid systems

e Collision avoidance in trajectory-

plar_mlng for aircrafts, UAVs and (D <D s
: ([T =)
vehicles: — i
— Avoid multiple vehicles colliding. -

— Obstacle avoidance for single vehicles.

* General hybrid predictive control: MPC
with discrete variables. Numerous
applications in chemical, mechanical
and electrical engineering. See:
http://cse.lab.imtlucca.it/~bemporad/teac
hing/mpc/imt/6-hybrid-examples.pdf
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Definitions of problems with discrete variables

Comments on notation:

R” is the n-dimensional space of all non-negative real numbers:

RY ={z eR":2 >0}

Z" is the p-dimensional space of all non-negative integers:
7y ={yeZl:y=0}

B? is the g-dimensional space of all binary variabls:
BY ={y:y€{0,1}}

The expression mixed integer program and mixed integer problem is used

interchangeably, both referring to a mathematical problem with continuous and
discrete variables.

@ NTNU Norwegian University of Science and Technology
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Definitions:

General MILP
J*=min clz+dly
(z,y)
S.t.
Ax+ By > b
(z,y) € R x Z%

e A is an m X n matrix

e B is an m X p matrix

e b is an m-dimensional vector

e ¢ is and n-dimensional vector

e d is an p-dimensional vector

We define X as the set of feasible solutions:

@ NTNU

X ={(z,y) e R} xZ : Az + By > b}

Norwegian University of Science and Technology

12



Mixed binary linear program:

J*=min clz+dly

(z,y)
s.t.
Ax+ By > b
r e RY
y €{0,1}”

(Linear) Integer program (IP):

@ NTNU

J*=min dly
y

st. By>b
y € ZE

Norwegian University of Science and Technology

13



Examples on formulating integer programs (IPs):

The generalized assignment problem (GAP): Given n assignments/tasks and m
agents /servers/vehicles to carry out the tasks:

t1=1...n : index of tasks

7=1...m : index of available agents

di; . cost of assigning task ¢ to agent j

b; . resource available from agent j

;i . resource required by agent ;5 to do taks 2

Yi;j . a binary varible equal to 1 if agent j is assigned to do task 2

Problem can be formulated as the linear integer program (IP):

n o m
le}Il Z Z dijyij

i=1 j=1

s.t.
m
Z vij; = 1, 1=1...n : Each task is assigned to exactly one agent
j=1
T
Z a;jyi; <bj, jg=1...m : Total assignment for agent j cannot exceed its capacity
i=1
yij € 10,1}
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Numerical example: GAP

Construct and solve the GAP with following specifications:

n = 3 tasks and m = 2 machines

Available resources for machines j : b; = [13}

11
4 . .
J1J2
o, ) 9 2
Costs : d;; = < iy 1 2
i3 3 8
4
Assigment costs for task ¢ to machine j : a;; = < ;1
2
\ ZS

Minimize total costs, assigning each task to one machine.

@ NTNU Norwegian University of Science and Technology
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The Uncapacitated facility location problem (MILP )

Suppose we have m clients, indexed by %, that are to be served by facilities
than can be opened at n potential cites (locations), indexed by j. Supplying
client s demand from a facility at location j gives a profit ¢;;, while there is a
cost d; to open a facility at location j.

Let y; = 1 if facility j is opened, and y; = 0 otherwise. Further, let z;; be the
fraction of client ’s demand that is served by facility j. The problem consists
of choosing optimal facility locations and assigning clients to these facilities.

max ZZCU% deyﬁ' i t i t

i=1 j=1 ﬁ \ l
s.t. ) t R‘““‘Hﬁ i \lIL

Z zi; =1, i=1...m gﬂ,tlulacu n i}f ind foreach client ¢
g

Tij < Yj, izl---m,jzl...ni :M,tu; cmgicoants_ﬁ
0oy <1 oy 4y e
ij{O,l}

Source: http://disopt.epfl.ch/page-31527-en.html
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Numerical example (UFL)

Construct and solve the UFL with following specifications:

m = 4 clients and n = 2 facilities

J1 o J2
9 1
4 10
3 1
s 76

Profit coefficients : ¢;; = ¢ 12

Costs for opening facility j : d; = :; 1 g
2

Maximize total profit
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General model formulations requiring

Integer variables

A
o(z)
Fixed costs:
A fixed cost «, only present if x>0. e ot o
The cost increases with fx: /
a+Bx f0<ax<U “
c(z) = .
0 otherwise .
0 U
By introducing a binary y € {0, 1}, we can model this as
c=ay+ px
0<x<Uy
Similarly for variables only defined in a certain range:
Ly <z <Uy
€ 10,1 :
y €{0,1} T U > T

@ NTNU Norwegian University of Science and Technology
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Implications and conditions:

Conditions and constraints given by a Boolean Y:
e Condition 1, modeled by Y; = T'rue
e Condition 2, modeled by Y5 = True

Given expression of the type:

* Yi=Y (lf Y: then YQ)
%k Yi1VY, (Yl or Yg)
% Y1 Y, (if and only if)

Replace Boolean Y with binary y € {0,1}. The given logical conditions can be
defined by the constraints

* Y1 < Y2,
1 +y2 > 1,
kK ox Y1 = Y2,

respectively. General rules for reformulations logical conditions exist, see
Raman, R., & Grossmann, 1. E. (1994). Modelling and computational techniques for logic
based integer programming. Computers and Chemical Engineering, 18(7), 563-578.

E NTNU Norwegian University of Science and Technology
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Systematical derivation of linear inequalities from logic

p ro p 0S I tl ons Goal: convert logical expressions to
QiAQ2A...ANQp (1)

where each logical clause consists of expressions
Qi - YIVYaVv... VY, (2)
Steps:
1. Replace implication by disjunction:

Yi=Y & 7VvY,

2. If necessary, (particularly with several logical terms), apply DeMorgan’s
rules to move negation inward

_|(Y1 \% Yg) S Y] A Y,
—|(Y1 A YQ) & Y VY,

3. If more than two Booleans, recursively distribute OR operator over AND
to get expressions of the form (1)—(2)

(YiAYa) VY3 & (Y1 VY3) A (YaVY3) (3)

4. Replace Booleans Y; with binary y;. Each clause with only OR operators
defines linear inequalities. An AND operator as in (3) gives an additional
inequality, i.e., (3) results in the constraints

y1tys=>1
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Example

If product A is chosen, product B cannot be chosen while product C' have

to be chosen. Define Booleans Y;, for i = A, B, C.

1. Replace implication by disjunction:

Yi=Y, & Y7VY,

2. If necessary, (particularly with several logical terms), apply DeMor-
gan’s rules to move negation inward

_l(Yl V YQ) & Y] A Yo
—l(Yl A Yz) & Y, VY,

3. If more than two Booleans, recursively distribute OR operator over
AND to get expressions of the form (1)—(2)

YV1AY2)VY; & (Y1 VY3) A (Y2 VY;) (1)

4. Replace Booleans Y; with binary y;. Each clause with only OR oper-
ators defines linear inequalities. An AND operator as in (3) gives an
additional inequality, i.e., (3) results in the constraints

y1t+ys>1
Yo +y3 > 1
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Yi=-YsAYo

)

=Ys V (—IYB VAN YC)

)

(—|YA V —|YB) A (—|YA V YC)

Replace Y;’s with binaries and
rewrite as linear constraints:

l—ya+1l—-yp>1|1-ya>us
1—yA+y021 Yo = Ya
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Assignment. modeling logical conditions
with binaries

(From Wolsey (1998)). Suppose you are interested in choosing a set of invest-
ments {1,...,7}. Model the following constraints:

1. You cannot invest in all of them.
2. You must choose at least one of them.
3. Investment 1 cannot be chosen if investment 3 is chosen.
4. Investment 4 can be chosen only if investment 2 is also chosen.

5. You must choose either both investments 1 and 5 or neither.
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Disjunctive constraints:

Given z € R with lower and upper bound, 0 < z < U, and two linear constraints:
[ax < b] Y [dx < €]
—_—r
R1 R2

where only one must hold:

—> P

{ p—
ar < b+ M(1—1y;)
de < e+ M(1—1ys)
y1+y2 =1
Yi,Y2 € {0,1} B —

where M is a sufficiently large big-M parameter, M > max(b,e).

Alternatively, use the extended, but tighter, convex hull reformulation of linear
disjuncitons (more on this later):

Tr =z + 29,

azy < by,

dze < eya,

y1+y2 =1,
0< 2z < Uy, 1=1,2

y1,y2 € {0,1}
® NTNU Norwegian University of Science and Technology

Source: Grossmann and Trespalacios (2013)
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Example with disjunctive constraints:

Given the structure of a reactor and raw material selection with
the following specifications:
* Objective: maximize profit of selling product P with
price 10.

e To produce P, the options are: A — _}‘D‘_
1. Buy reactor R1 with cost C = 5*F (flow), and with
90% conversion of material A and 70% of B. R1 > p
2. Buy reactor R2 with cost C = 4.6*F (flow), and with
85% conversion of material A and 80% of B. B — _h'ﬂ“_
* The cost of raw material Ais 1.1, and available feed rate e
is 5. R2
e The cost of raw material B is 1, and available feed rate is
7 . Source: Grossmann an d Trespalacios (2013)
Assignment:

1. Formulate the optimization problem using linear
disjunctions.
2. Formulate the corresponding MILP using big-M
reformulation.
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How to prove optimality?

Given an integer program (IP)

J* =min dly
y

st. By>b
y € Z%

e Total enumeration? In case y is binary, this corresponds to 2P possible
combinations of integers = quickly becomes an infeasible approach.

e Fundamental approach: Iteratively generate a decreasing sequence of
upper bounds J; and a sequence of increasing lower bounds .J;, and then

stop when

Jg_i%<€

for some small € > 0. Then, how to generate this sequences of points?
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Relaxations

The basic idea of a relaxation is to replace a
“difficult” problem with a simpler optimization

problem which provides a lower bound for J
(minimization):

Jr < J

Two possibilities:
= | Enlarge the set of feasible solutions.

» Replace the objective function by a function which is
guaranteed to be smaller over the entire set of
feasible solutions.

@ NTNU Norwegian University of Science and Technology

MILP:

J*=min clz+dly
(z,y)

s.t.
Ax+ By > b
(z,y) € R} x Z%

Direction of minimization

A /&

01 2 3 4 5 6 7 8
26



LP relaxation of MILP

Relaxin
MILP: . 5
. T T integrality LP: o T 4T
J ~ (o) THdy condition ony R=my © r+ay
S.t. S.t.
—_—
(z,y) € X (z,y) € P
X ={(z,y) e R} xZF : Az + By > b} P ={(z,y) e R} x RE|: Az + By > b}
Direction of minimization Direction of minimization
A\
TN
yd
yd
e =

Y

Y 1 2 3 4 5 6 7 8

-
01 2 3 4 5 6 7 8
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Corresponding LP relaxation of binaries

P Relaxing 0/1
' i} ‘ . condition ony LP:
J :mg}n dy Jr =min dly
Yy
s.t. By>b — s.t. By >b
y € {0,1}" y € [0,1]"

With the feasible set defined as
X ={y€{0,1}”: By > b}

The relaxed set
P={yel0,1]": By > b}

is called a formulation for X, while
Jr = min{d'y : y € P}

is defined as the linear programming relaxation of the IP with Jg < J.
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Basics of polyhedral theory (1/3)

A set X is convez if, for any two points Nonconvex set
x1,22 € X and for any 6, 0 < 6 < 1, where

X C R", the line segment connecting
the two points lies entirely in X: ‘

9m1+(1—9)x2 cX

A polyhedron P C R™ is defined as the set of points Convex set
that satisfies a finite number of linear inequalities :

P={xeR" : Az < b}

A polyhedron is called a polytope if it is bounded, that is, there is an € € [0, 00)
such that PC {z e R": —e < x; <¢, forj=1...n}
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Basics of polyhedral theory (2/3)

A convex combination is a point z = 6121 +...0,x, with 6, + ...+ 6, = 1,
0; > 0 and x; € X for all n. The convexr hull of a set X is the set of all points
that are convex combinations of points in X:

conv(X) = {,z = Zﬁixi s x; € X, Zé’i =1,0; > 0}
i=1 i=1
(i) The convex hull conv(X) is the smallest convex set that contains X.

(ii) conv(X) is a polyhedron.

Given IP: J* —min dTy
y
st. ye X
X:{yEZﬁ_:ByZb} ® points
P={yeR} :By>b}
conv(X) = {y € RP : By > E} red _
Y1

® NTNU Norwegian University of Science and Technology
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Basics of polyhedral theory (3/3)

e An inequality my < 7 is a valid inequality (constraint)
for a set X C RP if is satisfied by all points in X, i.e.

Ty < o Ve e X

e Only those valid inequalities are necessary for describing the polyhedron
defining conv(X) is of real interest; these are called facet-defining inequal-
ities.

Valid inequalities

Facet defining
1\ g

inequality

3

—e
rO®

‘b Z yl
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Valid inequalities and different formulations

e An inequality 7y < mp is a valid inequality (con-
straint) for a set X C RP if is satisfied by all points ¥2
in X, i.e. T

Valid inequalities

Ty < Mo, Ve e X

e An inequality valid for a relaxation P of X is also
valid for X.

Facet defining

e Valid inequalities are added to strengthen the for- 1 meauality
mulation P; of the integer feasible set X.
yl
J‘L Y2 A
Tighter formulation P
e An IP(MILP) may have infinitely many formu- conv(X)

Original

lations P; , formulation P;

P, ={yeRE : By > b} 5
rendering the same optimal integer solution y*.

e We always seek a tight formulation:
The tightest possible is conv(X).

=]
—e
Y )
e
.

Y1
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Solving IP as LP:

If we know the complete description of conv(X), we can solve an IP as an LP:

J* =min dly J* =min d’y
Y o Y
st. yelX s.t. y € conv(X),
X ={y € Z"|: By > b} conv(X) = {y € R% : By > b}

Same equivalence holds for MILPs with rational matrices.

However, finding the complete polyhedral description of conv(X) is
at least as difficult as solving the IP.

e Number of constraints of conv(X') can be exponential in the size of By > b.

e Solving IPs and MILPs are NP-hard.
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The two basic approaches for solving
MILP/IP

Solve LLP relaxation. Fractional solutions must be eliminated:

e Iteratively decompose the feasible region and solve new LP
relaxations.

e Add valid inequalities that cuts of the integer infeasible
point.

Defines the basis for the , cutting-plane and
branch-and-cut algorithm.
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