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a b s t r a c t

This paper presents a new method for real-time optimization of process systems with a decentralized
structure where the idea is to improve computational efficiency and transparency of a solution. The
contribution lies in the application and assessment of the Lagrange relaxation and the Dantzig–Wolfe
methods, which allows us to efficiently decompose a real-time optimization problem. Furthermore, all
eywords:
il production planning
iecewise linearization
ixed integer linear programming

agrangian decomposition

nonlinearities are modeled by piecewise linear models, resulting in a mixed integer linear program, with
the added benefit that error bounds on the solution can be computed.

The merits of the method are studied by applying it to a semi-realistic model of the Troll west oil rim, a
petroleum asset with severe production optimization challenges due to rate dependent gas-coning wells.
This study indicates that both the Lagrange relaxation and in particular the Dantzig–Wolfe approach offers
an interesting option for complex production systems. Moreover, the method compares favorably with

thod.
antzig–Wolfe decomposition the non-decomposed me

. Introduction

Development of a petroleum field asset requires planning on
everal horizons. On a long-term horizon, typically from one year
nd up to the field’s lifetime, strategic reservoir planning is based
n market conditions, field properties and strategic considerations
f the developing company. Decisions related to technology for an
ffshore field will include; how to develop the subsea solution,
hether to process the fluid onshore or offshore, and how to export

he different products produced. It is also possible to include extra
exibility. By for instance accepting a higher investment cost, it
ay be possible to allow future development such as tie-ins from

ossible neighboring assets. The analyses and subsequent develop-
ent plan seek to maximize the net present value of the asset by
aximizing oil and gas recovery while honoring safety and envi-

onmental constraints. Nygreen, Christiansen, Haugen, Bjorkvoll,
nd Kristiansend (1998) discuss some of these issues.

On a medium time horizon, often referred to as tactical reser-
oir management, the planner will seek to extract as much oil and
as from the reservoir as possible, within the bounds of the earlier

trategic decisions. In the Troll field which will be discussed later,
he extraction of gas was severely limited to ensure higher pres-
ure in the reservoir for an easier extraction of oil. Usually during
he green field stage it is important to plan, drill and commission
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new wells to reach some pre-defined plateau rate as soon as possi-
ble. During the plateau production there may be an in-field drilling
program for production and/or injection wells. This involves deci-
sions on the location and completion of wells. Later, during the
decline phase of a field, artificial lift technology may be applied to
boost production.

Operational production planning considers shorter time hori-
zons, typically days and weeks, and is usually denoted real-time
production optimization (RTPO) problem. Production may be con-
strained by reservoir conditions such as coning effects and/or the
production equipment like pipeline capacity or downstream water
handling capacity. Hence, this requires modeling of both the sub-
surface part (reservoir and wells) and the surface part (pipelines
and downstream production equipment) of the value chain. Deci-
sion variables in RTPO include production and possibly injection
rates, artificial lift inputs like lift gas rates and electric submersible
pump (ESP) rates, and routing of well streams. The goal will be to
maximize daily production rates. Overviews on RTPO can be found
in Wang (2003), Saputelli, Nikolaou, and Economides (2005) and
Bieker, Slupphaug, and Johansen (2006). RTPO is a widely used
expression in the industry. In this paper, however, by RTPO we
mean planning which involves the solution of a mathematical opti-
mization problem.
This paper centers on the RTPO problem. The main contri-
bution is a mixed integer linear program (MILP) formulation of
the production network combined with a decomposition strategy.
Two decomposition methods, Lagrange decomposition (LD) and
Dantzig–Wolfe decomposition (DWD), are explored and tested on

http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:Bjarne.Foss@itk.ntnu.no
dx.doi.org/10.1016/j.compchemeng.2009.10.019
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realistic example. A key feature of our approach is the use of a
ivide-and-conquer strategy to decompose a RTPO problem into
ractable sub-problems. Related references are Foss, Gunnerud, and
ueñas Díez (2009) where LD was introduced on a rather concep-

ual level and Gunnerud, Foss, Nygreen, Vestbø, and Walberg (2009)
here DWD was initially proposed as a decomposition method for
TPO.

There has been some interest in applying decomposition tech-
iques within the process systems literature. Alabi and Castro
2009) applies DWD for refinery planning while Cheng, Forbes, and
ip (2008) uses DWD to coordinate decentralized model predic-
ive controllers for plant-wide control. In particular decentralized
arget calculations are coordinated by applying DWD.

There are many similarities between developing and operat-
ng a petroleum asset and a downstream process system, like a
efinery. Hence, it makes sense to frame RTPO within the well
stablished process control hierarchy which includes regulatory
ontrol, supervisory control, local dynamic or static optimiza-
ion, site-wide optimization, and scheduling and planning; see
.g. Backx, Bosgra, and Marquardt (2000). As mentioned earlier
TPO means short term production planning. This is compara-
le to RTO in the process industries. One obvious difference,
owever, is the fact that a petroleum field in a life-cycle perspec-
ive is a depletable asset which can and should be viewed as a
atch process as opposed to a plant like a refinery. Hence, con-
itions will vary significantly during the lifetime of a petroleum
sset.

The remainder of this paper is organized as follows. To begin
ith, the complete nonlinear RTPO model will be presented. Then

he techniques used for handling the nonlinearities, i.e. how to cre-
te piecewise linear representations and formulate the MILP model,
s discussed. Further, we will look into why the problem is suit-
ble for decomposition and present two decomposition schemes.
ubsequently, results from a field case will be presented and a dis-
ussion on challenges related to the alternative solution methods
s included before some conclusions end the paper.

. The real-time production optimization problem

.1. Methods and technology

RTPO applications exist in limited numbers. Two commercial
roducts are GAP from Petroleum Experts and MaxPro from FMC
echnologies. Both model the wells and pipeline systems, and
olve the optimization problem by combining linear and nonlin-
ar techniques. Wang (2003) provides a comprehensive overview
f models and solution algorithms for different problems in the
ndustry, again including both linear and nonlinear formulations

ith appropriate techniques for solving them. Bieker et al. (2006)
resents an overview of the oil production problem which includes
description of production planning, processing facilities and well
odel updating. Another recommendable reference is Saputelli et

l. (2003) since it ties RTPO to application challenges such as the
vailability of appropriate technologies. The value chain may be
ivided into an upstream part, which includes reservoirs, wells,
ipelines and a downstream part which includes a process system
or separating oil, water and gas as well as some export facility.
he literature mentioned above takes a silo approach in the sense
hat the upstream part is optimized without including a model
f the downstream system. Usually the downstream boundary is

fixed pressure on the inlet separator of the downstream pro-

ess. Optimizing across this boundary by including the upstream
nd downstream system is rarely seen. One exception is Foss and
alvorsen (2009) which shows that a significant gain can be made
y bridging the gap.
Fig. 1. Troll west structure (StatoilHydro 2008).

Some work discuss the consistency between production opti-
mization and the medium term horizon decisions involving a
full field reservoir simulator. In Awasthi, Sankaran, Nikolaou,
Saputelli, and Mijares (2007) model consistency is emphasized
while Awasthi, Sankaran, Nikolaou, Saputelli, and Mijares (2008)
focus on decomposition between time scales and a moving-horizon
approach is used for operational planning. As in all model-based
applications model maintenance is important. It is particularly
important to update well models since these models may change
significantly over time. Cramer, Goh, Dolan, and Moncur (2009)
present a data driven monitoring approach towards this end.

The literature is fairly limited on optimization models and solu-
tion algorithms for upstream petroleum production systems. Bieker
(2007) solve the problem by piecewise linearization of nonlinear-
ities and end up with a MILP formulation. Network topology is
kept quite simple and in particular no routing issues are included.
Kosmidis, Perkins, and Pistikopoulos (2005) uses a similar approach
on a richer network topology. They allow for routing of the fluids
from wells between different pipelines and to different separa-
tors. Kosmidis et al. (2005) piecewise linearizes the well models.
They do, however, end up with a MINLP model, which results in
completely different solution algorithm compared to MILP solvers.

2.2. Problem structure

Fig. 1 illustrates the Troll B and C platforms including the subsea
production network. The structure is typical for a large scale off-
shore oil and gas production system. Such systems can be divided
into clusters where one cluster contains a collection of wells which
are connected to a platform through common pipelines. An illus-
tration of a cluster is shown in Fig. 2. Each cluster will consist of
a number of wells, manifolds and importantly several production
lines. Troll C, which we will revisit later, contains eight clusters,
each with two parallel production lines, two manifolds, and up to
eight wells per cluster. The fluids from these eight clusters feed into
a common platform-based process section.

Inflow from the reservoir into the wellbore, i.e. in the bottom
part of the well, is known as the inflow performance relationship
(IPR). It depends on reservoir pressure, pressure in the wellbore
as well as the condition of the well itself. Further, a vertical lift
performance (VLP) curve is commonly used to relate downhole con-
ditions to wellhead (surface) conditions. This relationship depends
on well geometry, and fluid rates and composition. Reservoir con-

ditions will change over time due to the drainage effect. Since we
are interested in short term optimization it is fair to assume con-
stant conditions on the optimization horizon of interest. The well
stream entering a manifold is routed to one of the production lines,
see Fig. 2. The fluid is then transported through these pipelines to
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Fig. 3. Cluster topology with key variables.

Table 1
Indices.

valve is found between the reservoir and the manifold, and is used
to control the flow from the well. Some definitions are needed. In
Table 1 all the indices are given, while the sets are given in Table 2.
Further, Table 3 contains the data, while Table 4 contains the vari-
ables we will use.

Table 2
Fig. 2. Typical st

he platform, and the pressure drop along the lines is modeled by
ultiphase flow models.
There will be constraints related to each cluster. They arise from

eservoir analyses and capacity limits in the production equipment
tself. As an example short term production boosting may harm long
erm drainage efficiency. The reason is that increased pressure gra-
ients may damage the formation close to wells and hence reduce

ong term productivity. Further, there will as always be capacity
imits on production equipment like wells, valves and pipelines, as

ell as constraints which originate from the downstream part of
he value chain, for instance gas and water handling capacities. All
ppropriate constraints will be detailed in the next section.

A complete formulation is complex, thus the RTPO problem is
oth challenging and hard to solve. It may be noted, however, that
ost of the constraints are local to each cluster. This observation is

ssential for the decomposition approach applied later.

. Model formulation

In the following we present a system model which encompasses
substantial class of upstream production systems. It is based on a

elatively general network topology including fields like Troll. We
ill start by stating the complete model and from there, derive the
ILP model which is used as a foundation for the two decomposi-

ion strategies.

.1. Nonlinear model

In the interest of clarity, we will formulate the problem for
lusters containing only one manifold. An extension to several man-
folds per cluster, as in Fig. 2, is quite straightforward and is actually
mplemented in the case example discussed later.

At Troll C, there are two parallel pipelines transporting the pro-
uced fluid from a cluster. The number of pipelines can vary from
ne asset to another, from simple applications with only one line to
etwork structures with even more than two lines, and with other
ossible structures than the tree structure in our model.

The following indexing conventions are used throughout the

aper. Each cluster is identified by a single index i. Each well is

dentified by two indices ij, the index of the cluster in which it lies
nd its own index within the cluster. Each pipeline is also identified
y two indices il, the index of the cluster where it lies and its own
ipeline index.
i Cluster
j Well
l Pipeline
p Phase

The most common variables are illustrated in Fig. 3. The choke
Sets.

I Set of clusters
Ji Set of wells in cluster i
Li Set of pipelines in cluster i
P Set of phases (g for gas, o for oil, and w for water)
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Table 3
Data.

CT
p Capacity of phase p in the first stage separator at platform

f P
il

() Function for pressure drop in pipeline l

f W
ij

() Function for pressure drop in pipeline from wellbore to manifold

f IN
ijp

() Well model for each phase p

pR
ij

Reservoir block pressure near well j

s
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T
V

pS Pressure at first-stage separator on platform

qM
ij

Maximum liquid production from well ij

In the following we present the objective function and con-
traints. The constraints are divided into two groups: common
onstraints and local constraints for each cluster.

.1.1. Objective function
The objective function sums the oil flowrates from all clusters

ax Z =
∑

i ∈ I
qC

ip, p ∈ {o} (1)

It should be noted that the objective function is additive on a
luster level. Further, the use of oil flowrate is a common production
easure since it reflects short term revenue in most cases.

.1.2. Common capacity constraints
The inequality below defines the common constraints. It states

hat the sum of gas and water rates from all clusters must be less
han the gas handling and water handling capacities of the down-
tream processing equipment. Hence, these are the only constraints
hich connect the clusters, all other constraints apply for each

luster separately

i ∈ I
qC

ip ≤ CT
p , p ∈ {g, w} (2)

.1.3. Cluster constraints
All constraints, except for the common capacity constraints, are

efined for all cluster i ∈ I. In this section this statement will be
mitted for the sake of simplicity.

The well model consists of two parts. First, the multiphase flow
rom the reservoir into the wellbore of each well is defined. It
epends on reservoir pressure, geological properties of the for-
ation close to the well and the wellbore itself, and it is usually

epresented by the well’s IPR curve
W
ijp = f IN

ijp (pR
ij,p

WF
ij ), ∀j ∈Ji, p ∈P (3)

Further, the pressure upstream the choke has to be equal to
he bottomhole flowing pressure pWF

ij
subtracted the pressure loss

able 4
ariables.

pM
il

Pressure at the manifold level in pipeline l

pD
il

Pressure drop across pipeline l

pW
ij

Pressure at manifold level upstream choke

pWF
ij

Wellbore flowing pressure, well j

qC
ip

Flowrate of phase p from cluster i

qP
ilp

Flowrate of phase p in line l

qW
ijp

Flowrate of phase p from well j

xij Binary variable. 1 if well j is closed

yijl Binary variable. 1 if well j is routed to
line l
cal Engineering 34 (2010) 1803–1812

between the wellbore and the wellhead:

pW
ij = pWF

ij − f W
ij (qW

ijg, qW
ijo, qW

ijw), ∀ j ∈Ji (4)

This represents the VLP curve of a well.
The two nonlinear functions representing IPR and VLP respec-

tively can be combined to create a nonlinear well performance
curve (WPC). This equation then links wellhead pressure to the
flowrate of each phase from one particular well

qW
ijp = f WPC

ijp (pR
ij, pW

ij ), ∀ j ∈Ji, p ∈P (5)

Long term recovery may impose limits on liquid production
from a well

qW
ijo + qW

ijw ≤ qM
ij , ∀ j ∈Ji (6)

The well routing constraint (7) assures that flow from a well j
either is closed or routed to one of the pipelines leaving the mani-
fold

xij +
∑

l ∈Li

yijl = 1, ∀ j ∈Ji (7)

The mass balance constraints (8) sum the flow from all wells that
are routed to a particular pipeline

qP
ilp =

∑

j ∈Ji

qW
ijpyijl, ∀ l ∈Li, p ∈P (8)

Similarly (9) aggregates the flow from all pipelines in cluster i
to one variable qC

ip
, i.e. the total production of phase p from cluster

i
∑

l ∈Li

qP
ilp = qC

ip, ∀ p ∈P (9)

Pressure relations in manifolds and separator: Constraint (10)
assures that the pressure for line l at the manifold in cluster i must
be lower than the pressure upstream the choke in all wells j con-
nected to the manifold and routed to line l. The reason for the
inequality, instead of an equality, is to allow a pressure drop across
the choke, i.e. when the choke is partly closed

yijlp
M
il ≤ pW

ij , ∀ j ∈Ji, l ∈Li (10)

The pressure drop in pipelines between the manifold and the
separator is formulated in (11). As the separator pressure is fixed
the absolute pressure will not be included in the pressure drop
model. For a problem containing more than one manifold in a
cluster, this will not be the case and absolute pressure should be
considered

pS = pM
il − f P

il (qP
ilg, qP

ilo, qP
ilw), ∀ l ∈Li (11)

3.2. MILP model

There are especially two factors that make the above optimiza-
tion problem challenging. First, the nonlinearities related to well
models (5) and pressure losses in pipelines (11), and second, well
routing, which forces integer properties to be taken into considera-
tion, cf. (7). These aspects have been key issues when choosing the
solution approach for this optimization problem.

We piecewise linearize all nonlinearities which transform the
MINLP into a MILP, to take advantage of the features that come with
this formulation. This includes the possibility to use algorithms like

Simplex, and Branch and Bound, see e.g. Rardin (2000), and the
ability to compute performance bounds on a global solution.

Compared to Bieker (2007) we treat several clusters, which
makes decomposition interesting. Further, we include the ability
to route well flows to different pipelines. Kosmidis et al. (2005)
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Table 5
Indices.

k Interpolation coordinate for the piecewise
linearization of the WPC

np Interpolation coordinate for the piecewise
linearization of the pressure drop in
pipelines, dependent on phase p (ng for
gas, no for oil, nw for water)

Table 6
Sets.

Kij Set of interpolation coordinates for the
piecewise linearization of the well
performance curve (WPC)

e
f

f

3

w
i
∑

3

(
W

q

b
(

p

T
D

T
V

Nilp Set of interpolation coordinates for the
piecewise linearization of the pressure
drop in the pipelines

nds up with a MINLP model since he keeps the nonlinear models
or the pipeline pressure drops as opposed to our MILP formulation.

Table 5–8 define the new indices, sets, data and variables needed
or linearizing the problem.

.2.1. Gas and water capacity constraints
The capacity constraints (2) are already linear, however we

ould like to restate them here to have a complete MILP model
n this section

i ∈ I
qC

ip ≤ CT
p , ∀ p ∈ {g, w} (12)

.2.2. Linearization of well performance curves
We apply a modal formulation to piecewise linearize the WPC

5). By this we replace the nonlinear constraints with SOS2 sets
illiams (2005). The link between wellhead pressure pW

ij
and flow

W
ijp

is given by (13)–(17). �ijk are the weighting variables introduced
y the SOS2 set which decides on the weighting of the brake points
WPC WPC
p
jk

, q
jpk

)

W
ij =

∑

k ∈Kij

pWPC
ijk �ijk, J ∈Ji (13)

able 7
ata.

pD
ilng nonw

Breakpoints for pressure drop in pipeline l

pMAX
ij

Maximum well head pressure

pWPC
ijk

Pressure at manifold level before choke, for breakpoint k

qD
ilpnp

Flow rate in pipeline l of phase p corresponding to breakpoint np

qMAX
ijp

Maximum flow of phase p from well j

qWPC
jpk

Flow rate of phase p from well j corresponding breakpoint k

able 8
ariables.

qS
ijlp

Flow from well ij to line l of phase p into line l

�ijk Weighting variable associated with each
breakpoint k

�ilng nonw Weighting variable associated with the
breakpoint ng , no , nw

�ilpnp Weighing variable associated with the SOS2
sets for the piecewise linearization pipeline
models
Fig. 4. WPC based on typical data from a gas-coning well.

qW
ijp =

∑

k ∈Kij

qWPC
ijpk �ijk, j ∈Ji, p ∈P (14)

∑

k ∈Kij

�ijk = 1, j ∈Ji (15)

�ijk ≥ 0, j ∈Ji, k ∈Kij (16)

�ijk is SOS2 for k, j ∈Ji (17)

Note that pW
ij

is mapped to three flow variables qW
ijp

, cf. Fig. 4.

3.2.3. Linearization of well routing constraints
To handle well routing, several steps are made. The linear rout-

ing constraints (7) are restated

xij +
∑

l ∈Li

yijl = 1, ∀j ∈Ji (18)

Further, we have changed the nonlinear constraints (8) and (10)
into a set of linear constraints. A new set of variables, qS

ijlp
, which

are the flowrates of phase p from well ij to pipelines il leaving the
manifold, is defined. Further, two new sets of constants, qMAX

ijp
and

pMAX
ij

are introduced. qMAX
ijp

defines the maximum possible flowrate

for each phase from a given well, and pMAX
ij

defines the maximum
possible pressure drop over the manifold. (19)–(22) then describe
new mass and pressure balances for wells and manifolds
∑

l ∈Li

qS
ijlp = qW

ijp, ∀j ∈Ji, p ∈P (19)

qS
ijlp ≤ qMAX

ijp yijl, ∀j ∈Ji, l ∈Li, p ∈P (20)

qP
ilp =

∑

l ∈Li

qS
ijlp, ∀l ∈Li, p ∈P (21)

pM
il ≤ pW

ij + pMAX
ij (1 − yijl), ∀j ∈Ji, l ∈Li (22)

To elaborate (22) limits the pressure in the manifold when the
connection between well ij and pipeline il is open. When the con-
nection is closed, however, then yijl = 0 and (20) ensures that there
is no flow from the well into that pipeline, and (22) is relaxed so
that there is no link between the wellhead and pipeline pressures.

3.2.4. Linearization of pressure drop in pipelines
The pressure drop in the pipelines depends on gas, oil and water

flowrates as shown in (11). Hence, it is necessary to select break

points in three dimensions, i.e. the gas, oil and water flowrates
which results a more complicated remodeling procedure. Bieker
(2007) used a similar procedure for a pipeline model with four
inputs since he also includes the absolute pressure at the inlet of
the pipeline in addition.
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Fig. 5. Illustration of brakepoint coordinates.

To explain this procedure, we start by defining a grid for
ach pipeline il (qP

ilg
, qP

ilo
, qP

ilw
), not necessarily equidistant, in three

imensions. qP
ilg

will be the flowrate of gas in pipeline l, and simi-
ar for oil and water. Associated non-negative weighting variables
ilng nonw with each point in the grid are also defined, where ng ∈Nig ,
o ∈Nio, nw ∈Niw . Further, Nig , Nio, and Niw is the set of flowrate
rake points along the gas, oil and water axes, respectively, see
ig. 5.

If the values of (qP
ilg

, qP
ilo

, qP
ilw

) at the brake points are denoted

qD
igng

, qD
iono

, qD
iwnw

) and the associated pressure drop (pD
ipng nonw

), it

s possible to approximate function (11) by means of the following
elations:
D
il =

∑

ng ∈Nig

∑

no ∈Nio

∑

nw ∈Niw

pD
ipng nonw

�ilng nonw , ∀l ∈Li (23)

P
ilp =

∑

ng ∈Nig

∑

no ∈Nio

∑

nw ∈Niw

qD
ipnp

�ilng nonw , ∀l ∈Li, p ∈P (24)

∑

g ∈Nig

∑

no ∈Nio

∑

nw ∈Niw

�ilng nonw = 1, ∀l ∈Li (25)

ilng nonw ≥ 0, ∀ l ∈Li, ng ∈Nig, no ∈Nio, nw ∈Niw (26)

In addition at most eight neighboring �ilng nonw can be non-zero
s illustrated by Fig. 5. This condition is a generalization of a SOS2
et, and can be imposed as below, where �ilpng , �ilpno and �ilpnw are
uxiliary weighting variables of Nig , Nio and Niw elements defined
s SOS2 sets

ilpnp =
∑

no ∈Nio

∑

nw ∈Niw

�ilng nonw , ∀l ∈Li, p ∈ {q}, ng ∈Nig (27)

ilpnp =
∑

ng ∈Nig

∑

nw ∈Niw

�ilng nonw , ∀l ∈Li, p ∈ {o}, no ∈Nio (28)

ilpnp =
∑

ng ∈Nig

∑

no ∈Nio

�ilng nonw , ∀l ∈Li, p ∈ {w}, nw ∈Niw (29)

ilpnp ≥ 0, ∀l ∈Li, p ∈P, np ∈Nip (30)

is SOS2 for n , ∀l ∈L , p ∈P (31)
ilpnp p i

Finally, the relationship between the pressure in the manifold
nd the flowrates qP

ilp
in the pipelines (11) can be formulated

S = pM
il − pD

il , ∀l ∈Li (32)
cal Engineering 34 (2010) 1803–1812

3.2.5. Aggregated flow variable
To obtain a complete model formulation the linear constraints

(9) are restated

∑

l ∈Li

qP
ilp = qC

ip, ∀p ∈P (33)

Constraints (13)–(33), together with the common capacity con-
straints (12) and the objective function (1), defines the complete
MILP problem. This problem will be the basis for the two decom-
position strategies investigated in the next section.

4. Decomposition strategies

Decomposition approaches for optimization problems is a
mature field in operations research. In this section we argue
that decomposition is a suitable strategy for the RTPO problem.
Alternative decomposition approaches exist and their applicability
depends on the structure of the underlying problem. We present
two alternative and related strategies, Lagrange decomposition
(LD) and Dantzig–Wolfe decomposition (DWD), as a means to
decompose the RTPO problem. A third strategy, Bender’s decompo-
sition (Dantzig & Thapa, 2003), is excluded since it cannot exploit
the structure in our problem efficiently.

The general idea is to relax global constraints, i.e. constraints
which span across large parts of a problem. There are alternative
ways of doing this. The basic mechanism in all decomposition prin-
ciples, however, is to decompose the original problem into smaller
sub-problems which are coordinated by a “master” problem. An
iterative procedure is then used to achieve convergence towards a
global solution.

There are two aspects to consider when choosing which con-
straints to place in the sub-problem. It should be easy to solve since
it is re-optimized several times, and it should provide good qual-
ity bounds on the intermediate solutions. As mentioned earlier, the
presented RTPO problem has a decentralized topology, which is a
suitable structure for some decomposition strategies. An oil and
gas producing cluster has many internal couplings such as mass
and pressure balances, and routing of wells. Further, there are only
a few common constraints, in this case total gas and water produc-
tion. By relaxing these constraints a decomposition strategy may
result in one sub-problem for each cluster i. Each sub-problem can
be assigned its own part of the objective function if this is addi-
tive on a cluster basis as in (1), and if a second term takes common
capacity constraints into account.

4.1. Lagrange decomposition

Lagrange relaxation is a well known technique for finding
upper bounds on maximization problems. This involves a tech-
nique that attaches Lagrange multipliers to some of the constraints
of the original problem, and relaxes them into the objective
function. The resulting problem is then solved, and the value
provides an upper bound of the solution of the original maximiza-
tion problem. If the solution also is feasible with respect to the
original problem, it provides a lower bound as well. Further, if
common constraints are subject to relaxation, the resulting prob-
lem will fall apart into smaller optimization problems, one for
each sub-problem. A general description can be found in Beasley

(1993).

When building a solution method using LD, two issues have
to be decided. First, which constraints to relax to define the sub-
problems, and second, the strategy for how to update the Lagrange
multipliers for the relaxed constraints. Both are presented below.
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.1.1. Relaxed constraints/sub-problems
The Lagrangian objective function for the RTPO is presented

elow. In this case the gas and water handling capacity constraints
12) are relaxed. When including all other constraints in the MILP

odel (13)–(33) this will represent the Lagrangian upper bound
roblem for the RTPO problem. �GAP

g and �GAP
w are the Lagrange

ultipliers associated with the gas and water handling capacity
onstraints

ax Z =
∑

i ∈ I
qC

io + �CAP
g (CT

g −
∑

i ∈ I
qC

ig) + �CAP
w (CT

w −
∑

i ∈ I
qC

iw) (34)

This objective function, together with the MILP constraints
13)–(33), define the Lagrangian upper bound problem (LUBP). By
elaxing these constraints the problem can be separated into one
ub-problem for each cluster. Hence, we obtain the following objec-
ive function (35) for each cluster i

ax Z(i) = qC
io − �CAP

g qC
ig − �CAP

w qC
iw (35)

This objective function will be solved subject to local constraints
nly (13)–(33).

.1.2. Lagrange multiplier update
When the sub-problems are defined the next step involves

pdating the Lagrange multipliers. There are several alternatives in
he literature, herein, the subgradient methods described in Beasley
1993) has been implemented.

The procedure is iterative, and generates multipliers in a sys-
ematic fashion from an initial set of multipliers. Upper and lower
ounds on the solution have to be calculated after each iteration.
hese bounds can also be used to quantify the quality of the solu-
ions obtained. The upper bound ZUB will equal (34) while the lower
ound is usually found by some heuristics. In this case we only
pdate this bound when the sum of production of gas and water
rom all the sub-problems is less than the handling capacities. It
an then be defined to be equal to the original objective function

LB =
∑

i ∈ I
qC

io (36)

Algorithm structure

. Select �, satisfying 0 < � ≤ 2. Then initialize a lower bound, ZLB,
from some heuristics of the problem. We choose ZLB = 0. Then
select an initial set of Lagrange multipliers, i.e. �CAP

g , �CAP
w .

. Solve I local optimization problems by using the Lagrange mul-
tipliers and get an upper bound of the solution, i.e. ZUB. If the
solution also is feasible with respect to the original problem,
update the ZLB as well.

. Compute the subgradients GCAP
w , GCAP

w for the relaxed constraints

GCAP
g =

∑

i ∈ I
qC

ig − CT
g (37)

GCAP
w =

∑

i ∈ I
qC

iw − CT
w (38)

. Define a step size T when gas and water handling capacity is
relaxed
T = �(ZUB − ZLB)∑

p ∈ {g,w}
(GCAP

p )
2

(39)

The step size depends on the gap between the lower and the
upper bound and the user defined parameter �. The denominator
acts as a scaling factor.
cal Engineering 34 (2010) 1803–1812 1809

5. Update �CAP
p using the rule below and then go to step 2 to resolve

the LUBP with this new set of multipliers

�CAP
g = max(0, �CAP

g + TGCAP
g ) (40)

�CAP
w = max(0, �CAP

w + TGCAP
w ) (41)

4.1.3. Convergence and integer handling
The iterative procedure needs a termination criterion. The pro-

cedure may terminate after a certain number of iterations or when
ZUB − ZLB is below some value, e.g. 1% of ZUB.

LD and the subgradient method is developed for LP problems
(Beasley, 1993). Since the sub-problems are MILP the method will
not necessarily converge to a 0% gap due to the integer vari-
ables, as would be the case for LP problems. The reason is that
marginal changes in the Lagrange multipliers may lead to differ-
ent integer values and hence shifts in the objective functions of the
sub-problems.

4.2. Dantzig–Wolfe decomposition

When applying DWD to the RTPO problem the sub-problems
will be identical to LD if the same common constraints are subject
to relaxation. However, while the Lagrange multipliers are updated
by a simple heuristics in the LD case, the update is now done by
solving a LP-master problem.

4.2.1. DWD principle
We start by assuming linear constraints and continuous vari-

ables, i.e. a LP-problem instead of a MILP problem. The master
problem is a reformulation of the integrated problem. By taking
advantage of the fact that a convex combination of basic feasible
points, i.e. corner points of the feasible set defined by the linear
constraints of a problem, also is a feasible solution, an alternative
formulation can be achieved. Each basic feasible point in each sub-
problem is then represented as a variable in the master problem.
Note that each basic feasible point in a sub-problem represents
a specific production setup for this sub-problem. The number of
basic feasible points for any practical problem can clearly be pro-
hibitively high, and in reality only a small number of these basic
feasible points will ever enter the basis in the master problem. The
idea is then to restrict the master problem by reducing the number
of basic feasible points. This is called a restricted master problem
(RMP). Hence, we start with a few basic feasible points and check if
the solution of the integrated problem is within a convex combina-
tion of these points. If this is not the case, new basic feasible points
are included in a structured way until the optimal solution has been
found, Dantzig and Thapa (2003) and Williams (2005). Details of the
algorithm are given below with some related comments specific to
the RTPO problem above.

Algorithm structure

1. Choose two initial basic feasible points for each local optimiza-
tion problem, i.e. two different modes of operating a cluster.

2. Specify the RMP for the given set of basic feasible points. Then
solve it and compute values for the Lagrange multipliers for the
global constraints, i.e. �CAP

g , �CAP
w .

3. Solve I local optimization problems by using the Lagrange mul-
tipliers computed in 2.

4a. For i ∈ I: If the solution of a local optimization problem i lies
outside the convex set defined by the basic feasible points used
in 2; add these basic feasible points to the RMP, and go to 2.

Hence, the RMP is then resolved, also including these new basic
feasible points generated in 3.

4b. If the solutions of all the local optimization problems are
unchanged, the optimal solution has been found; and the algo-
rithm terminates.
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since some operating regions are more heavily sampled than oth-
ig. 6. Iteration structure for Dantzig–Wolfe decomposition (DWD) and Lagrangian
ecomposition (LD).

To illustrate, the main iteration loop is shown in Fig. 6. This
gure is also applicable for LD if “Master problem” is replaced by
Subgradient updating”.

.2.2. Sub-problem
The procedure is to update the Lagrange multipliers such that

he consumption of the relaxed common constraints converges to
heir optimal values. Let qC

ig
, qC

io
and qC

iw
denote the output flow

f the phases in a feasible solution to cluster i. The corresponding
educed cost c̄(i), if these values are used to construct a column in
he master problem, will be:

¯(i) = qC
io − �CAP

g qC
ig − �CAP

w qC
iw − �C

i , ∀i ∈ I (42)

CAP
g and �CAP

w are the Lagrange multipliers in the master problem
or the common gas and water handling capacity constraints (44)
nd (45) while �C

i
is the multiplier for the convexity constraint for

luster i (46). The objective in the sub-problem for this cluster is to
nd the maximum reduced cost among feasible solutions for the
luster. By maximizing c̄(i), given the local constraints (13)–(31),
his column will be found. If this value is positive then a new col-
mn, say s, is added to the master problem with Zisg , Ziso and Zisw

qual to the optimal values of qC
ig

, qC
io

and qC
iw

, respectively, from the
ub-problem. s is added to set Si, which is used in (43).

As mentioned �C
i

are the Lagrange multipliers for the convex-
ty constraints in the RMP defined below. Since no sub-problem
ariables are associated to it, it will only act as a constant in the
ub-problem.

.2.3. Restricted master problem
The RMP can now be formulated. The production rate corre-

ponding to each Zisp represents one basic feasible point s from
ub-problem i, i.e. a possible production allocation for cluster i. Zisp

ould in principle include the optimal value of all decision variables
or sub-problem i after solving it given �CAP

g and �CAP
w . However,

nly the variables also present in the objective function and the
ommon constraints will be relevant for the RMP. Hence, Zisp will
or this RTPO problem contain the flow variables (qC

ig
, qC

io
, qC

iw
), but

o pressure and routing variables. �is, the optimization variables
or the RMP, is the weight the RMP will give this basic feasible
oint after it is solved to optimality. The objective function of the
estricted master problem is given in (43). Further, (44) and (45)
epresent the constrained common resources, while (46) is the
onvexity constraints

ax
∑∑

Ziso�is (43)
i ∈ I s ∈Si

i

∑

s ∈Si

Zisg�is ≤ CT
g (44)
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∑

i

∑

s ∈Si

Zisw�is ≤ CT
w (45)

∑

s ∈Si

�is = 1, ∀ i ∈ I (46)

�is ≥ 0 (47)

4.2.4. Integer handling
DWD will find exact optimal solutions for LP problems. If it

is extended to a MILP problem, Branch and Price Desrosiers and
Lubbecke (2006) or some heuristics have to be applied to handle
the integer properties. When solving the master problem, we have
not imposed integer restrictions on �is, i.e. the RMP is solved as a LP
to achieve Lagrange multipliers for (44)–(46). The resulting solution
may then be infeasible with respect to the original MILP problem
since a convex combination of two basic feasible points may not be
feasible. As an example a basic feasible point represents a specific
production allocation for a particular cluster, while another basic
feasible point will represent another allocation for the same cluster.
A convex combination of these is impossible if the two allocations
have different routings, i.e. different integer solutions.

As mentioned, integer handling could be handled in several
ways. In this work we apply the following heuristic approach. If
a sufficient number of basic feasible points is generated up front, a
feasible solution can simply be found by demanding integer values
for �is by solving the RMP as an IP problem.

4.2.5. Convergence
For both LP and MILP problems, upper and lower bounds on the

objective function can be computed. The LP solution of the RMP plus
the sum of the objective values of the sub-problems, i.e. the reduced
cost, will act as an upper bound ZUB, Karlof (2006, chap. 4). In the
LP case, the solution of the RMP alone will give a feasible lower
bound, while for the MILP problems, the master problem has to be
solved as an IP or some heuristics has to be applied to create the
feasible lower bound ZLB. By using these bounds actively during the
optimization process, it is possible to terminate the optimization
problem when an acceptable gap is achieved.

5. Implementation

An RTPO has been investigated by two decomposition strategies,
LD and DWD. These strategies are compared with the solution of
the integrated problem before relaxation. In this way, we compare
the effect of the two decomposition strategies against each other,
and against a regular global method.

Piecewise linear well and pipeline models were generated
as follows. Initially analytic functions approximating data from
Troll C were created. These functions were then used to gener-
ate breakpoints for the piecewise representation of the models.
This information was subsequently stored as tables. For the well
models; this meant that for every wellhead pressure brake point,
there is a related gas, oil and water flowrate. For the pipeline mod-
els on the other hand; every combination of gas, oil and water
flowrates gives a pressure drop across it. If the solution algorithm
requests a pressure between the brake points, it will simply lin-
early interpolate between the neighboring points. The reason for
introducing the analytic functions was to obtain flexibility when
choosing the interpolation points for the well models used in
the optimization. The underlying data points vary in resolution
ers.
Both optimization algorithms are implemented in Xpress-IVE

which is a state of the art software for mixed integer linear prob-
lems. Brake point tables together with other topology information
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Table 9
Results.

No. of clusters 2 4 6 8

Gas cap [Sm3/day] 3,000 12,000 18,000 24,000
Continuous variables 13,898 27,805 41,766 55,688
Discrete variables 1,029 2,134 3,725 4,819
Constraints 491 981 1,639 2,185

Strategy 1—global
Solution time [min] 0.26 7.38 237.0 720.0
Oil prod [Sm3/day] 1,777 6,487 11,641 14,365
Optimality gap [%] 0.00 0.00 0.00 7.50

Strategy 2—LD
Solution time [min] 1.42 8.54 18.2 19.2
Oil prod [Sm3/day] 1,774 6,467 11,640 14,440
Optimality gap [%] 0.17 0.30 0.21 0.38
LD iterations 12 32 16 13

Strategy 3—DWD
Solution time [min] 1.86 1.43 6.16 11.3
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Oil prod [Sm3/day] 1,777 6,458 11,629 14,473
Optimality gap [%] 0.02 0.46 0.36 0.15
DWD iterations 10 4 3 5

re supplied through data files. The user is able to choose between
olving the data by a global solution algorithm, or with LD or DWD.
n the case of the global method, all data will be loaded into the
olver and solved directly.

. Results

The Troll field is a huge oil and gas field on the continental shelf
est of Norway. There are severe production optimization chal-

enges due the size of the asset and because of rate dependent
as-coning wells (Hauge & Horn, 2005). We study a model of the
roll C production system shown in Fig. 1 where primarily oil is
roduced from an oil rim through more than 50 wells.

This system changes with time since new wells are drilled
nd commissioned continuously. Further, the reservoir conditions
hange significantly due to medium and long term depletion
ffects. Hence, well models are usually updated twice a year by
unning well tests to collect data for parameter estimation. Within
day or a week, however, changes are usually quite limited. There-

ore RTPO as presented in this paper has a potential for increasing
alue creation.

For the moment, only one common constraint is active; the total
andling capacity for gas production (12). Water handling will,
owever, become an issue in the future as the reservoir drains and
herefore produces more water. The production system includes 8
lusters and each cluster contains 6–8 wells and two manifolds.

The purpose of the numerical study is to investigate three solution
trategies.

. A global strategy where all clusters are solved in one large MILP
problem.

. The LD strategy we propose in this paper.

. The DWD strategy we propose in this paper.

The results shown in Table 9 are an extension of the results in
unnerud et al. (2009). The values in the table are representative
umbers for the different cases and the three alternative method-
logies. The computations are performed on an IBM Thinkpad T60P
ith a 2.33 GHz processor.
The solution strategies were solved for two, four, six and eight
lusters as shown in Table 9, and the average gas capacity per clus-
er was chosen at about 3000 Sm3/day per cluster. The large number
f continuous and discrete variables per cluster comes from the
iecewise linearization approach. A typical well model is linearized
cal Engineering 34 (2010) 1803–1812 1811

by 20–100 brake points. The total number of brake points in the
pressure drop models is much higher since it is necessary to inter-
polate in three dimension: the gas, oil and water flowrates.

7. Discussion

There are two main contributions in this paper. The first is
the formulation of a full field RTPO model only containing linear
and integer variables while the second is a detailed description of
two methods for decomposing the RTPO problem into smaller and
hence easier problems.

As mentioned earlier, by piecewise linearizing all nonlineari-
ties and thereby creating a MILP formulation it is possible to apply
known and well developed algorithms such as the Simplex algo-
rithm and the Branch and Bound algorithm to solve the RTPO
problem. An additional effect of this formulation is the fact that
the underlying wells and pipeline models are completely discon-
nected from the MILP formulation. Hence, they could be replaced
on a later occasion without affecting the structure and solution pro-
cedure of the MILP formulation. Hence data points can be created
from any reservoir, well and pipeline simulator as an alternative to
real production data.

Flexible accuracy is an attribute of the formulation since the
break points can be placed arbitrarily. The price to pay for higher
accuracy, however, is a longer calculation time.

There are still challenges using the piecewise linearization
approach for pipeline models. Since the pressure drop depends on
the gas, oil and water flowrates the number of weighting variables
increases with the power of three. 20 brake points for each phase
will, e.g. result in 8000 interpolation elements (�ilng nonw ). In addi-
tion there will be 20 × 3 = 60 integer variables (�ilpnp ) in this case.
Since the number of weighting variables increases so rapidly it is
essential to minimize the number of brake points. This has however
not been studied in any detail in the present paper.

The second contribution in this paper, the decomposition meth-
ods, is tested in a realistic numerical study. The decomposition
strategies, DWD and LD, perform better than the global method
for the combined rate allocation and routing problem for all sizable
problems. Moreover, it may be observed that the global method
does not converge for the eight cluster problem and it has a hard
time solving problems consisting of more than 6 clusters.

To elaborate on the above the global method finds the optimal
solution for all except the full field problem with 8 clusters. In this
case it terminates after 12 h with more than a 7.5% duality gap. DWD
and LD terminate with less than 0.5% duality gap for all problems.

The global method works fine for the 2 and 4 cluster problems.
This is not a surprising result since the benefit of a decomposition
strategy is limited in these cases. For larger problems, however,
we observe that the two decomposition methods are much faster
than the global method. Further, DWD performs better than LD. The
reason is the mechanism for updating of Lagrange multipliers. The
DWD master problem finds good multipliers with fewer iterations
than for the LD case, and usually converges after fewer iterations.
This is observed in the table where DWD converges in 3 and 5 iter-
ations for the 6 and 8 cluster cases while LD requires more than 10
iterations. The run-time for solving the DWD master problem, i.e.
the LP-problem, is negligible compared to solving the local MILP-
problems even though it is more time-consuming than solving the
LD master problem. Hence, this is no issue when comparing DWD
and LD.

DWD is more stable with respect to solution time than LD. DWD

has fewer tuning parameters and works well for different data sets.
On the other hand LD is quite sensitive to perturbations of the data
set. A small change may for instance double the solution time.

Decomposition algorithms using DWD or LD have some inter-
esting properties. First, the sub-problems may be solved by
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Saputelli, L., Nikolaou, M., & Economides, M. (2005). Self-learning reservoir man-
agement. SPE, 84064, Journal SPE Reservoir Evaluation & Engineering, 8, 534–
547.
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ifferent algorithms or even different software packages. This fea-
ure has a potential for value chain optimization applications which

ay encompass reservoir, wells, pipelines and downstream pro-
essing facilities. The duality gap, however, can only be computed
f upper and lower bounds on the solution can be found. This is in
eneral not possible if the sub-problems are nonlinear programs
s opposed to MILPs. Second, it is quite obvious that decom-
osition methods are suitable for parallel computing since each
ub-problem is self-contained and has no direct dependence on
he other sub-problems.

The routing and well allocation problem is usually solved by
e-optimizing the stationary optimization problem, typically once
day. Hence, it is treated in a quasi-dynamic way. A couple of
ells are usually selected for more frequent production changes to

ompensate for variations in for instance gas processing capacity.
he use of dynamic models is an issue, in particular during start-up
f wells. Start-up occurs quite often since wells are shut-in from
ime-to-time due to maintenance or operational problems. Fur-
her, applications with long pipelines may benefit from dynamic
ipeline models provided the dynamics are important for optimal
erformance.

There are at least two trends which can aid the implementation
f the methodology proposed in this paper. First, the possibility
o include third party applications into commonly used software
ystems for monitoring and control purposes has increased signif-
cantly in the latter years. Second, there is an initiative to develop

new standard for production optimization, PRODML, which is
upported by many leading vendors and end users.

. Conclusions

This paper presents a complete MILP model for the RTPO prob-
em in the petroleum industries. Further, the paper argues that
ecomposition is well suited for this problem. There are many rea-
ons for this. Decomposition methods clearly outperform a global
ethod for full field problems in terms of computational efficiency.

urther, DWD gives better performance than LD in all the relevant
ases tested in this paper and is therefore the preferred decomposi-
ion method. This is because of a more efficient updating algorithm
f the Lagrange variables. The MILP formulation allows the
omputation of a duality gap on the solution of the production opti-
ization problem. This is clear information of interest to any user.
cknowledgement
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