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a  b  s  t  r  a  c  t

A  general  modelling  framework  for  optimization  of multiphase  flow  networks  with  discrete  decision
variables  is presented.  The  framework  is expressed  with  the graph  and  special  attention  is  given  to  the
convexity  properties  of the  mathematical  programming  formulation  that follows.  Nonlinear  pressure
and  temperature  relations  are  modelled  using  multivariate  splines,  resulting  in  a  mixed-integer  nonlin-
ear programming  (MINLP)  formulation  with  spline  constraints.  A global  solution  method  is devised  by
eywords:
onlinear flow networks
etroleum production optimization
ixed-integer nonlinear programming

combining  the framework  with  a spline-compatible  MINLP  solver,  recently  presented  in  the literature.
The  solver  is  able  to  globally  solve  the  nonconvex  optimization  problems.  The  new  solution  method
is  benchmarked  with  several  local  optimization  methods  on a set  of three  realistic  subsea  production
optimization  cases  provided  by the  oil company  BP.
ranch-and-bound
plines

. Introduction

Multiphase flow networks appear in many application areas. In
his paper we are particularly interested in multiphase flow net-
orks for subsea oil and gas production. Such networks consist

f wells, collection systems, pipelines, and in some cases process-
ng units such as pumps and separators. In recent years real-time
ata capture and storage capabilities have become an industry stan-
ard, thus paving the way for the use of model-based techniques
o improve operations. In practice, the use of model-based meth-
ds translates into advisory systems for production engineers. Such
ystems use real-time data in combination with calibrated math-
matical models and optimization to improve economics of an
il field by increasing oil throughput. It can be hard to measure
he true value of model-based advisory systems since they have
mpact on profit, cost of operating, HSE and operating risk, and
ossibly other non-economic values. This may  explain why  oper-
tors tend to prefer maximization of hydrocarbons (oil and gas):
ydrocarbon production can be measured, and sometimes must
e measured to conform with legislation and fiscal systems. Some
laims to a production increase of up to 4% due to use of model-

ased tools can be found in the literature (Stenhouse et al., 2010;
eixeira et al., 2013). In the latter testimonial, a 1.2% production
ncrease on a medium size offshore production vessel is claimed,
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amounting to $35 mill per year. Thus, the economic potential is
clearly significant. Despite this, real-time decision support tools
as alluded to above are rarely used in the upstream petroleum
industries.

Two  key reasons for limited use are lack of tools for model main-
tenance, and robust and efficient solvers, respectively. First, models
must be updated periodically due to the time-varying nature of the
production system; in particular, reservoir conditions change with
time due to reservoir pressure decline and changing fluid composi-
tions. Second, the optimization problem itself is hard to solve since
models are nonlinear and often available only as black box calcula-
tors. In fact, oil and gas production systems are typically modelled
in proprietary process simulators, not offering gradient informa-
tion. Thus, there are several factors that contribute to long solution
times, including the following: a lack of analytical derivatives, com-
putational expensive evaluations of the process simulator, and
slow IO operations in the communication between process sim-
ulator and optimization solver. It may  be added that different
parts of the flow network, in particular well models and pipeline
models, may  be available in different simulator applications, thus
complicating matters even more. Moreover, decision variables are
both continuous and discrete. Thus, we are faced with mixed-
integer nonlinear (MINLP) problems that may  include black-box
constraints. Long solution times prevent efficient use of decision

support tools and break the natural workflow of the production
engineers. When it takes several hours to arrive at an optimiza-
tion the result is often “out of date” before it is available to the
them.

dx.doi.org/10.1016/j.compchemeng.2015.08.022
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
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Fig. 1. A subsea production syste

This paper suggests a methodology to overcome the challenges
elated to the optimization part as presented above. This is done
n three steps. First, we adapt a well known, graph-based mod-
lling scheme to oil and gas networks. Second, we  propose the
se of spline-based surrogate models to represent the nonlinear
arts of the system. This implies that models, which are available
s proprietary (black-box) simulators, explicit model equations or
ook-up tables, are approximated with splines through a sampling
nd interpolation scheme. By performing this substitution for each
tem of equipment in the network a priori optimization, the solver
an be decoupled from the process simulator during the optimiza-
ion run, resulting in a considerable reduction in solution times.
hird, we introduce a global branch-and-bound based MINLP solver
hat exploits the facts that all nonlinearities are described by splines
nd takes advantage of the structural properties of oil and gas net-
orks. In order to evaluate our approach it was deemed necessary

o use a comprehensive and realistic test bench rather than simplis-
ic cases. Thus, three industrial cases are used where all relevant

odels and constraints are included.
The remainder of this paper is organized as follows. A short

escription of the production optimization problem for subsea pro-
uction systems is given in Section 2. A brief report on recent works
n this topic follows in Section 3. A new mathematical program-
ing framework for optimizing general flow networks is derived in

etail in Section 4. In Section 5, we give a description of B-splines,
hich are used as surrogate models for the nonlinear functions

n the problem formulation presented in Section 4. The solution
ethod is presented in Section 6 and benchmarked on several real-

stic cases in Section 7. Finally, some concluding remarks are given
n Section 8.

. Problem description

Consider the subsea production system illustrated in Fig. 1,
onsisting of reservoirs, wells, manifolds, flowlines, risers, and
eparators. The system is built to allow a safe and efficient trans-
ortation of reservoir fluid to the surface. At the surface the fluid

s separated before it is further treated in processing facilities. The
uid flow through the system is controlled with valves, e.g. chokes

adjustable valves) and manifold valves (on/off valves). The valve
ettings decide the production and operational status of the wells:
hat is, the flow rate of each well, the routing of the flows through
he network, and the allocation of lift gas.
th two daisy-chained manifolds.

The daily production optimization problem is the search for valve
settings that maximize the production of oil (or profit) while
respecting physical laws and operational constraints. Physical laws
that must be abided include: mass, momentum, and energy conser-
vation laws; and well inflow relations. Some physical laws may  be
empirically modelled because of their high complexity. For exam-
ple, pipeline pressure drops are often modelled with the empirical
Beggs and Brill correlation (Beggs et al., 1973). Typical operational
constraints may  include: upper and lower rate constraints; draw-
down (minimum) pressure constraints; oil, gas, and water handling
capacity constraints; upper bound on gas-lift availability; and num-
ber of allowed routing changes. The operational constraints are
typically provided by the user to be in accordance with the current
production plan.

A requirement for solving the daily production optimization
problem, and for it to provide applicable and optimal solutions,
is that an accurate model of the production system is available.
The model should accurately predict flow rates for any valve set-
ting in the search space of interest. To reduce the modelling effort,
we present a mathematical programming framework that includes
the above-mentioned physical laws and operational constraints of
a generic production system. The flexible framework, presented
in the next section, allows for modelling of most common subsea
production system topologies.

3. Previous work

Network flow and design problems lie in the intersection of
several domains, including: operations research, applied mathe-
matics, engineering, and computer science (Ahuja et al., 1993). A
diverse set of problems can be formulated as network problems,
for example: optimization of urban public transportation networks
(Mandl, 1980), train routing and scheduling (Cordeau et al., 1998),
and design of optimal water distribution systems (Alperovits and
Shamir, 1977).

The recent works of Luathep et al. (2011) and Raghunathan
(2013) look at global optimization of the network design problem
using a MILP and MINLP approach, respectively. These methods
have features similar to the method presented later in this paper.

For instance, the graph is used as a modelling tool, convex for-
mulations are obtained by using the big-M relaxation, nonlinear
relations are approximated with piecewise functions, and a MILP
or MINLP problem is solved using a specialized solver.



hemical Engineering 84 (2016) 237–254 239

t
t
(
l
I
p
o
m
2
(
w
e
(
a
l
n
i
o
V
o
w
d
t
t
m
b
m
a
m
w
p

v
t
p
t
b
a
fi
d

4

f
a
t
t
t

A
A

A

A

t

a

Table 1
Sets.

Set Description

N Set of nodes in the network.
Nsrc Set of source nodes in the network. Nsrc ⊂ N.
Nsnk Set of sink nodes in the network. Nsnk ⊂ N.
Nint Set of internal nodes in the network. Nint = N \ {Nsrc ∪ Nsnk}.
E  Set of edges in the network. An edge e = (i, j) connects node i  to

node j, where i, j ∈ N.
Ed Set of discrete edges that can be open or closed.  Ed ⊂ E.
S  Set of flow phases in the network. For three-phase petroleum

flow the phases are denoted S = {oil, gas, wat}, where oil
denotes the hydrocarbon liquid phase, gas the hydrocarbon
gas phase, and wat the water liquid phase. A compositional
model may  have more than three phases/components.

Table 2
Utility sets.

Set Description

Ein
i Set of edges entering node i, i.e. Ein

i = {e : e = (j, i) ∈ E}.
Eout

i Set of edges leaving node i, i.e. Eout
i = {e : e = (i, j) ∈ E}.

Esrc Set of edges leaving a source node in Nsrc, i.e. Esrc =
⋃

i∈Nsrc Eout
i .

Esnk Set of edges entering sink node in Nsnk, i.e. Esnk =
⋃

snk Ein
i .
B. Grimstad et al. / Computers and C

In the following we provide a brief report on works that address
he petroleum production optimization problem described in Sec-
ion 2. To the authors’ knowledge, the works of Kosmidis et al.
2004, 2005) were the first to address well oil rate allocation, gas
ift allocation, and well routing with a single problem formulation.
n these works the complete production optimization problem is
osed as a MINLP problem.1 Many earlier works have considered
ptimization of individual network components, for instance opti-
al  gas lift allocation on a well basis (Wang, 2003; Rashid et al.,

012). A survey on these early works is provided by Kosmidis et al.
2005) and Bieker et al. (2007). From 2006 and onwards, several
orks have emerged that build on the contributions of Kosmidis

t al. (2005) or use a similar approach, see for example Martin et al.
2006), Misener et al. (2009), Gunnerud and Foss (2010) and Codas
nd Camponogara (2012). These works use piecewise linear formu-
ations to approximate nonlinear relations in the network such as
onlinear pressure drop functions. This modelling approach results

n a MILP that scales poorly when nonseparable functions of four
r more variables are approximated (Misener and Floudas, 2010;
ielma et al., 2010; Vielma and Nemhauser, 2011). This may  be
ne reason for the relatively simple formulations used in these
orks. For example, temperatures are not considered and pressure
rops are modelled as functions of flow rates only. Interestingly,
he MINLP formulation of Kosmidis et al. (2005) did include linear
emperature drop models. A computational analysis of different

ultidimensional piecewise linear models was recently provided
y Silva and Camponogara (2014). The analysis shows that SOS2
odels and MILP models with a logarithmic number of binary vari-

bles have the best performance. These formulations may  allow
odelling of (nonseparable) functions of four or five variables, for
hich separation to multiple lower-dimensional functions is not
ossible.

The spline-based approach presented in this paper can be
iewed as an alternative to the piecewise linear approaches men-
ioned above. The approach to be presented results in a global NLP
roblem (MINLP if routing is included). The main difference is that
he solver must branch on continuous variables, instead of SOS2 or
inary variables as is the case in the MILP approaches. The approach
llows us to accurately approximate nonlinear functions in up to
ve variables. This enables us to model pressure and temperature
rops as functions of flow rates, pressure, and temperature.

. Multiphase flow network modelling

In this section we present a general mathematical programming
ormulation for multiphase flow networks. The goal is to achieve

 formulation that is as simple as possible, while capturing impor-
ant physics with sufficient accuracy. This goal reflects our desire
o obtain a problem formulation that we can solve in reasonable
ime to get applicable solutions.

The problem formulation is based on the following assumptions:

1. The system operates at steady-state conditions.
2. Continuous and differentiable multiphase pressure drop and

temperature drop models.
3. The thermodynamics can be modelled under the assumptions

in Section 4.3.
4. No uncertainty is considered in the model structure or its

parameters.
An argument for assumption A1 follows: The daily produc-
ion optimization problem has a horizon spanning several hours

1 The problem is also referred to as the daily well scheduling problem in the liter-
ture.
i∈N
Nd Set of nodes with discrete leaving edges, i.e.

Nd = {i : i ∈ N, Eout
i ⊂ Ed} ⊂ N.

to one day. In general, the fluid dynamics in the network (wells
and pipelines) have time constants in the order of minutes, and
will appear instant on this horizon. Similarly, the dynamics at the
system boundaries appear constant on this horizon: the reservoir
dynamics have time constants in the order of weeks to months, and
the surface facility dynamics have time constants in the order of
seconds to minutes. One may  note that there are exceptions where
A1 does not hold, examples include dynamic phenomena like slug-
ging or casing-heading instability which are highly influential on
the production and act in the relevant horizon of hours.

Assumption A2 ensures continuous and differentiable con-
straint functions, which is a prerequisite for most gradient-based
optimization solvers. As will be discussed, spline surrogate models
have these properties by construction, even when the function they
approximate do not. Assumption A4 is included since uncertainty
is not structurally treated in the proposed framework.

A directed graph G = (N, E), with nodes N and edges E, is used
to represent the flow network (Ahuja et al., 1993). A node in N
represents a junction or simply a point of interest in the network.
An edge in E connects two  nodes and represents a pipe segment
(e.g. a wellbore, jumper, flowline, or riser), a valve (e.g. a production
choke or manifold valve), or any item of equipment (e.g. a subsea
multiphase pump). Valves represent special edges since they can be
closed to disjoint the neighbouring nodes. To make this distinction
clear we introduce a subset of edges, Ed, that represent the valves.
An edge in Ed is referred to as a discrete edge since it has two states:
it is either open or closed. Associated with each discrete edge is a
binary variable which is used to model the switching between the
open and closed state. The discrete edges are used to route the flow
through the network by restricting flow through certain valves. All
other edges (E \ Ed) represent pipes or equipment.

Table 1 gives the various sets used to describe the flow network.
Some utility sets that simplify the notation are given in Table 2. In
the rest of this paper the terms graph, network, and system are used
interchangeably.

The following requirements are placed on the graph structure:
R1. A source node i ∈ Nsrc has zero entering edges and one leaving
edge, i.e. Ein

i = ∅ and |Eout
i | = 1.

R2. A sink node i ∈ Nsnk has zero leaving edges, i.e. Eout
i = ∅.
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Table  3
Variables.

Variable Description

pi Pressure at node i ∈ N.
�pe Pressure drop over edge e = (i, j) ∈ E, e.g. �pe = pi − pj .
te Temperature of fluid entering edge e ∈ E.
�te Temperature drop over edge e ∈ E. The fluid leaving e has a

temperature of te − �te .
he Enthalpy of fluid entering edge e ∈ E.
�he Enthalpy drop over edge e ∈ E. The fluid leaving e has an

enthalpy of he − �he .
qe,s Flow rate of phase s ∈ S on edge e ∈ E.
ye Binary variable associated with an edge e ∈ Ed. If ye = 1 the edge
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is  open, allowing a nonzero flow; otherwise, ye = 0 and the
edge is closed with zero flow.

3. An internal node i ∈ Nint has one or more leaving edges. It may
have more than one leaving edges iff all of them are discrete
edges and at most one of them can be open at any time.

The first and second requirement follow the normal definition
f source and sink nodes. The additional requirement that a source
ode may  have only one leaving edge is made without loss of gen-
rality (an equivalent graph fulfilling this requirement can always
e obtained by adding nodes). The third requirement on the inter-
al nodes is needed because splitting of fluids is not modelled; this
implifying requirement is commonly applied in works on flow net-
ork modelling (Codas et al., 2012). This requirement is enforced by
anifold routing constraints, to be presented later in this section.
The sets Esrc and Esnk in Table 2 are cut-sets. A cut-set is a set of

dges that, if removed, partitions the graph nodes into two  discon-
ected subsets. These sets are useful because the net flow through
he graph can be measured as the net flow over the edges in a
ut-set.

The variables of the problem, listed in Table 3, are related to
he nodes and edges of the graph. The flow rates are given as mass
ow rates or as volumetric flow rates in standard conditions. In the

atter case, the flow rates must be properly scaled with the phases’
tandard condition densities, denoted with �s for s ∈ S. For brevity,
he phase flow rates on an edge e ∈ E are collectively denoted qe,
hat is, with an oil, gas, and water phase, qe = [qe,oil, qe,gas, qe,wat]T.
urthermore, we denote all the flow rates, pressures, and pressure
rops in the network with q, p, and �p, respectively. We  use the
ame notation for vectors containing the temperature and enthalpy
ariables.

With the network topology represented by the graph, and the
ariables and parameters associated with the nodes and edges, the
ow network is modelled by placing control volumes around each
ode and edge. In each control volume mass, momentum, and energy
onservation laws are enforced. In the following, we present the
quations/constraints for the conservation laws, as well as some
perational constraints. Together with an objective, they form the
asis of the proposed mathematical programming problem formu-
ation, or framework, for production optimization. The ’complete
ormulation’ is a reference to the MINLP formulation (P) given in
ection 4.8 (Table 4).

able 4
arameters.

Parameter Description

qL
e,s, qU

e,s Lower and upper bound, respectively, for flow rate qe,s of phase
s  ∈ S on edge e ∈ E. It is assumed that 0 ≤ qL

e,s ≤ qU
e,s .

pL
i
, pU

i
Lower and upper bound, respectively, for pressure pi in node
i  ∈ N. It is assumed that 0 ≤ pL

i
≤ pU

i
.

tL
e , tU

e Lower and upper bound, respectively, for temperature ti on
edge e ∈ E. It is assumed that 0 ≤ tL

e ≤ tU
e .
al Engineering 84 (2016) 237–254

4.1. Mass balances

In steady-state, the mass flow into a node must equal the mass
flow out of it, i.e. there is no accumulation of fluid in the node (or
in the network). Using the sets Ein

i and Eout
i , the mass balances for

the nodes may  be expressed as:

∑
e∈Ein

i

qe,s −
∑

e∈Eout
i

qe,s = 0, ∀s ∈ S, i ∈ Nint. (1)

Note that the mass balances are defined only for the internal
nodes in the network (Nint). Since a source (sink) node have leaving
(entering) edges only, its mass balance would enforce zero net flow
out (in) of the node. Hence, source and sink nodes are excluded from
Eq. (1).

4.2. Momentum balances

The multiphase flows in the network are driven by the node
pressures (potentials) pi. The pressure drop over an edge e = (i, j)
is defined as �pe � pi − pj, and relates the two node pressures pi

and pj. For edges e ∈ Ed that represent choke or on/off valves, �pe

is a free/adjustable variable as discussed in Appendix A. For edges
e ∈ E \ Ed that represent pipes, �pe is given by some pressure drop
correlation �pe = fe(qe, pi, te). The function fe(·) maps the upstream
conditions (flow rates, pressure, and temperature) to the pressure
drop �pe. When it is more convenient to express fe in terms of
the downstream pressure, pi can simply be replaced with pj. The
pressure drops in the network are modelled with the following
constraints:

�pe = fe(qe, pi, te), ∀e ∈ E\Ed. (2)

Notice that Eq. (2) does not apply to edges with an adjustable
pressure drop (Ed). A pressure correlation may  be insensitive to
temperature for certain flow conditions, e.g. liquid dominated
flows. In this case the correlation can be simplified to �pe = fe(qe, pi)
without any significant loss of accuracy. Another special case occurs
for edges representing short pipes with negligible pressure drop,
i.e. with fe(·) ≈0, giving �pe = pi − pj ≈ 0. In the rest of this paper
fe(·) will be used to denote the pressure correlation of edge e, even
if fe(·) =0.

For a discrete edge e ∈ Ed, the momentum balance needs to
be deactivated when the edge is closed. This logic is accurately
expressed by the following disjunction:

[ye = 0] ∨
[

ye = 1

�pe = pi − pj

]
. (3)
The disjunction in Eq. (3) can be interpreted as follows: if an
edge e is closed (ye = 0), then there is no direct relation between
the pressures in the adjacent nodes i and j (the node pres-
sures may  still be indirectly related through other paths in the
network); if the edge is open (ye = 1), then the two  pressures
must satisfy the relation �pe = pi − pj, where �pe is given by fe(·)
in Eq. (2).

Although the disjunction in Eq. (3) captures the desired logic for
the momentum balance its form is not widely supported by com-
mercial solvers. A straightforward way  to deal with the disjunction
without using logical expressions is to approximate it with
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e(pi − pj − �pe) = 0. (4)

his formulation introduces an additional (and undesired) non-
inearity to the problem through the multiplication with ye. This
onlinearity can be relaxed using linear big-M constraints.2 Notice
hat the pressures pi and pj are constrained to 0 ≤ pL

i
≤ pi ≤ pU

i

nd 0 ≤ pL
j

≤ pj ≤ pU
j

. In practice pL
j

and pU
j

may  be inferred from
L
i

and pU
i

, and the image of fe(·). These bounds imply that
Me ≤ pi − pj − �pe ≤ Me, where Me = (pU

i
− pL

i
) + (pU

j
− pL

j
). Using

e, the disjunction in Eq. (3) may  be approximated with the big-M
onstraints

Me(1 − ye) ≤ pi − pj − �pe ≤ Me(1 − ye). (5)

or ye = 1, Eq. (5) yields 0 ≤ pi − pj − �pe ≤ 0, and the constraint
pe = pi − pj in Eq. (3) is retrieved. For ye = 0, Eq. (5) yields two

onstraints which are inactive in the feasible set: e.g. the inac-
ive constraints allow �pe to take on any value in [(pL

i
− pU

j
), (pU

i
−

L
j
)], effectively disconnecting pi and pj. Thus, the relaxation

o not alter the optimal solution of the problem. A drawback
ith using big-M constraints is that they often produce a weak

elaxation of the disjunction.3 However, reasonably tight values
or Me can easily be derived from the pressure drop func-
ions. Thus, we accept Eq. (5) as an alternative model to Eq.
3) and use it to model the momentum balances. Before pro-
eeding, we note that the same big-M constraints were used by
odas et al. (2012). We  also note that an alternative relaxation
ould have been achieved by using a convex hull formulation
Grossmann, 2002).

.3. Energy balances

The thermodynamic potentials (enthalpies), he, of the fluids in
he network are modelled using the temperature variables te. At
he source nodes, fluid enters the network with a specified tem-
erature (typically close to the reservoir temperature). As the fluid
ows through the network, its temperature changes due to mix-

ng with other fluids and energy loss through the pipe walls to
he surroundings. In the following we will assume that the mix-
ng happens at the nodes, and the energy loss occurs at the edges
pipes). To simplify the modelling we make the following assump-
ions:

Instant mixing. At any point in the network all fluid phases are
assumed to have the same temperature.
No work is done by the system. However, the model can eas-
ily be extended to include energy generation or loss through
work, allowing for active components such as pumps and
compressors.
The heat transfer between the system and its surroundings may
be completely determined from internal states. Consequently,
the heat transfer properties and surrounding temperatures are
assumed to be constant.
The enthalpy is equal to the internal energy of a fluid, that is, no
pV-work is done. This assumption is reasonable for a stationary
process without fluid accumulation.
Constant heat capacities cs for all phases s ∈ S.
Regarding the last assumption above: In general, the heat capac-
ty of a fluid is a function of pressure and temperature, i.e. cs = cs(pi,

2 The big-M constraints can easily be derived by applying McCormick’s relaxation
f  bilinear terms to Eq. (4).
3 In theory it is possible to let Me→ ∞ and still obtain a valid relaxation. This will
owever give an increasingly poor relaxation and produce ill-conditioned systems
f equations in the solver, causing numerical problems.
al Engineering 84 (2016) 237–254 241

te). In practice, this relation is available in a compositional PVT
model or a black oil model (Aziz and Settari, 1979). To simplify the
model we assume cs to be constant in this work. This simplification
is reasonable for liquids, but may  give rise to large errors for gases.
However, in the enthalpy calculations below, the contribution
from gas is generally much smaller than that of liquids, mitigat-
ing the erroneous heat capacity of gas. According to the above
assumptions, we  next present the equations in the thermodynamic
model.

The temperature drop over the edges are modelled as

�te = ge(qe, pi, te), ∀e ∈ E. (6)

The relation gives the temperature change due to heat transfer
through the pipe walls to the surroundings. In short, insulated, non-
restrictive pipes the temperature drop can usually be ignored by
setting �te = 0.

The enthalpy of the fluid entering edge e, and the change in
enthalpy across edge e, are calculated as

he = te

∑
s∈S

cs · qe,s, ∀e ∈ E,

�he = �te

∑
s∈S

cs · qe,s, ∀e ∈ E, (7)

where cs is the constant heat capacity of fluid s ∈ S.4 As previously
mentioned, nonlinear heat capacities on the form cs(pi, te) may be
used in Eq. (7) to increase the accuracy of the model. However,
for liquid dominated flow the contribution to enthalpy from gas is
relatively small.

Similar to the mass balances, we  enforce an energy balance at
each internal node (conjunction) in the network. With the enthalpy
variables available the energy balances are easily expressed as:∑
e∈Ein

i

(he − �he) =
∑

e∈Eout
i

he, ∀i ∈ Nint. (8)

Note that the downstream enthalpies (he − �he) are used in the
left-hand side of Eq. (8) to summarize the energy entering the node.
According to the assumptions, the energy balances above are cor-
rect if: (1) no work is performed, (2) no heat is added, and (3) that
the net change in kinetic and potential energy is zero.

The inclusion of the above energy model may  increase the accu-
racy of the overall problem formulation. However, the increased
accuracy comes at the cost of a computational heavier formulation
since 3|E| nonconvex constraints (nonlinear equality constraints)
are added to the problem. One upside with the energy model is
that it does not involve any binary routing variables. To see why,
consider the case when a discrete edge is closed (ye = 0). The flow
rate is then forced to zero, which in turn forces the enthalpy on
the edge to zero. Consequently, it does not contribute to the energy
balance in Eq. (8). Thus, there is no need to involve binary variables
in the energy balances.

4.4. Flow routing
Flows can be routed through certain parts of the network by
opening and closing discrete edges: closing a discrete edge forces
its mass flow to zero. This behaviour is expressed by combining the

4 In Eq. (7) the heat capacities cs are given in [J/kg K], the rates qe,s in [kg/s], the
temperatures te and �te in [K], and the enthalpies he and �he in [J/s] = [W].
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ig. 2. A manifold modelled with discrete edges (dashed lines). The manifold can
oute each of the three inlet streams to any of the three outlets.

inary variable ye with the lower (qL
e,s) and upper (qU

e,s) bounds on
he flow rate as:

eqL
e,s ≤ qe,s ≤ yeqU

e,s, ∀s ∈ S, e ∈ Ed. (9)

Note that Eq. (9) may  force the flow rates qe to zero. Thus, the
omains of the nonlinear functions fe(·) and ge(·) should contain
e = 0; otherwise, ye = 0 ⇒ qe = 0 is infeasible.

Depending on the network topology, some binary variables may
e redundant. For example, the mass balance of a node with one
ntering and one leaving discrete edge will enforce equal flow rates.
hus, closing any one edge will force the flow rate on the other edge
o zero. In this case one discrete edge (a single binary variable) is
ufficient to model the on/off logic.

In general, the discrete edges may  be configured to model any
outing problem. Next we discuss a common routing configuration
alled a manifold.

.4.1. The manifold: a special routing structure
A manifold is a collection of pipes and on/off valves designed so

hat its inlets can be routed to its outlets in various configurations,
ossibly by commingling the inlet streams. In a graph, the ana-

ogue to a manifold is a set of discrete edges connected as shown in
ig. 2.

A normal operational constraint on subsea manifolds is that an
nlet stream can be routed to at most one of the outlets. This con-
traint enforces requirement R2; that a node may  have at most one
pen outlet. The manifold routing constraints are easily expressed
ith the binary variables of the discrete edges as∑

∈Eout
i

ye ≤ 1, ∀i ∈ Nd, (10)

here Nd are nodes with discrete leaving edges.5 The constraints
n Eq. (10) allow flow to none or one of the edges leaving a node.
outing to zero edges forces the phase flow rates to zero via the
ass balances in Eq. (1) and flow routing constraints in Eq. (9). If the

nlet stream is required to flow to exactly one outlet the inequality
n Eq. (10) is replaced with equality.

A manifold with 9 discrete edges configured as in Fig. 2 has a
otal of 29 = 512 possible routing combinations. The cut in Eq. (10)

educes the number of feasible routing combinations to 26 = 64. A
uick way to calculate the number of feasible combinations is to
nd the number of feasible combinations for each node, which is

5 The constraint in Eq. (10) is redundant for nodes with only one discrete leav-
ng edge: the constraint would be ye ≤ 1, which is always true. These redundant
onstraints can easily be omitted by altering Eq. (10) to apply only to nodes

 ∈ {j : j ∈ Nd, |Eout
j | > 1}. However, to keep the notation simple the manifold routing

onstraint is applied to all nodes in Nd.
al Engineering 84 (2016) 237–254

n + 1 for a node with n discrete leaving edges, and then multiply
these numbers together. As calculated above we obtain n + 1 =4 for
all three nodes, and 4 × 4 ×4 = 43 = 26 = 64 feasible combinations.

Note that a manifold is constructed to minimize pressure loss
across its pipes and valves, hence the pressure drop over the dis-
crete edges may  be fixed to zero.

4.5. Boundary conditions

To obtain a well-posed flow network problem it is necessary to
specify boundary conditions for the network. The boundary condi-
tions are usually related to the source and sink nodes, and specify
the interaction between the network and its neighbouring systems.
Next we  discuss a few upstream and downstream boundary condi-
tions, commonly used in models of subsea petroleum production
networks.

4.5.1. Upstream boundary conditions
At a source node i ∈ Nsrc we  assume that the following relation

between the pressure pi and flow rates qe exists:

�i,s(qe, pi) = 0, ∀s ∈ S, i ∈ Nsrc, (11)

where �i,s : R
|S|+1 → R, and e = (i, j) is the (only) edge leaving source

node i.
A common class of inflow rate boundary conditions in subsea

production networks is the inflow performance relationship (IPR).
It describes the mass flow from the reservoir into the well as a
function of the measured bottom-hole pressure (also known as
draw-down pressure). Wells without bottom-hole pressure sensors
are usually modelled with a well performance curve (WPC), relating
the flow rate to the wellhead pressure.

Two widely used IPRs are the linear (straight line) IPR and
Vogel’s quadratic IPR (Ahmed et al., 2006). With a linear IPR, a well
i ∈ Nsrc can be modelled with the linear constraints:

qe,oil = ci,PI(pi,res − pi),

qe,gas = ci,GOR · qe,oil,

qe,wat = ci,WCT

100 − ci,WCT
· qe,oil.

(12)

There are four constants in Eq. (12) that characterizes a well: the
reservoir block pressure pi,res (which is considered constant accord-
ing to assumption A1), the productivity index ci,PI, the gas-oil ratio
ci,GOR ≥ 0, and the water cut ci,WCT ∈ [0, 100).

The linear model in Eq. (12) does not hold for all reservoirs. For
instance, it does not hold for reservoirs with a thin oil rim over-
laid by a large gas cap, where wells are subject to gas coning. In
coning wells, the gas rate varies nonlinearly with the oil flow rate,
and Eq. (12) should be substituted with nonlinear relations. These
relations may  be generated from near-well simulations performed
by a reservoir simulator (Mjaavatten et al., 2008).

When temperatures are included in the model, it is customary
to assume that the temperature of the entering fluid is constant and
equal to the reservoir temperature, that is

te = const., e ∈ Esrc. (13)

Reasonably accurate inflow models is a prerequisite for an accu-
rate network model. This part of the model is, however, hard to

calibrate. In practise, experiments need to be performed to collect
data for inflow model calibration. This usually involves disruptive
well testing, where a single well is routed to a test header to allow
the measuring of flow rates over a time span of hours.
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.5.2. Downstream boundary conditions
In line with assumption A1 it is reasonable to assume a con-

tant downstream (separator) pressure when modelling a subsea
roduction system. The constraints are easily expressed as:

i = const., i ∈ Nsnk, (14)

here a constant pressure is specified for the sink (separator)
odes.

.6. Operational constraints

In daily production optimization the production engineers must
onsider many operational constraints. To obtain solutions with
ractical value these constraints must be included in the opti-
ization problem. Here we mention two very common operational

onstraints: namely the capacity and draw-down constraint.

.6.1. Capacity constraints
In daily production optimization, the topside separator is typi-

ally considered to be the downstream boundary of the network.
ence, the amount of fluid entering the separator must honour the
ater and gas handling capacity of the downstream process facility.

he capacity constraints on the total production of gas and water
re easily expressed by cut sets (here we have used the set of sink
dges Esnk):∑
∈Esnk

qe,gas ≤ Cgas and
∑

e∈Esnk

qe,wat ≤ Cwat, (15)

here the total gas (water) flowing into the separator/sink nodes
s limited by the gas (water) handling capacity Cgas (Cwat).

.6.2. Draw-down constraints
A draw-down constraint is a lower limit on the bottom hole

ressure of a well. The constraint prevents operation at pressures
nd thereby rates that potentially can damage the well and near-
ell reservoir. Let i ∈ N be a node representing the bottom hole of

 well. Then a draw-down constraint on i is expressed with the
ounds on pi: i.e. pL

i
≤ pi ≤ pU

i
, where the lower bound pL

i
specifies

he draw-down limit.

.7. Objective function

As discussed in the introduction, the main objective when opti-
izing a petroleum network is typically the maximization of oil

roduction. This objective is easily expressed by summing the
il rates of all edges in a cut set. Two obvious cut sets are the
dges leaving a source node (Esrc) or the edges entering a sink
ode (Esnk). Below we express the objective function using the

atter.

aximize z =
∑

e∈Esnk

qe,oil, (16)

Sometimes it makes sense to include contributions to the cost
f operating in the objective function; for example the cost of uti-
izing gas lift or processing produced water. In this framework it is

traightforward to include these in the objective.

.8. Flow network: a MINLP formulation

With the complete flow network modelled, the daily produc-
ion optimization problem is posed as the following mixed-integer
onlinear programming problem:
al Engineering 84 (2016) 237–254 243

maximize
y,q,p,�p,t,�t,h,�h

z =
∑
e∈Esnk

qe,oil

subject to
∑
e∈Ein

i

qe,s −
∑
e∈Eout

i

qe,s = 0, ∀s ∈ S, i ∈ Nint

�pe = fe(qe, pi, te), ∀e ∈ E\Ed

�pe = pi − pj, ∀e ∈ E\Ed

−Me(1 − ye) ≤ pi − pj − �pe ≤ Me(1 − ye), ∀e ∈ Ed

�te = ge(qe, pi, te), ∀e ∈ E

he = te

∑
s∈S

cs · qe,s, ∀e ∈ E

�he = �te

∑
s∈S

cs · qe,s, ∀e ∈ E∑
e∈Ein

i

(he − �he) =
∑
e∈Eout

i

he, ∀i  ∈ Nint

∑
e∈Eout

i

ye ≤ 1, ∀i  ∈ Nd

yeqL
e,s ≤ qe,s ≤ yeqU

e,s, ∀s ∈ S, e ∈ Ed

qL
e,s ≤ qe,s ≤ qU

e,s, ∀s ∈ S, e ∈ E\Ed

pL
i

≤ pi ≤ pU
i

, ∀i  ∈ N

tL
e ≤ te ≤ tU

e , ∀e ∈ E

�i,s(qe, pi) = 0, ∀s ∈ S, i ∈ Nsrc

pi = const., ∀i  ∈ Nsnk

te = const., ∀e ∈ Esrc

ye ∈ {0, 1}, ∀e ∈ Ed

(P)

In the rest of this work we denote an optimal value of P by z*,
obtained at an optimal solution (x*, y*), where x is a vector con-
taining all the continuous variables in P. Notice that the problem
is nonconvex due to the integer variables and the nonlinear equal-
ity constraints Eqs. (2), (6), (7), and (11). Consequently, we  cannot
expect to find a global optimum, unless the problem is solved with
a global solver.

The formulation in P can be used to model any nonlinear flow
network under assumptions A1–A4, and topology requirements
R1–R3. For problems not requiring an accurate energy model, a
cruder model can be obtained by removing from P the tempera-
ture and enthalpy variables, as well as the constraints for energy
conservation. This will remove 3|E| nonconvex constraints, simpli-
fying the problem considerably. For a subsea production network,
the framework allows for modelling of gas lifted wells and complex
multi-branch wells by the addition of nodes and edges.

A key property of P, which may  not present itself immediately, is
that the integer variables participate in linear constraints only. This
is an advantageous property since the discrete logic may  be exclu-
sively handled by the solver. In some cases the nonlinearities are
represented by process simulators without the capacity to handle
discrete logic.

Another important aspect of the formulation is that it does not
contain functions of more than |S| + 2 variables (rates, pressure, and
temperature). This allows the nonlinear functions to be replaced
with approximations/surrogates of low dimension. In Section 5 we
show how the nonlinear functions f(·) may  be approximated with
spline surrogate models. As will become clear later in Section 6, this
allows us to solve P to global optimality with a spline-compatible

solver.

Before continuing, we would like to remark on the fact that
choke openings are not directly computed in P. Chokes are usu-
ally modelled with nonlinear Cv curves, relating the choke opening
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Fig. 4. Illustration of the univariate, cubic B-spline basis functions b1
3 = [b1

i,3
]
5

i=1

and b2
3 = [b2

i,3
]
5

i=1
for the knot vectors t1 = t2 = {0, 1, 2, 3, 4, 5, 6, 7, 8}. Bivari-

1 2
44 B. Grimstad et al. / Computers and C

nd the differential pressure over the choke. To avoid the additional
onlinearity of the Cv curves when optimizing, the choke are repre-
ented by a differential pressure variable (�pe). The choke openings
re back-calculated from the optimal differential pressures after
olving P.

. Spline surrogate models

In this section we give a brief introduction to function approxi-
ation with splines. Our purpose is to motivate the use of splines

s surrogates for the nonlinear functions in the optimization prob-
em, P. We will use a light notation and represent the splines as
asis splines, or B-splines. For a detailed treatment of B-splines we
efer the reader to the literature on spline theory; cf. the textbooks
f Piegl and Tiller (1997) and Schumaker (2007).

.1. Univariate and multivariate B-splines

A spline is a piecewise polynomial function which possesses a
equired degree of smoothness at the points where the polyno-
ial pieces connect (which are called knots). First we consider the

nivariate B-spline, denoted as

p(x) = cT bp(x), (17)

here c ∈ R
n is a vector of n coefficients and bp ∈ R

n is a vector
f n B-spline basis functions. The basis functions in bp are (overlap-
ing) pth degree polynomial pieces in the variables x; see Fig. 3
or an illustration. They are recursively constructed from a nonde-
reasing sequence of n + p + 1 real numbers t1 ≤ · · · ≤ tn+p+1 known

s knots. These numbers are often collected in a vector t = {ti}n+p+1
i=1 ,

alled the knot vector.  Note that with our notation the dependence
f bp, and �p, on t is implied. We  refer the reader to the literature
or a description of the relation between the knots and the basis
unctions.

The B-spline �p is a linear combination of basis functions and
onsequently a piecewise polynomial with degree p. An important
roperty of the B-spline is that it has local support, meaning that at

ost p + 1 basis functions are nonzero at a point x. This, in addition

o several other advantageous properties, allow fast and numeri-
ally stable methods for manipulation and evaluation of splines;
ee for example De Boor (1972) and Cox (1972).

ig. 3. Illustration of the univariate, cubic B-spline basis functions b3 = [bi,3]5
i=1 for

he  knot vector t = {0, 1, 2, 3, 4, 5, 6, 7, 8} (marked with asterisks on the x-axis). The
ubic B-spline �3(x) = cTb3(x), with coefficients cT = [1 1 11 1], is also shown.
ate, bicubic basis functions are constructed by Bp = b3 ⊗ b3. The grey box x ∈ [6,
7]2 is supported by the following bivariate basis functions: [b1

4,3b1
4,3] ⊗ [b1

4,3b1
4,3] =

[b1
4,3b2

4,3, b1
4,3b2

4,3, b1
5,3b2

4,3, b1
5,3b2

4,3, ].

The B-spline generalizes nicely to the multivariate case. A degree
p B-spline in the variables x ∈ R

d may  be compactly written as

�p(x) = cT Bp(x), (18)

where bp ∈ R
n is a vector of n multivariate B-spline basis functions

of degree p. The multivariate basis functions are obtained by taking
the tensor product of univariate basis functions, i.e.

Bp(x) = b1
p(x1) ⊗ · · · ⊗ bd

p(xd) = d⊗
i=1

bi
p(xi), (19)

where ⊗ denotes the Kronecker product.6 The Kronecker product
produces a vector bp that contains all possible combinations of the
univariate bases: this results in a total of N = n1 · · · nd multivariate
basis functions, where ni is the number of univariate basis functions
in bi

p(xi) in variable xi. Each basis function vector bi
p in Eq. (19) is

parametrized by its own  knot vector ti. Note that a multivariate
basis function is a product of d degree p univariate basis functions,
making it a multivariate, piecewise polynomial of degree dp.7 The
domain of �(x) is considered to be the box X = X1 × · · · × Xd, where
xi is the interval supported by at least one basis function in bi

p(xi).
Consequently, �(x) = 0, ∀ x /∈ X. A bivariate B-spline is illustrated in
Figs. 4 and 5.

Most properties of the univariate B-spline carry over to the mul-
tivariate case. For example, the multivariate B-spline also enjoys
local support and have fast algorithms for manipulation and evalu-

ation (although their implementation require extra care to exploit
sparsity patterns). The multivariate B-spline is a powerful mod-
elling and approximation tool, as is testified by the numerous

6 In the literature the multivariate B-spline is often referred to as tensor product
B-spline since the basis functions are constructed using the tensor product.

7 To ease the notation in Eqs. (18) and (19) we have assumed that all univariate
basis functions vectors bi

p are of the same degree p. This assumption can easily be
removed without any consequences.
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Fig. 6. Beggs and Brill pressure drop correlation for a 1◦ inclined, 1000 m long, 12 in.

By inspecting the figure we  see that qualitatively the approxi-
mation errors of the two interpolating splines are similar. The error
increases along the diagonal grooves/bends where the rectangular
ig. 5. A bivariate, cubic B-spline constructed from the basis functions in Fig. 4 and
he  coefficients c = 125, where 125 ∈ R

25 is a vector of 5 × 5 =25 ones.

omputer-aided design tools that use it. A broad application follows
rom the fact that the B-spline may  represent any piecewise poly-
omial function exactly, that is, without any approximation error.
odels containing non-polynomial functions, such as the transcen-

ental functions, may  only be approximated by a B-spline. The
pproximation error can then be controlled by changing the density
f the samples. In the next section we show how to approximate a
unction that has been sampled on a grid with a B-spline.

.2. Function approximation with B-splines

Let any function f : R
d → R  be sampled on a regular grid to

ield m data points {xi, yi}m
i=1, where f(xi) = yi. Using only these

ata points a B-spline that approximates f is constructed. Several
pproximation methods exist and they are usually categorized as
eing interpolating or smoothing. Among the interpolating meth-
ds the widely used cubic spline interpolation is most common.
here are especially three reasons for the popularity of cubic spline
nterpolation: (1) it is fast to compute, (2) it offers a high degree of
moothness, and (3) it is a good approximation to a broad class of
unctions.

An interpolation method computes a B-spline that interpolates
 at all of the m data points. Mathematically, the following linear
ystem is solved for the coefficients c:

Bp(x1)Bp(x2). . .Bp(xm)
]T

 ︷︷  ︸
Bc

c = y (20)

n Eq. (20) y = [yi]
m
i=1 and Bc ∈ R

m×N is the so-called B-spline col-
ocation matrix:  the matrix where row i corresponds to the vector
f basis functions Bp(xi) evaluated at sample xi. It is customary to
elect a knot vector that gives a square collocation matrix (N = m).
n example of such a knot vector is the free end conditions knot
ector for cubic spline interpolation (p = 3):

F = { x1, . . .,  x1︸  ︷︷  ︸
p+1 repetitions

, x3, . . .,  xm−2, xm, . . .,  xm︸  ︷︷  ︸
p+1 repetitions

}.

otice that the second and second last knot is omitted from tF

o give N = m. For square Bc, the conditions under which Bc is
nvertible are known as the Schoenberg–Whitney nesting conditions:

i < xi < ti+p+1 for i = 1, 2, . . .,  m,  allowing xi = ti only if ti = ti+p < ti+p+1.
hese conditions are fulfilled for t = tF. When Bc is square and invert-
ble, the B-spline coefficients can readily be computed by solving
cc = y.
pipe.  The water-cut is fixed at 10% and the outlet pressure is 30 bar. As indicated,
three different flow regimes occur as the oil rate increases. The overlaying grid shows
the sample points used to build the spline approximations.

The m × m linear system in Eq. (20) can be solved efficiently
by a sparse solver on a modern desktop computer for m ≤ 100,
000. For example, when approximating a function in 5 variables
this practical limit allows a discretization with 10 values in each
variables, resulting in a grid of 105 = 100, 000 sample points. For
a “well-behaving”, low-dimensional function such as a well lift
curve, 100,000 samples is more than enough to achieve an accurate
approximation. In this work we have utilized the SPLINTER library
for function approximation (Grimstad et al., 2015b).

Before we  illustrate cubic spline interpolation in the next sub-
section, we point out that the approximation error of a spline can be
made arbitrarily small for continuous functions by increasing the
sampling density. Furthermore, the approximation error is depen-
dant on the knot placement. Optimal knot placement, however, is
a difficult and largely unresolved problem, particularly for multi-
variate B-splines (Natali and Pinto, 2009). Luckily, when samples
are taken on a regular grid the knots can be set equal to the sample
points as in tF.8 With scattered (irregular) sample points it is not
trivial to select the knot vectors. In either case, the problem of where
to place the sample points still remains and is highly dependant on
the function to be approximated.

5.3. An example: Beggs and Brill approximated with a B-spline

Fig. 6 shows the Beggs and Brill pressure drop correlation for a
slightly inclined pipe. With the given parameters, the correlation
includes three different flow regimes on the domain. By inspect-
ing the figure one may  observe several bends in the correlation;
the groove between the segregated and transition flow regime is
conspicuous.

The 20 × 20 grid in Fig. 6 shows the m = 400 points where the
correlation was sampled. From these points two approximations
are constructed: a linear spline (p = 1) and a cubic spline (p = 3). The
approximation error of the two splines are plotted in Fig. 7.
8 By default, SPLINTER computes the knots by applying a moving average filter
with window size p + 2 to the sample points. With equidistant samples this filter
produces the knot vector tF .
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Fig. 7. The approximation error of the linear spline (a) and the cubic spline (b) interpolat
Fig. 6.

Table 5
Spline approximation errors.
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Linear spline 0.0044 1.1193
Cubic spline 0.0039 1.0545

rid fails to capture the geometry. The most notable difference
etween the two  splines are the ripples in Fig. 7a. The ripples show
hat the linear spline fails to capture the curvature between the
rid lines; this effect is not present to the same degree in Fig. 7b.

To quantitatively compare the interpolating splines we measure
he relative approximation error with �rel,2 = ||1 − �(x)/f(x)||2,X and
abs,∞ = ||f(x) − �(x)||∞,X for x ∈ X, where || · ||p,X denotes the Lp-norm
n the domain x. The errors for the two splines are given in Table 5.

. Solution method

In this section we present the proposed method for solving P.
he main assumption is that all the nonlinear functions in P are
-spline functions on the form in Eq. (18), that is, we  assume that

e(·), ge(·), and �i,s(qe, pi) are B-spline functions. The bilinear terms in
he enthalpy constraints in Eq. (7) may  also be represented exactly
ith splines.9 With this assumption problem P falls into the cat-

gory of spline-constrained MINLP problems, which may  be solved
o global optimality by the spline-compatible optimization frame-
ork CENSO (Convex ENvelopes for Spline Optimization), recently
resented by Grimstad and Sandnes (2015). CENSO is publicly avail-
ble as open-source C++ code (Grimstad et al., 2015a). A description
f the algorithm is given in the next section. Please note that with-
ut loss of generality we assume P to be a minimization problem
n this description. After the description, we present two improve-

ents that may  speed up the algorithm when solving production
ptimization problems.

.1. Description of CENSO

CENSO is a framework for optimization with spline constraints.
t contains a spatial branch-and-bound (sBB) algorithm that parti-
ions the problem domain by branching on continuous variables as

ell as integer variables; this produces subproblems Pk of P. Spline

equality) constraints are generally nonlinear, thus non-convex,
nd must be relaxed during the solution process. CENSO employs

9 A spline may  represent a bilinear term exactly. In fact, the convex hull relaxation
f  the B-spline is identical to the McCormick relaxation for bilinear terms (Grimstad
nd Sandnes, 2015).
ing the Beggs and Brill pressure drop correlation on the equidistant 20 × 20 grid in

lifted polyhedral sets to relax spline constraints, producing relaxed
LP subproblems, denoted Rk.

Let ẑk denote the solution to Pk and zk the solution to Rk. The
fact that ẑk ≥ zk is used to process the search domain. The current
best feasible solution found, known as the incumbent, is denoted
zu. The algorithm described next, terminates when it has proved
that there cannot exist a solution better than zu − � (where �  > 0 is
a small number). This is known as �-convergence.

The schematic in Fig. 8 describes the sBB algorithm in CENSO.
From the top: the algorithm is initialized by adding P to the list of
problems L,  and setting the upper bound on P to zu =∞. The algo-
rithm then enters a loop which terminates when L is empty. Upon
termination there are two possible outcomes: a global optimum
has been found (�-convergence) or the problem is infeasible.

The first step inside the loop is to select and remove from L
the next subproblem Pk to be processed. The sBB in CENSO uses a
simple best-bound-first policy, selecting the subproblem with the
lowest lower bound zk (inherited from its parent node).

After selection, bounds tightening techniques are applied to Pk.
The purpose of these techniques is to reduce the domain of Pk
and hence to accelerate the exploration of the search space. These
methods may  also prove Pk infeasible, in which case it is fathomed.

Next, the convex relaxation Rk is generated and solved to get
zk. By default, the convex relaxation is solved by Gurobi (Gurobi
Optimization, Inc., 2014). With the lower bound on Pk three fath-
oming rules are checked: (i) zk ≥ zu, (ii) zk = ∞ (Rk infeasible), and
(iii) zu − zk ≤ � (converged). If any of (i)–(iii) are true, the node is
fathomed as it may  not contain a solution better than zu − �.

If the subproblem cannot be fathomed its domain needs further
processing. First, the incumbent is updated by checking if the solu-
tion to Rk is feasible to Pk. To further improve the incumbent an
NLP or MINLP solver may  be used to find a feasible solution of Pk
that is better than zu. This heuristic is not required, but may  speed
up the convergence of the search.

Finally, at the end of the loop a continuous or integer branching
variable is selected for Pk. This variable is then branched on to create
two new partitions Pk− and Pk+. The two partitions are added to
the list L, completing one iteration of the loop. Note that after one
loop iteration the list size |L| is either decremented by one (if Pk
fathomed) or incremented by one (if Pk is branched on). If the list
is empty, the search terminates with the optimal solution zu.

6.2. Branching variables and bounds tightening
A requirement for the sBB algorithm to converge to a global opti-
mum  is that it may  branch on all complicating variables. In a MINLP
problem, the complicating variables are the integer variables and
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Fig. 8. The spatial bound-and-bound algorithm in CENSO.
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produce tighter convex relaxations, which in turn produce tighter
variable bounds. Running OBBT iteratively is expensive and yields
diminishing returns. However, it may  greatly reduce the size of the

10
ny continuous variable that participates nonlinearly in a noncon-
ex constraint. For problem P, the complicating variables are y and
c, where xc = [xi]i∈Ic

are the complicating continuous variables.
he index set Ic is given so that {xi : i ∈ Ic} = {qe, pi, te, �te : e =
i, j) ∈ E}. Note that xc does not contain the variables �pe, he, and

he since they participate linearly in all constraints (the reader can
erify this by looking at P).

A continuous branching variable, like an integer branching vari-
ble, must be branched on a finite number of times to ensure
-convergence. However, the required number of branches may
e large depending on the value of �  and the convergence rate of
he convex relaxations. At any rate, it is highly desirable to keep the
umber of continuous branching variables at a minimum.

Problem P has a relatively large number of nonconvex con-
traints and, as a result, xc contains most of the continuous

ariables. From computational experience, we  know that branch-
ng on all of the variables in xc is detrimental to the efficiency of
al Engineering 84 (2016) 237–254 247

the algorithm, even for small network problems. To alleviate the
computational load we  employ so-called bounds tightening.10

Bounds tightening (BT) are techniques that reduce the variable
bounds [xL, xU] of a problem without removing its optimal point. BT
techniques with this property are said to be valid or to produce valid
inequalities. BT will shrink the feasible set of the primal problem and
its convex relaxation. In some cases it may  also prove a problem
infeasible. All BT techniques utilize the constraints to, in some way,
reduce the variable bounds.

Let us illustrate the advantage of bounds tightening with a
simple example: Let x1 ∈ [xL

1, xU
1 ] and x2 ∈ [xL

2, xU
2 ] be continuous

branching variables, related via the constraint x1 − x2 = 0. Bounds
tightening will propagate the variable bounds through the con-
straint and ensure that x1, x2 ∈ [max{xL

1, xL
2}, min{xU

1 , xU
2 }]. Thus,

when bounds tightening is applied, it is sufficient to branch on one
of the two variables: e.g. branching on x1 will reduce the feasible
range of x2, and vice versa.

Immediately, we  understand that if we  branch on the variables
associated with the degree of freedom in P, bounds tightening
will ensure diminishing bounds on the remaining (branching) vari-
ables. Let xc = [pi]e=(i,j)∈Ed be the |Ed| free, continuous variables in P
(according to the DOF analysis in Appendix A). Then, it is sufficient
to branch on y and xc . It is clear that xc ∈ R

|Ed| ⊂ xc ∈ R
(|S|+3)|E|. To

be more precise, with bounds tightening the number of continuous
branching variables is reduced from (|S| + 3)|E| to |Ed|. The reduc-
tion in the number of continuous branching variables limits the
tree size and accelerates the solution time of the sBB algorithm,
even when accounting for the additional computational load of the
bounds tightening techniques. Next, we briefly describe the bounds
tightening capabilities of CENSO.

6.2.1. Bounds tightening techniques in CENSO
CENSO employs the following BT techniques for MINLP prob-

lems: the reduced-cost BT (RCBT), originally introduced for MILP
problems (Ryoo and Sahinidis, 1996; Belotti et al., 2009); and
feasibility-based BT (FBBT) (Messine, 2004; Belotti et al., 2010).
These are computationally cheap techniques that perform tight-
ening by propagating variable bounds through the constraints.
They can be solved at any node in the sBB tree, but generally pro-
duce shallow cuts. To improve upon the BT capabilities of CENSO
we implement the optimality-based BT (OBBT) technique used by
Zamora and Grossmann (1999) and Sahinidis (2003).

With OBBT a relaxed problem Rk is solved with the objective
to minimize or maximize one variable. This is done for each com-
plicating variable in xc. Let F(Rk) represent the (convex) feasible
region of Rk. Then the convex problems solved by the OBBT are

minimize
x

{
±xi : x ∈ F(Rk), z ≤ zu

}
, i ∈ Ic. (21)

Let x̃L
i

and x̃U
i

be the solutions for the two  objectives in Eq. (21)
for variable xi. Then the new bounds on xi are [xL

i
, xU

i
] ∩ [x̃L

i
, x̃U

i
]. If

any of the problems in Eq. (21) are infeasible, problem Rk must be
infeasible and can therefore be fathomed.

The OBBT requires the solution of 2|Ic | convex NLPs or LPs; when
all nonlinearities of P are represented with B-splines the relaxed
problems Rk are LP problems. The OBBT may  be run iteratively to
achieve a greater tightening of the bounds: tighter variable bounds
Techniques that use the constraints to reduce the variable bounds have several
names in the literature, including: bounds tightening, range reduction, and interval
analysis.
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Table  6
Solution methods.

Solver Type Routing Global Model

Proprietary solver NLP No No GAP
IPOPT (Wächter and Biegler, 2006) NLP No No P
BONMIN (Bonami et al., 2008) MINLPa Yes No P
CENSO (Grimstad and Sandnes, 2015) MINLPb Yes Yes P
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a Convex MINLPs.
b Spline constrained MINLPs.

B tree. Therefore, it is typically used on every subproblem down
o a certain depth, and to a limited extent deeper in the BB tree.

.3. Primal heuristic

At the root node of the sBB tree, the MINLP solver BONMIN
Bonami et al., 2008) is evoked to search for a feasible solution to P.
f successful, the (primal) feasible solution, being an upper bound
n the solution of P, may  help in cutting large portions of the sBB
ree. BONMIN is a heuristic in this setting since it is used to find a
ocal optimum to the nonconvex problem P.

. Case studies

In this section we present a benchmark study of the solution
ethods in Table 6. The study includes three realistic production

ptimization cases from two BP operated subsea production sys-
ems, referred to as BP subsea production system 1 and 2, from
ere on. Note that these cases do not necessarily correspond to the
ormal operation of the production system. The cases are based on
odels implemented in the GAP software from Petroleum Experts.

he GAP models serve as reference models when comparing solu-
ions generated from the four different solution methods.

The four solution methods in Table 6 may  be described as
ollows. The first is a traditional approach where a proprietary
radient-based multi-start NLP solver treats the GAP model as a
lack-box model, calculating gradients by finite differences. The
hree other methods formulate problem P by approximating the
onlinear relations in the production system models with splines.
roblem P is then solved using IPOPT,  BONMIN, and CENSO,  respec-
ively. The branch-and-bound-based MINLP solvers BONMIN and
ENSO may  solve problem P with discrete edges (discrete vari-
bles). The proprietary solver and IPOPT,  being NLP solvers, cannot
andle discrete variables.
CENSO solves problem P to global optimality and provides an

ptimality certificate with the solution, i.e. the optimality gap is
ess than � upon termination. Solving a MINLP problem to global
ptimality is considerably harder, and more time consuming, than
ttempting a local solve. To illustrate the difference, the cases were
olved to local optimality using BONMIN. To improve BONMIN’s
hances of finding good solutions of the nonconvex problems it
as configured with the following options: algorithm set to “B-BB”

standard branch-and-bound mode), num resolve at root set to 10,
nd num resolve at node set to 2. This allows BONMIN to solve the
onconvex subproblems in the BB tree from several starting points;
he starting points are naively drawn from a uniform distribution
imited by the variable bounds. All other options were left at their
efault values.

There are a few key differences between the solution meth-
ds described above that complicates comparison of the methods.
irst of all, the proprietary solver and IPOPT cannot handle discrete

ariables. Thus, we include them in the comparison only when all
iscrete decisions are fixed. Second, the proprietary method solves

 different model/optimization problem than the other methods
ince it uses the GAP model directly. To achieve a somewhat fair
Fig. 9. Topology of BP subsea production system 1.

comparison, the optimal solutions are compared by evaluating GAP
at the optimal valve settings.

The three last methods in Table 6 were run on a laptop computer
equipped with an Intel 2.7 GHz dual-core processor and 8 GB of
RAM memory. The proprietary solver was  run on another computer
with favourable performance.

Note that the reported solution times do not include the time it
took to build the splines in P. The timings for building the splines
are reported at the end of this section.

7.1. Case 1: Production optimization of BP subsea production
system 1

In this case we  consider the subsea production system depicted
in Fig. 9. The production system consists of 10 wells, 4 daisy-
chained manifolds, 4 flowlines and 1 riser. The system is modelled
with three fluid phases, i.e. S = {oil, gas, wat}.

As shown in the figure (Node 25), lift gas can be injected into
the riser base to increase production by lowering the density of
the fluid column. This is achieved by modelling Node 25 with the

rate boundary conditions qe,oil = 0 and qe,wat = 0. The amount of lift
gas injected into the riser is given by qe,gas ∈ [0, 20] mmscf/d. To
simplify the model, the lift gas is assumed to have the same com-
position as the produced gas. The total gas production is limited to
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Fig. 10. A well modelled with three nodes and two  edges.

Table 7
Well parameters b for Case 1.

Well PI (rank #) GOR (scf/STB) WCT  (%) pL
i

(bara)

1 6 1100 15 190
2  3 800 25 200
3  4 800 40 110
4  1 800 55 120
5  10 600 55 120
6a 2 700 50 0
7a 8 700 25 0
8  5 700 30 210
9  7 700 0 210
10 9 800 0 170

a Well is offline.
b Values are rounded for commercial reasons.

Table 8
Results for Case 1.

Case, solver Iterations (#) Time (s) z* (mSTB/d)

Case 1.1 (linear splines)
BONMIN 0 2 77.483
CENSO 9 56 77.483

Case 1.2 (cubic splines)
BONMIN 0 5 78.381
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Table 9
Validation using GAP of solution from CENSO on Case 1.2.

Edge e Error (%)

qe,oil �pe pj

Wells
(1,11) 0.26 0.18 0.14
(2,12) 0.23 0.13 0.11
(3,13) 0.21 0.10 0.09
(4,14)a 0 0 0
(5,15)a 0 0 0
(6,16)a 0 0 0
(7,17)a 0 0 0
(8,18) 0.91 0.42 0.40
(9,19) 0.47 0.38 0.37
(10,20) 1.18 0.44 0.42

Flowlines
(21,22) 0.24 0.62 0.05
(22,23) 0.23 2.70 0.28
(23,24) 0.23 1.35 0.39
(24,26) 0.55 3.84 0.55
(26,27) 0.55 0.81 0b

a

E loop and the flow path 45 → 47 → 49 → 50 → 51 as the W loop.
For brevity we assign numbers to the wells so that well i rep-
CENSO 17 191 78.381

40 mmscf/d, which is the gas handling capacity of the downstream
rocessing facilities.

The wells are modelled by connecting three nodes {i, j, k} with
wo edges, (i, j) and (j, k). In this configuration, depicted in Fig. 10,
he nodes are labeled as follows: bottomhole (i), wellhead (j),
nd manifold (k). The bottomhole node (i) is a source node with
o incoming edges. The inflow from the reservoir to the well is
odelled by a nonlinear IPR (a piecewise function composed of a

traight line and Vogel’s equation), with a fixed GOR and WCT. The
ell parameters are listed in Table 7. The pressure drop over the
ellbore, edge (i, j), is described by a nonlinear lift curve f(i,j) relat-

ng the flow rates q(i,j) to the wellhead pressure pj. The choke is
escribed by the edge (j, k), with a related pressure drop �p(j,k).

The system is modelled without any energy considerations, i.e.
emperature and enthalpy variables, and related constraints, are
ot included in the problem formulation P. This reduces the number
f nonconvex constraints and (complicating) variables, and hence
he complexity of the problem.

We  divide Case 1 into two parts. In Case 1.1 and Case 1.2 the
onlinearities are represented with linear and cubic interpolating
plines, respectively. The interpolating splines are constructed by
olving Eq. (20), with degree p = 1 for Case 1.1 and p = 3 for Case 1.2.
ince the case includes discrete edges (binary variables) it is only
olved with BONMIN and CENSO.

The results for the cases are reported in Table 8. Evidently, the
ases are solved efficiently by both solvers. The solution time of
ENSO is strictly higher than that of BONMIN, as is it must be since

t runs BONMIN as a primal heuristic. The number of iterations used
y CENSO is kept low by intensive bounds tightening, while BONMIN
erminates with the global optimum after examining the root node

nly; i.e. it uses 0 iterations in both cases. However, BONMIN does
ot terminate with an optimality certificate, like CENSO.
Edge is closed (well is offline) at the optimal solution.
b The separator pressure is fixed.

Notice that the optimal value of the two cases differ with almost
1 mSTB/d. The difference is due to the linear and cubic spline inter-
polation of the pressure drop curves since the pressure drop curves
have a positive curvature (convex-like curves). This curvature is
captured by the cubic spline, but is over-estimated by the linear
spline (piecewise linear) interpolation. Consequently, the higher
pressure drop causes a lower production for a fixed separator pres-
sure. The two  optimal solutions do however give the same optimal
valve settings.

The 11 active constraints at the optimal solution are listed in
Table B.15. The case has 10 wells, and one additional source node for
gas lift, giving 11 DOF (when all binary variables are fixed). Hence,
there are 11 active constraints at the optimal solution (in addition
to 10 fixed binary variables).

At the optimal solution Wells 4–7 are offline. Wells 6 and 7 are
set offline. Wells 4 and 5 have a WCT  above 50% and it is not unex-
pected that they are offline at the optimal solution. All online wells
operate at the minimum choke differential pressure, meaning that
the system is pressure constrained – the gas capacity constraint is
not active and maximum gas lift is used.

To investigate the approximation error of problem P to the GAP
model we insert the optimal valve settings into GAP and record
the pressures and rates it predicts. The relative errors between
the variables in GAP and Case 1.2 (cubic splines) are reported in
Table 9. Most of the errors are below 1%, which is satisfactory. We
do observe some propagation of error along the flowlines, and for
the riser the pressure loss error is almost 4%. This may be improved
upon by sampling the flowline pressure drop more densely, and
accepting a higher computation time.

7.2. Case 2 and 3: Production optimization of BP subsea
production system 2

In these cases we consider the production system drawn in
Fig. 11. The system has 13 wells, 5 flowlines, and 2 risers. Four of the
wells can be routed to either of the risers. The two  risers are named
as follows: edge (48, 51) is the east (E) riser and edge (50, 51) is the
west (W)  riser. We  refer to the flow path 44 → 46 → 48 → 51 as the
resents the well with bottomhole node index i, although the well
consists of several edges and nodes. The wells are modelled using a



250 B. Grimstad et al. / Computers and Chemical Engineering 84 (2016) 237–254

Fig. 11. Topology of BP subse

Table 10
Well parameters b for Cases 2 and 3.

Well i PI (rank #) GOR (scf/STB) WCT  (%) pL
i

(bara)

1 10 2400 45 280
2 5 900 0 190
3 8 4500 30 220
4 2 1500 65 0
5  3 1800 35 220
6 11 3300 0 210
7 6 2900 5 220
8 12 4200 0 220
9a 1 0 0 0
10a 7 0 0 0
11 9 900 20 200
12 4 900 0 200

a

n
V
a
w

formulation.
13 13 0 0 0

a Convex MINLPs.
b Values are rounded for commercial reasons.
onlinear IPR (a piecewise function composed of a straight line and
ogel’s equation), with a fixed GOR and WCT. The well parameters
re listed in Table 10. As in the previous case, we model the system
ith three fluid phases, i.e. S = {oil, gas, wat}.
a production system 2.

The network has a total of 17 discrete edges for routing and
shutting in wells. To mimic  the current field operation Wells 9, 10,
and 13 are set offline. This leaves 214 = 16, 384 routing and well sta-
tus combinations. By considering the manifold routing constraints
in Eq. (10) we find that the number of feasible combinations is
26 · 34 = 5, 184.

In addition to the common constraints described in Section
4, this case has two  special constraints. Each riser has a maxi-
mum mix  velocity constraint (the mix  velocity is the sum of the
in situ liquid and gas velocity). These constraints limit the erosion
of the risers’ inner tube coating due to high velocity sand parti-
cles. The mix  velocity of riser e ∈ {(48, 51), (50, 51)} is modelled as
ve(qe, pj, te + �te) ≤ vU

e , where vU
e is the upper velocity limit. Notice

that the downstream pressure pj and temperature te + �te are used
since the velocity is calculated at the outlet, where it invariably
attains its maximum value. To accurately express these important
constraints, temperature and enthalpy variables are included in the
To benchmark how the model complexity added by the discrete
decisions and temperature variables affect the computation time,
we solve Case 2 and 3 with the various configurations described in
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Table  11
Configurations in Case 2 and 3.

Case Well status Well routing Energy
balances

Riser velocity
constraints

Case 2.1 – – – –
Case 2.2

√
– – –

Case 2.3
√ √

– –

Case 3.1 – –
√ √

Case 3.2
√

–
√ √

Case 3.3
√ √ √ √
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Table 13
Results for Case 3.

Case, solver Iterations (#) Time (s) z* (mSTB/d)

Case 3.1
Proprietary solver – 9000 136.400
IPOPT 124 0.6 140.674
BONMIN 0a 32 140.674
CENSO 59 2630 140.674

Case 3.2
BONMIN 2432 387 140.674
CENSO 11 3670 140.674

Case 3.3
BONMIN 16,152 2328 140.462
CENSO 249 9000b 140.674

a

es:
√

, No: –.

able 11. Note that in Case 2.1 and Case 3.1 the status and routing
f the wells are set to the state of the current field operation.

.2.1. Case 2: Optimization without energy balances
In Case 2 problem P is solved without temperature and enthalpy

ariables (t, �t, h, �h), and without the energy conservation
onstraints in Eqs. (6), (7) and (8). Since the riser mix  velocity con-
traints cannot be modelled without temperature variables, they
re also excluded from the problem. The nonlinear relations for
ressure drop and boundary conditions are modelled with cubic
plines.

The results of Case 2 are reported in Table 12. Several interest-
ng observations can be made from the results. First of all, it is clear
hat allowing wells to be shut in or re-routed may  only increase
he optimal value. The optimal value of Case 2.2 is therefore higher
han Case 2.1, but lower than that of Case 2.3. Next, the local solvers
eem to find good optimal solutions. In fact, in all cases except Case
.1, all solvers are able to locate the global optimum. This may  be
ttributed to the problem formulation in P, and the smoothness
f the cubic splines. Finally, the exponential increase in compu-
ation time becomes distinct when globally solving Case 2.3 with
ENSO.

In Case 2.3, CENSO finds the solution z* = 143.875 mSTB/d. This
olution is verified by running the GAP model with the optimal
alve settings. This gives a production of 143.936 mSTB/d; a rela-
ive difference of 0.04%. Compared to the optimal solution from the
roprietary solver in Case 2.1, the increase in production is 0.56%.

The active constraints at the optimal solution of Case 2.3 are
isted in Table B.16. As indicated in the table, Well 3 is offline in the
ptimal solution. This is not surprising since it is a weak producer
nd the well with the highest GOR. Well 8, having the second high-
st GOR, is choked to hit the gas capacity constraint on the total
as production. The rest of the wells operate at maximum capac-

ty, i.e. at their draw-down pressure or minimum choke differential
ressure.

able 12
esults for Case 2.

Case, solver Iterations (#) Time (s) z* (mSTB/d)

Case 2.1
Proprietary solver – 9000 143.139
IPOPT 37 0.1 143.435
BONMIN 0a 5 143.435
CENSO 30 280 143.435

Case 2.2
BONMIN 761 44 143.763
CENSO 19 314 143.763

Case 2.3
BONMIN 4386 146 143.875
CENSO 89 1870 143.875

a Problem has no integer variables and is solved at the root node.
Problem has no integer variables and is solved at the root node.
b CENSO was terminated after 9000 seconds with an optimality gap of 25.163

mSTB/d.

7.2.2. Case 3: Optimization with energy balances
The full Problem P is solved with temperature and enthalpy

variables. The previously described riser mix  velocity constraints
are included in the problem formulation to guard against solutions
susceptible to high erosion rates.

Note that Case 3 includes all constraints of Case 2, in addition
to the energy balances and riser mix  velocity constraints. Thus,
the optimal values in Case 2 are necessarily lower bounds on the
optimal values in Case 3.

The results for Case 3 are presented in Table 13. In Case 3.1
IPOPT, BONMIN, and CENSO finds the same (globally) optimal solu-
tion. The same solution is found by BONMIN and CENSO in Case
3.2. As reported, CENSO requires more than 1 hour to find and cer-
tify a global optimum. In Case 3.3, BONMIN fails to locate the same
or a better optimum than Case 3.2 and 3.1. This happens because
BONMIN mistakenly cuts away the optimum during its search. By
comparing Case 3.1 and 3.2 we notice that, as in Case 2, the option to
turn off wells does not seem to have a large impact on the solution
time.
CENSO finds the same optimal solution in all three cases, with

the active constraints listed in Table B.17. As indicated, Wells 3
and 8 act as “swing producers” and are adjusted to hit the E and
W riser mix  velocity constraint, respectively. Wells 9, 10, and 13
are shut in. The rest of the wells operate at maximum capacity, i.e.
in this particular case at their draw-down pressure or minimum
choke differential pressure. The results indicate that shutting in or
re-routing wells does not increase oil production since it is limited
by the riser velocity constraints.

The optimal solution found by CENSO on Case 3.2 is
140.674 mSTB/d. This solution is verified by implementing the opti-
mal  valve settings in GAP, to give 140.650 mSTB/d. The relative
difference between these two solutions is −0.02%. It is not possi-
ble to assert the accuracy of which P approximates the GAP model
based on a single point; however, this may  indicate that the accu-
racy increases when temperatures are included in P.

Prior to solving Case 3.1, the best known solution was
136.400 mSTB/d, found by the proprietary solver. The solution
located by IPOPT, BONMIN, and CENSO gives a production of
140.650 mSTB/d in GAP. The potential increase in production is
4.25 mSTB/d, or 3.12%.

7.3. Pre-computations: building B-splines

Before solving P, B-spline approximations must be built from the

samples taken from the nonlinear relations. In Table 14 we report
the build times for various B-splines; the build time of a B-spline is
the time it takes to solve the linear system in Eq. (20). The examples
include the inflow curves, pressure drop relations, and temperature
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Table  14
B-spline build times.

Samples (#) Dimension (#) Degree (#) Time (s)

24 1 1 96 × 10−6

24 1 3 127 × 10−6

3773 4 1 0.2
3773 4 3 21.7
9800 4 1 3.0
9800 4 3 590.0
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5184 5 1 1.4
5184 5 3 93.3

rop relations used in the cases presented previously. It is worth
oting that a B-spline must be rebuilt only when the relation it
pproximates changes.

. Concluding remarks

A framework for production optimization of multiphase flow
etworks has been presented. By modelling the network with a
raph and the nonlinear relations in the network with B-splines, a
ast solution method based on the spline-compatible MINLP solver
n CENSO was devised. The solution method can solve problems
ormulated in the framework to global optimality. To accelerate
olution times, CENSO was augmented with a primal heuristic
BONMIN) and an optimality-based bounds tightening technique
rom the literature. Together with a DOF analysis, this allowed us
o reduce the number of sBB tree branches considerably.

In addition to the theoretical contributions outlined above, we
ave performed a benchmark study where the solution method

s compared to several other nonlinear programming methods.
he study involves three realistic cases defined using two  sub-
ea production system models provided by BP. The findings are
ummarized below.

The formulation in P proved flexible and allowed us to model
the cases in the benchmark study. The formulation includes non-
linear energy balances to model the transportation of energy
with higher detail than previous works on petroleum production
optimization. Features such as daisy-chained manifolds, lift gas
injection, routing, and velocity constraints were easy to include.
The B-spline surrogate models were sufficiently accurate to be
used in production optimization of real cases. Inflow performance
curves, pressure and temperature drop correlations, and velocity
maps were successfully modelled with splines.
CENSO was able to successfully solve several realistic cases to
global optimality. However, as the solution time increases expo-
nentially with the size of the problem (number of complicating
variables), we found that the global solution method was not
viable for daily production optimization of the largest case,
namely Case 3.3.
The local solvers IPOPT and BONMIN were able to successfully
solve problems formulated with P to local optimality. In all cases
except one, they located the global optimum certified by CENSO.
This leads us to believe that the NLP relaxation of P is near convex
in large portions of the feasible region. We  attribute the consis-
tency of the results to the smoothness and derivatives of the cubic
B-splines, and to the linear participation of the integer variables
in P.
The local and global solvers are complementary in the sense that
the local solvers provide fast results for complex problems and are
thus suitable for daily production optimization. CENSO,  however,

can be used to certify local solutions from time to time, and also
globally explore new production settings.
In Case 3, the new methodology identified a potential increase
in production of 4250 standard barrels of oil per day, or 3.12%
al Engineering 84 (2016) 237–254

more than the best, previously known solution. This solution was
verified in the GAP simulator.

We believe that the above findings illustrate what any proficient
practitioner of mathematical programming knows; that a “good”
problem formulation is a requirement for fast solution times and
consistency across solvers.

The speed of the new method would allow for parameter sen-
sitivity analysis and stochastic optimization to include uncertainty
in crucial model parameters (at least for small to moderately sized
problems). With such approaches it would be possible to gener-
ate not only an optimal point, but an optimal operational plan for
the user. This is an important step towards better decision support
systems.
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Appendix A. Degree-of-freedom analysis

Here we  give a degree-of-freedom (DOF) analysis for problem
P. We denote the DOF with d, and calculate it as D = Dc + Dd, where
Dc and Dd is the number of free continuous and binary variables,
respectively. It is straightforward to verify that Dd = |Ed| so we focus
on calculating Dc. We  perform the analysis in two steps: first, we
calculate the DOF for a network without discrete edges, i.e. with
Ed =∅; second, we calculate the DOF for discrete edges.

First, we consider a network without discrete edges. According
to the requirements all nodes, except sink nodes, must have exactly
one leaving edge. Consequently, for a network without discrete
edges the following must be true: |E| = |N| − |Nsnk|. This relation
between the number of edges and nodes is useful when we next
attempt to eliminate variables with equality constraints.

To calculate Dc we  first count the number of continuous vari-
ables to

q︷  ︸︸  ︷
|S| · |E| +

p︷︸︸︷
|N| +

�p︷︸︸︷
|E| +

t︷︸︸︷
|E| +

�t︷︸︸︷
|E| +

h︷︸︸︷
|E| +

�h︷︸︸︷
|E| . (22)

A quick glance at Table 3 verifies these numbers. Remark that when
we now attempt to eliminate variables we must take care to count
one elimination per constraint, and to only eliminate a variable that
participate in the constraint.

Starting with the flow rates q: we count equality constraints
related to flow rates to |S| · |Nint| + |S| · |Nsrc|, which is the number
of mass balances in Eq. (1) plus the number of rate boundary con-
ditions in Eq. (11), respectively. Using the relation |E| = |N| − |Nsnk|
we find that |Nint| + |Nsrc| = |N| − |Nsnk| = |E|. Thus, there are |S| · |E|
variables, |S| · |E| constraints, and zero DOF in the flow rates q.

We continue by counting 2(|E| − |Ed|) = 2|E| pressure drop con-
straints �pe = fe(·) and �pe = pi − pj (remembering that Ed =∅). We
also count |Nsnk| pressure boundary conditions. In total we  get
2|E| + |Nsnk| = 2|E| + |N| − |E| = |N| + |E| constraints, which is the same
as the number of pressure variables. Thus, we have zero DOF in the
pressure variables p and �p.

In the same fashion we  consider the 4|E| temperature and
enthalpy variables. From Eqs. (6), (7), and (8) we count 3|E| + |Nint|

constraints. We also have |Esrc| = |Nsrc| boundary constraints in Eq.
(13) on the temperature variables. The total number of constraints
is 3|E| + |Nint| + |Nsrc| = 3|E| + |N| − |Nsnk| = 4|E|. Thus, we  find no DOF
in the variables t, �t, h, and �h.
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We  conclude the first step of the analysis by establishing that
here is no degree of freedom in P when Ed =∅, i.e. D = Dc + Dd = 0.

In the second step of the analysis we let Ed /= ∅, i.e. we  allow
iscrete edges. We  begin by considering a node with one leav-

ng discrete edge. The discrete edge does not have the constraints
pe = fe(·) and �pe = pi − pj. However, when ye = 1, �pe = pi − pj is

ecovered from the big-M constraint in Eq. (5). On the other hand,
hen ye = 0, the flow rates are forced to zero (qe = 0) by the flow

outing constraint in Eq. (9) (since we already have zero DOF in

he flow rates we may  use the boundary constraint �i,s(qe, pi) = 0
o fix one pressure). In either case, one DOF remains. This DOF
eflects different things for the two cases: for ye = 1, �pe is free,
ut it relates the node pressures pi and pj, affecting the flow rate

able B.15
ctive constraints at optimal solution of Case 1.

Well Online Active constraint 

1 Yes Choke �p (bar) 

2  Yes Choke �p (bar) 

3  Yes Choke �p (bar) 

4  No Oil rate (mSTB/d) 

5  No Oil rate (mSTB/d)
6  No Oil rate (mSTB/d) 

7  No Oil rate (mSTB/d) 

8  Yes Choke �p (bar) 

9  Yes Choke �p (bar) 

10  Yes Choke �p (bar) 

–  – Lift gas (mmSTB/d) 

able B.16
ctive constraints for Case 2.3.

Well Online Active constraint 

E loop
1 Yes Draw-down pressure (bara) 

2  Yes Choke �p (bar) 

3  No Oil rate (mSTB/d) 

5  Yes Choke �p (bar) 

6  Yes Choke �p (bar) 

W  loop
4 Yes Choke �p (bar) 

7  Yes Choke �p (bar) 

8a Yes Total gas (mmscf/d) 

9  No Oil rate (mSTB/d) 

10  No Oil rate (mSTB/d) 

11  Yes Choke �p (bar) 

12  Yes Fixed oil rate (mSTB/d) 

13  No Oil rate (mSTB/d) 

a Well 8 is adjusted to hit the gas capacity constraint.

able B.17
ctive constraints for Case 3.2.

Well Online Active constraint 

E loop
1 Yes Draw-down pressure (bara) 

2  Yes Choke �p (bar) 

3  Yes Mixed velocity, E riser (m/s)a

5 Yes Choke �p (bar) 

7  Yes Choke �p (bar) 

W  loop
4 Yes Choke �p (bar) 

6  Yes Choke �p (bar) 

8  Yes Mixed velocity, W riser (m/s)a

9 No Oil rate (mSTB/d) 

10  No Oil rate (mSTB/d) 

11  Yes Choke �p (bar) 

12  Yes Fixed oil rate (mSTB/d) 

13  No Oil rate (mSTB/d) 

a Velocities are not displayed for commercial reasons.
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qe; for ye = 0, �pe is free, but does not affect the flow rate since qe = 0
or the neighbouring pressures since −Me ≤ pi − pj − �pe ≤ Me never
become active. Note that there is a subtlety with the latter case
(ye = 0): since �pe cannot affect other variables it is not suited to be
a branching variable (more importantly, �pe is not a complicating
variable in P). It is better to branch on pi, which is a complicating
variable that may  affect other variables. We  conclude that for each
discrete edge we  get one DOF in the continuous variables, and in
total Dc = |Ed|.
Finally, we consider the special case where nodes may  have mul-
tiple leaving discrete edges. The only change in P is the addition of
the inequality constraints for manifold routing in Eq. (10). These
constraints do not alter the DOF.

Lower bound Upper bound Solution

0 – 0
0 – 0
0 – 0
0 – 0
0 – 0
0 – 0
0 – 0
0 – 0
0 – 0
0 – 0
0 20 20

Lower bound Upper bound Solution

283.0 – 283.0
0.5 – 0.5
0.0 – 0.0
9.5 – 9.5

10.0 – 10.0

1.0 – 1.0
5.0 – 5.0
– 300.0 300.0
0.0 – 0.0
0.0 – 0.0
5.5 – 5.5
4.4715 4.4715 4.4715
0.0 – 0.0

Lower bound Upper bound Solution

283.0 – 283.0
0.5 – 0.5
– vU

e vU
e

9.5 – 9.5
5.0 – 5.0

1.0 – 1.0
10.0 – 10.0

– vU
e vU

e

0.0 – 0.0
0.0 – 0.0
5.5 – 5.5
4.4715 4.4715 4.4715
0.0 – 0.0
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We  conclude the analysis by establishing that Dc = |Ed| and
d = |Ed|, giving D = 2|Ed|. The DOF is associated with the discrete
dges e ∈ Ed representing (choke) valves.

ppendix B. Case results

The active constraints at the optimal solution of some of the
ases are reported in this appendix (see Tables B.15–B.17).
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