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Abstract 
In this paper, we present an optimization approach that explores the natural structure of a network 

simulator, when searching for the best possible settings given a predefined objective and constraints. The 

approach is tested on a petroleum production network, where it significantly outperforms the standard 

industry approach, both regarding solution time and solution quality.   

The approach, which the authors has named SmartOpt, splits the optimization variable space into a discrete 

and a continues sub-space, and the network simulator into “simulator components”, one for each 

component in the network. The main benefits of the approach are twofold. First, the optimization variables 

can be treated by a branch and bound algorithm in combination with a gradient based search algorithm, 

while as a standard approach is forced to use a derivative free algorithm. Second, the simulator components 

are of such low dimension that it is possible to sample the search space up front and build fast proxy models 

that can be used in the optimization search.  

As the approach opens up for many alternative strategies, the authors derive and analyze six alternatives, 

and compare them with a standard industry approach.  

1. Introduction (to daily petroleum production optimization) 
Automation is a keyword across a wide field of applications. Technology has developed rapidly in parallel, 

and computer power and the amount of data available from sensors is increasing every year. This has opened 

an opportunity window for automating processes that today might require significant human intervention. 

Within many applications, there is still a long way to go before full automation is possible, if ever. However, 

the level of automation can be increased by the development of advanced decision support with the use of 

complex mathematical models to guide the humans through these decision processes.  

In this chapter, we suggest a division of the decision process into a sequence of steps. Based on this sequence 

we indicate the current level of automation within industry, monitoring and improvement workflows. 

Furthermore, we discuss the role of complex simulators and optimization algorithms within decision 

processes, and the influence on automation levels due to such tools. Lastly, we introduce decision-making 

within daily petroleum production, and the crying need for advanced decision support tools within this 

domain.  

From sensor data to decisions 
High quality decision making in daily operations is key to secure safe and efficient operations of complex 

production systems. Decision support systems are an important ingredient to secure high quality decisions, 

and the use of mathematical models and optimization is slowly penetrating into such systems. Decision 

support systems for operational decisions can be divided into a sequence of components as illustrated in 

Figure 1. Essentially, it starts by acquiring the relevant real-time information and ends in making and 

implementing a decision.    



To elaborate on the decision pyramid in Figure 1, at the bottom sensors capture real-time information about 

the system. This information is typically collected and stored in real-time databases. Further, when 

considering and evaluating alternative decisions, it is necessary to have an idea of how the system will 

respond to changes, thus data combined with (physical) understanding form the basis for building models 

with which one can produce simulation outputs. These may again be applied in what-if studies or, more 

ambitiously, for optimization where an optimizer will provide recommendations for the users on how to 

select control input values. 

If similar decisions are made frequently, one may consider automating parts or all of this sequence. 

Automating the whole sequence would result in an “autopilot”, i.e., an automated decision loop. This 

approach is, however, not feasible in many cases due to insufficient data quality, imprecise model or the 

need for humans to scrutinize, and possibly change, a recommendation before it is implemented. The level 

of automation one should aim for within the decision pyramid is thus problem specific. 

If we limit the scope to the process and oil and gas industries, monitoring and improvement workflows 

linked to real-time data analyses involve a significant amount of manual work. However, computer models, 

usually in the form of simulators, help engineers analyze and reason about system behavior, and make it 

possible to predict the effect of various decisions. In many cases, models are essential because it is impossible 

for humans to sensibly communicate and reason about complex systems without some suitable level of 

abstraction. Around us, we see more and more simulators that are essentially “automating” the evaluations 

necessary for the prediction of system behavior.  

If we move further up the decision pyramid, optimization systems compute recommendations based on an 

articulated objective function, constraints and the simulator model. The complexity increases exponentially, 

as two complex computer algorithms are combined, simulators and optimization algorithms, to compute an 

optimal decision. Today, these methods often fail to provide satisfactory results when the systems become 

too complex, and thus we do not find too many successful applications yet. 

The runtime will affect the level of integration of such algorithms within a decision process. If the runtime 

is long (hours), the decision support may still provide highly valuable information, e.g., once a day. However, 

if the solutions are rapidly available (minutes), a decision support system may be used iteratively during, for 

example, decision meetings or in between other scheduled events. 

Adding efficient real-time decision support to the human expertise and further automate the fourth layer to 

provide automatic generation of recommendation enables improved decision quality since it increases the 

robustness and reliability of the decision making process. It enables the engineers to focus on the top layer 

in the decision pyramid, and thus spend more time on more high-level considerations rather than lower 

level analyses. 

 

 

Figure 1 – Decision pyramid 



In this paper we outline a concept, SmartOpt, which we believe can contribute with significant 

improvements in the decision-making process, enabling efficient optimization on top of network simulators. 

Previous publications on the concept are (Gunnerud & Foss, 2010), (Gunnerud, et al., 2013) and (Ursin-

Holm, et al., 2014). 

Simulation based optimization 
Simulators have entered many engineering disciplines, no doubt because of their contribution in modelling 

complex systems. However, detailed simulators are often complex in terms of size and the phenomena 

modelled, and thus they may require excessive runtime to compute a solution with the required accuracy. 

Complexity typically relates to the number of model equations and/or the number of unknowns. This 

number may be high due to a large number of model components, as for instance in a simulator of a 

complete refinery, or because the simulator is based on discretization of partial differential equations using 

finite elements or some other appropriate method. The number of modelled phenomena and their inherent 

interaction also contributes to the complexity.  

The industry uses simulators in a variety of ways; the most interesting in terms of this thesis is in “what-if” 

analyses of different solutions or alternative courses of action. If derivatives are available, they can be readily 

used for sensitivity analyses. Moreover, the models can usually scale up reasonably well, and so optimization 

can be applied to large problems. The importance of accurate derivatives for most optimization algorithms 

cannot be emphasized enough, as they essentially point the search in the right direction (Gunnerud et al., 

2013), the text in the rest of this section is copied from this paper).  

One particular area of interest is combining state-of-the art optimization techniques with the simulation of 

large-scale oil fields, possibly with the aim to optimize the production strategy from a producing oil field 

using updated reservoir models (see for example (Jansen, et al., 2008) and (Foss, 2012) for overviews). 

Typically, this consists of history matching along with some incorporation of additional data to, at least 

partially, resolve the underdetermined nature of the model and thereby adjust the reservoir model 

parameters. This is done in an attempt to reproduce the historical behavior, such as production rates and 

pressures, of the real reservoir, along with production optimization to optimize the future production 

strategy (see for example (Naevdal, et al., 2006)). Furthermore, there is an increasing interest in applying 

simulators for online studies. In the case of dynamic simulators, this may include predictive simulations 

where the simulator is used as a decision support tool in operation of, for instance, a supply chain, a power 

plant or a process plant. Online use of simulators requires online estimation functionality to reconcile the 

simulator with the available online data in real-time.  

Detailed simulators are in daily use in a variety of applications. Hence, considerable capital and human 

resources have been invested in this technology. Furthermore, high-fidelity simulators require significant 

runtime to compute outputs. The SmartOpt concept developed by the authors embeds optimization into 

existing simulator software packages. The motivation for this is the fact that “what-if” analyses alone may 

be both inadequate and inefficient in decision situations, for example in optimizing continuous variables 

like well choke openings. A simulator combined with an optimization algorithm with recommendation 

capabilities, however, may improve decision quality as well as decision speed. This is becoming an ever more 

pervasive need in many different applications. From a practical point of view, one should not underestimate 

the importance of uniform viable databases for the input, and user-friendly appropriate output. 

Optimization technology and its use have developed immensely during the last couple of decades due to 

algorithmic advances as well increases in computing power. Huge problems with millions of continuous 

variables and thousands of discrete variables can be solved. (Dür, 2001) (Tuy, 2005). However, optimization 

problems with embedded simulators are particularly challenging. In such cases, the simulator is a function 

whose explicit form is often unknown, which computes some output measures based on input parameters. 

The number of function evaluations must be very limited if it is time-consuming to compute one solution 

of the simulator. Furthermore, simulators usually come as a “black box calculators” without the ability to 

compute gradients, which are usually crucial for fast convergence of an optimization algorithm to a (local) 

solution. It is for these reasons that simulation and optimization have been combined infrequently, at least 



until the present decade (Fu, 2002). This situation is however changing rapidly and there is a steady increase 

in papers on simulation combined with optimization.  

The scientific literature on simulation-based optimization contains numerous applications. A few examples 

include supply chain management (Schwartz, et al., 2006) and (Wan, et al., 2005), combustion engine design 

(Jakobsson, et al., 2009), process system design (Jaluria, 2009) and oil field operations (Echeverría Ciaurri, 

et al., u.d.) and (Echeverría Ciaurri, et al., 2011). As may be expected the maturity of the applications vary a 

lot.  

The SmartOpt concept is in this paper described in the context of decision making within field operations 

and petroleum production, more specifically for efficient daily petroleum production optimization as a 

valuable add-on to existing simulator software packages.  

Daily petroleum production optimization 
Decisions on the day-to-day production strategy are one of the key challenges in petroleum field operations. 

Oil companies themselves manage the daily oil production and make strategies for improvement. Several 

tools and individuals, both on- and offshore, are involved in the search for the best, or appropriate, 

production strategy, and decisions are often taken in interdisciplinary meetings between the production 

engineers and offshore operators. Typically, the production engineers wish to optimize the daily production 

of hydrocarbons from each well and the field as a whole, given topside restrictions, e.g., separators, 

compressors capacities etc., while the long-term drainage strategy of the reservoir are set by the reservoir 

engineers. Operators on the other hand want to minimize the amount of changes done to the system to 

keep things stable.  

Updates of the production strategy usually 

occur at a pace that reflects the field dynamics. 

This typically means that a short-term 

production strategy has a limited lifetime, 

typically hours up to a few days, during normal 

operating conditions. Based on the current 

field conditions the engineers and operators 

arrive at a new production strategy for how to 

adjust the inlet pressures and chokes, operate 

gas lift valves if necessary, choose the routing 

of wells through pipelines and so on. 

Extraordinary events, such as equipment 

failure or replacements, will also trigger the 

need to find a new production strategy. 

Figure 2 illustrates the typical key components 

involved in a daily work process loop. Initially the production engineers study the production history during 

the last week to identify changes in well performance. Models of the system are then updated according to 

the state of the field before they are used to guide the search for an improved production strategy. 

Production engineers typically conduct the daily “production optimization” through experience and 

decision support tools such as network simulators and what-if studies, to derive at a new production strategy. 

Discussions and meetings with the offshore operators are then conducted before deciding upon the final 

strategy, which the offshore operators will implement. 

State-of-the-art decision support tools are frequently imprecise and slow at computing recommendations. 

SmartOpt however, represent efficient production optimization as an add-on to existing network simulator 

software, providing quick and reliable suggestions for optimal production strategies. It is applicable both 

before, and iteratively, during meetings between engineers and operators, which facilitates derivation of 

optimal strategies on which they both agree. In order to explain the SmartOpt concept and to discuss its 

Figure 2 - The work process loop today 



benefits and possible challenges, a floating production, storage and offloading (FPSO) unit will be used as 

an illustrative example throughout the paper. 

2. The production system  
This chapter presents terminology to provide a deeper understanding of properties, production principles 

and dynamics of an oil field. We begin with an explanation of reservoir and well terminology, then further 

details about the production principles and issues are discussed.  

System description 
A reservoir is a rock body where hydrocarbons of several types such as natural gas, condensates, liquid 

hydrocarbons and water are stored (Alpha Thames Ltd, 2004). The three basic types of reserve phases are 

gas, oil and water, typically occupying different parts of the reservoir. Production systems are developed 

with the purpose of extracting the majority of the oil and gas reserves. Extraction of fluids causes changes 

in the composition of oil, gas and water within the reservoir. Gas and water production are often described 

through volume fractions. The ratio of produced gas to produced oil is called the Gas to Oil ratio (GOR) 

whereas the fraction of water in the liquid is referred to as Water Cut (WC). 

Figure 3 is an illustration of a typical offshore production system. Hydrocarbon will flow from the reservoir 

into the wellbore, i.e. the bottom part of the well. The tubing directs the flow through the well from the 

wellbore to the wellhead. At the seabed, the subsea wells are connected to a subsea manifold that connects several 

subsea wells to through the same riser pipelines. For each well at the subsea manifold, a decision has to be 

made about where the flow is to be routed, since there often is more than one pipeline leaving each manifold. 

Satellite wells capture the hydrocarbons in the outskirts of a reservoir and are directly connected to the 

platform. In this paper the terms satellite well and topside well are used interchangeably. At the platform, the 

satellite wells and the riser pipes are routed to separators for processing.  

Normally reservoir dynamics are slow with minimal changes over weeks and months, so the properties and 

compositions within the reservoir change gradually over the production lifetime. It may take months before 

significant changes in the GOR and WC occur, typically resulting in an increasing share of gas and/or water 

over time. If the reservoir dynamics are in-fact slow, GOR and WC can be assumed constant for the short-

Figure 3 - Production system topology 



term planning period with a time horizon of days up to a week. In addition pipeline dynamics are fast and 

the flow of oil, gas and water through pipelines can be assumed to be steady-state. As a result, when dealing 

with a short-term production period the influence of time can be neglected.  

Production principles 
Hydrocarbons will flow from the reservoir to the topside as long as the pressure differentials are large 

enough. Starting from the boundary of the drainage area, formation fluids first flow through the porous 

media surrounding the well, and enter the wellbore. From here, vertical or inclined flow occurs in the well 

until the well stream reaches the seabed. Finally, the flow line transports the fluid to the separator holding 

a constant pressure at the topside process facility. Pressure losses occur through the system for several 

reasons.  

Pushing the flow from the reservoir into the wellbore requires a lot of work and induces a pressure drop. 

The well flow rate depends on differential in the reservoir pressure and the bottomhole pressure experienced at the 

wellbore. Large pressure drop occurs when the flow is elevated through the system due to decline in the 

hydrostatic pressure and friction between the pipe wall and the production flow. Thus, for producing wells 

the bottomhole pressure must be larger than the wellhead pressure. To support liquid flow towards the 

platform, the wellhead pressures cannot fall below the manifold pressure or the separator pressure, for subsea 

wells and satellite wells respectively. Furthermore, the manifold pressure must be sufficiently high to drive 

the flow all the way through the riser pipes to the separator. The production engineers are able to control 

the day-to-day flow rates by using the choke valves or chokes. The choke valve regulates the rate of flow and 

reduces the wellhead pressure.   

Artificial gas lift technology can be installed to lift more fluids from the reservoir when the wellhead pressure 

is not sufficiently high to support liquid flow up towards the platform. Gas is injected into the tubing to 

reduce fluid density, resulting in increased pressure drop between the reservoir and the wellbore and thus 

higher flow rates. Gas lift might be a restricted resource and should only be allocated to the wells that have 

fully open chokes and insufficient natural lift. Whenever a well is choked back, the natural lift is adequate 

and gas lift not really needed.  

Case study  
The FPSO have six subsea and six platform wells. The model representing the wells are based on data from 

a Petrobras FPSO, and the pipeline model is based on data from a Statoil platform. All wells have the option 

to be gas lifted. The case is realistic and is considered common both in size and complexity. Figure 4 

illustrates the production system setup.  

Figure 4 – Conceptual layout of the production system 



It is assumed that production is off plateau and that the objective is to maximize the total oil production 

from day to day, by finding the optimal choke settings and gas lift rates for each well. The subsea wells must 

be routed to one of the two production lines or alternatively shut off. Topside capacity for water and gas 

handling and gas available for gas lift, is limited. Within the timeframe of this short-term optimization, we 

model the wells with constant GOR and WC. 

The following explanation emphasizes the complexity of the problem at hand. Several subsea wells are 

usually producing to a pipeline simultaneously. Changes done to one of the wells routed to the production 

line, will affect the production of the other wells routed to the same line, even if the settings of these wells 

remain unchanged. E.g. some wells are produced with artificial gas lift. More artificial gas lift applied to a 

well will increase production from this well, but result in higher backpressure and lower production from 

the other wells. The total effect of a change in gas lift rate to one well is thus quite challenging to figure out 

since it is necessary to consider its effect on all the wells routed to the same production line. Wells producing 

with artificial lift usually have fully open chokes. However, if a well is producing naturally the choke valve 

might not be fully open. In this case, the change in manifold line pressure can be compensated for by 

adjusting the well’s choke setting and thereby keeping the wellhead pressure and well production the same.  

3. Production system modeling 
Dynamic simulators are frequently used within the upstream oil and gas industry to model process systems 

and analyse pressures and flow behaviours throughout the processes. A dynamic simulator solves the mass 

and energy balances in a process system to obtain a rigorous description and the systems time-varying 

behaviour. This can be done by decomposing the process into rigorously modelled unit operations while 

robust numerical methods, equation solving and implicit integration solves the resulting process system.  

When modelling a petroleum production system two aspects are particularly complicated. These are the 

reservoir fluid behavior in the link between the reservoir and the wellhead and the multiphase flow in 

pipelines. The importance of proper description of flow behavior in the wells and pipelines cannot be 

overemphasized because the pressure drop in well and pipes are the greatest and most decisive parts of the 

total pressure drop of the system. The reason for this is the great elevation difference and the consequently 

high hydrostatic term in the pressure gradient equation. 

Inflow 
Within process simulators, reservoirs are usually represented as a boundary condition with a fixed reservoir 

pressure and fluid composition. The Inflow Performance Relationship (IPR) describes inflow from the 

reservoir to the wellbore, in terms of the reservoir pressure and the well bottomhole pressure. The simplest 

approach to describe the inflow performance of oil wells is the use of the productivity index (PI) concept. 

This concept is based on Darcy’s law, and is represented by equation (1) which states that the liquid inflow 

into a well is directly proportional to pressure drawdown. The concept was developed under the assumption 

that only a single-phase liquid is present in the reservoir near the wellbore. If the reservoir pressure, 𝑃𝑅𝐸𝑆, 

is known, the wells PI can be found obtaining oil flow rates, 𝑞𝑂𝐼𝐿, for different bottom-hole pressures, 

𝑝𝐵𝐻𝑃. 

𝑞𝑂𝐼𝐿 = 𝑃𝐼(𝑃𝑅𝐸𝑆 − 𝑝𝐵𝐻𝑃) (1) 

 

If the reservoir pressure is below bubble point gas will also be present near the wellbore, and the 

assumptions used to develop PI is no longer valid. In this situation, a larger-than-linear pressure drop is 

required to increase production rates. This shape is approximated by Vogel’s equation (2). If the reservoir 

pressure, 𝑃𝑅𝐸𝑆, a single stabilized oil flow rate, 𝑞𝑂𝐼𝐿, and the corresponding bottomhole pressure, 𝑝𝐵𝐻𝑃, is 

known it is possible to construct the wells IPR curve (Takacs, 2005) (Gunnerud & Langvik, 2007). 



𝑞𝑂𝐼𝐿

𝑄𝑂𝐼𝐿,𝑚𝑎𝑥
= 1 − 0.2 (

𝑝𝐵𝐻𝑃

𝑃𝑅𝐸𝑆 ) − 0.8 (
𝑝𝐵𝐻𝑃

𝑃𝑅𝐸𝑆 )

2

 (2) 

 

Multiphase flow through pipelines 
Multiphase flow in pipelines is characterized by different flow patterns according to velocity, composition 

and gas slip effects. Gas slip is the fact that the different phases move with different velocities which causes 

the mixture density to increase in comparison to the no-slip case. A selection of flow types are shown in 

Figure 5. Stratified flow occurs in horizontal pipes with low flow rates of liquid and gas. Pipes and wells can 

occur at any inclination. The stratified to intermittent transition is very sensitive to the pipes angle. At low 

to medium gas flow velocities in vertical pipes, the gas phase takes the form of uniformly distributed discrete 

bubbles rising in the continuous liquid phase. The gas tend to overtake the liquid particles and gas slippage 

occurs.  If liquid velocities are high in relation to the gas velocities the gas bubbles exist in smaller bubbles 

evenly distributed in the continuous liquid phase moving at high velocity, this is called dispersed bubble 

flow. The phases now travel with similar velocity and no slippage effect occurs. Increased gas rates may lead 

to slug flow where the liquid slugs and large gas bubbles follow each other in succession. With higher gas 

rates the flow gets erratic, this phenomenon is called churn flow. At extremely high gas flow velocities 

annular flow occurs, where the gas flows in the middle of the pipe and pushes the fluid outwards against 

the pipe wall. Some of the liquids will be ripped loose from the walls and can be seen as small bubbles of 

liquid in the gas phase.  

When a production system, multiphase flow models for wells and pipelines must be incorporated into the 

complete system model. Multiphase flow through pipelines is complex to model, phenomena and pressure 

drop varies greatly with flow regimes. The pressure reductions experienced when hydrocarbons flow 

through the wells and pipelines, equation (3), are partly due to friction and partly due to increased elevation. 

In addition, due to gas expansion as the pressure reduces pressure losses due to acceleration are induced 

(Takacs, 2005) (Gunnerud & Langvik, 2007). 

Figure 5 – Different flow regimes in vertical to horizontal pipelines 
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Well performance 
The flow in the vertical part of the well is described by Vertical Lift Performance Curves (VLP). The VLP 

curves are correlations representing the pressure drop in the vertical part of the well, from the wellbore to 

the manifold. These curves relate the flow rate in the pipe to the wellhead pressure and the bottomhole 

pressure of the well. 

IPR describes the inflow at a certain bottomhole pressure, and the VLP gives the correlation about pressure 

drop in the vertical part of the well, this relation gives a unique wellhead pressure at a certain inflow. Thus, 

the intersections IPR and the VLP curves present the production point with rates and bottomhole pressures 

for a certain wellhead pressures. This is show in figure Figure 6 (Gunnerud & Langvik, 2007). 

Figure 6 – Illustration of an Inflow Performance Relationship curve for a certain reservoir pressure 
intersecting two Vertical Flow Performance curves for different wellhead pressures respectively 



4. Mathematical optimization 
In this chapter, we present several strategies for daily 

petroleum production optimization as a valuable 

add-on to existing simulator software packages. We 

will start to outline the optimization problem 

formulation by describing what we call the “standard 

approach” to attack this problem. This is a non-

invasive approach where the production network 

simulator is treated as one black box, only allowing 

the optimization algorithm to interrogate the 

simulator by requesting outputs based on a set of 

inputs, illustrated in Figure 5. The main challenge of 

this approach accrues when a (small) part of the 

variables space is discrete and the simulator only 

accepts discrete values for these variables. In this 

case, the complete variable space must be solved with a derivative free optimization algorithm considerably 

slowing down the convergence, compared to a gradient-based search.  

Motivated by this challenge, we introduce the 

SmartOpt concept. We start to describe the 

concept by splitting up the decision variable space 

into a discrete part, which is solved by a derivative 

free method, and a continuous part, which is 

solved by a gradient search approach. Further, we 

describe how it is possible to decompose the 

network simulator into standalone simulators for 

each well and pipeline, such that mass and energy 

balances become explicit algebraic constraints 

within the optimization problem. As a result of 

this approach, the discrete decisions are no longer 

contained in the simulator codes, solely within the algebraic equations. This again enables us to relax the 

integer requirement on the discrete variables, which again enables the use of a branch and bound algorithm 

instead of a derivative free algorithm. 

Standard industry approach  
In the following, an optimization model formulation of the “standard industry approach” is presented using 

the FPSO case for illustration purposes. The production system is treated as one large model and simulated 

as a black box, the optimization algorithm gives the simulator some input variables/parameters and the 

simulator calculates the output resulting variables/parameters. An objective function together with 

constraints on production capacity, gas lift capacity, and pressure feasibility are visible to the optimization 

algorithm.  

The optimization loop of the standard industry approach is illustrated in Figure 7. The optimization 

algorithm makes a call to the production network simulator with input parameters, such as wellhead 

pressures, gas lift rates, on/off and routing settings, to obtain estimates for output variables/parameters 

such as all well rates, pipeline rates, and subsea 

manifold line pressures. This enables the 

optimization algorithm to compute the 

objective function value and evaluate constraint 

satisfaction, e.g., capacity constraints on water 

and gas, and pressure feasibility within the 

network. 

Table 1 – Indices 

𝑗 - Well 

𝑙 - Pipeline 

𝑝 - Phase 

Table 2 – Sets 

𝐽 - Set of wells 

𝐽𝑠 ⊂ 𝐽 - Set of wells connected to subsea manifold  

𝐽𝑡 ⊂ 𝐽 - Set of wells connected to topside manifold 

𝐿 - Set of pipelines connected to subsea manifold 

𝑃 - Set of phases (𝑔 for gas, 𝑜 for oil and 𝑤 for water)  

Table 3 - Parameters 

𝐶𝑝 - Capacity limit on mass flow of phase 𝑝 to the platform 

𝐶𝐺𝐿 - Gas lift mass flow available for allocation 

𝑃𝑆 - Inlet pressure at separator system 

𝑃𝑗
𝑊 - Maximum wellhead pressure at well 𝑗  

𝑄𝑚𝑗
𝐺𝐿  - Maximum gas lift mass flow rate to well 𝑗  

Figure 7 – Industry standard 
optimization loop 



In this particular model, the network 

simulator is represented by function (4) 

below. The inputs, given in vector 

notation, are the wellhead pressures 𝒑𝑊, 

the lift gas 𝒒𝐺𝐿, and the routing of all wells 

𝒙 and 𝒚. The simulator outputs are the 

production mass flow rates of all phases 

(gas, oil and water) from all wells, 𝒒𝑊, in 

addition to the pressure in the pipelines at 

the subsea manifold, 𝒑𝑀. Regarding the mass energy balances in the subsea production system, i.e., the 

simulator also sums the production of wells that go into the same line to give the values of the pipeline flow 

rates, 𝒒𝐿. Throughout the paper, all rates 𝑞 are mass flow rates. 

(𝒒𝑊, 𝒒𝐿, 𝒑𝑀) = 𝑓𝐵𝐵(𝒑𝑊, 𝒒𝐺𝐿 , 𝒙, 𝒚)  (4) 

The objective function (5) seeks to maximize the oil production. It has two parts, the first part relates to the 

subsea wells and sums the oil flowing through each pipeline. The second part sums the oil production from 

each well at the topside manifold. 

𝑀𝑎𝑥 ∑ 𝑞𝑙𝑜
𝐿

𝑙∈𝐿

+ ∑ 𝑞𝑗𝑜
𝑊

𝑗∈𝐽𝑡

  (5) 

Water and gas production restrictions, requiring the total amount produced to be less than or equal to the 

gas and water handling capacity on the platform, are handled by output constraint (6). Again, the first part 

relates to the subsea wells, and the second to the topside wells.  

∑ 𝑞𝑙𝑝
𝐿

𝑙𝜖𝐿

+ ∑ 𝑞𝑗𝑝
𝑊

𝑗𝜖𝐽𝑡

≤ 𝐶𝑝      𝑝 ∈ {𝑔, 𝑤} (6) 

A limited amount of gas lift is available, thus input restriction (7) requires the total amount of gas lift used 

to be less than or equal to this amount. Gas lift values for the topside wells, must be multiplied by the well 

binary variable as the gas lift rates and the binary variables are input variables and can be set independently 

of each other, leading to incorrect summations. A subsea well has one binary variable associated with each 

pipeline, this is in order to correctly route flow from the subsea wells into one of the pipelines. In this case, 

two binary variables are associated with each subsea well for on/off and routing. 

∑ ∑ 𝑞𝑗
𝐺𝐿

𝑙∈𝐿𝑗∈𝐽𝑠

𝑦𝑗𝑙 + ∑ 𝑞𝑗
𝐺𝐿

𝑗𝜖𝐽𝑡

𝑥𝑗  ≤ 𝐶𝐺𝐿  (7) 

If the binary variable associated to a certain well and line takes the value 1 it signifies that the well is routed 

to that line. Input constraint (8) prevents a subsea well from being routed to several lines by stating that at 

most one of the binary variables associated with the well can take the value 1.  

∑ 𝑦𝑗𝑙

𝑙𝜖𝐿

≤ 1    𝑗 𝜖 𝐽𝑠 (8) 

In order to support flow in the right direction the wellhead pressure of producing topside well must be 

greater than the separator inlet pressure, ensured by constraints (9).  

𝑃𝑆 ≤ 𝑝𝑗
 𝑊 𝑗 ∈  𝐽𝑡    (9) 

Table 4 - Variables 

𝑝𝑙
𝑀 - Pressure in line 𝑙  

𝑝𝑗
𝑊 - Wellhead pressure at well 𝑗 

𝑞𝑗
𝐺𝐿 - Gas lift mass flow to well 𝑗  

𝑞𝑙𝑝
𝐿  - Mass flow of phase 𝑝 through pipeline 𝑙  

𝑞𝑗𝑝
𝑊  - Mass flow of phase 𝑝 from well 𝑗  

𝑥𝑗  - 1 if well 𝑗 (topside manifold) is open, 0 otherwise 

𝑦𝑗𝑙  - 1 if well 𝑗 is connected to line 𝑙 (subsea manifold), 0 otherwise 



Constraints (10) ensure that if a subsea well is connected to a line, then the wellhead pressure must be larger 

than or equal to the pressure in the line. The manifold pipeline pressures 𝑝𝑙
𝑀 are here duplicated for each 

well, 𝑝𝑗𝑙
𝑀. The restriction can then be relaxed and 𝑝𝑗𝑙

𝑀 set to 0 when the well is not routed to line 𝑙.  

𝑝𝑗𝑙
𝑀 ≤ 𝑝𝑗

𝑊  𝑗 ∈ 𝐽𝑠  𝑙 ∈ 𝐿  (10) 

All variables take non-negative values below variable specific upper limits. Furthermore, a producing well 

has both upper and lower restrictions on wellhead pressure and upper and lower limits on gas lift rates.  

The SmartOpt approach  
Treating the network simulator as one black box and solving it with a derivative free optimization algorithm, 

which is the standard industry approach, does not exploit the properties and structures of the network 

simulators nor the variable space of the optimization problem. This is fine for ”what-if” analyses, but as 

mentioned the approach has large limitations concerning discrete decisions and computing gradient 

information.  

Different levels of structure exploitation is possible. In its most simple form, SmartOpt splits the 

optimization problem into two subspaces, one with continuous decision variables and the other with integer 

decision variables. A more sophisticated version, utilizes the network structure and splits the network 

simulator into smaller component simulators to include more information that the optimization algorithm 

can exploit.  

Splitting the decision space 

The simplest form of the SmartOpt approach splits the optimization problem into one integer subspace 

and one continuous subspace, as illustrated in Figure 8. The mathematical formulation remains similar to 

the standard approach besides this. However, such a division facilitates the use of optimization algorithms 

in two layers.  

A derivative-free optimization algorithm may decide upon discrete variable values for all routing and on/off 

decisions, and act as the master algorithm. For each iteration of the derivative-free algorithm, a gradient-

based optimization algorithm communicates with the network simulator, and utilizes gradient information 

in the search for the optimal solution of the continuous subspace.  

This approach enables utilization of the available 

gradient information. Furthermore, the dimensions 

of the integer subspace are reduced to only contain 

the variables that truly are derivative-free.  

Splitting up the network simulator 

Figure 9 illustrates the extended SmartOpt 

optimization approach, which also utilizes the 

network structure by splitting up the network 

simulator into smaller component simulators. 

Network simulators , as the one shown in Figure 8 

for the FPSO case, have some exploitable qualities. 

Mass and pressure balances through the network are 

easily calculated. The complex parts of the network 

simulator  are in reality only each component, e.g., 

wells and pipelines, which can comprise thousands 

of equations and code lines. Hence, the structure of 

the network simulator can be formulated with very 

simple algebraic equations. Figure 8 – the 2-layer optimization loop 



SmartOpt takes advantage of the network structure and 

splits the production network model into components, 

for example for each well, pipeline, compressor and 

separator. A distinct model and/or simulator then 

represents each production system component, while 

all mass and pressure relations within the production 

network are “connected” by algebraic expressions that 

are available to the optimization algorithm. As long as 

one adheres to steady-state simulation, modelling the 

connections as algebraic expressions is fairly 

straightforward (Gunnerud & Foss, 2010) (Gunnerud, 

et al., 2013). Another advantage is that one can call the 

specific component simulators as one needs 

information about that part of the system, which is 

more efficient than calling the whole network simulator 

each time. A necessary condition for using this 

modelling concept is that the system is divisible into 

smaller parts. The concept is visualized in Figure 11. 

Each black box in the figure  represents one simulator 

giving the relations between what goes in and what 

comes out of that box. There are two types of 

simulators present in the figure, pipeline pressure drop 

simulators and well production simulators. Additionally, there are mass and pressure balances connecting 

the parts in a feasible manner. 

 
Figure 10 – Black box simulator 

 
Figure 11 - Disaggregated simulators 

Figure 9 – SmartOpt optimization loop 



The discrete routing and 

on/off variables, 𝑦𝑗𝑙 , are no 

longer contained in the 

simulators, they are solely 

associated with algebraic 

equations. This enables the 

optimization algorithm to ask for evaluations of non-discrete values on the routing and on/off variables. 

Thus, the branch and bound algorithm can be applied. The interested reader is referred to (Lundgren et al., 

2010).  

Much more information regarding the production network is now revealed to the optimization algorithm 

through the additional variables and constraints. This results in an optimization problem of a much higher 

order, thus facilitates the use of more gradient search information. That is, instead of looking at the effect 

on total oil production when the gas lift rate of one well is changed, one looks at the change in oil production 

from the well itself. The importance of accurate gradients for most optimization algorithms cannot be 

emphasized enough, as they essentially point the search in superior directions and lead to faster convergence 

of the algorithm. 

In the mathematical formulation of the FPSO case SmartOpt divide the black box simulator (4) in several 

smaller black boxes and some connecting equations. Specifically, the separation will lead to simulators 

depicting well behaviors and pressure drop through the pipelines, in addition to mass and pressure balance 

equations making the system physically feasible. 

The resulting model formulation is presented below. The production network is now split into one simulator 

for each well and each pipeline. Function (11) represents the well simulation, i.e. the nonlinear relationship 

between the wellhead pressure and gas lift rate of a well and the corresponding mass flow rates. Function 

(12) represents the pipeline simulation, i.e. the nonlinear relationship between the pipeline pressure drop 

and the oil, gas, and water that flow through it. 

𝑞𝑗𝑝
𝑊 = 𝑓𝑗𝑝

𝑊(𝑝𝑗
𝑊, 𝑞𝑗

𝐺𝐿) 𝑝 ∈ 𝑃   𝑗 ∈ 𝐽 
(11) 

𝑃𝑆 − 𝑝𝑙
𝑀 = 𝑓𝑙

𝐿(𝑞𝑙𝑜
𝐿 , 𝑞𝑙𝑔

𝐿 , 𝑞𝑙𝑤
𝐿 ) 𝑙 ∈ 𝐿 

(12) 

Given below are the objective function (13) and the capacity constraints (14)-(15) for gas, water and gas lift 

respectively. As before, the first parts relate to the subsea wells and the second parts to the satellite wells.  

𝑀𝑎𝑥 ∑ 𝑞𝑙𝑜
𝐿

𝑙𝜖𝐿

+ ∑ 𝑞𝑗𝑜
𝑊

𝑗𝜖𝐽𝑡

  
(13) 

∑ 𝑞𝑙𝑝
𝐿

𝑙𝜖𝐿

+ ∑ 𝑞𝑗𝑝
𝑊

𝑗𝜖𝐽𝑡

≤ 𝐶𝑝  𝑝 𝜖 {𝑔, 𝑤} 
(14) 

∑ ∑ 𝑞𝑗
𝐺𝐿

𝑙∈𝐿𝑗∈𝐽𝑠

+ ∑ 𝑞𝑗
𝐺𝐿

𝑗𝜖𝐽𝑡

 ≤ 𝐶𝐺𝐿  
(15) 

Constraints (16) prevents a subsea well from being routed to several lines by stating that at most one of the 

binary variables belonging to a subsea well can take the value 1.   

 In the above figures grey arrows depict the inputs into a simulator, while black arrows indicate the outputs. Figure 10 shows 

what parts of the system are covered by the black box simulator. See also equation (4) and Figure 4 for comparison. Figure 

11 shows the splitting up of the one black box simulator in Figure 10 into several smaller black boxes depicting each well 

and each pipeline. See also equations (11) - (12). 

 

Table 5 - Parameters 

𝑄𝑗𝑝
𝑊  - Maximum mass flow of phase 𝑝 from well 𝑗 

𝑃𝑙
𝑀 - Maximum manifold pressure for  pipeline 𝑙 at subsea manifold 

Table 6 - Variables 

𝑞𝑗𝑙𝑝
𝑊𝐿  - Mass flow of phase 𝑝 from well 𝑗 routed to pipeline 𝑙 at subsea manifold  



∑ 𝑦𝑗𝑙

𝑙𝜖𝐿

≤ 1    𝑗 𝜖 𝐽𝑠 (16) 

An additional set of constraints is extracted for the mass balance equations when the black box model is 

disaggregated. Constraints (17)-(20) represent the mass balance formulation, and are linearly formulated 

based on the “Big M” parameters. (17) ensures that a satellite well is not producing when it is closed. 

Whenever the associated binary variable takes the values 0, the well is closed. Furthermore, if the associated 

binary variable takes the value 1 the restriction does not affect the problem. 

𝑞𝑗𝑝
𝑊 ≤ 𝑄𝑗𝑝

𝑊𝑥𝑗            𝑗 𝜖 𝐽𝑡     𝑝 𝜖 {𝑔, 𝑤} 
(17) 

The subsea well mass balances are given by (18)-(20), stating that the flow through a pipeline is the sum of 

produced rates from all subsea wells routed to that line. (19) ensures that each subsea well is only producing 

to the pipeline it is routed to.   

∑ 𝑞𝑗𝑙𝑝
𝑊𝐿

𝑙𝜖𝐿

= 𝑞𝑗𝑝
𝑊       𝑗 𝜖  𝐽𝑠  𝑝 𝜖  𝑃 

(18) 

𝑞𝑗𝑙𝑝
𝑊𝐿 ≤ 𝑄𝑗𝑝

𝑊𝑦𝑗𝑙               𝑗 𝜖 𝐽𝑠  𝑙 𝜖  𝐿 𝑝 𝜖  𝑃  
(19) 

∑ 𝑞𝑗𝑙𝑝
𝑊𝐿

𝑗𝜖𝐽𝑠

= 𝑞𝑙𝑝
𝐿     𝑙 𝜖 𝐿  𝑝 𝜖  𝑃 

(20) 

Constraints (21) and (22) correspond to the pressure constraints in the black box formulation, linearly 

formulated based on the “Big M” method. The inequalities ensure that the solution complies with the 

pressure restrictions of the system.  

𝑝𝑙
𝑀 ≤ 𝑝𝑗

𝑊 + 𝑃𝑙
𝑀 (1 − 𝑦𝑗𝑙)       𝑗 𝜖 𝐽𝑠    𝑙 𝜖 𝐿 

(21) 

𝑃𝑆 ≤ 𝑝𝑗
𝑊 + 𝑃𝑆(1 − 𝑥𝑗)        𝑗 𝜖 𝐽𝑡   

(22) 

5. SmartOpt approaches 
Splitting up the optimization variable decision space and the network simulation model opens up for a range 

of alternative approaches to address the problem.  The authors has studied and compared several of these.  

They are given names and are elaborated on in this chapter.  

The first approach that naturally crystalize itself from the previous chapter, is to keep the network simulator 

(23) and the mathematical formulation, and divide the search space in to a derivative free master problem, 

and a continuous sub-problem. This approach is throughout the remaining text referred to as the 2-layer 

approach.  

(𝒒𝑊, 𝒒𝐿, 𝒑𝑀) = 𝑓𝐵𝐵(𝒑𝑊, 𝒒𝐺𝐿 , 𝒙, 𝒚)  (23) 

If one also splits up the network simulator as (24) and (25), many more alternatives arise. First, since the 

integer variables now can be relaxed, the authors has used branch and bound to handle these variables. This 

results in continues sub-problems which now contain both the continuous variables and the relaxed integer 

variables, solved within the three structure of the branch and bound algorithm. The second approach is 

named SmartOpt Simulation, and utilizing the SmartOpt mathematical formulation in the previous chapter, 

and calls the simulator directly to extract function value and derivatives. If the simulator do not provide 

derivatives, it is possible to extract these through finite differencing. 



Opposite to a network simulator, which typically have more than twenty degrees of freedom, the well and 

pipeline simulators only have two and three respectively. This opens up the possible to sample the simulators 

prior to running the optimization algorithm, and instead use proxy models during the optimization itself. 

The authors has developed and tested several alternatives including; interpolation on the pre-sampled well 

and pipeline data sets, referred to as SmartOpt interpolation, least square fits to develop algebraic 

representations, referred to as SmartOpt algebraic, and modal reformulation of the problem to be able to use 

special ordered sets of type 2 (SOS2), referred to as SmartOpt SOS2. 

𝑞𝑗𝑝
𝑊 = 𝑓𝑗𝑝

𝑊(𝑝𝑗
𝑊, 𝑞𝑗

𝐺𝐿)  𝑗 ∈ 𝐽 𝑝 ∈ 𝑃    
(24) 

𝑃𝑆 − 𝑝𝑙
𝑀 = 𝑓𝑙

𝐿(𝑞𝑙𝑜
𝐿 , 𝑞𝑙𝑔

𝐿 , 𝑞𝑙𝑤
𝐿 ) 𝑙 ∈ 𝐿 

(25) 

2-layer approach 
This 2-layer approach only splits up the decision space, into one discrete problem and one continuous 

subspace. The mathematical formulation stays similar to the black box formulation. A gradient-based 

algorithm solves the continuous sub problem, which should lead to faster convergence as gradient 

information is exploited. 

This method requires the optimization algorithm to make calls to the entire network simulator, represented 

by (23) which is re-stated above for completeness. Thus, each time the optimization algorithm needs 

information about a well or a pipeline, it needs to provide all input variables, i.e. wellhead pressures, gas lift 

rates, on/off and routing settings, to the simulator and get information about all the output variables, i.e. 

well rates, pipeline rates, and subsea manifold line pressures. Derivate-free algorithms solve the discrete 

subspace. 

SmartOpt simulation 
The word “simulation” in the heading indicates that SmartOpt is solved by including the component 

simulators (24) and (25) directly during the optimization process. 

Each well simulator provides an output of the resulting oil rate, given an input of gas lift and wellhead 

pressure. GOR and WC are constant for the well, thus the gas and water rates are computed algebraically. 

As a function of the oil, gas and water flowing through it, the pipeline simulator provides the resulting 

pressure drop 

SmartOpt interpolation 
SmartOpt interpolation utilize high-resolution tables sampled upfront to represent the well- and pipeline 

component simulators (11) and (12). Approximation is done by interpolating in the resulting data tables, 

while derivatives are obtained by finite differencing.  

The interpolation code is a standalone bit of code invoked by the optimization algorithm with the necessary 

input values. This work includes two interpolation techniques, linear interpolation and spline interpolation, 

referred to as the SmartOpt linear interpolation approach and the SmartOpt cubic spline approach.  

The interpolant of linear interpolation becomes a linear function between two data points. It is suitable for 

approximating simulators within an optimization problem due to its quick and easy nature, but the resulting 

function is not differentiable at the discrete points. Spline interpolation techniques choose polynomials for 

each interval to fit smoothly together. Splines can achieve any degree of smoothness by increasing the 

polynomial degree. Cubic splines are used here, the lowest degree that will produce sufficiently smooth 

functions (twice continuously differentiable). Splines can easily be differentiated, and their derivatives are 

new splines of lower degree. 

SmartOpt algebraic 



Another interesting way to approximate a 

component simulator is through algebraic 

expressions. Creation of algebraic proxy models 

facilitates detection of potential non-convexities 

in the simulation data. Abrupt transitions between 

multiphase flow regimes are often the reason for 

such non-convexities, which can be difficult to 

handle and may cause the optimization algorithm 

to be non-convergent i.e. jump back and forth between two flow regimes. A convenient way to handle these 

non-convexities is by adapting proxy models for each regime, and use binary variables together with the 

branch and bound algorithm to decide which regime to operate within i.e. witch proxy model is active. The 

branch and bound algorithm makes  

 sure that the solution is in either one of the regimes. This may improve convergence by preventing the 

gradient-based solution algorithm from jumping back and forth. 

The algebraic proxy models (26) - (29) represent the component simulators (24) and (25). Approximation 

(26) of the respective well simulator is a summation of several algebraic proxy models representing different 

operation regimes. To ensure that only one proxy 

model is “active” at any time, each proxy model has an 

associated binary variable multiplied to itself. 

Furthermore, all the binary variables that belong to a 

component simulator approximation must sum to 1, 

given by equations (27). Proxy models for the pipeline 

simulators are combined the same way in (28) and the 

binary variables summations are given in (29). 

Furthermore, each proxy model of a component 

simulator approximation is only valid for its respective 

production regime. Inequality constraints must be 

formulated in the mathematical formulation to ensure 

that only the correct binary variable take the values 1 

for a certain regime. The number 

of such constraint depends on the 

number of regimes of the 

respective component simulator.  

The proxy models are often 

nonlinear functions composed of 

several basis functions, e.g. 

polynomials. Figure 12 illustrates 

high-resolution data plotted 

together with an approximation 

composed of two proxy models 

representing their respective regimes. 

 

 

Table 7 – Indices 

𝑓 - Function 

Table 8 - Sets 

𝐹𝑗𝑝
𝑊 - Set of well functions for well 𝑗 phase 𝑝 

Table 9 - Variables 

𝑠𝑗𝑝𝑓
𝑊  - 1 if function f is used for well 𝑗 phase 𝑝, 0 otherwise 

𝑞𝑗𝑝
𝑊 = ∑ 𝑓𝑗𝑝𝑓

𝑊 (𝑝𝑗
𝑊, 𝑞𝑗

𝐺𝐿)𝑠𝑗𝑝𝑓
𝑊

𝑓𝜖𝐹𝑗𝑝
𝑊

 
𝑗 ∈ 𝐽 𝑝 ∈ 𝑃    (26) 

∑ 𝑠𝑗𝑝𝑓
𝑊

𝑓𝜖𝐹𝑗𝑝
𝑊

= 1     
𝑗 ∈ 𝐽 𝑝 ∈ 𝑃    (27) 

𝑃𝑆 − 𝑝𝑙
𝑀 = ∑ 𝑓𝑙𝑓

𝐿 (𝑞𝑙𝑜
𝐿 , 𝑞𝑙𝑔

𝐿 , 𝑞𝑙𝑤
𝐿 )𝑠𝑙𝑓

𝐿

𝑓𝜖𝐹𝑙
𝐿

 𝑙 𝜖 𝐿 (28) 

∑ 𝑠𝑙𝑓
𝐿

𝑓𝜖𝐹𝑙
𝐿

= 1      𝑙 𝜖 𝐿 (29) 

Figure 12 – Algebraic proxy model for a well 
simulator 



SmartOpt SOS 2 
 

It is possible to convert a nonlinear programming model into a suitable form for separable programming 

model. This can be done by constructing a piecewise linear approximation to the nonlinear model function 

through modal formulation and definitions of special ordered sets of type 2 (SOS2). Modal formulation 

with SOS 2 definitions can be used when linearizing multidimensional function, as is the case for the well 

(two dimensions) and pipeline (three dimensions) models. Two examples of such approximations are 

provided for a non-linear function of single variables and a 

nonlinear function of two variables. Further the linear 

approximations for (24) and (25) are provided.  

SOS 2 definition when approximating nonlinear 

functions of single variables 

Linear approximation of the nonlinear function 𝑦 = 𝑥2 with 

modal formulation and weighting variables defined as SOS2 is 

given by constraints (30) - (34). A fixed number of breakpoint 

values for 𝑥 and 𝑦 are defined and nonnegative weighting 

variables 𝜆𝑖 are assigned to each breakpoint 𝑖. Defining the 

weighting variables as SOS2 means that at most two points can 

be non-zero, and they have to be adjacent. This allows for interpolation between the two associated break 

points as illustrated in Figure 14. Relaxing the neighboring requirements might lead to poor function 

approximations as seen in the Figure 13. (30)-(33) represent the modal formulation and the inequities (34) 

represent the SOS2 definition. SOS 2 can also be used 

when linearizing multidimensional functions. 

SOS 2 definition when approximating nonlinear 

functions of two variables 

Linearization of the nonlinear function of 𝑥 and 𝑦 z=

𝑔(𝑥, 𝑦) is given by equations (35)-(42). Break points must 

now be chosen in two dimensions, which result in a more 

complicated remodeling procedure. A grid of values of 

(𝑥, 𝑦) is defined with associated weighting variables 𝜆𝑠𝑘, 

illustrated in Figure 15.  

 
Figure 13 – SOS 2 formulation with  
relaxed neighboring requirements 

 
Figure 14 – SOS 2 formulation with  

neighboring requirements 

𝑥 = 0𝜆1 + 1𝜆2 + 2𝜆3 + 2.5𝜆3 (30) 

𝑦 = 0𝜆1 + 1𝜆2 + 4𝜆3 + 6.25𝜆3 (31) 

𝜆1 + 𝜆2 + 𝜆3 + 𝜆3 = 1 (32) 

𝜆𝑖 ∈ [0,1],  𝑖 ∈ {1, … ,4} (33) 

𝛼1 < 𝜆1  

𝛼2 < 𝜆1 + 𝜆2  

𝛼3 < 𝜆2 + 𝜆3 (34) 

𝛼4 < 𝜆3  

𝛼𝑖 ∈ {0,1},  𝑖 ∈ {1, … ,4}  

𝑧 = ∑ ∑ 𝑔(𝑋𝑠, 𝑌𝑘)𝜆𝑠𝑘

𝑘∈𝐾𝑠∈𝑆

 
 

(35) 

𝑦 = ∑ ∑ 𝑌𝑘𝜆𝑠𝑘

𝑘∈𝐾𝑠∈𝑆

  
(36) 

𝑥 = ∑ ∑ 𝑋𝑠𝜆𝑠𝑘

𝑘∈𝐾𝑠∈𝑆

 
 

(37) 

∑ ∑ 𝜆𝑠𝑘 = 1

𝑘∈𝐾𝑠∈𝑆

  
(38) 

𝜂𝑠
𝑆 = ∑ 𝜆𝑠𝑘

𝑘∈𝐾

        𝑠 ∈ 𝑆 
(39) 

𝜂𝑘
𝐾 = ∑ 𝜆𝑠𝑘

𝑠∈𝑆

       𝑘 ∈ 𝐾 
(40) 

𝜂𝑘
𝐾 is  SOS2 for 𝑘 𝑘 ∈ 𝐾 (41) 

𝜂𝑠
𝑆 is  SOS2 for 𝑠 𝑠 ∈ 𝑆 (42) 



The values (𝑥, 𝑦) at the grid points are denoted (𝑋𝑠, 𝑌𝑘). Four neighboring weighting variables can be non-

zero, because there are break points in two dimensions. This condition is a generalization of a SOS2 set, 

and is imposed by equations (39)-(42). Since a SOS2 variable set needs to be a one dimensional vector, 𝜂𝑠
𝑆 

and 𝜂𝑘
𝐾 are introduced as auxiliary weighting variables of 𝑆 and 𝐾. The SOS2 conditions (41) for set 𝑆 allows 

𝜆𝑠𝑘 to be non-zero in at most two neighbouring rows. Similarly, the SOS2 conditions (42) for set 𝐾 allows 

𝜆𝑠𝑘 to be non-zero in at most two neighbouring columns. Together, they enforce that only four adjacent 

𝜆𝑠𝑘 weighting variables are non-zero. 

SOS2 well approximation 

 As the well flow is dependent on wellhead pressure 

and gas lift, breakpoints must be chosen in two 

dimensions and a surface (𝑞𝑗𝑜
𝑊, 𝑞𝑗

𝐺𝐿) can be defined.  

Associated to each point on this surface there is a 

weighting variable 𝜆(𝑗)𝑘𝑛. Breakpoint 𝑘 gives a 

corresponding wellhead pressure, 𝑃(𝑗)𝑘
𝑊  and breakpoint 

𝑛 gives a corresponding gas lift flow rate, 𝑄(𝑗)𝑛
𝐺𝐿 . 

𝑄(𝑗𝑜)𝑘𝑛
𝑊  is the oil flow rate corresponding to 

breakpoint 𝑘𝑛. The oil flow rate for well 𝑗 connected 

can now be approximated by the following equations 

(43)-(54). 

Some of the production wells have semi-continuous 

production curves, which mean that the wells will 

produce only when the associated gas lift rate is above 

a certain limit. These properties are modelled by (53) 

and (54). 

 

Table 10 - Indices 

𝑘 - Breakpoint 

𝑛 - Breakpoint 

Table 11 - Sets 

𝐾 - Set of breakpoints for values of 𝑝𝑚𝑗
𝑊  

𝑁 - Set of breakpoints for values of 𝑞𝑚𝑗
𝐼  

Table 12 - Parameters 

𝑃(𝑗)𝑘
𝑊  - Value of  𝑝𝑗

𝑊 at breakpoint 𝑘 

𝑄(𝑗)𝑛
𝐺𝐿  - Value of  𝑞𝑗

𝐺𝐿 at breakpoint 𝑛 

𝑄(𝑗𝑜)𝑘𝑛
𝑊  - Value of  𝑞𝑗𝑜

𝑊  at breakpoints 𝑘 and 𝑛 

Table 13 - Variables 
𝜆(𝑗)𝑘𝑛 - Weight of breakpoint 𝑘 and 𝑛 for 

well 𝑗 

𝜂(𝑗)𝑘
𝐾𝑊

 - Sum of weights of breakpoints 𝑛 for 

breakpoint 𝑘 and well 𝑗 

𝜂(𝑗)𝑛
𝑁𝑊

 - Sum of weights of breakpoints 𝑘 for 

breakpoint 𝑛 and well 𝑗 

𝑝𝑗
𝑊 = ∑ ∑ 𝑃(𝑗)𝑘

𝑊 𝜆(𝑗)𝑘𝑛

𝑛𝜖𝑁𝑘𝜖𝐾

         𝑗 𝜖 𝐽 
(43) 

𝑞𝑗
𝐺𝐿 = ∑ ∑ 𝑄(𝑗)𝑛

𝐺𝐿 𝜆(𝑗)𝑘𝑛

𝑛𝜖𝑁𝑘𝜖𝐾

          𝑗 𝜖 𝐽 
(44) 

Figure 15 – Grid of values for (x,y) with associated 
weighting variables λ 



 

SOS2 pipeline approximation 

To approximate pressure drop through each 

pipeline 𝑙 connected to the subsea manifold by 

the use of SOS2 formulations, breakpoints 

must be chosen from three dimensions. A grid 

(𝑞𝑙𝑜
𝐿 , 𝑞𝑙𝑔

𝐿 ,𝑞𝑤𝑜
𝐿 ) can be defined given by the 

variables for oil, gas and water flow. For each 

point in the grid, there is associated a 

weighting variable 𝛿(𝑙)𝑘𝑛𝑟 and values for gas, 

oil and water. 𝑄(𝑙)𝑘
𝑂  is the oil flow  value at 

breakpoint 𝑘, 𝑄(𝑙)𝑛
𝐺  is the gas flow value at 

breakpoint 𝑛 and 𝑄(𝑙)𝑟
𝑊  is the water flow value 

at breakpoint 𝑟. Associated with the 

breakpoints 𝑘, 𝑛 and 𝑟 are the values for the 

pressure drop,  𝐹(𝑙)𝑘𝑛𝑟
𝐿 . The pressure drop can 

then be approximated for each pipeline 𝑙 by 

the following equations (55) - (60). 

The formulation will become as below in 

equations (61) - (67), where 𝛾(𝑙)𝑟
𝑅 ,𝛾(𝑙)𝑛

𝑁 , and 

𝛾(𝑙)𝑘
𝐾  are defined as SOS 2 sets. 

𝑞𝑗
𝐺𝐿 = ∑ ∑ 𝑄(𝑗)𝑛

𝐺𝐿 𝜆(𝑗)𝑘𝑛

𝑛𝜖𝑁𝑘𝜖𝐾

          𝑗 𝜖 𝐽 
(45) 

∑ ∑ 𝜆(𝑗)𝑘𝑛

𝑛𝜖𝑁𝑘𝜖𝐾

= 1         𝑗 𝜖 𝐽 
(46) 

𝜆(𝑗)𝑘𝑛 ≥  0  𝑗 𝜖 𝐽   𝑘 𝜖 𝐾   𝑛 𝜖 𝑁 
(47) 

𝜂(𝑗)𝑘
𝐾 = ∑ 𝜆(𝑗)𝑘𝑛

𝑛𝜖𝑁

       𝑗 𝜖 𝐽   𝑘 𝜖 𝐾 
(48) 

𝜂(𝑗)𝑛
𝑁 = ∑ 𝜆(𝑗)𝑘𝑛

𝑘𝜖𝐾

       𝑗 𝜖 𝐽   𝑛 𝜖 𝑁 
(49) 

𝜂(𝑗)𝑘
𝐾              𝑖𝑠 𝑆𝑂𝑆 2 𝑓𝑜𝑟 𝑘           𝑗 𝜖 𝐽   𝑘 𝜖 𝐾 

(50) 

𝜂(𝑗)𝑛
𝑁              𝑖𝑠 𝑆𝑂𝑆 2 𝑓𝑜𝑟 𝑛          𝑗 𝜖 𝐽   𝑛 𝜖 𝑁 

(51) 

𝜂(𝑗)𝑛
𝑁 , 𝜂(𝑗)𝑘

𝐾 ≥  0  𝑗 𝜖 𝐽   𝑘 𝜖 𝐾   𝑛 𝜖 𝑁 
(52) 

𝜆(𝑗)𝑘1 ≤  1 − ∑ 𝑦𝑗𝑙  

𝑙𝜖𝐿

     𝑗𝜖𝐽𝑠   𝑘 𝜖 𝐾 
(53) 

𝜆(𝑗)𝑘1 ≤  1 − 𝑥𝑗            𝑗𝜖𝐽𝑡   𝑘 𝜖 𝐾 
(54) 

Table 14 - Indices 

𝑘 - Breakpoint 

𝑛 - Breakpoint 

𝑟 - Breakpoint 

Table 15 - Sets 

𝐾 - Set of breakpoints for values of 𝑞𝑙𝑜
𝐿  

𝑁 - Set of breakpoints for values of 𝑞𝑙𝑔
𝐿  

𝑅 - Set of breakpoints for values of 𝑞𝑙𝑤
𝐿  

 Table 16 - Parameters 

𝑄(𝑙)𝑘
𝑂  - Value of 𝑞𝑙𝑜

𝐿  at breakpoint 𝑘 

𝑄(𝑙)𝑛
𝐺  - Value of 𝑞𝑙𝑔

𝐿  at breakpoint 𝑛 

𝑄(𝑙)𝑟
𝑊  - Value of 𝑞𝑙𝑤

𝐿  at breakpoint 𝑟 

𝐹(𝑙)𝑘𝑛𝑟
𝐿  - Value of 𝑓𝑙

𝐿 at breakpoint 𝑘, 𝑛 and 𝑟 

Table 17 - Variables 

𝛿(𝑙)𝑘𝑛𝑟 - Weight of breakpoint 𝑘, 𝑛 and 𝑟 for pipeline 𝑙 at 

the subsea manifold 

𝛾(𝑙)𝑘
𝐾  - Sum of weights of breakpoint 𝑛 and 𝑟 for 

breakpoint 𝑘 for pipeline 𝑙 at the subsea manifold 

𝛾(𝑙)𝑛
𝑁  - Sum of weights of breakpoint 𝑘 and 𝑟 for 

breakpoint 𝑛 for pipeline 𝑙 at the subsea manifold 

𝛾(𝑙)𝑟
𝑅  - Sum of weights of breakpoint 𝑘 and 𝑛 for 

breakpoint 𝑟 for pipeline 𝑙 at the subsea manifold 



 

 

 
6. Implementation 

In the sequel we present seven different ways of implementing the optimization formulations. These are 

summarized in the top line of Table 18 and include the standard (black box) approach and six different 

strategies for implementing SmartOpt. This is presented in some detail below. The six SmartOpt approaches 

differ through the choice of component models, which also has a bearing on the chosen optimization 

algorithm. 

If simulators are included directly in the optimization algorithm or approximated by a stand-alone 

interpolation code, it is not possible to use state-of-the-art modelling software. This forces the user to 

implement the model formulation in c++ and solve it using a proper optimization algorithm. 

The black box approach is solved by the state-of-the-art optimization solver called NOMAD which 

implements a derivative free optimization algorithm called Mesh adaptive direct search (MADS). For more 

information about MADS see (Digabel, 2011). The 2-layer technique applies NOMAD on top to decide on 

𝑞𝑙𝑜
𝐿 = ∑ ∑ ∑ 𝑄(𝑙)𝑘

𝑂 𝛿(𝑙)𝑘𝑛𝑟

𝑟𝜖𝑅𝑛𝜖𝑁𝑘𝜖𝐾

       𝑙 𝜖  𝐿 
(55) 

𝑞𝑙𝑔
𝐿 = ∑ ∑ ∑ 𝑄(𝑙)𝑛

𝐺 𝛿(𝑙)𝑘𝑛𝑟

𝑟𝜖𝑅𝑛𝜖𝑁𝑘𝜖𝐾

        𝑙 𝜖  𝐿 
(56) 

𝑞𝑙𝑜
𝐿 = ∑ ∑ ∑ 𝑄(𝑙)𝑟

𝑊 𝛿(𝑙)𝑘𝑛𝑟

𝑟𝜖𝑅

 

𝑛𝜖𝑁𝑘𝜖𝐾

      𝑙 𝜖  𝐿 
(57) 

∑ ∑ ∑ 𝐹(𝑙)𝑘𝑛𝑟
𝐿 𝛿(𝑙)𝑘𝑛𝑟

𝑟𝜖𝑅𝑛𝜖𝑁𝑘𝜖𝐾

= 𝑃𝑆 − 𝑝𝑙
𝑀         𝑙 𝜖  𝐿 

(58) 

∑ ∑ ∑ 𝛿(𝑙)𝑘𝑛𝑟

𝑟𝜖𝑅𝑛𝜖𝑁𝑘𝜖𝐾

 =  1         𝑙 𝜖  𝐿 
(59) 

𝛿(𝑙)𝑘𝑛𝑟  ≥  0           
𝑙 𝜖  𝐿 

 𝑘 𝜖 𝐾       𝑛 𝜖 𝑁       𝑟 𝜖 𝑅 

(60) 

𝛾(𝑙)𝑟
𝑅 = ∑ ∑ 𝛿(𝑙)𝑘𝑛𝑟

𝑛𝜖𝑁𝑘𝜖𝐾

     𝑙 𝜖  𝐿   𝑟 𝜖 𝑅 
(61) 

𝛾(𝑙)𝑛
𝑁 = ∑ ∑ 𝛿(𝑙)𝑘𝑛𝑟

𝑟𝜖𝑅𝑘𝜖𝐾

       𝑙 𝜖  𝐿    𝑛 𝜖 𝑁 
(62) 

𝛾(𝑙)𝑘
𝐾 = ∑ ∑ 𝛿(𝑙)𝑘𝑛𝑟

𝑟𝜖𝑅𝑛𝜖𝑁

       𝑙 𝜖  𝐿    𝑘 𝜖 𝐾 
(63) 

𝛾(𝑙)𝑟
𝑅  𝑖𝑠 𝑆𝑂𝑆 2 𝑓𝑜𝑟 𝑟        𝑙 𝜖  𝐿    𝑟 𝜖 𝑅 

(64) 

𝛾(𝑙)𝑛
𝑁  𝑖𝑠 𝑆𝑂𝑆 2 𝑓𝑜𝑟 𝑛        𝑙 𝜖  𝐿    𝑛 𝜖 𝑁 

(65) 

𝛾(𝑙)𝑘
𝐾  𝑖𝑠 𝑆𝑂𝑆 2 𝑓𝑜𝑟 𝑘         𝑙 𝜖  𝐿    𝑘 𝜖𝐾 

(66) 

𝛾(𝑙)𝑟
𝑅 , 𝛾(𝑙)𝑛

𝑁 , 𝛾(𝑙)𝑘
𝐾  ≥  0           

𝑙 𝜖  𝐿   

𝑘 𝜖 𝐾   𝑛 𝜖 𝑁  𝑟 𝜖 𝑅 

(67) 



the integers and IPOPT (COIN-OR, Ipopt website, 2012), i.e., an interior point methods for the continuous 

variables. For each integer solution, the gradient-based optimization algorithm IPOPT solves the 

continuous optimization problem. Both the first and second order derivatives are computed numerically by 

finite differencing and the quasi-Newton BFGS method.  

Bonmin solves SmartOpt simulation and the two SmartOpt interpolation methods. Bonmin is an open 

source optimization solver within the COIN-OR framework (COIN-OR, Bonmin website, 2012). It is a 

general MINLP solver and as such fits well to the models given here. Bonmin uses IPOPT to solve the 

relaxed NLPs, while a branch and bound option exists for handling discrete variables. The first and second 

order derivatives are computed numerically by finite differencing and the quasi-Newton BFGS method. 

SmartOpt algebraic and SmartOpt SOS 2 can both be implemented in state-of-the-art modelling languages, 

AMPL and Mosel respectively. SmartOpt algebraic are further solved by Bonmin. SmartOpt SOS2 are 

solved by Xpress, a solver developed specifically in combination with Mosel. Xpress Mosel utilize a branch 

and bound algorithm in order to handle discrete decisions and simplex to solve the continuous parts. Xpress 

Mosel is limited to solve LPs and MILPs.  

7. Computational study and results 
Given the capacity for handling gas and water, available gas lift and constant separator pressure, each 

solution approach should find the optimal wellhead pressures and lift gas allocations, as well as routing of 

subsea wells to lines. Six cases are defined for available gas lift, gas and water handling capacities and 

separator pressure in order to compare the results of the solution algorithms and to get a sense of the 

robustness. The variations in these parameters will affect the production rates differently, e.g. increased 

capacity limits allow for more production. An increase in separator inlet pressure will have the opposite 

effect, the pressure difference between the wellhead pressures and the platform pressure will be reduced 

and less fluid can be carried up from the reservoir. 

Table 18 – Implementation strategies 

 
Black 

box 

SmartOpt 

 2-layer Sim. Linear int. Cubic spline Algebrai

c 

SOS2 

Implementation 

language 
C++ AMPL 

MOSE

L 

Optimization 

problem class 
MINLP “simulation” MINLP MILP 

Algorithm MADS 

MADS

+ 

Interior 

point 

B&B +  

Interior point 

B&B + 

Simplex 



Whereas the nonlinear formulations are dependent on an initial solution, and may only provide local optimal 

solutions, the solutions resulting from SmartOpt SOS2 are considered the global optima. Thus, the SOS2 

results are considered optimality benchmarks to evaluate the solution quality of the other methods.  

Apart from SmartOpt SOS2, all approaches are run with six different initial solutions generated for this 

purpose. Figure 16 illustrates production rates provided by the solution methods in total oil production 

rates extracted from the system.  

The best objective function for each case and the variations are provided in the table 19. The variations give 

a measure of the robustness of the solution methods, and are defined as the difference between the best 

and worst objective function values for each case. All values are given as percentage relative to the SOS2 

solutions for ease of comparison. 

In table 20, the best solution times for case 1 are listed only to provide the reader with an approximate 

measure on the efficiency of the different approaches. However, keep in mind that the methods are run 

with both different software and hardware. Thus, in reality the times presented in table 20 cannot be directly 

compared.  

Uniquely different, the methods presented are in truth all only approximations of the reality. For unbiased 

comparison of the methods, the black box model is used to evaluate the feasibility or possibly infeasibility 

Table 19 – Best objective functions and variations given in percentage of SOS2 solution 

    SmartOpt   

 Black box 2-layer Linear int. Cubic spline Algebraic SOS2 

Case 1 84.7± 9.1 % 99.7±18.4 % 99.4± 6.4 % 100.0±0.0 % 102.0±0.3 % 100 % 

Case 2 95.0±21.5 % 99.7±18.7 % 97.8±13.1 % 100.0±0.0 % 102.1±0.2 % 100 % 

Case 3 89.5±15.3 % 99.7±18.9 % 99.0± 7.3 % 100.1±0.0 % 102.1±0.0 % 100 % 

Case 4 92.5±18.3 % 99.8±18.3 % 99.3± 7.8 % 100.0±0.0 % 101.9±0.0 % 100 % 

Case 5 88.0±10.9 % 99.7±18.5 % 97.6± 3.2 % 100.1±0.0 % 102.0±0.1 % 100 % 

Case 6 92.3±17.8 % 99.7±18.0% 98.2± 9.6 % 100.1±0.0 % 101.9±0.0 % 100 % 

Table 20 -  Best solution times for Case 1 

    SmartOpt   

 Black box 2-layer Linear int. Cubic spline Algebraic SOS2 

Time 

(sec) 
237 151 0.72 107 14 463 

Figure 16 – Case 1 production rates  
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of the solutions. The SmartOpt cubic spline solutions prove feasible (sometimes breaking a few pressure 

balances by less than 3 × 10−4 %). To a varying degree, all other solutions are deemed infeasible. SmartOpt-

2 layer, SmartOpt linear interpolation and SmartOpt SOS2 solutions are only slightly infeasible, typically 

breaking the pressure balance restrictions for one or two wells by less than ~0.3 %. The SmartOpt Algebraic 

approach solutions however, break the pressure restrictions by almost 3 %. The reason for these 

infeasibilities is the component simulations approximations. They are generated with the least squares 

method, which means that the some well approximation might end up overestimating the oil production 

for certain wellhead pressures and gas lift allocations, while pipeline approximations at the same time 

underestimate the pressure losses over the pipelines for the resulting flows.  

8. Discussion 
There are many applications where simulators are structured in networks, and where these network 

simulators easily can be broken down into smaller stand-alone components. This is particularly true for 

process simulators. However, the applicability of this optimization approach is quite general. The  SmartOpt 

optimization approach is tested on a realistic petroleum production problem, where the computational study 

shows a significant improvement for the concept compared to a standard black box non-invasive approach. 

The solution quality in terms of oil production is improved by more than 18 %. This is a very large number 

in this context, and will most probably not hold in all applications. Table 21 gives an overview of the pros 

and cons of all presented solution approaches. 

Discrete decisions 

To treat discrete decisions in optimization algorithms is challenging and can be both computationally 

expensive and lead to non-convergence. When the production system network is simulated a black box (4), 

many simulators only allow the optimization algorithm to make queries with discrete values on the routing 

and on/off decisions. This excludes the use of Branch and Bound based algorithms that rely on relaxing the 

integer requirements while solving the sub problems. Gradient information can be attained from the 

network simulator, however not for discrete decision variables. This further enforces a necessity for 

derivative-free optimization algorithms such as Genetic algorithms (GA), Generalized pattern search (GPS) 

or Mesh adaptive direct search (MADS) (Conn, et al., 2009).  

The 2-layer approach splits the solution space into one integer and one continuous subspace. This facilitates 

better utilization of the available gradient information on the continuous variables, and use of continuous 

solvers.  Furthermore, the dimensions of the integer subspace are reduced to only contain the variables that 

are truly derivative free. The 2-layer approach reduces the convergence issues of the standard industry 

approach, which as can be seen in table 19 affect both solution time and quality positively. 

For the reaming SmartOpt approaches, the discrete routing and on/off variables are no longer contained in 

the simulators, they are solely associated with algebraic equations. This advantage enables the optimization 

algorithm to ask for evaluations of non-discrete values on the routing and on/off variables. Furthermore, 

much more information regarding the production network is revealed to the optimization algorithm, thus 

facilitates the use of more gradient information. The problems can then be solved by gradient-based 

algorithms together with branch and bound, which resulted in a beneficial effect on convergence and 

solution time. 

Component simulators 

Rather than the complete production network, several of the SmartOpt alternatives use single well/pipeline 

simulators or proxy’s to estimate first and second order gradients. Thus, another reason for faster 

convergence is the fact that the simulator search are less time demanding due to fewer dimensions in the 

component simulators. An estimate of what will happen to the well flow rate if the well head pressure is 

changed is more predictable than the consequence for the complete production network if one changes the 

same well head pressure, or if one reroutes a well to another pipeline. 



Furthermore, since the dimensions of the component simulators are low, e.g. two and three for the wells 

and pipelines respectively, it is possible to sample the search space upfront and create proxy models. This 

is not possible for the non-invasive approach, as search space usually is too large, as in this case with 24 

continuous variables.  

However, there are some significant challenges related to the SmartOpt approach. It is a more complex task 

to divide the network simulator into components, and to update high-resolution tables and/or proxy models 

for each of them, compared to a single non-invasive implementation. In the non-invasive case where a 

derivative free algorithm is used, it is more and less straightforward to implement an optimization algorithm 

on top of the simulator. For the proposed SmartOpt approach, there is a need for in-depth problem, 

simulator and optimization knowledge. The presented approach is also limited to network simulators that 

are easily decomposed, meaning that applicability to dynamic simulators where components are closely 

interconnected through dynamic behavior is still an open research question. 

Model exactness 

Attention should be paid to the fundamental differences of the SmartOpt simulator approximations. The 

number of data points and the interpolation schemes affects the accuracy of SmartOpt interpolation. Based 

on high-resolution tables and interpolation, both SmartOpt interpolation approaches provide realistic 

portrayals of the production network. The fast solution time and satisfactory accuracy of the interpolating 

codes might therefore undermine inclusion of the simulators directly, which is associated with considerable 

interfacing issues and slowing down of the algorithm.  

A SOS2 formulation is highly dependent on the resolution in the data tables. Both acceptable accuracy and 

satisfactory solution times are obtained here. A more detailed discretization lead to a better match with the 

realities of the problem, but also adversely affects solution time as the number of variables increase rapidly.  

Algebraic proxy models have been created based on human visual inspections combined with least square 

fits, which is discretionary at best. Solutions are proven slightly infeasible, undermining the accuracy of the 

approximations used. 

Solution time and scalability 

SmartOpt linear interpolation approach proves fast, providing results in less than a second. The SmartOpt 

algebraic approach provides solutions within a few seconds, whereas the SmartOpt cubic spline and the 2-

layer approaches provide solutions within a couple of minutes. SmartOpt SOS2 and black box are rather 

slow and solve the base case after 463 seconds and 237 seconds respectively.  

Thus, the fastest SmartOpt solution times sees a significant speed-up of up to two orders of magnitude 

compared to industry standard approach. This is without exploring the option of solving the component 

simulators in parallel. The black box derivative free algorithm is also easily parallelized, but it cannot be 

parallelized on a component level. This tells us, not surprisingly, that much is gained by including explicit 

structural constraints as much as possible. The time it takes for an algorithm to output results might affect 

its applicability. No doubt low solution time is greatly appreciated, and in some situations crucial. Fast 

algorithms encourage real-time use, and can be a useful addition to decision support systems. Due to 

implementations issues the SmartOpt simulation approach, including simulators directly into the 

optimization, is not tested. The presumption is that this modification will negatively affect solution time.  

It is straightforward to scale the problem formulations up to 30+ wells. However, it becomes more 

challenging to solve the optimization problem. Some of the methods will see the solution speed decrease 

extensively with an increase in network components, as pipes and wells. The increased number of decision 

variables that follows a larger production network is likely to slow down the derivative-free black box 

approach. Evaluations of more proxy models will have a noticeable effect on the solution speed of SmartOpt 

algebraic. The SOS2 formulation will also be affected as the number of variables increases rapidly with more 

SOS2 formulations. SmartOpt SOS2 is designed to solve the global optimization problem, really only 

suitable for relatively low dimensional problems and would certainly be inefficient when local optima suffice. 



SmartOpt interpolations methods scale better as the interpolations are quick, more interpolation-

simulations must be run, but with a minimal effect on total solution speed.  

Tables of higher resolutions affect the SOS2 formulation approach significantly, as the number of variables 

increase rapidly with the amount of data points. All remaining methods scale better in such situations, as 

more data points hardly affect the simulator approximation evaluations and solution speed. If exploring the 

option of solving the component simulator in parallel, solution times should see a speed up. This applies 

for all SmartOpt methods.  

Solution quality 

Only the SOS2 formulation guarantees a global solution. The solution will lay in-between the points of the 

data tables on linear segments generated by the SOS2 formulation, and the resolution will clearly affect the 

accuracy of this optimal solution relative to the “real” optimal solution. The SOS2 solutions are used as 

benchmarks in the remaining discussions.  

When only local optima are possible, competing algorithms are likely to converge to different solutions. In 

this computational study, the interpolation approaches performs well. Cubic spline approximations prove 

superior and provide the optimal solutions for all cases. SmartOpt linear interpolation obtain solutions that 

averages on 99% of the global optima. Maybe more surprisingly, the 2-layer approach provides some 

solutions for each that are slightly closer to the global optima. Clearly sensitive to the exactness of the proxy 

models each solution of the SmartOpt algebraic approach overestimates production and surpasses the 

optimal objective function value. The black box optimization performs consistently worse, where the best 

solution averages on 90% of global optima. 

Robustness 

Robustness is an important issue when analyzing optimization solution techniques. Since the underlying 

problem is non-convex, solutions obtained by local search algorithms cannot be taken as guaranteed global 

optimal solutions. As the name indicates, local solutions will be found with no quality measure. Cubic spline 

approximations provide solutions with no variation across starting points, proving to be highly reliable and 

robust. Even algebraic proxy models provide an average variation across all cases for all starting points of 

insignificant 0.11 %. However, robustness is the biggest challenge of linear interpolation approximations, 

which provide solutions with an average variation of 8 %. It is highly recommended that this algorithm is 

run with a suitable number of start solutions, found through random generation or more sophisticated 

strategies. Since this method at its current form takes less than a second to solve, solving the problem for 

numerous starting points is not a hinder. 2-layer- and black box optimization seem particularly sensitive to 

initial solutions, with variations that averages at 18 % and 15 % respectively. Long solution times makes 

running the two latter models for a large amount of starting points less attractive.  

Robustness considering the physical properties of the system is also an important issue. Situations may occur 

where there are abrupt changes in production data, e.g. pipelines may experience sudden changes in pressure 

loss due to changes in flow regimes. A valuable quality of algebraic proxy models is the sophisticated 

handling of such situation. Convergence is ensured through the division of space and creation of two 

functions approximating each distinct part of the underlying nonlinearity, where binary variables are handled 

through branch and bound. SmartOpt cubic spline also handles such situations very elegantly, spline 

interpolation techniques smoothen out the transitions and one avoids jumps in the function derivatives. 

The opposite is true for the SmartOpt linear interpolation, which struggles in the situation described above. 

Linear interpolation is not very precise and the resulting function is not differentiable at the discrete points. 

This can cause problems for a numerical solver, which is highly dependent on the direction given by the 

derivatives. Discontinuous derivatives can cause a loop of hopping back and forth between the two distinct 

parts and hinder convergence. 

Modelling effort 



SOS 2 formulations are widely used in optimization within several industries, some optimization software 

(Xpress Mosel is an example) even include specific SOS2 handling, making the implementation 

straightforward. For the other approaches, interfacing relevant simulators into the optimization algorithm, 

or creating the mimicking interpolation codes and develop suitable schemes for acquiring derivative 

information poses implementation challenges. Generation of the proxy models on the other hand, is time 

consuming. Data tables of more than three to four dimensions are particularly challenging, as visualization 

becomes difficult. Trade-off between model quality and development time becomes a key issue.  

Automation 

The frequency of changing data depends on the specific asset and corresponding reservoir dynamics. 

Automatic fine-tuning of the simulators after new information is available can be taken as given. Including 

automatic updating of the data files is an easy task, warranting that all the solution methods studied here are 

well suited for and can handle such updated information. 

Furthermore, new equipment or components might be installed on the asset. This can be handled in all the 

models, although they will require varying amount of effort. Updating and generation of proxy models will 

require some effort if new well and pipeline components are installed. The other methods will only need 

updating of the structure of the model, by including the additional component and taking care to add its 

contribution into the relevant equations. In conclusion, all methods are suited for automatic updating and 

fit for being included in decision support systems. 

9. Conclusion 
In this paper we present a group of algorithms that explores the natural structure of a network simulator, 

referred to as SmartOpt approaches, to find the best possible simulator settings given a predefined objective. 

The methods are demonstrated on a realistic petroleum production problem and show speed-ups of up to 

two orders of magnitude, compared to a standard approach. The solution quality is also improved.  

Table 21 – Discussion summary 

    SmartOpt   

 Black box 2-layer Linear int. Cubic spline Algebraic SOS2 

Discrete 

decisions ÷ + + + + + + + + + 

Component 

simulators ÷ ÷ + + + + + + + + 

Model  

exactness ---------- --------- + + + ÷ + 

Solution time 

and scalability ÷ ÷ + + + + + ÷ 

Solution  

quality + + + + + + + + + 

Robustness ÷ ÷ ÷ + + + + + + 

Modelling  

effort + + + + ÷ + + 

Automation + + + + + + + + + + + 



Black box optimization is clearly inferior in terms of all standards except simplicity and ease of 

implementation. It does not facilitate a relaxation of integer variables, and the formulation requires a 

derivative free search algorithm, which often leads to long solution times or non-convergence. This leads 

to concluding that better solution methods are available and the authors has developed some of those.  

In its most simple form, SmartOpt splits the optimization problem into two subspaces, one continuous and 

one integer. Such division facilitates the use of optimization algorithms in two layers, which speeds-up the 

solution times and improves the solution qualities. The more sophisticated SmartOpt approach also divide 

the one black box simulator into several black boxes depicting smaller and divisible parts of the system. 

Simulators are approximated and included in the algorithms as high-resolutions tables and interpolations 

schemes, algebraic proxy models or piecewise linearization approximations through SOS2 formulations. 

The latter guarantees global optimal solutions to the linear approximations performed; the formulation is 

robust and provides high quality solutions. Proxy models tend to cause infeasible solutions and require a 

significant amount of pre-solving effort. Simulators approximated through high resolution tables and 

interpolation result in high quality solutions. Cubic spline approximations appears independent of initial 

starting point and provide the optimal solution within just over a minute. Linear interpolation solve within 

in less than a second, although the solutions are inferior and it is fairly reliant on initial solution point.  

The authors believe the advantages of the SmartOpt approach will improve further, as the size of the 

network grows. Potentially, it should be possible to handle problem instances with 10–100 times more 

optimization variables, than what is possible today. 
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