Tutorial AMPL Parte III

Eduardo Camponogara

Department of Automation and Systems Engineering
Federal University of Santa Catarina
October 2016

Example 5

Example 6

Example 7

OptIntro

LExample 5

Summary

Example 5

Example 6

Example 7

Integer Programming - Example 5

AMPL Model: The decision variables $x_{1}, x_{2}, x_{3}, x_{4}$ are binary. We wish to maximize the weighted sum:

$$
4 x_{1}+3 x_{2}+2 x_{3}+1 x_{4}
$$

However, these variables are subject to a number of rules/conditions:

1. $x_{1}=1$ or $x_{2}=1$ (or);
2. $x_{1}^{2}=x_{2}+x_{3}$;
3. $x_{2}=1$ only if $x_{4}=1$ (implication);
4. only two variables may assume value 1 simultaneously.

Task: model the problem as an integer program.

Integer Programming - Example 5

AMPL Model: The decision variables $x_{1}, x_{2}, x_{3}, x_{4}$ are binary. We wish to maximize the weighted sum:

$$
4 x_{1}+3 x_{2}+2 x_{3}+1 x_{4}
$$

However, these variables are subject to a number of rules/conditions:

1. $x_{1}=1$ or $x_{2}=1$ (or);
2. $x_{1}^{2}=x_{2}+x_{3}$;
3. $x_{2}=1$ only if $x_{4}=1$ (implication);
4. only two variables may assume value 1 simultaneously.

Task: model the problem as an integer program.

Integer Programming - Example 5

AMPL Model: The decision variables $x_{1}, x_{2}, x_{3}, x_{4}$ are binary. We wish to maximize the weighted sum:

$$
4 x_{1}+3 x_{2}+2 x_{3}+1 x_{4}
$$

However, these variables are subject to a number of rules/conditions:

$$
\begin{aligned}
& \text { 1. } x_{1}=1 \text { or } x_{2}=1 \text { (or); } \\
& \text { 2. } x_{1}^{2}=x_{2}+x_{3} ; \\
& \text { 3. } x_{2}=1 \text { only if } x_{4}=1 \text { (implication); }
\end{aligned}
$$

4. only two variables may assume value 1 simultaneously.

Task: model the problem as an integer program.

Integer Programming - Example 5

Mathematical Programming Model:

$$
\begin{aligned}
\max & 4 x_{1}+3 x_{2}+2 x_{3}+1 x_{4} \\
\text { s.t. }: & x_{1}+x_{2} \geq 1 \\
& x_{1}=x_{2}+x_{3} \\
& x_{2} \leq x_{4} \\
& x_{1}+x_{2}+x_{3}+x_{4} \leq 2 \\
& x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\}
\end{aligned}
$$

Integer Programming - Example 5

example5.mod:

```
\# Part 1: Variable Declaration (var, set, param, etc)
set \(K=1 . .4\) by 1 ;
var \(\times\{k\) in \(K\}\) binary;
param \(c\{k\) in \(K\}\);
let \(\{\mathrm{k}\) in K\(\} \mathrm{c}[\mathrm{k}]:=\operatorname{card}(\mathrm{K})-\mathrm{k}+1\);
```

\# Part 2: Objective Function
maximize objective: $\operatorname{sum}\{\mathrm{k}$ in K$\} c[\mathrm{k}]^{*} x[\mathrm{k}]$;
\# Part 3: Constraints
subject to R1: $x[1]+x[2]>=1$;
subject to R2: $x[1]=x[2]+x[3]$;
subject to R3: $x[2]<=x[4]$;
subject to R4: $x[1]+x[2]+x[3]+x[4]<=2$;

Integer Programming - Example 5

example5.mod:

```
\# Part 1: Variable Declaration (var, set, param, etc)
set \(\mathrm{K}=1 . .4\) by 1 ;
var \(x\{k\) in \(K\}\) binary;
param \(c\{k\) in \(K\}\);
let \(\{k\) in \(K\} c[k]:=\operatorname{card}(K)-k+1\);
\# Part 2: Objective Function
maximize objective: \(\operatorname{sum}\{\mathrm{k}\) in K\(\} c[k]^{*} \times[\mathrm{k}]\);
```

subject to R1: $x[1]+x[2]>=1$;
subject to R2: $x[1]=x[2]+x[3]$;
subject to R3: $x[2]<=x[4]$;
subject to $R 4: x[1]+x[2]+x[3]+x[4]<=2$;

Integer Programming - Example 5

example5.mod:

\# Part 1: Variable Declaration (var, set, param, etc)
set $K=1 . .4$ by 1 ;
var $x\{k$ in $K\}$ binary;
param $c\{k$ in $K\}$;
let $\{\mathrm{k}$ in K$\} \mathrm{c}[\mathrm{k}]:=\operatorname{card}(\mathrm{K})-\mathrm{k}+1$;
\# Part 2: Objective Function
maximize objective: $\operatorname{sum}\{\mathrm{k}$ in K$\} \mathrm{c}[\mathrm{k}]^{*} \mathrm{x}[\mathrm{k}]$;
\# Part 3: Constraints
subject to R1: $x[1]+x[2]>=1$;
subject to R2: $x[1]=x[2]+x[3]$;
subject to R3: $x[2]<=x[4]$;
subject to R4: $x[1]+x[2]+x[3]+x[4]<=2$;
OptIntro

LExample 6

Summary

Example 5

Example 6

Example 7

Integer Programming - Example 6

Consider the problem of Example 3:

$$
\begin{aligned}
\max & \sum_{n=1}^{N} p_{n} \cdot x_{n} \\
\text { s.t. : } & \sum_{n=1}^{N} \frac{1}{r_{n}} \cdot x_{n} \leq T \\
& 0 \leq x_{n} \leq d_{n}, n=1 \ldots N
\end{aligned}
$$

Add the following constraint:

- If more than 300 items of product 2 are manufactured weekly, then at least 200 items of product 1 must be produced.
- Also, a client will pay a bonus of $B_{4}=7$ for each package of 10 items of product 4 delivered weekly.

Integer Programming - Example 6

Consider the problem of Example 3:

$$
\begin{aligned}
\max & \sum_{n=1}^{N} p_{n} \cdot x_{n} \\
\text { s.t. : } & \sum_{n=1}^{N} \frac{1}{r_{n}} \cdot x_{n} \leq T \\
& 0 \leq x_{n} \leq d_{n}, n=1 \ldots N
\end{aligned}
$$

Add the following constraint:

- If more than 300 items of product 2 are manufactured weekly, then at least 200 items of product 1 must be produced.
- Also, a client will pay a bonus of $B_{4}=7$ for each package of 10 items of product 4 delivered weekly.

Integer Programming - Example 6

Mathematical programming model:

$$
\begin{aligned}
\max & B_{4} \cdot w+\sum_{n=1}^{4} p_{n} \cdot x_{n} \\
\text { s.t. : } & \sum_{n=1}^{4} \frac{1}{r_{n}} \cdot x_{n} \leq T \\
& 0 \leq x_{n} \leq d_{n}, n=1 \ldots 4 \\
& 300 \cdot z \leq x_{2} \leq 300+M \cdot z \\
& 200 \cdot z \leq x_{1} \\
& 10 \cdot w \leq x_{4} \\
& x \in \mathbb{R}^{4}, z \in\{0,1\} \text { and } w \in \mathbb{Z}
\end{aligned}
$$

Integer Programming - Example 6

Taking as a starting point the AMPL models for Example 3, develop the files:

- example6.dat,
- example6.run, and
- example6.mod

Implement the required extension in example6.mod to account for the new specifications.
OptIntro

LExample 7

Summary

Example 5

Example 6

Example 7

Integer Programming - Example 7

Branch-and-Bound Algorithm:

- Consider Problem 6 described above. Notice that this problem has binary and integer variables.
- Using the AMPL code, relax the integrality constraints and apply the Branch-and-Bound Algorithm.
- Generate the B-\&-B tree iteratively.

AMPL Tutorial

- Thank you for attending this lecture!!!

