
OptIntro 1 / 13

Tutorial AMPL
Parte III

Eduardo Camponogara

Department of Automation and Systems Engineering
Federal University of Santa Catarina

October 2016



OptIntro 2 / 13

Summary

Example 5

Example 6

Example 7



OptIntro 3 / 13

Example 5

Summary

Example 5

Example 6

Example 7



OptIntro 4 / 13

Example 5

Integer Programming – Example 5

AMPL Model: The decision variables x1, x2, x3, x4 are binary. We
wish to maximize the weighted sum:

4x1 + 3x2 + 2x3 + 1x4

However, these variables are subject to a number of
rules/conditions:

1. x1 = 1 or x2 = 1 (or);

2. x21 = x2 + x3;

3. x2 = 1 only if x4 = 1 (implication);

4. only two variables may assume value 1 simultaneously.

Task: model the problem as an integer program.



OptIntro 4 / 13

Example 5

Integer Programming – Example 5

AMPL Model: The decision variables x1, x2, x3, x4 are binary. We
wish to maximize the weighted sum:

4x1 + 3x2 + 2x3 + 1x4

However, these variables are subject to a number of
rules/conditions:

1. x1 = 1 or x2 = 1 (or);

2. x21 = x2 + x3;

3. x2 = 1 only if x4 = 1 (implication);

4. only two variables may assume value 1 simultaneously.

Task: model the problem as an integer program.



OptIntro 4 / 13

Example 5

Integer Programming – Example 5

AMPL Model: The decision variables x1, x2, x3, x4 are binary. We
wish to maximize the weighted sum:

4x1 + 3x2 + 2x3 + 1x4

However, these variables are subject to a number of
rules/conditions:

1. x1 = 1 or x2 = 1 (or);

2. x21 = x2 + x3;

3. x2 = 1 only if x4 = 1 (implication);

4. only two variables may assume value 1 simultaneously.

Task: model the problem as an integer program.



OptIntro 5 / 13

Example 5

Integer Programming – Example 5

Mathematical Programming Model:

max 4x1 + 3x2 + 2x3 + 1x4

s.t. : x1 + x2 ≥ 1

x1 = x2 + x3

x2 ≤ x4

x1 + x2 + x3 + x4 ≤ 2

x1, x2, x3, x4 ∈ {0, 1}



OptIntro 6 / 13

Example 5

Integer Programming – Example 5

example5.mod:

# Part 1: Variable Declaration (var, set, param, etc)
set K = 1..4 by 1;
var x{k in K} binary;
param c{k in K};
let {k in K} c[k] := card(K)-k+1;
# Part 2: Objective Function
maximize objective: sum{k in K} c[k]*x[k];
# Part 3: Constraints
subject to R1: x[1] + x[2] >= 1;
subject to R2: x[1] = x[2] + x[3];
subject to R3: x[2] <= x[4];
subject to R4: x[1] + x[2] + x[3] + x[4] <=2;



OptIntro 6 / 13

Example 5

Integer Programming – Example 5

example5.mod:

# Part 1: Variable Declaration (var, set, param, etc)
set K = 1..4 by 1;
var x{k in K} binary;
param c{k in K};
let {k in K} c[k] := card(K)-k+1;
# Part 2: Objective Function
maximize objective: sum{k in K} c[k]*x[k];
# Part 3: Constraints
subject to R1: x[1] + x[2] >= 1;
subject to R2: x[1] = x[2] + x[3];
subject to R3: x[2] <= x[4];
subject to R4: x[1] + x[2] + x[3] + x[4] <=2;



OptIntro 6 / 13

Example 5

Integer Programming – Example 5

example5.mod:

# Part 1: Variable Declaration (var, set, param, etc)
set K = 1..4 by 1;
var x{k in K} binary;
param c{k in K};
let {k in K} c[k] := card(K)-k+1;
# Part 2: Objective Function
maximize objective: sum{k in K} c[k]*x[k];
# Part 3: Constraints
subject to R1: x[1] + x[2] >= 1;
subject to R2: x[1] = x[2] + x[3];
subject to R3: x[2] <= x[4];
subject to R4: x[1] + x[2] + x[3] + x[4] <=2;



OptIntro 7 / 13

Example 6

Summary

Example 5

Example 6

Example 7



OptIntro 8 / 13

Example 6

Integer Programming – Example 6

Consider the problem of Example 3:

max
N∑

n=1

pn · xn

s.t. :
N∑

n=1

1

rn
· xn ≤ T

0 ≤ xn ≤ dn, n = 1 . . .N

Add the following constraint:

I If more than 300 items of product 2 are manufactured weekly, then at
least 200 items of product 1 must be produced.

I Also, a client will pay a bonus of B4 = 7 for each package of 10 items of
product 4 delivered weekly.



OptIntro 8 / 13

Example 6

Integer Programming – Example 6

Consider the problem of Example 3:

max
N∑

n=1

pn · xn

s.t. :
N∑

n=1

1

rn
· xn ≤ T

0 ≤ xn ≤ dn, n = 1 . . .N

Add the following constraint:

I If more than 300 items of product 2 are manufactured weekly, then at
least 200 items of product 1 must be produced.

I Also, a client will pay a bonus of B4 = 7 for each package of 10 items of
product 4 delivered weekly.



OptIntro 9 / 13

Example 6

Integer Programming – Example 6

Mathematical programming model:

max B4 · w +
4∑

n=1

pn · xn

s.t. :
4∑

n=1

1

rn
· xn ≤ T

0 ≤ xn ≤ dn, n = 1 . . . 4

300 · z ≤ x2 ≤ 300 + M · z
200 · z ≤ x1

10 · w ≤ x4

x ∈ R4, z ∈ {0, 1} and w ∈ Z



OptIntro 10 / 13

Example 6

Integer Programming – Example 6

Taking as a starting point the AMPL models for Example 3, develop the
files:

I example6.dat,

I example6.run, and

I example6.mod

Implement the required extension in example6.mod to account for the

new specifications.



OptIntro 11 / 13

Example 7

Summary

Example 5

Example 6

Example 7



OptIntro 12 / 13

Example 7

Integer Programming – Example 7

Branch-and-Bound Algorithm:

I Consider Problem 6 described above. Notice that this problem has
binary and integer variables.

I Using the AMPL code, relax the integrality constraints and apply
the Branch-and-Bound Algorithm.

I Generate the B-&-B tree iteratively.



OptIntro 13 / 13

Example 7

AMPL Tutorial

I Thank you for attending this lecture!!!


