◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

Integer Programming: Branch-&-Bound Algorithm

Eduardo Camponogara

Department of Automation and Systems Engineering Federal University of Santa Catarina

October 2016

Introduction

Branch-and-Bound Algorithm

Branch-&-Bound Example

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Sumário

Introduction

Branch-and-Bound Algorithm

Branch-&-Bound Example

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Sumário

Introduction

Branch-and-Bound Algorithm

Branch-&-Bound Example

"Branch-and-bound" (B&B) is a kind of divide and conquer strategy for mixed-integer linear programming:

- 1. Divide P in an equivalent set of subproblems $\{SP_k\}$.
- 2. Solve the subproblems.
- 3. Obtain a solution for P from the solutions for $\{SP_k\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

"Branch-and-bound" (B&B) is a kind of divide and conquer strategy for mixed-integer linear programming:

- 1. Divide *P* in an equivalent set of subproblems $\{SP_k\}$.
- 2. Solve the subproblems.
- 3. Obtain a solution for P from the solutions for $\{SP_k\}$.

"Branch-and-bound" (B&B) is a kind of divide and conquer strategy for mixed-integer linear programming:

- 1. Divide *P* in an equivalent set of subproblems $\{SP_k\}$.
- 2. Solve the subproblems.
- 3. Obtain a solution for P from the solutions for $\{SP_k\}$.

"Branch-and-bound" (B&B) is a kind of divide and conquer strategy for mixed-integer linear programming:

- 1. Divide *P* in an equivalent set of subproblems $\{SP_k\}$.
- 2. Solve the subproblems.
- 3. Obtain a solution for *P* from the solutions for $\{SP_k\}$.

- The divisions are performed iteratively, such that the subproblems are easier to solve.
- Eliminate/Discard subproblems by implicit enumeration.
 - That is, a subproblem is discarded if it can be proven that it cannot produce the optimal solution.

Divide and Conquer

Divide and Conquer

Consider the problem:

$$P: z = \max \{c^{\mathrm{T}}x : x \in S\}$$

How do we "break" *P* in small subproblems, and then recombine their solutions into a solution for the original problem.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Divide and Conquer

Divide and Conquer

Consider the problem:

$$P: z = \max \{c^{\mathrm{T}}x : x \in S\}$$

How do we "break" P in small subproblems, and then recombine their solutions into a solution for the original problem.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Divide and Conquer

Divide and Conquer

Proposition

- Let $S = S_1 \cup \ldots \cup S_K$ be a decomposition of S in K subsets.
- Let also $z^k = \max\{c^T x : x \in S_k\}$ for $k = 1, \dots, K$.
- Then, $z = \max\{z^k : k = 1, ..., K\}$.

A divide-and-conquer strategy can be illustrated with an enumeration tree (explicit).

Divide and Conquer

Divide and Conquer

Proposition

- Let $S = S_1 \cup \ldots \cup S_K$ be a decomposition of S in K subsets.
- Let also $z^k = \max\{c^T x : x \in S_k\}$ for $k = 1, \dots, K$.
- Then, $z = \max\{z^k : k = 1, ..., K\}$.

A divide-and-conquer strategy can be illustrated with an enumeration tree (explicit).

Divide and Conquer

Divide and Conquer

Proposition

- Let $S = S_1 \cup \ldots \cup S_K$ be a decomposition of S in K subsets.
- Let also $z^k = \max\{c^{\mathrm{T}}x : x \in S_k\}$ for $k = 1, \dots, K$.
- Then, $z = \max\{z^k : k = 1, ..., K\}$.

A divide-and-conquer strategy can be illustrated with an enumeration tree (explicit).

Divide and Conquer

Explicit Enumeration

For $S \subseteq \{0,1\}^3$ the enumeration tree is build as follows.

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

Divide and Conquer

Explicit Enumeration Tree

• Clearly $S = S_0 \cup S_1$, such that:

•
$$S_0 = \{x \in S : x_1 = 0\}$$
 e

•
$$S_1 = \{x \in S : x_1 = 1\}.$$

Divide each subproblem em even smaller subproblems:

•
$$S_0 = S_{00} \cup S_{01}$$
 and

• $S_1 = S_{10} \cup S_{11}$, where $S_{i_1i_2} = \{x \in S_{i_1} : x_2 = i_2\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ◆○◇

Divide and Conquer

Explicit Enumeration Tree

- Clearly $S = S_0 \cup S_1$, such that:
 - $S_0 = \{x \in S : x_1 = 0\}$ e

•
$$S_1 = \{x \in S : x_1 = 1\}.$$

Divide each subproblem em even smaller subproblems:

•
$$S_0 = S_{00} \cup S_{01}$$
 and

•
$$S_1 = S_{10} \cup S_{11}$$
, where $S_{i_1i_2} = \{x \in S_{i_1} : x_2 = i_2\}$.

Divide and Conquer

Explicit Enumeration

Divide and Conquer

Explicit Enumeration

Divide and Conquer

Explicit Enumeration

- The above figure shows a complete enumeration tree.
- ► A leaf of the tree $S_{i_1i_2i_3}$ is nonempty if, and only if, $x = (i_1, i_2, i_3) \in S$.
- The leaves correspond to the candidate solutions.

Implicit Enumeration

Implicit Enumeration

Complete enumeration is not viable for practical problems.

▶ We should use bound for {z^k} in an effective way, upper bounds (dual) and lower bounds (primal).

Implicit Enumeration

Implicit Enumeration

- Complete enumeration is not viable for practical problems.
- ► We should use bound for {z^k} in an effective way, upper bounds (dual) and lower bounds (primal).

Implicit Enumeration

Implicit Enumeration

Proposition Let:

- $S = S_1 \cup \ldots \cup S_K$ be a decomposition of S in K subsets.
- ▶ $z^k = \max\{c^T x : x \in S_k\}$ are optimal values for k = 1, ..., K.

Let:

- \overline{z}^k be an upper bound for z^k .
- \underline{z}^k a lower bound for z^k .

Then:

- a) $\overline{z} = \max{\{\overline{z}^k : k = 1, \dots, K\}}$ defines an upper bound for z.
- b) $\underline{z} = \max{\underline{z}^k : k = 1, ..., K}$ defines a lower bound for z.

Implicit Enumeration

Implicit Enumeration

Proposition Let:

- $S = S_1 \cup \ldots \cup S_K$ be a decomposition of S in K subsets.
- ▶ $z^k = \max\{c^T x : x \in S_k\}$ are optimal values for k = 1, ..., K.

Let:

- \overline{z}^k be an upper bound for z^k .
- \underline{z}^k a lower bound for \underline{z}^k .

Then:

- a) $\overline{z} = \max{\{\overline{z}^k : k = 1, ..., K\}}$ defines an upper bound for z.
- b) $\underline{z} = \max{\{\underline{z}^k : k = 1, \dots, K\}}$ defines a lower bound for z.

Implicit Enumeration

Implicit Enumeration

Proposition Let:

- $S = S_1 \cup \ldots \cup S_K$ be a decomposition of S in K subsets.
- ▶ $z^k = \max\{c^T x : x \in S_k\}$ are optimal values for k = 1, ..., K.

Let:

- \overline{z}^k be an upper bound for z^k .
- \underline{z}^k a lower bound for \underline{z}^k .

Then:

a) $\overline{z} = \max{\{\overline{z}^k : k = 1, \dots, K\}}$ defines an upper bound for z.

b) $\underline{z} = \max{\{\underline{z}^k : k = 1, \dots, K\}}$ defines a lower bound for z.

Implicit Enumeration

Implicit Enumeration

Proposition Let:

- $S = S_1 \cup \ldots \cup S_K$ be a decomposition of S in K subsets.
- ▶ $z^k = \max\{c^T x : x \in S_k\}$ are optimal values for k = 1, ..., K.

Let:

- \overline{z}^k be an upper bound for z^k .
- \underline{z}^k a lower bound for \underline{z}^k .

Then:

a) z̄ = max{z̄^k : k = 1,...,K} defines an upper bound for z.
b) z = max{z^k : k = 1,...,K} defines a lower bound for z.

Implicit Enumeration

Branch-and-Bound Algorithm

Let S be the initial set containing all problem solutions, ans assume that lb = 13 is the lower bound and ub = 27 is the upper bound.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Implicit Enumeration

Cut Node by Optimality

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Implicit Enumeration

Node Cannot Be Fathomed

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Implicit Enumeration

Implicit Enumeration

Three rules for cutting tree branches:

- i) By optimality: $z_t = \max\{c^T x : x \in S_t\}$ has been solved.
- ii) By bounding: $\overline{z}_t < \underline{z}$.
- iii) By infeasibility: $S_t = \emptyset$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Sumário

Introduction

Branch-and-Bound Algorithm

Branch-&-Bound Example

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

The branch-and-bound search will be illustrated in the following problem:

$$5: z = \max \begin{array}{ccc} 4x_1 & -x_2 \\ \text{s.t.}: & 7x_1 & -2x_2 & \leqslant & 14 \\ & & x_2 & \leqslant & 3 \\ & & 2x_1 & -2x_2 & \leqslant & 3 \end{array}$$

onde $x \in \mathbb{Z}^2_+$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Bounding

The first upper bound is obtained by solving the linear relaxation, R(S).

- It produces $\overline{z} = \frac{59}{7}$ at $(\overline{x}_1, \overline{x}_2) = (\frac{20}{7}, 3)$.
- We assume that $\underline{z} = -\infty$.

Branching

If $\underline{z} < \overline{z}$, S is broken in two subproblems.

Break S according with one fractional variable:

$$S_1 = S \cap \{x : x_j \leq \lfloor \overline{x}_j \rfloor\}$$

$$S_2 = S \cap \{x : x_j \geq \lceil \overline{x}_j \rceil\}$$

- Clearly, $S = S_1 \cup S_2$.
- The list of active nodes becomes $L = \{S_1, S_2\}$.

Branching

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Choosing a Node

- The list of active nodes $L = \{S_1, S_2\}$ contains two subsets.
- Arbitrarily, node S_1 is chosen.

Bounding

We solve the relaxation $R(S_1)$, meaning the LP:

$$S_{1}: \ \overline{z}_{1} = \max \quad 4x_{1} \quad -x_{2}$$

s.t.:
$$7x_{1} \quad -2x_{2} \leqslant 14$$
$$x_{2} \leqslant 3$$
$$2x_{1} \quad -2x_{2} \leqslant 3$$
$$x_{1} \quad \leqslant 2$$
$$x \in \mathbb{Z}_{+}^{2}$$

for which the optimal solution is $(x_1^1, x_2^1) = (2, \frac{1}{2})$ which induces an upper bound $\overline{z} = \frac{15}{2}$.

Branching

• Breaking S_1 in two sets:

$$S_{11} = S_1 \cap \{x : x_2 \leq 0\}$$

$$S_{12} = S_1 \cap \{x : x_2 \geq 1\}$$

make the active-node list become $L = \{S_2, S_{11}, S_{12}\}$.

Branch-&-Bound Example

Branch-&-Bound Application

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Branching Arbitrarily we choose node S_2 from the active list $L = \{S_{11}, S_{12}, S_2\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bounding

Solving the linear relaxation $R(S_2)$:

$$S_{2}: z_{2} = \max \quad 4x_{1} \quad -x_{2}$$

s.t.: $7x_{1} \quad -2x_{2} \leqslant 14$
 $x_{2} \leqslant 3$
 $2x_{1} \quad -2x_{2} \leqslant 3$
 $x_{1} \quad \geqslant 3$
 $x \in \mathbb{Z}_{+}^{2}$

Since $R(S_2)$ is infeasible ($\overline{z}_2 = -\infty$), node S_2 is cut off.

Choosing a node

The list of active nodes has now become $L = \{S_{11}, S_{12}\}$.

• Arbitrarily we chose node S_{12} .

Bounding

- We solve the relaxation $R(S_{12})$ with feasible space $S_{12} = S \cap \{x : x_1 \leq 2 \text{ e } x_2 \ge 1\}.$
- ► The solution x
 ₁₂ = (2, 1) is obtained, producing the upper bound z
 ₁₂ = 7.
- This solution R(S₁₂) is integer, thus a lower bound was obtained:
 - ► The value <u>z₁₂ = 7</u> can be propagated throughout the branch-and-bound tree.
- Consequently S_{12} is cut off by optimality.

Bounding

- We solve the relaxation $R(S_{12})$ with feasible space $S_{12} = S \cap \{x : x_1 \leq 2 \text{ e } x_2 \ge 1\}.$
- ► The solution x
 ₁₂ = (2, 1) is obtained, producing the upper bound z
 ₁₂ = 7.
- This solution R(S₁₂) is integer, thus a lower bound was obtained:
 - ► The value <u>Z₁₂ = 7</u> can be propagated throughout the branch-and-bound tree.
- Consequently S_{12} is cut off by optimality.

A D N A B N A B N A B N A B N A C A

Branch-&-Bound Example

Branch-&-Bound Application

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 - のへで

Branch-&-Bound Example

Branch-&-Bound Application

Choose a node Only S_{11} is an active node.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Bounding

- Notice that $S_{11} = S \cap \{x : x_1 \leq 2, x_2 = 0\}.$
- ► The solution to the relaxation R(S₁₁) is x̄₁₁ = (³/₂, 0), which produces an upper bound z̄₁₁ = 6.
- Since $\overline{z}_{11} = 6 < 7 = \underline{z}$, this node is cutt off.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Choosing a node

The list of active nodes is empty, thus we conclude that the solution $x^* = (2, 1)$ is optimal with objective $z^* = 7$.

Integer Programming: Branch-and-Bound Algorithm

Thank you for attending this lecture!!!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ