Integer Programming: Branch-\&-Bound Algorithm

Eduardo Camponogara
Department of Automation and Systems Engineering
Federal University of Santa Catarina

October 2016

Introduction

Branch-and-Bound Algorithm

Branch-\&-Bound Example
OptIntro

L Introduction

Sumário

Introduction

Branch-and-Bound Algorithm

Branch-\&-Bound Example
OptIntro

LBranch-and-Bound Algorithm

Sumário

Introduction

Branch-and-Bound Algorithm

Branch-\&-Bound Example

Branch-and-Bound Algorithm

"Branch-and-bound" (B\&B) is a kind of divide and conquer strategy for mixed-integer linear programming:

1. Divide P in an equivalent set of subproblems $\left\{S P_{k}\right\}$
2. Solve the subproblems.
3. Obtain a solution for P from the solutions for $\left\{S P_{k}\right\}$

Branch-and-Bound Algorithm

"Branch-and-bound" (B\&B) is a kind of divide and conquer strategy for mixed-integer linear programming:

1. Divide P in an equivalent set of subproblems $\left\{S P_{k}\right\}$.
2. Solve the subproblems.
3. Obtain a solution for P from the solutions for $\left\{S P_{k}\right\}$

Branch-and-Bound Algorithm

"Branch-and-bound" (B\&B) is a kind of divide and conquer strategy for mixed-integer linear programming:

1. Divide P in an equivalent set of subproblems $\left\{S P_{k}\right\}$.
2. Solve the subproblems.
3. Obtain a solution for P from the solutions for $\left\{S P_{k}\right\}$

Branch-and-Bound Algorithm

"Branch-and-bound" (B\&B) is a kind of divide and conquer strategy for mixed-integer linear programming:

1. Divide P in an equivalent set of subproblems $\left\{S P_{k}\right\}$.
2. Solve the subproblems.
3. Obtain a solution for P from the solutions for $\left\{S P_{k}\right\}$.

Branch-and-Bound Algorithm

- The divisions are performed iteratively, such that the subproblems are easier to solve.
- Eliminate/Discard subproblems by implicit enumeration.
- That is, a subproblem is discarded if it can be proven that it cannot produce the optimal solution.

Divide and Conquer

Consider the problem:

$$
P: z=\max \left\{c^{\mathrm{T}} x: x \in S\right\}
$$

How do we "break" P in small subproblems, and then recombine their solutions into a solution for the original problem.

Divide and Conquer

Consider the problem:

$$
P: z=\max \left\{c^{T} x: x \in S\right\}
$$

How do we "break" P in small subproblems, and then recombine their solutions into a solution for the original problem.

Divide and Conquer

Proposition

- Let $S=S_{1} \cup \ldots \cup S_{K}$ be a decomposition of S in K subsets.
- Let also $z^{k}=\max \left\{c^{\mathrm{T}} x: x \in S_{k}\right\}$ for $k=1, \ldots, K$.
- Then, $z=\max \left\{z^{k}: k=1, \ldots, K\right\}$.

A divide-and-conquer strategy can be illustrated with an enumeration tree (explicit).

Divide and Conquer

Proposition

- Let $S=S_{1} \cup \ldots \cup S_{K}$ be a decomposition of S in K subsets.
- Let also $z^{k}=\max \left\{c^{\mathrm{T}} x: x \in S_{k}\right\}$ for $k=1, \ldots, K$.
- Then, $z=\max \left\{z^{k}: k=1, \ldots, K\right\}$.

A divide-and-conquer strategy can be illustrated with an enumeration tree (explicit).

Divide and Conquer

Proposition

- Let $S=S_{1} \cup \ldots \cup S_{K}$ be a decomposition of S in K subsets.
- Let also $z^{k}=\max \left\{c^{\mathrm{T}} x: x \in S_{k}\right\}$ for $k=1, \ldots, K$.
- Then, $z=\max \left\{z^{k}: k=1, \ldots, K\right\}$.

A divide-and-conquer strategy can be illustrated with an enumeration tree (explicit).

Explicit Enumeration

For $S \subseteq\{0,1\}^{3}$ the enumeration tree is build as follows.

Explicit Enumeration Tree

- Clearly $S=S_{0} \cup S_{1}$, such that:
- $S_{0}=\left\{x \in S: x_{1}=0\right\}$ e
- $S_{1}=\left\{x \in S: x_{1}=1\right\}$.
- Divide each subproblem em even smaller subproblems:
- $S_{0}=S_{00} \cup S_{01}$ and
- $S_{1}=S_{10} \cup S_{11}$, where $S_{112}=\left\{x \in S_{11}: x_{2}=i_{2}\right\}$.

Explicit Enumeration Tree

- Clearly $S=S_{0} \cup S_{1}$, such that:
- $S_{0}=\left\{x \in S: x_{1}=0\right\} \mathrm{e}$
- $S_{1}=\left\{x \in S: x_{1}=1\right\}$.
- Divide each subproblem em even smaller subproblems:
- $S_{0}=S_{00} \cup S_{01}$ and
- $S_{1}=S_{10} \cup S_{11}$, where $S_{i_{1} i_{2}}=\left\{x \in S_{i_{1}}: x_{2}=i_{2}\right\}$.

Explicit Enumeration

Explicit Enumeration

Explicit Enumeration

- The above figure shows a complete enumeration tree.
- A leaf of the tree $S_{i_{1} i_{2} i_{3}}$ is nonempty if, and only if, $x=\left(i_{1}, i_{2}, i_{3}\right) \in S$.
- The leaves correspond to the candidate solutions.

Implicit Enumeration

- Complete enumeration is not viable for practical problems.
- We should use bound for $\left\{z^{k}\right\}$ in an effective way, upper bounds (dual) and lower bounds (primal).

Implicit Enumeration

- Complete enumeration is not viable for practical problems.
- We should use bound for $\left\{z^{k}\right\}$ in an effective way, upper bounds (dual) and lower bounds (primal).

Implicit Enumeration

Proposition

Let:

- $S=S_{1} \cup \ldots \cup S_{K}$ be a decomposition of S in K subsets.
- $z^{k}=\max \left\{c^{\mathrm{T}} x: x \in S_{k}\right\}$ are optimal values for $k=1, \ldots, K$.
\bar{z}^{k} be an upper bound for z^{k}.
- z^{k} a lower bound for z^{k}.

Then:

a) $\bar{z}=\max \left\{\bar{z}^{k}: k=1, \ldots, K\right\}$ defines an upper bound for z.
b) $\underline{z}=\max \left\{\underline{z}^{k}: k=1, \ldots, K\right\}$ defines a lower bound for z.

Implicit Enumeration

Proposition

Let:

- $S=S_{1} \cup \ldots \cup S_{K}$ be a decomposition of S in K subsets.
- $z^{k}=\max \left\{c^{\mathrm{T}} x: x \in S_{k}\right\}$ are optimal values for $k=1, \ldots, K$.

Let:

- \bar{z}^{k} be an upper bound for z^{k}.
- \underline{z}^{k} a lower bound for z^{k}.

Then:
a) $\bar{z}=\max \left\{\bar{z}^{k}: k=1, \ldots, K\right\}$ defines an upper bound for z.
b) $z=\max \left\{z^{k}: k=1, \ldots, K\right\}$ defines a lower bound for z.

Implicit Enumeration

Proposition

Let:

- $S=S_{1} \cup \ldots \cup S_{K}$ be a decomposition of S in K subsets.
- $z^{k}=\max \left\{c^{\mathrm{T}} x: x \in S_{k}\right\}$ are optimal values for $k=1, \ldots, K$.

Let:

- \bar{z}^{k} be an upper bound for z^{k}.
- \underline{z}^{k} a lower bound for z^{k}.

Then:
a) $\bar{z}=\max \left\{\bar{z}^{k}: k=1, \ldots, K\right\}$ defines an upper bound for z. b) $\underline{z}=\max \left\{\underline{z}^{k}: k=1, \ldots, K\right\}$ defines a lower bound for z.

Implicit Enumeration

Proposition

Let:

- $S=S_{1} \cup \ldots \cup S_{K}$ be a decomposition of S in K subsets.
- $z^{k}=\max \left\{c^{\mathrm{T}} x: x \in S_{k}\right\}$ are optimal values for $k=1, \ldots, K$.

Let:

- \bar{z}^{k} be an upper bound for z^{k}.
- \underline{z}^{k} a lower bound for z^{k}.

Then:
a) $\bar{z}=\max \left\{\bar{z}^{k}: k=1, \ldots, K\right\}$ defines an upper bound for z.
b) $\underline{z}=\max \left\{\underline{z}^{k}: k=1, \ldots, K\right\}$ defines a lower bound for z.

Branch-and-Bound Algorithm

Let S be the initial set containing all problem solutions, ans assume that $l b=13$ is the lower bound and $u b=27$ is the upper bound.

Cut Node by Optimality

$$
S \begin{aligned}
& u b=27 \\
& I b=13
\end{aligned}
$$

Node Cannot Be Fathomed

No branch can be discarded

Implicit Enumeration

Three rules for cutting tree branches:
i) By optimality: $z_{t}=\max \left\{c^{\mathrm{T}} x: x \in S_{t}\right\}$ has been solved.
ii) By bounding: $\bar{z}_{t}<\underline{z}$.
iii) By infeasibility: $S_{t}=\emptyset$.
OptIntro

LBranch-\&-Bound Example

Sumário

Introduction

Branch-and-Bound Algorithm

Branch-\&-Bound Example

Branch-\&-Bound Application

The branch-and-bound search will be illustrated in the following problem:

$$
\begin{array}{rlr}
S: \quad z=\begin{array}{rr}
\max & 4 x_{1}
\end{array}-x_{2} \\
& \text { s.t. : } & 7 x_{1} \\
& -2 x_{2} & \leqslant 14 \\
& x_{2} \leqslant 3 \\
& 2 x_{1}-2 x_{2} \leqslant 3
\end{array}
$$

onde $x \in \mathbb{Z}_{+}^{2}$.

Branch-\&-Bound Application

Bounding

The first upper bound is obtained by solving the linear relaxation, $R(S)$.

- It produces $\bar{z}=\frac{59}{7}$ at $\left(\bar{x}_{1}, \bar{x}_{2}\right)=\left(\frac{20}{7}, 3\right)$.
- We assume that $\underline{z}=-\infty$.

Branch-\&-Bound Application

Branching

If $\underline{z}<\bar{z}, S$ is broken in two subproblems.

- Break S according with one fractional variable:

$$
\begin{aligned}
& S_{1}=S \cap\left\{x: x_{j} \leqslant\left\lfloor\bar{x}_{j}\right\rfloor\right\} \\
& S_{2}=S \cap\left\{x: x_{j} \geqslant\left\lceil\bar{x}_{j}\right\rceil\right\}
\end{aligned}
$$

- Clearly, $S=S_{1} \cup S_{2}$.
- The list of active nodes becomes $L=\left\{S_{1}, S_{2}\right\}$.

Branch-\&-Bound Application

Branching

Branch-\&-Bound Application

Choosing a Node

- The list of active nodes $L=\left\{S_{1}, S_{2}\right\}$ contains two subsets.
- Arbitrarily, node S_{1} is chosen.

Branch-\&-Bound Application

Bounding

We solve the relaxation $R\left(S_{1}\right)$, meaning the LP:

$$
\begin{array}{rlrl}
S_{1}: \bar{z}_{1}=\begin{array}{rr}
4 x_{1} & -x_{2} \\
\text { max } & \\
\text { s.t. : } & \\
& 7 x_{1} \\
& -2 x_{2}
\end{array} & \leqslant 14 \\
x_{2} & \leqslant 3 \\
& 2 x_{1}-2 x_{2} & \leqslant 3 \\
& x_{1} & \leqslant 2 \\
& x \in \mathbb{Z}_{+}^{2} &
\end{array}
$$

for which the optimal solution is $\left(x_{1}^{1}, x_{2}^{1}\right)=\left(2, \frac{1}{2}\right)$ which induces an upper bound $\bar{z}=\frac{15}{2}$.

Branch-\&-Bound Application

Branching

- Breaking S_{1} in two sets:

$$
\begin{aligned}
& S_{11}=S_{1} \cap\left\{x: x_{2} \leqslant 0\right\} \\
& S_{12}=S_{1} \cap\left\{x: x_{2} \geqslant 1\right\}
\end{aligned}
$$

make the active-node list become $L=\left\{S_{2}, S_{11}, S_{12}\right\}$.

Branch-\&-Bound Application

Branch-\&-Bound Application

Branching

Arbitrarily we choose node S_{2} from the active list $L=\left\{S_{11}, S_{12}, S_{2}\right\}$.

Branch-\&-Bound Application

Bounding

Solving the linear relaxation $R\left(S_{2}\right)$:

$$
\begin{aligned}
& \left.S_{2}: z_{2}=\begin{array}{rrr}
\max \\
\text { s.t. : } & & 4 x_{1}-x_{2} \\
7 x_{1} & -2 x_{2} & \leqslant 14 \\
& & x_{2}
\end{array}\right) \\
& x \in \mathbb{Z}_{+}^{2}
\end{aligned}
$$

Since $R\left(S_{2}\right)$ is infeasible ($\left.\bar{z}_{2}=-\infty\right)$, node S_{2} is cut off.

Branch-\&-Bound Application

Choosing a node
The list of active nodes has now become $L=\left\{S_{11}, S_{12}\right\}$.

- Arbitrarily we chose node S_{12}.

Branch-\&-Bound Application

Bounding

- We solve the relaxation $R\left(S_{12}\right)$ with feasible space $S_{12}=S \cap\left\{x: x_{1} \leqslant 2\right.$ e $\left.x_{2} \geqslant 1\right\}$.
- The solution $\bar{x}_{12}=(2,1)$ is obtained, producing the upper bound $\bar{z}_{12}=7$.
- This solution $R\left(S_{12}\right)$ is integer, thus a lower bound was obtained:
- The value $z_{12}=7$ can be propagated throughout the branch-and-bound tree.
- Consequently S_{12} is cut off by optimality.

Branch-\&-Bound Application

Bounding

- We solve the relaxation $R\left(S_{12}\right)$ with feasible space $S_{12}=S \cap\left\{x: x_{1} \leqslant 2\right.$ e $\left.x_{2} \geqslant 1\right\}$.
- The solution $\bar{x}_{12}=(2,1)$ is obtained, producing the upper bound $\bar{z}_{12}=7$.
- This solution $R\left(S_{12}\right)$ is integer, thus a lower bound was obtained:
- The value $z_{12}=7$ can be propagated throughout the branch-and-bound tree.
- Consequently S_{12} is cut off by optimality.

Branch-\&-Bound Application

Branch-\&-Bound Application

Choose a node
Only S_{11} is an active node.

Branch-\&-Bound Application

Bounding

- Notice that $S_{11}=S \cap\left\{x: x_{1} \leqslant 2, x_{2}=0\right\}$.
- The solution to the relaxation $R\left(S_{11}\right)$ is $\bar{x}_{11}=\left(\frac{3}{2}, 0\right)$, which produces an upper bound $\bar{z}_{11}=6$.
- Since $\bar{z}_{11}=6<7=\underline{z}$, this node is cutt off.

Branch-\&-Bound Application

Choosing a node
The list of active nodes is empty, thus we conclude that the solution $x^{\star}=(2,1)$ is optimal with objective $z^{\star}=7$.

Integer Programming: Branch-and-Bound Algorithm

- Thank you for attending this lecture!!!

