R RRRBRRREESEESSSSEEEEDDE—_D—_BSSS
Optlntro

1/37

Integer Programming: Branch-&-Bound
Algorithm

Eduardo Camponogara

Department of Automation and Systems Engineering
Federal University of Santa Catarina

October 2016

R RRRBRRREESEESSSSEEEEDDE—_D—_BSSS
Optlntro
|—Summary

Introduction

2/37

Branch-and-Bound Algorithm

Branch-&-Bound Example

DA

Optlntro

LIntroduCtion

Sumario

3/37
Introduction

DHa

Optlntro

[Branch-and-Bound Algorithm

Sumdrio

4/37

Branch-and-Bound Algorithm

DA

Optlntro

[Branch-and-Bound Algorithm

5/37

Branch-and-Bound Algorithm

“Branch-and-bound” (B&B) is a kind of divide and conquer
strategy for mixed-integer linear programming:

Optlntro

[Branch-and-Bound Algorithm

Branch-and-Bound Algorithm

5/37

“Branch-and-bound” (B&B) is a kind of divide and conquer
strategy for mixed-integer linear programming:

1. Divide P in an equivalent set of subproblems {SPy}.

Optlntro 5/37
LBranch—and—Bound Algorithm

Branch-and-Bound Algorithm

“Branch-and-bound” (B&B) is a kind of divide and conquer
strategy for mixed-integer linear programming:

1. Divide P in an equivalent set of subproblems {SPy}.

2. Solve the subproblems.

Optlntro 5/37
LBranch—and—Bound Algorithm

Branch-and-Bound Algorithm

“Branch-and-bound” (B&B) is a kind of divide and conquer
strategy for mixed-integer linear programming:

1. Divide P in an equivalent set of subproblems {SPy}.
2. Solve the subproblems.

3. Obtain a solution for P from the solutions for {SPj}.

Optlntro 6/37
LBranch—and—Bound Algorithm

Branch-and-Bound Algorithm

» The divisions are performed iteratively, such that the
subproblems are easier to solve.
» Eliminate/Discard subproblems by implicit enumeration.

» That is, a subproblem is discarded if it can be proven that it
cannot produce the optimal solution.

Optlntro

|—Branch—and—Bound Algorithm
|—Divide and Conquer

Divide and Conquer

7/37

Consider the problem:

P:

z=max {c'x:x € S}

Optlntro

I—Branch—and—Bound Algorithm
LDivide and Conquer

Divide and Conquer

7/37

Consider the problem:

P:

z=max {c'x:x e S}

How do we “break” P in small subproblems, and then recombine
their solutions into a solution for the original problem.

Optlntro

|—Branch—and—Bound Algorithm
|—Divide and Conquer

Divide and Conquer

8/37

Proposition

» Let S =5, U...USk be a decomposition of S in K subsets.
» Let also zK = max{cTx:x € S} fork=1,...,K

Optlntro

|—Branch—and—Bound Algorithm
|—Divide and Conquer

Divide and Conquer

8/37

Proposition

» Let S =5, U...USk be a decomposition of S in K subsets.
» Let also zK = max{cTx:x € S} fork=1,...,K
» Then, z=max{zF: k=1,...,K}

Optlntro 8/37
LBranch—and—Bound Algorithm
LDivide and Conquer

Divide and Conquer

Proposition
» Let S =5, U...USk be a decomposition of S in K subsets.
» Let also zK = max{cTx:x € S} for k=1,..., K.

» Then, z =max{z": k=1,...,K}.

A divide-and-conquer strategy can be illustrated with an
enumeration tree (explicit).

Optlntro

|—Branch—and—Bound Algorithm
|—Divide and Conquer

Explicit Enumeration

9/37

For S C {0,1}3 the enumeration tree is build as follows.

Optlntro

|—Branch—and—Bound Algorithm
|—Divide and Conquer

Explicit Enumeration Tree

10/37

» Clearly § = Sp U S1, such that

» So={xeS:x=0}e
» S5 ={x€eS:x =1}

Optlntro

|—Branch—and—Bound Algorithm
LDivide and Conquer

Explicit Enumeration Tree

10/37

» Clearly § = Sp U 51, such that:

» So={xeS:x=0}e
» S ={xeS:x =1}

» Divide each subproblem em even smaller subproblems:
» So = Spo U Sp1 and

» 51 = 510U 511, where 5, = {X €S ixo= iz}.

Optlntro

|—Branch—and—Bound Algorithm
|—Divide and Conquer

Explicit Enumeration

11/37

Optlntro

|—Branch—and—Bound Algorithm
|—Divide and Conquer

Explicit Enumeration

12/37

Optlntro

13/37
I—Branch—and—Bound Algorithm

L Divide and Conquer

Explicit Enumeration

» The above figure shows a complete enumeration tree.

> A leaf of the tree 5; ,;, is nonempty if, and only if,
X = (il, i2,i3) €S.

» The leaves correspond to the candidate solutions.

Optlntro

[Branch-and-Bound Algorithm
|—Implicit Enumeration

Implicit Enumeration

14 /37

» Complete enumeration is not viable for practical problems.

Optlntro

[Branch-and-Bound Algorithm
L Implicit Enumeration

Implicit Enumeration

14 /37

» Complete enumeration is not viable for practical problems

» We should use bound for {z¥} in an effective way, upper
bounds (dual) and lower bounds (primal).

Optlntro

[Branch-and-Bound Algorithm
L Implicit Enumeration

Implicit Enumeration

15/37
Proposition
Let:

» S =5 U...USk be a decomposition of S in K subsets.

» zK=max{cTx: x € S¢} are optimal values for k =1,...,K

Optlntro

[Branch-and-Bound Algorithm
L Implicit Enumeration

Implicit Enumeration

15/37
Proposition
Let:

» S=5U...USk be a decomposition of S in K subsets.
>
Let:

7K = max{cTx : x € S;} are optimal values for k =1,..., K
>

z* be an upper bound for z¥.

» zK a lower bound for z¥.

Optlntro

[Branch-and-Bound Algorithm
L Implicit Enumeration

Implicit Enumeration

15/37
Proposition
Let:

>

» S=5U...USk be a decomposition of S in K subsets.
Let:

7K = max{cTx : x € S;} are optimal values for k =1,..., K
>

z* be an upper bound for z¥.

» zK a lower bound for z¥.
Then:

a) Z=max{z": k =1,..., K} defines an upper bound for z.

Optlntro
L Branch-and-Bound Algorithm

L Implicit Enumeration

15/37

Implicit Enumeration

Proposition
Let:

» S=5U...USk be a decomposition of S in K subsets.

» 2K = max{cTx: x € S;} are optimal values for k =1,... K.

Let:

» Z¥ be an upper bound for z¥.

» zK a lower bound for z¥.

..., K} defines an upper bound for z.

..., K} defines a lower bound for z.

Optlntro

[Branch-and-Bound Algorithm
L Implicit Enumeration

16 /37

Branch-and-Bound Algorithm

Let S be the initial set containing all problem solutions, ans assume
that /b = 13 is the lower bound and ub = 27 is the upper bound.

Optlntro

[Branch-and-Bound Algorithm
L Implicit Enumeration

Cut Node by Optimality

17/37

ub = 27 27
@Ib =13 — 13

20

25
20 @15

27

13
20

25
20 @15

Cut by optimality

Optlntro

[Branch-and-Bound Algorithm
L Implicit Enumeration

Node Cannot Be Fathomed

18/37

40

37

(s)1s
24 37 24 37
1 & @

No branch can be discarded

Optlntro

[Branch-and-Bound Algorithm
L Implicit Enumeration

Implicit Enumeration

19/37

Three rules for cutting tree branches:

i) By optimality: z; = max{c®x : x € S;} has been solved
i) By bounding: z; < z.

iii) By infeasibility: Sy = 0.

Optlntro

[Branch-&-Bound Example

Sumdrio

20/37

Branch-&-Bound Example

DA

Optlntro
[Branch-&-Bound Example

21/37

Branch-&-Bound Application

The branch-and-bound search will be illustrated in the following

problem:
S: z= max 43 —xo
st.: Txy —2x < 14
x» <3
2X1 —2X2 < 3
onde x € Z3.

Optlntro

[Branch-&-Bound Example

Branch-&-Bound Application

22/37

Bounding

The first upper bound is obtained by solving the linear relaxation,
R(S).

» It produces Z = ? at (x1,X2) = (%,3).

» We assume that z = —0

Optlntro

[Branch-&-Bound Example

Branch-&-Bound Application

23/37

Branching

If z<Z, S is broken in two subproblems.

» Break S according with one fractional variable
S1 = Snix:x
S o= Snix:x

X}
[

<
> [x;1}
» Clearly, $ =5 US,.

» The list of active nodes becomes L = {51, S>}.

Optlntro

[Branch-&-Bound Example

Branch-&-Bound Application

24/37

Branching

59/7

x1<2

X1>3

Optlntro

[Branch-&-Bound Example

Branch-&-Bound Application

25/37

Choosing a Node

» The list of active nodes L = {51, 5>} contains two subsets
» Arbitrarily, node S; is chosen.

Optlntro 26 /37
[Branch-&-Bound Example

Branch-&-Bound Application

Bounding
We solve the relaxation R(S1), meaning the LP:
S1: Z1= max 4x;y —xo
s.t.: 1 —2x» < 14
x» <3
2X1 —2X2 < 3
X1 < 2
2
x € 75

for which the optimal solution is (xi,x3) = (2, %) which induces

- _ 1
an upper bound z = 3.

Optlntro

[Branch-&-Bound Example

27/37

Branch-&-Bound Application

Branching
» Breaking 51 in two sets:

S1 = Slﬂ{X:
S1p =

make the active-node list become L = {5, S11, S12}

Optlntro

[Branch-&-Bound Example

Branch-&-Bound Application

28/37

Optlntro

[Branch-&-Bound Example

29 /37
Branch-&-Bound Application

Branching

Arbitrarily we choose node S, from the active list
L= {511, 512, S}

Optlntro
[Branch-&-Bound Example

30/37

Branch-&-Bound Application

Bounding
Solving the linear relaxation R(S2):
S z= max 4xq
s.t. : 7x1
2x1
X1
2
x € 1%

Since R(Sy) is infeasible (zo = —00), node S, is cut off.

—X5
—2x>

X2
—2x>

WV NN IN

14

w W W

Optlntro

[Branch-&-Bound Example

Branch-&-Bound Application

31/37

Choosing a node

The list of active nodes has now become L = {5;1, S12}
» Arbitrarily we chose node S15.

Optlntro 32/37
[Branch-&-Bound Example

Branch-&-Bound Application

Bounding
» We solve the relaxation R(S12) with feasible space
So=SN{x:x3<2ex>1}.

» The solution X12 = (2, 1) is obtained, producing the upper
bound Zz1» = 7.

Optlntro 32/37
L Branch-&-Bound Example

Branch-&-Bound Application

Bounding

» We solve the relaxation R(S12) with feasible space
So=SN{x:x3<2ex>1}.

» The solution X12 = (2, 1) is obtained, producing the upper
bound Zz1» = 7.

» This solution R(S12) is integer, thus a lower bound was
obtained:

» The value z;, = 7 can be propagated throughout the
branch-and-bound tree.

» Consequently S15 is cut off by optimality.

Optlntro

[Branch-&-Bound Example

Branch-&-Bound Application

33/37

59/7

& ©

cut off by optimality

Optlntro

[Branch-&-Bound Example

Branch-&-Bound Application

34/37

Choose a node

Only S11 is an active node.

Optlntro

35/37
I—Branch—&—Bound Example

Branch-&-Bound Application

Bounding
» Notice that S11 = SN {x:x3 <2,x =0}.

> The solution to the relaxation R(S11) is X11 = (3,0), which
produces an upper bound z1; = 6.

» Since Z;1 = 6 < 7 = z, this node is cutt off.

u}
)
I
il
it

Optlntro

[Branch-&-Bound Example

Branch-&-Bound Application

36/37

Choosing a node

The list of active nodes is empty, thus we conclude that the
solution x* = (2,1) is optimal with objective z* = 7.

Optlntro

[Branch-&-Bound Example

37/37

Integer Programming: Branch-and-Bound Algorithm

» Thank you for attending this lecture!!!

