
OptIntro 1 / 37

Integer Programming: Branch-&-Bound

Algorithm

Eduardo Camponogara

Department of Automation and Systems Engineering
Federal University of Santa Catarina

October 2016



OptIntro 2 / 37

Summary

Introduction

Branch-and-Bound Algorithm

Branch-&-Bound Example



OptIntro 3 / 37

Introduction

Sumário

Introduction

Branch-and-Bound Algorithm

Branch-&-Bound Example



OptIntro 4 / 37

Branch-and-Bound Algorithm

Sumário

Introduction

Branch-and-Bound Algorithm

Branch-&-Bound Example



OptIntro 5 / 37

Branch-and-Bound Algorithm

Branch-and-Bound Algorithm

“Branch-and-bound”(B&B) is a kind of divide and conquer
strategy for mixed-integer linear programming:

1. Divide P in an equivalent set of subproblems {SPk}.

2. Solve the subproblems.

3. Obtain a solution for P from the solutions for {SPk}.



OptIntro 5 / 37

Branch-and-Bound Algorithm

Branch-and-Bound Algorithm

“Branch-and-bound”(B&B) is a kind of divide and conquer
strategy for mixed-integer linear programming:

1. Divide P in an equivalent set of subproblems {SPk}.

2. Solve the subproblems.

3. Obtain a solution for P from the solutions for {SPk}.



OptIntro 5 / 37

Branch-and-Bound Algorithm

Branch-and-Bound Algorithm

“Branch-and-bound”(B&B) is a kind of divide and conquer
strategy for mixed-integer linear programming:

1. Divide P in an equivalent set of subproblems {SPk}.

2. Solve the subproblems.

3. Obtain a solution for P from the solutions for {SPk}.



OptIntro 5 / 37

Branch-and-Bound Algorithm

Branch-and-Bound Algorithm

“Branch-and-bound”(B&B) is a kind of divide and conquer
strategy for mixed-integer linear programming:

1. Divide P in an equivalent set of subproblems {SPk}.

2. Solve the subproblems.

3. Obtain a solution for P from the solutions for {SPk}.



OptIntro 6 / 37

Branch-and-Bound Algorithm

Branch-and-Bound Algorithm

◮ The divisions are performed iteratively, such that the
subproblems are easier to solve.

◮ Eliminate/Discard subproblems by implicit enumeration.
◮ That is, a subproblem is discarded if it can be proven that it

cannot produce the optimal solution.



OptIntro 7 / 37

Branch-and-Bound Algorithm

Divide and Conquer

Divide and Conquer

Consider the problem:

P : z = max {cTx : x ∈ S}

How do we“break”P in small subproblems, and then recombine
their solutions into a solution for the original problem.



OptIntro 7 / 37

Branch-and-Bound Algorithm

Divide and Conquer

Divide and Conquer

Consider the problem:

P : z = max {cTx : x ∈ S}

How do we“break”P in small subproblems, and then recombine
their solutions into a solution for the original problem.



OptIntro 8 / 37

Branch-and-Bound Algorithm

Divide and Conquer

Divide and Conquer

Proposition

◮ Let S = S1 ∪ . . . ∪ SK be a decomposition of S in K subsets.

◮ Let also zk = max{cTx : x ∈ Sk} for k = 1, . . . ,K .

◮ Then, z = max{zk : k = 1, . . . ,K}.

A divide-and-conquer strategy can be illustrated with an
enumeration tree (explicit).



OptIntro 8 / 37

Branch-and-Bound Algorithm

Divide and Conquer

Divide and Conquer

Proposition

◮ Let S = S1 ∪ . . . ∪ SK be a decomposition of S in K subsets.

◮ Let also zk = max{cTx : x ∈ Sk} for k = 1, . . . ,K .

◮ Then, z = max{zk : k = 1, . . . ,K}.

A divide-and-conquer strategy can be illustrated with an
enumeration tree (explicit).



OptIntro 8 / 37

Branch-and-Bound Algorithm

Divide and Conquer

Divide and Conquer

Proposition

◮ Let S = S1 ∪ . . . ∪ SK be a decomposition of S in K subsets.

◮ Let also zk = max{cTx : x ∈ Sk} for k = 1, . . . ,K .

◮ Then, z = max{zk : k = 1, . . . ,K}.

A divide-and-conquer strategy can be illustrated with an
enumeration tree (explicit).



OptIntro 9 / 37

Branch-and-Bound Algorithm

Divide and Conquer

Explicit Enumeration

For S ⊆ {0, 1}3 the enumeration tree is build as follows.

S

S0 S1

x1 = 0 x1 = 1



OptIntro 10 / 37

Branch-and-Bound Algorithm

Divide and Conquer

Explicit Enumeration Tree

◮ Clearly S = S0 ∪ S1, such that:
◮ S0 = {x ∈ S : x1 = 0} e
◮ S1 = {x ∈ S : x1 = 1}.

◮ Divide each subproblem em even smaller subproblems:
◮ S0 = S00 ∪ S01 and
◮ S1 = S10 ∪ S11, where Si1i2 = {x ∈ Si1 : x2 = i2}.



OptIntro 10 / 37

Branch-and-Bound Algorithm

Divide and Conquer

Explicit Enumeration Tree

◮ Clearly S = S0 ∪ S1, such that:
◮ S0 = {x ∈ S : x1 = 0} e
◮ S1 = {x ∈ S : x1 = 1}.

◮ Divide each subproblem em even smaller subproblems:
◮ S0 = S00 ∪ S01 and
◮ S1 = S10 ∪ S11, where Si1i2 = {x ∈ Si1 : x2 = i2}.



OptIntro 11 / 37

Branch-and-Bound Algorithm

Divide and Conquer

Explicit Enumeration

S

S0 S1

S00 S10S01 S11

x1 = 0 x1 = 1

x2 = 0x2 = 0 x2 = 1 x2 = 1



OptIntro 12 / 37

Branch-and-Bound Algorithm

Divide and Conquer

Explicit Enumeration

S

S0 S1

S00 S10S01 S11

x1 = 0 x1 = 1

x2 = 0x2 = 0 x2 = 1 x2 = 1

x3 = 0 x3 = 1

S000 S010S001 S011 S100 S110S101 S111



OptIntro 13 / 37

Branch-and-Bound Algorithm

Divide and Conquer

Explicit Enumeration

◮ The above figure shows a complete enumeration tree.

◮ A leaf of the tree Si1i2i3 is nonempty if, and only if,
x = (i1, i2, i3) ∈ S .

◮ The leaves correspond to the candidate solutions.



OptIntro 14 / 37

Branch-and-Bound Algorithm

Implicit Enumeration

Implicit Enumeration

◮ Complete enumeration is not viable for practical problems.

◮ We should use bound for {zk} in an effective way, upper
bounds (dual) and lower bounds (primal).



OptIntro 14 / 37

Branch-and-Bound Algorithm

Implicit Enumeration

Implicit Enumeration

◮ Complete enumeration is not viable for practical problems.

◮ We should use bound for {zk} in an effective way, upper
bounds (dual) and lower bounds (primal).



OptIntro 15 / 37

Branch-and-Bound Algorithm

Implicit Enumeration

Implicit Enumeration

Proposition
Let:

◮ S = S1 ∪ . . . ∪ SK be a decomposition of S in K subsets.

◮ zk = max{cTx : x ∈ Sk} are optimal values for k = 1, . . . ,K .

Let:

◮ z
k be an upper bound for zk .

◮ zk a lower bound for zk .

Then:

a) z = max{zk : k = 1, . . . ,K} defines an upper bound for z .

b) z = max{zk : k = 1, . . . ,K} defines a lower bound for z .



OptIntro 15 / 37

Branch-and-Bound Algorithm

Implicit Enumeration

Implicit Enumeration

Proposition
Let:

◮ S = S1 ∪ . . . ∪ SK be a decomposition of S in K subsets.

◮ zk = max{cTx : x ∈ Sk} are optimal values for k = 1, . . . ,K .

Let:

◮ z
k be an upper bound for zk .

◮ zk a lower bound for zk .

Then:

a) z = max{zk : k = 1, . . . ,K} defines an upper bound for z .

b) z = max{zk : k = 1, . . . ,K} defines a lower bound for z .



OptIntro 15 / 37

Branch-and-Bound Algorithm

Implicit Enumeration

Implicit Enumeration

Proposition
Let:

◮ S = S1 ∪ . . . ∪ SK be a decomposition of S in K subsets.

◮ zk = max{cTx : x ∈ Sk} are optimal values for k = 1, . . . ,K .

Let:

◮ z
k be an upper bound for zk .

◮ zk a lower bound for zk .

Then:

a) z = max{zk : k = 1, . . . ,K} defines an upper bound for z .

b) z = max{zk : k = 1, . . . ,K} defines a lower bound for z .



OptIntro 15 / 37

Branch-and-Bound Algorithm

Implicit Enumeration

Implicit Enumeration

Proposition
Let:

◮ S = S1 ∪ . . . ∪ SK be a decomposition of S in K subsets.

◮ zk = max{cTx : x ∈ Sk} are optimal values for k = 1, . . . ,K .

Let:

◮ z
k be an upper bound for zk .

◮ zk a lower bound for zk .

Then:

a) z = max{zk : k = 1, . . . ,K} defines an upper bound for z .

b) z = max{zk : k = 1, . . . ,K} defines a lower bound for z .



OptIntro 16 / 37

Branch-and-Bound Algorithm

Implicit Enumeration

Branch-and-Bound Algorithm

Let S be the initial set containing all problem solutions, ans assume
that lb = 13 is the lower bound and ub = 27 is the upper bound.



OptIntro 17 / 37

Branch-and-Bound Algorithm

Implicit Enumeration

Cut Node by Optimality

S SS

S1 S1S2 S2

ub = 27

lb = 13

27 27
13 13

20

20

20

2025 25

15 15
Cut by optimality



OptIntro 18 / 37

Branch-and-Bound Algorithm

Implicit Enumeration

Node Cannot Be Fathomed

S S

S1 S1S2 S2

2424

1313

13

40 37

3737

No branch can be discarded



OptIntro 19 / 37

Branch-and-Bound Algorithm

Implicit Enumeration

Implicit Enumeration

Three rules for cutting tree branches:

i) By optimality: zt = max{cTx : x ∈ St} has been solved.

ii) By bounding: z t < z .

iii) By infeasibility: St = ∅.



OptIntro 20 / 37

Branch-&-Bound Example

Sumário

Introduction

Branch-and-Bound Algorithm

Branch-&-Bound Example



OptIntro 21 / 37

Branch-&-Bound Example

Branch-&-Bound Application

The branch-and-bound search will be illustrated in the following
problem:

S : z = max 4x1 −x2

s.t. : 7x1 −2x2 6 14
x2 6 3

2x1 −2x2 6 3

onde x ∈ Z
2
+.



OptIntro 22 / 37

Branch-&-Bound Example

Branch-&-Bound Application

Bounding

The first upper bound is obtained by solving the linear relaxation,
R(S).

◮ It produces z = 59
7 at (x1, x2) = (207 , 3).

◮ We assume that z = −∞.



OptIntro 23 / 37

Branch-&-Bound Example

Branch-&-Bound Application

Branching

If z < z , S is broken in two subproblems.

◮ Break S according with one fractional variable:

S1 = S ∩ {x : xj 6 ⌊x j⌋}

S2 = S ∩ {x : xj > ⌈x j⌉}

◮ Clearly, S = S1 ∪ S2.

◮ The list of active nodes becomes L = {S1, S2}.



OptIntro 24 / 37

Branch-&-Bound Example

Branch-&-Bound Application

Branching

S

S1 S2

x1 6 2 x1 > 3

59/7

−∞



OptIntro 25 / 37

Branch-&-Bound Example

Branch-&-Bound Application

Choosing a Node

◮ The list of active nodes L = {S1, S2} contains two subsets.

◮ Arbitrarily, node S1 is chosen.



OptIntro 26 / 37

Branch-&-Bound Example

Branch-&-Bound Application

Bounding

We solve the relaxation R(S1), meaning the LP:

S1 : z1 = max 4x1 −x2

s.t. : 7x1 −2x2 6 14
x2 6 3

2x1 −2x2 6 3
x1 6 2

x ∈ Z
2
+

for which the optimal solution is (x11 , x
1
2 ) = (2, 12) which induces

an upper bound z = 15
2 .



OptIntro 27 / 37

Branch-&-Bound Example

Branch-&-Bound Application

Branching

◮ Breaking S1 in two sets:

S11 = S1 ∩ {x : x2 6 0}

S12 = S1 ∩ {x : x2 > 1}

make the active-node list become L = {S2, S11, S12}.



OptIntro 28 / 37

Branch-&-Bound Example

Branch-&-Bound Application

15/2

S

S1 S2

x1 6 2 x1 > 3

59/7

−∞

S11 S12

x2 6 0 x2 > 1



OptIntro 29 / 37

Branch-&-Bound Example

Branch-&-Bound Application

Branching

Arbitrarily we choose node S2 from the active list
L = {S11, S12, S2}.



OptIntro 30 / 37

Branch-&-Bound Example

Branch-&-Bound Application

Bounding

Solving the linear relaxation R(S2):

S2 : z2 = max 4x1 −x2

s.t. : 7x1 −2x2 6 14
x2 6 3

2x1 −2x2 6 3
x1 > 3

x ∈ Z
2
+

Since R(S2) is infeasible (z2 = −∞), node S2 is cut off.



OptIntro 31 / 37

Branch-&-Bound Example

Branch-&-Bound Application

Choosing a node

The list of active nodes has now become L = {S11, S12}.

◮ Arbitrarily we chose node S12.



OptIntro 32 / 37

Branch-&-Bound Example

Branch-&-Bound Application

Bounding

◮ We solve the relaxation R(S12) with feasible space
S12 = S ∩ {x : x1 6 2 e x2 > 1}.

◮ The solution x12 = (2, 1) is obtained, producing the upper
bound z12 = 7.

◮ This solution R(S12) is integer, thus a lower bound was
obtained:

◮ The value z12 = 7 can be propagated throughout the
branch-and-bound tree.

◮ Consequently S12 is cut off by optimality.



OptIntro 32 / 37

Branch-&-Bound Example

Branch-&-Bound Application

Bounding

◮ We solve the relaxation R(S12) with feasible space
S12 = S ∩ {x : x1 6 2 e x2 > 1}.

◮ The solution x12 = (2, 1) is obtained, producing the upper
bound z12 = 7.

◮ This solution R(S12) is integer, thus a lower bound was
obtained:

◮ The value z12 = 7 can be propagated throughout the
branch-and-bound tree.

◮ Consequently S12 is cut off by optimality.



OptIntro 33 / 37

Branch-&-Bound Example

Branch-&-Bound Application

15/2

7

7

7

7S

S1 S2

x1 6 2 x1 > 3

59/7

−∞

S11 S12

x2 6 0 x2 > 1

cut off by optimality

cut off due to infeasibility



OptIntro 34 / 37

Branch-&-Bound Example

Branch-&-Bound Application

Choose a node
Only S11 is an active node.



OptIntro 35 / 37

Branch-&-Bound Example

Branch-&-Bound Application

Bounding

◮ Notice that S11 = S ∩ {x : x1 6 2, x2 = 0}.

◮ The solution to the relaxation R(S11) is x11 = (32 , 0), which
produces an upper bound z11 = 6.

◮ Since z11 = 6 < 7 = z , this node is cutt off.



OptIntro 36 / 37

Branch-&-Bound Example

Branch-&-Bound Application

Choosing a node

The list of active nodes is empty, thus we conclude that the
solution x⋆ = (2, 1) is optimal with objective z⋆ = 7.



OptIntro 37 / 37

Branch-&-Bound Example

Integer Programming: Branch-and-Bound Algorithm

◮ Thank you for attending this lecture!!!


