OptIntro 1/37

Integer Programming: Branch-&-Bound Algorithm

Eduardo Camponogara

Department of Automation and Systems Engineering Federal University of Santa Catarina

October 2016

Introduction

Branch-and-Bound Algorithm

Summary

Introduction

Branch-and-Bound Algorithm

Summary

Introduction

Branch-and-Bound Algorithm

- 1. Divide P in an equivalent set of subproblems $\{SP_k\}$.
- 2. Solve the subproblems.
- 3. Obtain a solution for P from the solutions for $\{SP_k\}$.

- 1. Divide P in an equivalent set of subproblems $\{SP_k\}$.
- 2. Solve the subproblems.
- 3. Obtain a solution for P from the solutions for $\{SP_k\}$.

- 1. Divide P in an equivalent set of subproblems $\{SP_k\}$.
- 2. Solve the subproblems.
- 3. Obtain a solution for P from the solutions for $\{SP_k\}$

- 1. Divide P in an equivalent set of subproblems $\{SP_k\}$.
- 2. Solve the subproblems.
- 3. Obtain a solution for P from the solutions for $\{SP_k\}$.

- ► The divisions are performed iteratively, such that the subproblems are easier to solve.
- Eliminate/Discard subproblems by implicit enumeration.
 - ▶ That is, a subproblem is discarded if it can be proven that it cannot produce the optimal solution.

Consider the problem:

$$P: z = \max \{c^{\mathrm{T}}x : x \in S\}$$

How do we "break" *P* in small subproblems, and then recombine their solutions into a solution for the original problem?

Consider the problem:

$$P: z = \max \{c^{\mathrm{T}}x : x \in S\}$$

How do we "break" *P* in small subproblems, and then recombine their solutions into a solution for the original problem?

Proposition

- ▶ Let $S = S_1 \cup ... \cup S_K$ be a decomposition of S in K subsets.
- ▶ Let also $z^k = \max\{c^T x : x \in S_k\}$ for k = 1, ..., K.
- ▶ Then, $z = \max\{z^k : k = 1, ..., K\}$.

A divide-and-conquer strategy can be illustrated with an enumeration tree (explicit).

Divide and Conquer

Proposition

- ▶ Let $S = S_1 \cup ... \cup S_K$ be a decomposition of S in K subsets.
- ▶ Let also $z^k = \max\{c^T x : x \in S_k\}$ for k = 1, ..., K.
- ▶ Then, $z = \max\{z^k : k = 1, ..., K\}$.

A divide-and-conquer strategy can be illustrated with an enumeration tree (explicit).

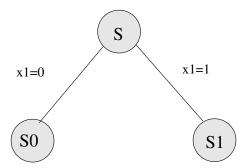
Proposition

- ▶ Let $S = S_1 \cup ... \cup S_K$ be a decomposition of S in K subsets.
- ▶ Let also $z^k = \max\{c^T x : x \in S_k\}$ for k = 1, ..., K.
- ▶ Then, $z = \max\{z^k : k = 1, ..., K\}$.

A divide-and-conquer strategy can be illustrated with an enumeration tree (explicit).

Explicit Enumeration

For $S \subseteq \{0,1\}^3$ the enumeration tree is build as follows.



Explicit Enumeration Tree

▶ Clearly $S = S_0 \cup S_1$, such that:

•
$$S_0 = \{x \in S : x_1 = 0\}$$
 e

▶ Divide each subproblem in even smaller subproblems:

►
$$S_0 = S_{00} \cup S_{01}$$
 and

▶
$$S_1 = S_{10} \cup S_{11}$$
,

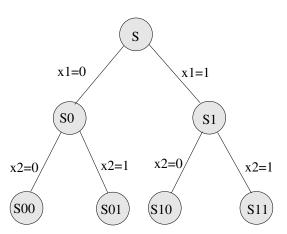
where
$$S_{i_1i_2} = \{x \in S_{i_1} : x_2 = i_2\}$$

Explicit Enumeration Tree

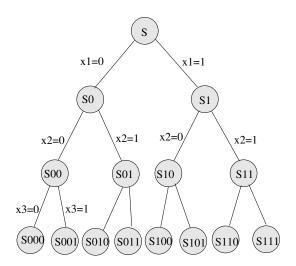
- ▶ Clearly $S = S_0 \cup S_1$, such that:
 - $S_0 = \{x \in S : x_1 = 0\}$ e
 - ► $S_1 = \{x \in S : x_1 = 1\}.$
- ▶ Divide each subproblem in even smaller subproblems:
 - ► $S_0 = S_{00} \cup S_{01}$ and
 - ► $S_1 = S_{10} \cup S_{11}$,

where $S_{i_1i_2} = \{x \in S_{i_1} : x_2 = i_2\}.$

Explicit Enumeration



Explicit Enumeration



Explicit Enumeration

- ▶ The above figure shows a complete enumeration tree.
- ▶ A leaf of the tree $S_{i_1i_2i_3}$ is nonempty if, and only if, $x = (i_1, i_2, i_3) \in S$.
- ▶ The leaves correspond to the candidate solutions.

- ► Complete enumeration is not viable for practical problems.
- ▶ We should use bounds for $\{z^k\}$ in an effective way, upper bounds (dual) and lower bounds (primal).

- ► Complete enumeration is not viable for practical problems.
- ▶ We should use bounds for $\{z^k\}$ in an effective way, upper bounds (dual) and lower bounds (primal).

Proposition

Let:

- ▶ $S = S_1 \cup ... \cup S_K$ be a decomposition of S in K subsets.
- $ightharpoonup z^k = \max\{c^T x : x \in S_k\}$ are optimal values for k = 1, ..., K.

l et

- ightharpoonup be an upper bound for z^k .
- \triangleright z^k be a lower bound for z^k .

- a) $\overline{z} = \max{\{\overline{z}^k : k = 1, ..., K\}}$ defines an upper bound for z
- b) $\underline{z} = \max\{\underline{z}^k : k = 1, ..., K\}$ defines a lower bound for z.

Proposition

Let:

- ▶ $S = S_1 \cup ... \cup S_K$ be a decomposition of S in K subsets.
- ▶ $z^k = \max\{c^T x : x \in S_k\}$ are optimal values for k = 1, ..., K.

Let

- ightharpoonup be an upper bound for z^k .
- \triangleright z^k be a lower bound for z^k .

- a) $\overline{z} = \max{\{\overline{z}^k : k = 1, ..., K\}}$ defines an upper bound for z
- b) $\underline{z} = \max\{\underline{z}^k : k = 1, \dots, K\}$ defines a lower bound for z.

Proposition

Let:

- ▶ $S = S_1 \cup ... \cup S_K$ be a decomposition of S in K subsets.
- ▶ $z^k = \max\{c^T x : x \in S_k\}$ are optimal values for k = 1, ..., K.

Let

- ightharpoonup be an upper bound for z^k .
- \triangleright z^k be a lower bound for z^k .

- a) $\overline{z} = \max{\{\overline{z}^k : k = 1, ..., K\}}$ defines an upper bound for z.
- b) $\underline{z} = \max\{\underline{z}^k : k = 1, \dots, K\}$ defines a lower bound for z.

Proposition

Let:

- ▶ $S = S_1 \cup ... \cup S_K$ be a decomposition of S in K subsets.
- ▶ $z^k = \max\{c^T x : x \in S_k\}$ are optimal values for k = 1, ..., K.

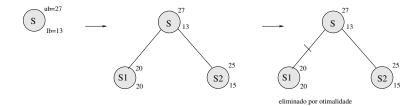
Let

- ightharpoonup be an upper bound for z^k .
- \triangleright z^k be a lower bound for z^k .

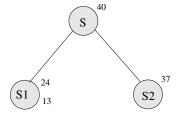
- a) $\overline{z} = \max{\{\overline{z}^k : k = 1, ..., K\}}$ defines an upper bound for z.
- b) $\underline{z} = \max\{\underline{z}^k : k = 1, ..., K\}$ defines a lower bound for z.

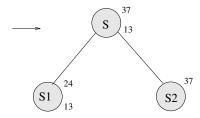
- ▶ Let *S* be the initial set containing all problem solutions.
- Assume that lb = 13 is the lower bound and ub = 27 is the upper bound.

Cut Node by Optimality



Node Cannot Be Fathomed





Nenhum ramo da arvore pode ser eliminado

Three rules for cutting tree branches:

- i) By optimality: $z_t = \max\{c^T x : x \in S_t\}$ has been solved.
- ii) By bounding: $\overline{z}_t < \underline{z}$.
- iii) By infeasibility: $S_t = \emptyset$.

Summary

Introduction

Branch-and-Bound Algorithm

The branch-and-bound search will be illustrated in the following problem:

onde
$$x \in \mathbb{Z}_+^2$$
.

Bounding

The first upper bound is obtained by solving the linear relaxation, R(S).

- ▶ It produces $\overline{z} = \frac{59}{7}$ at $(\overline{x}_1, \overline{x}_2) = (\frac{20}{7}, 3)$.
- We assume that $\underline{z} = -\infty$.

Branching

If $\underline{z} < \overline{z}$, S is broken in two subproblems.

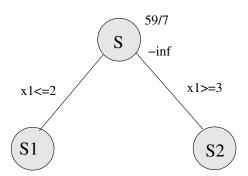
Break S according with one fractional variable:

$$S_1 = S \cap \{x : x_j \leq \lfloor \overline{x}_j \rfloor \}$$

$$S_2 = S \cap \{x : x_j \geq \lceil \overline{x}_j \rceil \}$$

- ightharpoonup Clearly, $S = S_1 \cup S_2$.
- ▶ The list of active nodes becomes $L = \{S_1, S_2\}$.

Branching



Choosing a Node

- ▶ The list of active nodes $L = \{S_1, S_2\}$ contains two subsets.
- Arbitrarily, node S_1 is chosen.

Bounding

We solve the relaxation $R(S_1)$, meaning the LP:

for which the optimal solution is $(x_1^1, x_2^1) = (2, \frac{1}{2})$, thus inducing an upper bound $\overline{z} = \frac{15}{2}$.

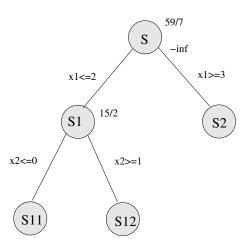
Branching

▶ Breaking S_1 in two sets:

$$S_{11} = S_1 \cap \{x : x_2 \le 0\}$$

 $S_{12} = S_1 \cap \{x : x_2 \ge 1\}$

renders the active-node list $L = \{S_2, S_{11}, S_{12}\}.$



Branching

Arbitrarily we choose node S_2 from the active list

$$L = \{S_{11}, S_{12}, S_2\}.$$

Bounding

Solving the linear relaxation $R(S_2)$:

Since $R(S_2)$ is infeasible $(\overline{z}_2 = -\infty)$, node S_2 is cut off.

Choosing a node

The list of active nodes has now become $L = \{S_{11}, S_{12}\}.$

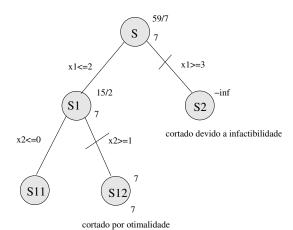
▶ Arbitrarily we chose node S_{12} .

Bounding

- ▶ We solve the relaxation $R(S_{12})$ with feasible space $S_{12} = S \cap \{x : x_1 \leq 2 \text{ and } x_2 \geq 1\}.$
- ▶ The solution $\overline{x}_{12} = (2,1)$ is obtained, producing the upper bound $\overline{z}_{12} = 7$.
- ▶ This solution $R(S_{12})$ is integer, thus a lower bound was obtained:
 - ► The value <u>Z</u>₁₂ = 7 can be propagated throughout the branch-and-bound tree.
- ▶ Consequently S_{12} is cut off by optimality.

Bounding

- ▶ We solve the relaxation $R(S_{12})$ with feasible space $S_{12} = S \cap \{x : x_1 \leq 2 \text{ and } x_2 \geq 1\}.$
- ▶ The solution $\overline{x}_{12} = (2,1)$ is obtained, producing the upper bound $\overline{z}_{12} = 7$.
- ▶ This solution $R(S_{12})$ is integer, thus a lower bound was obtained:
 - ► The value <u>Z</u>₁₂ = 7 can be propagated throughout the branch-and-bound tree.
- ▶ Consequently S_{12} is cut off by optimality.



Choose a node Only S_{11} is an active node.

Bounding

- ▶ Notice that $S_{11} = S \cap \{x : x_1 \leq 2, x_2 = 0\}.$
- ► The solution to the relaxation $R(S_{11})$ is $\overline{x}_{11} = (\frac{3}{2}, 0)$, which produces an upper bound $\overline{z}_{11} = 6$.
- ▶ Since $\overline{z}_{11} = 6 < 7 = \underline{z}$, this node is cutt off.

Choosing a node

The list of active nodes is empty, thus we conclude that the solution $x^* = (2,1)$ is optimal with objective $z^* = 7$.

Integer Programming: Branch-and-Bound Algorithm

Thank you for attending this lecture!!!