Integer Programming: Relaxations

Eduardo Camponogara
Department of Automation and Systems Engineering
Federal University of Santa Catarina

October 2016

Introduction

Relaxations

Lagrangian Relaxation

OptIntro

L Introduction

Summary

Introduction

Relaxations

Lagrangian Relaxation

4ロ〉4句〉4 高〉4 三〉

Optimality Conditions

- Optimality Conditions: How do we assess the quality of a given candidate solution with respect the optimum, without knowing the optimum?
- This can be achieved by solving easier problem to optimality, however within a space that includes the feasible space of the problem at hand.

Optimality Conditions

- Optimality Conditions: How do we assess the quality of a given candidate solution with respect the optimum, without knowing the optimum?
- This can be achieved by solving easier problem to optimality, however within a space that includes the feasible space of the problem at hand.

Optimality Conditions

Relaxations can be obtained by:

- disconsidering some constraints;
- neglecting the integrality of discrete variables;
- solving a simplified problem.

Optimality Conditions

- Take the following Integer Program:

$$
I P: z=\max \left\{c^{\mathrm{T}} x: x \in X \subseteq \mathbb{Z}^{n}\right\}
$$

- Given a candidate solution x^{\star}, how can we prove that x^{\star} is an optimal solution?
- We look for optimality conditions that provide a stopping condition for algorithms.

Optimality Conditions

- Take the following Integer Program:

$$
I P: z=\max \left\{c^{\mathrm{T}} x: x \in X \subseteq \mathbb{Z}^{n}\right\}
$$

- Given a candidate solution x^{\star}, how can we prove that x^{\star} is an optimal solution?
- We look for optimality conditions that provide a stopping condition for algorithms.

Optimality Conditions

- Take the following Integer Program:

$$
I P: z=\max \left\{c^{T} x: x \in X \subseteq \mathbb{Z}^{n}\right\}
$$

- Given a candidate solution x^{\star}, how can we prove that x^{\star} is an optimal solution?
- We look for optimality conditions that provide a stopping condition for algorithms.

Optimality Conditions

- One method consists of finding a lower bound $\underline{z} \leq z$ and an upper bound $\bar{z} \geq z$ such that $\underline{z}=\bar{z}$, in which case z is the optimum.
- Typically, algorithm produce two sequences of bounds:
- a sequence of upper bounds $\bar{z}_{1}>\bar{z}_{2}>\ldots>\bar{z}_{t} \geq z$ - a sequence of lower bounds $\underline{z}_{1}<\underline{z}_{2}<\ldots<\underline{z}_{k} \leq z$.
- Given $\xi \geq 0$, we can define a stopping criterion such as $\left|\bar{z}_{t}-\underline{z}_{k}\right| \leq \xi$.

Optimality Conditions

- One method consists of finding a lower bound $\underline{z} \leq z$ and an upper bound $\bar{z} \geq z$ such that $\underline{z}=\bar{z}$, in which case z is the optimum.
- Typically, algorithm produce two sequences of bounds:
- a sequence of upper bounds $\bar{z}_{1}>\bar{z}_{2}>\ldots>\bar{z}_{t} \geq z$
- a sequence of lower bounds $\underline{z}_{1}<\underline{z}_{2}<\ldots<\underline{z}_{k} \leq z$.
- Given $\xi \geq 0$, we can define a stopping criterion such as $\left|\bar{z}_{t}-\underline{z}_{k}\right| \leq \xi$.

Optimality Conditions

- One method consists of finding a lower bound $\underline{z} \leq z$ and an upper bound $\bar{z} \geq z$ such that $\underline{z}=\bar{z}$, in which case z is the optimum.
- Typically, algorithm produce two sequences of bounds:
- a sequence of upper bounds $\bar{z}_{1}>\bar{z}_{2}>\ldots>\bar{z}_{t} \geq z$
- a sequence of lower bounds $\underline{z}_{1}<\underline{z}_{2}<\ldots<\underline{z}_{k} \leq z$.
- Given $\xi \geq 0$, we can define a stopping criterion such as $\left|\bar{z}_{t}-\underline{z}_{k}\right| \leq \xi$.

Optimality Conditions

- When an algorithm terminates, the conditions ascertain that the candidate solution z is at most ξ units worse than the optimum.
- The ability to estimate the quality of candidate solution is of fundamental importances in optimization.

Optimality Conditions

- When an algorithm terminates, the conditions ascertain that the candidate solution z is at most ξ units worse than the optimum.
- The ability to estimate the quality of candidate solution is of fundamental importances in optimization.

Primal Bound

Finding a feasible solution may be a hard or easy task. It is a problem dependent issue.

- Any feasible solution $x, x \in X$, induce a bound (lower bound for maximization) given that $c^{T} x \leq c^{T} x^{\star}=z^{\star}$.
> For NP-Complete problems, the search for a feasible solution corresponds to solving the problem.
- On the other hand, finding a feasible route for the traveling salesman probllem is easy, the hardness being in reaching the shortest route.

Primal Bound

Finding a feasible solution may be a hard or easy task. It is a problem dependent issue.

- Any feasible solution $x, x \in X$, induce a bound (lower bound for maximization) given that $c^{T} x \leq c^{T} x^{\star}=z^{\star}$.
- For NP-Complete problems, the search for a feasible solution corresponds to solving the problem.
- On the other hand, finding a feasible route for the traveling salesman probllem is easy, the hardness being in reaching the shortest route.

Primal Bound

Finding a feasible solution may be a hard or easy task. It is a problem dependent issue.

- Any feasible solution $x, x \in X$, induce a bound (lower bound for maximization) given that $c^{T} x \leq c^{T} x^{\star}=z^{\star}$.
- For NP-Complete problems, the search for a feasible solution corresponds to solving the problem.
- On the other hand, finding a feasible route for the traveling salesman probllem is easy, the hardness being in reaching the shortest route.

Primal Bound

Finding a feasible solution may be a hard or easy task. It is a problem dependent issue.

- Any feasible solution $x, x \in X$, induce a bound (lower bound for maximization) given that $c^{T} x \leq c^{T} x^{\star}=z^{\star}$.
- For NP-Complete problems, the search for a feasible solution corresponds to solving the problem.
- On the other hand, finding a feasible route for the traveling salesman probllem is easy, the hardness being in reaching the shortest route.

Dual Bound

- A method to find an upper bound relies on a relaxation of the problem at hand.
- That is, a simpler problem whose optimal solution has an objective value not inferior to the optimum of the problem of concern.

Dual Bound

Definition
Relaxation problem R :

$$
z^{\mathrm{R}}=\max \left\{f(x): x \in T \subseteq \mathbb{R}^{n}\right\}
$$

is a relaxation of the problem IP:

$$
z=\max \left\{c(x): x \in X \subseteq \mathbb{R}^{n}\right\}
$$

if:
i) $X \subseteq T$
ii) $f(x) \geq c(x)$ for all $x \in X$.

Dual Bound

Proposition
IF (R) is a relaxation of $(I P)$ then $z^{R} \geq z$.
OptIntro
$\left\llcorner_{\text {Relaxations }}\right.$

Summary

Introduction

Relaxations

Lagrangian Relaxation

Linear Relaxation

Linear Relaxation
For the integer programming problem:

$$
\max \left\{c^{\mathrm{T}} x: x \in P \cap \mathbb{Z}^{n}\right\}
$$

with formulation:

$$
P=\left\{x \in \mathbb{R}_{+}^{n}: A x \leq b\right\}
$$

the linear relaxation is:

$$
z^{\mathrm{PL}}=\max \left\{c^{\mathrm{T}} x: x \in P\right\}
$$

Linear Relaxation

Example

$$
z=\begin{array}{rrr}
\max & 4 x_{1} & -x_{2} \\
\text { s.t. }: & 7 x_{1} & -2 x_{2} \leq 14 \\
& & x_{2} \leq 3 \\
& 2 x_{1}-2 x_{2} \leq 3
\end{array}
$$

where $x \in \mathbb{Z}_{+}^{2}$.
Lower bound: notice that $\underline{x}=(2,1)$ is feasible, therefore $z \geq 7$.

Linear Relaxation

Example

$$
z=\begin{array}{rrr}
\max & 4 x_{1}-x_{2} \\
\text { s.t. : } & 7 x_{1}-2 x_{2} & \leq 14 \\
& & x_{2} \leq 3 \\
& 2 x_{1}-2 x_{2} \leq 3
\end{array}
$$

where $x \in \mathbb{Z}_{+}^{2}$.
Lower bound: notice that $\underline{x}=(2,1)$ is feasible, therefore $z \geq 7$.

Linear Relaxation

Example

$$
z=\begin{array}{rrr}
\max & 4 x_{1} & -x_{2} \\
\text { s.t. }: & 7 x_{1} & -2 x_{2} \leq 14 \\
& & x_{2} \leq 3 \\
& 2 x_{1} & -2 x_{2} \leq 3
\end{array}
$$

where $x \in \mathbb{Z}_{+}^{2}$.
Upper bound: an optimal solution to the linear relaxation $x^{\star}=\left(\frac{20}{7}, 3\right)$ with $z^{\mathrm{LP}}=\frac{59}{7}$, thus one concludes that
$z \leq 8 \leq \frac{59}{7}$, in which $8=\left\lfloor\frac{59}{7}\right\rfloor$

Linear Relaxation

Example

$$
z=\begin{array}{rrr}
\max & 4 x_{1} & -x_{2} \\
\text { s.t. }: & 7 x_{1} & -2 x_{2} \leq 14 \\
& & x_{2} \leq 3 \\
& 2 x_{1}-2 x_{2} \leq 3
\end{array}
$$

where $x \in \mathbb{Z}_{+}^{2}$.
Upper bound: an optimal solution to the linear relaxation $x^{\star}=\left(\frac{20}{7}, 3\right)$ with $z^{\mathrm{LP}}=\frac{59}{7}$, thus one concludes that $z \leq 8 \leq \frac{59}{7}$, in which $8=\left\lfloor\frac{59}{7}\right\rfloor$.

Combinatorial Relaxation

- When the relaxation consists of a combinatorial problem, the relaxation is said to be a combinatorial relaxation.
- An example of a combinatorial relaxations for the traveling salesman problem and the knapsack problem are given below.

The Traveling Salesman Problem (TSP)

$$
\begin{array}{ll}
\min & \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j} \\
\text { s.t. : } & \sum_{j=1}^{n} x_{i j}=1 \quad i=1, . ., n \\
& \sum_{i=1}^{n} x_{i j}=1 \quad j=1, . ., n \\
& \sum_{i \in S} \sum_{j \neq S} x_{i j} \geq 1 \quad \forall S \subset\{1, \ldots, n\},|S| \geq 2 \\
& x_{i j} \in\{0,1\} \quad \forall(i, j) \in A \tag{5}
\end{array}
$$

The Traveling Salesman Problem

- Discarding the family (4) of constraints, the allocation problem is obtained.
- Notice that the allocation problem can be solved efficiently.

The Knapsack Problem

(KP) $\quad \max \sum_{j=1}^{n} c_{j} x_{j}$
$\begin{array}{ll}\text { s.t. : } & \sum_{j=1}^{n} a_{j} x_{j} \leq b \\ & x_{j} \in\{0,1\}, j=1, \ldots, n\end{array}$

The Knapsack Problem

A first relaxation is obtained if we take the integers immediately inferior to the weights of the items:

$$
\begin{align*}
\left(R P_{1}\right) & \max
\end{align*} \quad \sum_{j=1}^{n} c_{j} x_{j},
$$

The Knapsack Problem

The above relaxation is equivalent to the problem:

$$
\begin{array}{rll}
\left(R P_{2}\right) & \max & \sum_{j=1}^{n} c_{j} x_{j} \\
\text { s.t. }: & \sum_{j=1}^{n}\left\lfloor a_{j}\right\rfloor x_{j} \leq\lfloor b\rfloor \tag{7}\\
& x_{j} \in\{0,1\}, j=1, \ldots, n
\end{array}
$$

$\left\llcorner_{\text {Lagrangian Relaxation }}\right.$

Summary

Introduction

Relaxations

Lagrangian Relaxation

Lagrangian Relaxation: the Knapsack Problem

First, consider the general integer program given by:

$$
\begin{aligned}
(P) \quad z= & \max c^{\top} x \\
& \text { s.t. }: \\
& A x \leq b \\
& x \in \mathcal{X} \subseteq \mathbb{Z}^{n}
\end{aligned}
$$

As seen above, a relaxation is obtained if we neglect the constraints $\{A x \leq b\}$.

Lagrangian Relaxation: Example

Rather than discarding $\{A x \leq b\}$, the Lagrangian relaxation introduced these constraints in the objective:

$$
\begin{aligned}
L R(u) \quad z= & \max c^{\top} x+u^{\top}(b-A x) \\
& \text { s.t. }: \\
& x \in \mathcal{X} \\
& u \geq 0
\end{aligned}
$$

Lagrangian Relaxation

Proposition

- Let $z(u)=\max \left\{c^{T} x+u^{T}(b-A x): x \in X\right\}$.
- Then $z(u) \geq z$ for all $u \geq 0$.

Lagrangian Relaxation: Remarks

- Given $u \geq 0$, the optimal solution to (LR) induces an upper bound $z(u) \geq z^{*}$.
- We can verify that $z(u) \geq c^{\top} x$, for all $x \in \mathcal{P}=\{x: x \in X$ e $A x \leq b\}$
- $c^{\top} x \leq c^{\top} x+u^{\top}(b-A x)$ since $b-A x \geq 0, x$ is feasible, and
- Since the feasible solution to the integer program (P) are also within the feasible space of LR , we conclude that $z(u) \geq z^{*}$.

Lagrangian Relaxation: Remarks

- Given $u \geq 0$, the optimal solution to (LR) induces an upper bound $z(u) \geq z^{*}$.
- We can verify that $z(u) \geq c^{\top} x$, for all $x \in \mathcal{P}=\{x: x \in X$ e $A x \leq b\}:$
- $c^{T} x \leq c^{T} x+u^{T}(b-A x)$ since $b-A x \geq 0, x$ is feasible, and $u \geq 0$;
- Since the feasible solution to the integer program (P) are also within the feasible space of LR, we conclude that $z(u) \geq z^{*}$.

Convexity of Dual Function

Take $u, v \geq 0$ and $\theta \in[0,1]$. Then

$$
\begin{aligned}
& z(\theta u+(1-\theta) v)=\max _{x \in \mathcal{X}} c^{T} x+(\theta u+(1-\theta) v)^{T}(b-A x) \\
& =\max _{x \in \mathcal{X}} c^{T}(\theta+(1-\theta)) x+(\theta u+(1-\theta) v)^{T}(b-A x) \\
& =\max _{x \in \mathcal{X}} \theta\left[c^{T} x+u^{T}(b-A x)\right]+(1-\theta)\left[c^{T} x+v^{T}(b-A x)\right] \\
& \leq \theta \cdot \max _{x \in \mathcal{X}}\left[c^{T} x+u^{T}(b-A x)\right]+(1-\theta) \cdot \max _{x \in \mathcal{X}}\left[c^{T} x+v^{T}(b-A x)\right] \\
& =\theta z(u)+(1-\theta) z(v)
\end{aligned}
$$

Lagrangian Dual

Since $z(u)$ is an upper bound for z^{*}, naturally one would wish to minimize the upper bound, giving rise to the Lagrangian Dual:
$L D: \min _{u \geq 0} z(u) \cong \min _{\max } c^{\top} x+u^{T}(b-A x)$ $u \geq 0 \quad u \geq 0$

$$
\text { s.t. : } \quad x \in \mathcal{X}
$$

Lagrangian Relaxation

Lagrangian Dual

- The Lagrangian dual is convex but not differentiable problem.
- An approximate solution for LD could be sought.
- Under certain conditions, an optimal solution can be found using the subgradient algorithm.

Subgradient

Definition

Given a function $z: \mathbb{R}^{n} \rightarrow \mathbb{R}$, a vector $d(u) \in \mathbb{R}^{n}$ is a subgradient for z at $u \in \mathcal{U}$ if:

$$
z(v) \geq z(u)+d(u)^{T}(v-u), \forall v \in \mathcal{U}
$$

in which \mathcal{U} is the domain of z.

Subgradient

- Take $u \geq 0$ for LD, and let $x(u) \in \mathcal{X}$ be the point that induces the value $z(u)$.
- Then, a subgradient for z at u is given by:

$$
d(u)=b-A x(u)
$$

because $z(u)$ is a convex function in u.

Subgradient

- Take $u \geq 0$ for LD, and let $x(u) \in \mathcal{X}$ be the point that induces the value $z(u)$.
- Then, a subgradient for z at u is given by:

$$
d(u)=b-A x(u)
$$

because $z(u)$ is a convex function in u.

Subgradient Algorithm

1. Input parameters: $u_{0} \geq 0, \mu_{0}$, and $\rho<1$.
2. Let $k=0$.
3. Compute $z\left(u_{k}\right)$ and obtain $x\left(u_{k}\right)$ by solving $L R\left(u_{k}\right)$.
4. If $x\left(u_{k}\right)$ is feasible for P , or stopping criteria is satisfied, then halt.
5. Let $d_{k}=b-A x\left(u_{k}\right)$ be the subgradient.
6. $u_{k+1}=u_{k}-\mu_{k} d_{k}$.
7. $\mu_{k+1}=\rho \mu_{k}, k=k+1$, and repeat from step 3 .

Lagrangian Dual as an LP Program

Example: Consider the following instance of the knapsack problem:

$$
\begin{aligned}
z= & \max \\
& 10 x_{1}+7 x_{2}+25 x_{3}+24 x_{4} \\
\text { s.t. : } & 2 x_{1}+x_{2}+6 x_{3}+5 x_{4} \leq 7 \\
& x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\}
\end{aligned}
$$

Challenge: develop an LP program equivalent to the Lagrangian Dual.

Lagrangian Dual as an LP Program

Example: Consider the following instance of the knapsack problem:

$$
\begin{aligned}
z=\max & 10 x_{1}+7 x_{2}+25 x_{3}+24 x_{4} \\
\text { s.t. : } & 2 x_{1}+x_{2}+6 x_{3}+5 x_{4} \leq 7 \\
& x_{1}, x_{2}, x_{3}, x_{4} \in\{0,1\}
\end{aligned}
$$

Challenge: develop an LP program equivalent to the Lagrangian Dual.

Integer Programming: Relaxations

- Thank you for attending this lecture!!!

