
OptIntro 1 / 35

Integer Programming: Relaxations

Eduardo Camponogara

Department of Automation and Systems Engineering
Federal University of Santa Catarina

October 2016

OptIntro 2 / 35

Summary

Introduction

Relaxations

Lagrangian Relaxation

OptIntro 3 / 35

Introduction

Summary

Introduction

Relaxations

Lagrangian Relaxation

OptIntro 4 / 35

Introduction

Optimality Conditions

I Optimality Conditions: How do we assess the quality of a
given candidate solution with respect the optimum, without
knowing the optimum?

I This can be achieved by solving an easier problem to
optimality, however within a space that includes the feasible
space of the problem at hand.

OptIntro 4 / 35

Introduction

Optimality Conditions

I Optimality Conditions: How do we assess the quality of a
given candidate solution with respect the optimum, without
knowing the optimum?

I This can be achieved by solving an easier problem to
optimality, however within a space that includes the feasible
space of the problem at hand.

OptIntro 5 / 35

Introduction

Optimality Conditions

Relaxations can be obtained by:

I disconsidering some constraints;

I neglecting the integrality of discrete variables;

I solving a simplified problem.

OptIntro 6 / 35

Introduction

Optimality Conditions

I Take the following Integer Program:

IP : z = max {cTx : x ∈ X ⊆ Zn}

I Given a candidate solution x?, how can we prove that x? is an
optimal solution?

I We look for optimality conditions that provide a stopping
condition for algorithms.

OptIntro 6 / 35

Introduction

Optimality Conditions

I Take the following Integer Program:

IP : z = max {cTx : x ∈ X ⊆ Zn}

I Given a candidate solution x?, how can we prove that x? is an
optimal solution?

I We look for optimality conditions that provide a stopping
condition for algorithms.

OptIntro 6 / 35

Introduction

Optimality Conditions

I Take the following Integer Program:

IP : z = max {cTx : x ∈ X ⊆ Zn}

I Given a candidate solution x?, how can we prove that x? is an
optimal solution?

I We look for optimality conditions that provide a stopping
condition for algorithms.

OptIntro 7 / 35

Introduction

Optimality Conditions

I One method consists of finding a lower bound z ≤ z and an
upper bound z ≥ z such that z = z , in which case z is the
optimum.

I Typically, an algorithm produce two sequences of bounds:
I a sequence of upper bounds z1 > z2 > . . . > z t ≥ z
I a sequence of lower bounds z1 < z2 < . . . < zk ≤ z .

I Given ξ ≥ 0, we can define a stopping criterion such as
|z t − zk | ≤ ξ.

OptIntro 7 / 35

Introduction

Optimality Conditions

I One method consists of finding a lower bound z ≤ z and an
upper bound z ≥ z such that z = z , in which case z is the
optimum.

I Typically, an algorithm produce two sequences of bounds:
I a sequence of upper bounds z1 > z2 > . . . > z t ≥ z
I a sequence of lower bounds z1 < z2 < . . . < zk ≤ z .

I Given ξ ≥ 0, we can define a stopping criterion such as
|z t − zk | ≤ ξ.

OptIntro 7 / 35

Introduction

Optimality Conditions

I One method consists of finding a lower bound z ≤ z and an
upper bound z ≥ z such that z = z , in which case z is the
optimum.

I Typically, an algorithm produce two sequences of bounds:
I a sequence of upper bounds z1 > z2 > . . . > z t ≥ z
I a sequence of lower bounds z1 < z2 < . . . < zk ≤ z .

I Given ξ ≥ 0, we can define a stopping criterion such as
|z t − zk | ≤ ξ.

OptIntro 8 / 35

Introduction

Optimality Conditions

I When an algorithm terminates, the conditions ascertain that
the candidate solution z is at most ξ units worse than the
optimum.

I The ability to estimate the quality of a candidate solution is of
fundamental importance in optimization.

OptIntro 8 / 35

Introduction

Optimality Conditions

I When an algorithm terminates, the conditions ascertain that
the candidate solution z is at most ξ units worse than the
optimum.

I The ability to estimate the quality of a candidate solution is of
fundamental importance in optimization.

OptIntro 9 / 35

Introduction

Primal Bound

Primal Bound

Finding a feasible solution may be a hard or easy task. It is a problem
dependent issue.

I Any feasible solution x , x ∈ X , induces a bound (lower bound for
maximization) given that cTx ≤ cTx? = z?.

I For NP-Complete problems, the search for a feasible solution
corresponds to solving the problem.

I On the other hand, finding a feasible route for the traveling salesman
probllem is easy, the hardness being in reaching the shortest route.

OptIntro 9 / 35

Introduction

Primal Bound

Primal Bound

Finding a feasible solution may be a hard or easy task. It is a problem
dependent issue.

I Any feasible solution x , x ∈ X , induces a bound (lower bound for
maximization) given that cTx ≤ cTx? = z?.

I For NP-Complete problems, the search for a feasible solution
corresponds to solving the problem.

I On the other hand, finding a feasible route for the traveling salesman
probllem is easy, the hardness being in reaching the shortest route.

OptIntro 9 / 35

Introduction

Primal Bound

Primal Bound

Finding a feasible solution may be a hard or easy task. It is a problem
dependent issue.

I Any feasible solution x , x ∈ X , induces a bound (lower bound for
maximization) given that cTx ≤ cTx? = z?.

I For NP-Complete problems, the search for a feasible solution
corresponds to solving the problem.

I On the other hand, finding a feasible route for the traveling salesman
probllem is easy, the hardness being in reaching the shortest route.

OptIntro 9 / 35

Introduction

Primal Bound

Primal Bound

Finding a feasible solution may be a hard or easy task. It is a problem
dependent issue.

I Any feasible solution x , x ∈ X , induces a bound (lower bound for
maximization) given that cTx ≤ cTx? = z?.

I For NP-Complete problems, the search for a feasible solution
corresponds to solving the problem.

I On the other hand, finding a feasible route for the traveling salesman
probllem is easy, the hardness being in reaching the shortest route.

OptIntro 10 / 35

Introduction

Dual Bound

Dual Bound

I A method to find an upper bound relies on a relaxation of the
problem at hand.

I That is, a simpler problem whose optimal solution has an
objective value not inferior to the optimum of the problem of
concern.

OptIntro 11 / 35

Introduction

Dual Bound

Dual Bound

Definition
A problem R:

zR = max {f (x) : x ∈ T ⊆ Rn}

is a relaxation of the problem IP:

z = max {c(x) : x ∈ X ⊆ Rn}

if:

i) X ⊆ T

ii) f (x) ≥ c(x) for all x ∈ X .

OptIntro 12 / 35

Introduction

Dual Bound

Dual Bound

Proposition

IF (R) is a relaxation of (IP) then zR ≥ z .

OptIntro 13 / 35

Relaxations

Summary

Introduction

Relaxations

Lagrangian Relaxation

OptIntro 14 / 35

Relaxations

Linear Relaxations

Linear Relaxation

Linear Relaxation
For the integer programming problem:

max {cTx : x ∈ P ∩ Zn}

with formulation:

P = {x ∈ Rn
+ : Ax ≤ b}

the linear relaxation is:

zPL = max {cTx : x ∈ P}

OptIntro 15 / 35

Relaxations

Linear Relaxations

Linear Relaxation

I Example
z = max 4x1 −x2

s.t. : 7x1 −2x2 ≤ 14
x2 ≤ 3

2x1 −2x2 ≤ 3

where x ∈ Z2
+.

I Lower bound: notice that x = (2, 1) is feasible, therefore
z ≥ 7.

OptIntro 15 / 35

Relaxations

Linear Relaxations

Linear Relaxation

I Example
z = max 4x1 −x2

s.t. : 7x1 −2x2 ≤ 14
x2 ≤ 3

2x1 −2x2 ≤ 3

where x ∈ Z2
+.

I Lower bound: notice that x = (2, 1) is feasible, therefore
z ≥ 7.

OptIntro 16 / 35

Relaxations

Linear Relaxations

Linear Relaxation

I Example

z = max 4x1 −x2
s.t. : 7x1 −2x2 ≤ 14

x2 ≤ 3
2x1 −2x2 ≤ 3

where x ∈ Z2
+.

I Upper bound: an optimal solution to the linear relaxation
x? =

(
20
7 , 3

)
with zLP = 59

7 , thus one concludes that
z ≤ 8 ≤ 59

7 , in which 8 = b597 c.

OptIntro 16 / 35

Relaxations

Linear Relaxations

Linear Relaxation

I Example

z = max 4x1 −x2
s.t. : 7x1 −2x2 ≤ 14

x2 ≤ 3
2x1 −2x2 ≤ 3

where x ∈ Z2
+.

I Upper bound: an optimal solution to the linear relaxation
x? =

(
20
7 , 3

)
with zLP = 59

7 , thus one concludes that
z ≤ 8 ≤ 59

7 , in which 8 = b597 c.

OptIntro 17 / 35

Relaxations

Combinatorial Relaxation

Combinatorial Relaxation

I When the relaxation consists of a combinatorial problem, the
relaxation is said to be a combinatorial relaxation.

I An example of a combinatorial relaxation for the traveling
salesman problem and the knapsack problem are given below.

OptIntro 18 / 35

Relaxations

Combinatorial Relaxation

The Traveling Salesman Problem (TSP)

min
n∑

i=1

n∑
j=1

cijxij (1)

s.t. :
n∑

j=1

xij = 1 i = 1, .., n (2)

n∑
i=1

xij = 1 j = 1, .., n (3)∑
i∈S

∑
j /∈S

xij ≥ 1 ∀S ⊂ {1, . . . , n}, |S | ≥ 2 (4)

xij ∈ {0, 1} ∀(i , j) ∈ A (5)

OptIntro 19 / 35

Relaxations

Combinatorial Relaxation

The Traveling Salesman Problem

I Discarding the family (4) of constraints, the allocation
problem is obtained.

I Notice that the allocation problem can be solved efficiently.

OptIntro 20 / 35

Relaxations

Combinatorial Relaxation

The Knapsack Problem

(KP) max
n∑

j=1
cjxj

s.t. :
n∑

j=1
ajxj ≤ b

xj ∈ {0, 1}, j = 1, . . . , n

OptIntro 21 / 35

Relaxations

Combinatorial Relaxation

The Knapsack Problem

A first relaxation is obtained if we take the integers immediately
inferior to the weights of the items:

(RP1) max
n∑

j=1
cjxj

s.t. :
n∑

j=1
bajcxj ≤ b

xj ∈ {0, 1}, j = 1, . . . , n

(6)

OptIntro 22 / 35

Relaxations

Combinatorial Relaxation

The Knapsack Problem

The above relaxation is equivalent to the problem:

(RP2) max
n∑

j=1
cjxj

s.t. :
n∑

j=1
bajcxj ≤ bbc

xj ∈ {0, 1}, j = 1, . . . , n

(7)

OptIntro 23 / 35

Lagrangian Relaxation

Summary

Introduction

Relaxations

Lagrangian Relaxation

OptIntro 24 / 35

Lagrangian Relaxation

Lagrangian Relaxation

First, consider the general integer program given by:

(P) z = max cTx

s.t. : Ax ≤ b

x ∈ X ⊆ Zn

As seen above, a relaxation is obtained if we neglect the
constraints {Ax ≤ b}.

OptIntro 25 / 35

Lagrangian Relaxation

Lagrangian Relaxation

Rather than discarding {Ax ≤ b}, the Lagrangian relaxation
introduces these constraints in the objective:

LR(u) z = max cTx + uT(b − Ax)

s.t. : x ∈ X
u ≥ 0

OptIntro 26 / 35

Lagrangian Relaxation

Lagrangian Relaxation

Proposition

I Let z(u) = max {cTx + uT(b − Ax) : x ∈ X}.
I Then z(u) ≥ z for all u ≥ 0.

OptIntro 27 / 35

Lagrangian Relaxation

Lagrangian Relaxation: Remarks

I Given u ≥ 0, the optimal solution to (LR) induces an upper bound
z(u) ≥ z∗.

I We can verify that z(u) ≥ cTx , for all
x ∈ P = {x : x ∈ X e Ax ≤ b}:

I cTx ≤ cTx + uT(b − Ax) since b − Ax ≥ 0, x is feasible, and
u ≥ 0;

I Since the feasible solution to the integer program (IP) is also
within the feasible space of LR, we conclude that z(u) ≥ z∗.

OptIntro 27 / 35

Lagrangian Relaxation

Lagrangian Relaxation: Remarks

I Given u ≥ 0, the optimal solution to (LR) induces an upper bound
z(u) ≥ z∗.

I We can verify that z(u) ≥ cTx , for all
x ∈ P = {x : x ∈ X e Ax ≤ b}:

I cTx ≤ cTx + uT(b − Ax) since b − Ax ≥ 0, x is feasible, and
u ≥ 0;

I Since the feasible solution to the integer program (IP) is also
within the feasible space of LR, we conclude that z(u) ≥ z∗.

OptIntro 28 / 35

Lagrangian Relaxation

Convexity of Dual Function

Take u, v ≥ 0 and θ ∈ [0, 1]. Then

z(θu + (1− θ)v) = max
x∈X

cTx + (θu + (1− θ)v)T(b − Ax)

= max
x∈X

cT(θ + (1− θ))x + (θu + (1− θ)v)T(b − Ax)

= max
x∈X

θ[cTx + uT(b − Ax)] + (1− θ)[cTx + vT(b − Ax)]

≤ θ ·max
x∈X

[cTx + uT(b − Ax)] + (1− θ) ·max
x∈X

[cTx + vT(b − Ax)]

= θz(u) + (1− θ)z(v)

OptIntro 29 / 35

Lagrangian Relaxation

Lagrangian Dual

Since z(u) is an upper bound for z∗, naturally one would wish to
minimize the upper bound, giving rise to the Lagrangian Dual:

LD : min z(u) ∼= min max cTx + uT(b − Ax)
u ≥ 0 u ≥ 0

s.t. : x ∈ X

OptIntro 30 / 35

Lagrangian Relaxation

Lagrangian Relaxation

Lagrangian Dual

I The Lagrangian dual is convex but not a differentiable
problem.

I An approximate solution for LD could be sought.

I Under certain conditions, an optimal solution can be found
using the subgradient algorithm.

OptIntro 31 / 35

Lagrangian Relaxation

Subgradient

Definition
Given a function z : Rn → R, a vector d(u) ∈ Rn is a subgradient
for z at u ∈ U if:

z(v) ≥ z(u) + d(u)T(v − u), ∀v ∈ U

in which U is the domain of z .

OptIntro 32 / 35

Lagrangian Relaxation

Subgradient

I Take u ≥ 0 for LD, and let x(u) ∈ X be the point that
induces the value z(u).

I Then, a subgradient for z at u is given by:

d(u) = b − Ax(u)

because z(u) is a convex function in u.

OptIntro 32 / 35

Lagrangian Relaxation

Subgradient

I Take u ≥ 0 for LD, and let x(u) ∈ X be the point that
induces the value z(u).

I Then, a subgradient for z at u is given by:

d(u) = b − Ax(u)

because z(u) is a convex function in u.

OptIntro 33 / 35

Lagrangian Relaxation

Subgradient Algorithm

1. Input parameters: u0 ≥ 0, µ0, and ρ < 1.

2. Let k = 0.

3. Compute z(uk) and obtain x(uk) by solving LR(uk).

4. If x(uk) is feasible for IP, or stopping criteria is satisfied, then halt.

5. Let dk = b − Ax(uk) be the subgradient.

6. uk+1 = uk − µkdk .

7. µk+1 = ρµk , k = k + 1, and repeat from step 3.

OptIntro 34 / 35

Lagrangian Relaxation

Lagrangian Dual as an LP Program

Example: Consider the following instance of the knapsack problem:

z = max 10x1 + 7x2 + 25x3 + 24x4

s.t. : 2x1 + x2 + 6x3 + 5x4 ≤ 7

x1, x2, x3, x4 ∈ {0, 1}

Challenge: develop an LP program equivalent to the Lagrangian Dual.

OptIntro 34 / 35

Lagrangian Relaxation

Lagrangian Dual as an LP Program

Example: Consider the following instance of the knapsack problem:

z = max 10x1 + 7x2 + 25x3 + 24x4

s.t. : 2x1 + x2 + 6x3 + 5x4 ≤ 7

x1, x2, x3, x4 ∈ {0, 1}

Challenge: develop an LP program equivalent to the Lagrangian Dual.

OptIntro 35 / 35

Lagrangian Relaxation

Integer Programming: Relaxations

I Thank you for attending this lecture!!!

