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knowing the optimum?

» Optimality Conditions: How do we assess the quality of a
given candidate solution with respect the optimum, without
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Optimality Conditions

» Optimality Conditions: How do we assess the quality of a
given candidate solution with respect the optimum, without
knowing the optimum?

» This can be achieved by solving an easier problem to
optimality, however within a space that includes the feasible
space of the problem at hand.
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Relaxations can be obtained by:

» disconsidering some constraints;

> neglecting the integrality of discrete variables;
» solving a simplified problem.
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> Take the following Integer Program:

IP: z=max {c"x:x€ X CZ"}
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> Take the following Integer Program:

IP: z=max {c"x:x€ X CZ"}

» Given a candidate solution x*, how can we prove that x* is an
optimal solution?
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Optimality Conditions

> Take the following Integer Program:
IP: z=max {c"x:x€ X CZ"}

» Given a candidate solution x*, how can we prove that x* is an
optimal solution?

» We look for optimality conditions that provide a stopping
condition for algorithms.
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optimum.

» One method consists of finding a lower bound z < z and an
upper bound Z > z such that z = Z, in which case z is the
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» One method consists of finding a lower bound z < z and an
upper bound z > z such that z = Z, in which case z is the
optimum.

» Typically, an algorithm produce two sequences of bounds:

> a sequence of upper boundszy >z, > ... >Z; > z
> a sequence of lower bounds z; <z, < ... <z, <z
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Optimality Conditions

» One method consists of finding a lower bound z < z and an
upper bound z > z such that z = Z, in which case z is the
optimum.

» Typically, an algorithm produce two sequences of bounds:

> a sequence of upper boundszy >z, > ... >Z; > z
> a sequence of lower bounds z; <z, < ... <z, <z

» Given £ > 0, we can define a stopping criterion such as
Ze — 24| < €.
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» When an algorithm terminates, the conditions ascertain that
the candidate solution z is at most £ units worse than the
optimum.
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Optimality Conditions

» When an algorithm terminates, the conditions ascertain that
the candidate solution z is at most £ units worse than the
optimum.

» The ability to estimate the quality of a candidate solution is of
fundamental importance in optimization.
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dependent issue.

Finding a feasible solution may be a hard or easy task. It is a problem
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Finding a feasible solution may be a hard or easy task. It is a problem
dependent issue.

> Any feasible solution x, x € X, induces a bound (lower bound for
maximization) given that cTx < c¢Tx* = z*.
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Primal Bound

Finding a feasible solution may be a hard or easy task. It is a problem
dependent issue.

> Any feasible solution x, x € X, induces a bound (lower bound for
maximization) given that cTx < cTx* = z*.

» For NP-Complete problems, the search for a feasible solution
corresponds to solving the problem.
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Primal Bound

Finding a feasible solution may be a hard or easy task. It is a problem
dependent issue.

> Any feasible solution x, x € X, induces a bound (lower bound for
maximization) given that cTx < cTx* = z*.

» For NP-Complete problems, the search for a feasible solution
corresponds to solving the problem.

> On the other hand, finding a feasible route for the traveling salesman
probllem is easy, the hardness being in reaching the shortest route.
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Dual Bound

» A method to find an upper bound relies on a relaxation of the
problem at hand.

» That is, a simpler problem whose optimal solution has an
objective value not inferior to the optimum of the problem of
concern.
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Definition
A problem R:

N =max {f(x) :xe T CR"}
is a relaxation of the problem IP:

z=max {c(x) : x € X CR"}
if:
) XCT

i) f(x)> c(x) for all x € X.
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Proposition

IF (R) is a relaxation of (IP) then z& > z
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Relaxations
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Linear Relaxation

For the integer programming problem:

max {cTx:x€ PNZ"}
with formulation:

P={xeR] :Ax < b}
the linear relaxation is:

ZPL

=max {c'x:xe P}
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Linear Relaxation

» Example
z= max 4xq
st.: Txq
2x1

2
where x € 77

—xp
—2x

X2
—2x>

IN A IA

14
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Linear Relaxation

» Example
z= max 4xq
st.: Txq
2x1

2
where x € 77

—xp
—2x

X2
—2x>

IN A IA

14

» Lower bound: notice that x = (2, 1) is feasible, therefore

z>T.
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Linear Relaxation

» Example
z= max 4xg
st.: Txy
2x1

2
where x € Z7..

—x
—2X>

X2
—2X

AIVANIA

14
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Linear Relaxation

» Example
z= max 4xg
st.: Txy
2x1

2
where x € Z7..

—x
—2X>

X2
—2X

AIVANIA

14

» Upper bound: an optimal solution to the linear relaxation
x* = (2,3) with 2" = 22, thus one concludes that

z<8< 2, inwhich 8=[2].
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Combinatorial Relaxation

» When the relaxation consists of a combinatorial problem, the
relaxation is said to be a combinatorial relaxation.

> An example of a combinatorial relaxation for the traveling
salesman problem and the knapsack problem are given below.
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The Traveling Salesman Problem (TSP)

n n
min E E Cij Xij

i=1 j=1

n
s.t.: Zx,-jzl i=1,.,n
j=1

zn:x,-,-=1 j=1,.,n
i=1
DY xi=1 VSC{l,...,n}|S|>2

i€S jgs
x; € {0,1} v(i,j) €A
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The Traveling Salesman Problem

» Discarding the family (4) of constraints, the allocation
problem is obtained.

» Notice that the allocation problem can be solved efficiently.
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n
(KP) max Zlcjxj
J:

n
st.: Y ax;<b

Jj=1

xj € {0,1},j =1,
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A first relaxation is obtained if we take the integers immediately
inferior to the weights of the items:
n
(RP1) max > ¢jx;
Jj=1

n
st.o Y lajlx<b

Jj=1

x; € 10,1},
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The above relaxation is equivalent to the problem:
n
(RP2) max ) ¢jx;
j=1

n
s.t.:
Jj=1

> Laj]x < [b]

(7)
x €{0,1},j=1,...,n
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Lagrangian Relaxation

DA
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(P)

First, consider the general integer program given by

Z = maxX CTX

st.: Ax<b
xeXxXcCz"

As seen above, a relaxation is obtained if we neglect the
constraints {Ax < b}.
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Rather than discarding {Ax < b}, the Lagrangian relaxation
introduces these constraints in the objective:

LR(u) z= max cTx+ ut(b— Ax)
s.t.:

xeX

u>0
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Proposition

» Let z(u) = max {ctx + uT(b— Ax) : x € X}.
» Then z(u) > z for all u > 0.
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Lagrangian Relaxation: Remarks

z(u) > z*.

> Given u > 0, the optimal solution to (LR) induces an upper bound
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Lagrangian Relaxation: Remarks

> Given u > 0, the optimal solution to (LR) induces an upper bound
z(u) > z*.
» We can verify that z(u) > cTx, for all
xeP={x:xeXeAx < b}
» cTx < cTx+ uT(b— Ax) since b — Ax > 0, x is feasible, and

u>0;
» Since the feasible solution to the integer program (IP) is also
within the feasible space of LR, we conclude that z(u) > z*.
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Take u,v > 0and 6 € [0,1]. Then

z(u+ (1 —0)v) = max x4 (Bu+ (1 —0)v)" (b — Ax)

= max O+ (1—0))x+ (fu+ (1 —0)v)" (b — Ax)
= max O[c"x + uT(b— Ax)] + (1 — 0)[c"x + v (b — Ax)]

<0- max [c"x+u"(b— Ax)] + (1 —0)- max [c"x + vT(b— Ax)]

=0z(u) + (1 - 0)z(v)
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min

Since z(u) is an upper bound for z*, naturally one would wish to
z(u) =
u>0

minimize the upper bound, giving rise to the Lagrangian Dual:
LD :

min  max c'x+ uT(b— Ax)
u>0

st.: xe X
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Lagrangian Relaxation

Lagrangian Dual
» The Lagrangian dual is convex but not a differentiable
problem.
» An approximate solution for LD could be sought.

» Under certain conditions, an optimal solution can be found
using the subgradient algorithm.
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Definition

Given a function z : R” — R, a vector d(u) € R" is a
for z at u e U if:

subgradient
z(v) > z(u) + d(u)" (v — u), Vv € U
in which U/ is the domain of z.
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» Take u > 0 for LD, and let x(u) € X be the point that
induces the value z(u).
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» Take u > 0 for LD, and let x(u) € X be the point that
induces the value z(u).

» Then, a subgradient for z at u is given by:

d(u) = b — Ax(u)

because z(u) is a convex function in u.
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Subgradient Algorithm

N o ok e b=

Input parameters: up > 0, po, and p < 1.
Let k = 0.
Compute z(uk) and obtain x(uk) by solving LR(ux).

If x(uk) is feasible for IP, or stopping criteria is satisfied, then halt.

Let di = b — Ax(uk) be the subgradient.
Uk41 = Uk — pikdk.

Lk+1 = pk, k = k+ 1, and repeat from step 3.
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Example: Consider the following instance of the knapsack problem

z=max 10x; + 7xo + 25x3 + 24x,
St.:2x1+x +6x3+5x4 <7

X1, X2, X3, X4 € {O’ 1}
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Example: Consider the following instance of the knapsack problem

z=max 10x; + 7xo + 25x3 + 24x,
St.:2x1+x +6x3+5x4 <7

X1, X2, X3, X4 € {0’ 1}

Challenge: develop an LP program equivalent to the Lagrangian Dual.
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Integer Programming: Relaxations

» Thank you for attending this lecture!!!



