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An integer problem can be expressed as:

PL: max c'x

s.t. Ax < b,
x>0

where:

= Rnxl

> Ae Rm™xN

> cc Rnxl

> bGRle
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Integer Problems

There are several classes of integer problems

v

Integer (Linear) Problem

v

Mixed-Integer (Linear) Problem

v

Linear Binary Problem

v

Combinatorial Optimization Problem
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Integer Linear Problem (IP):

PL: max ¢ x

s.t. Ax < b,

xezZ"
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Mixed-Integer (Linear) Problem

Mixed-Integer Linear Problem (MILP):

PL: max c'x

s.t. Ax < b,
x = (xc, x1)
xc >0
X1 € Z"
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Rounding and Integer Programming

DA
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Rounding and Integer Programming

Questdo

» Why not use Linear Programming?
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Rounding and Integer Programming

Questdo

» Why not use Linear Programming?
» We could disconsider the constraints on binary variables.
» Obtain an optimal solution x* for the resulting linear program.

» An then round x* such as to obtain a solution to the integer
program.
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Rounding and Integer Programming
Issue

» The rounding strategy does not work.

» The following counter-example clarifies the issue:

max x1 + 0.6x
st.: B0x; + 3lx
3x1 — 2x>

250

IV IA
|
o

with being x1, xo > 0 and integer.
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Rounding and Integer Programming

Issue

» The rounding strategy does not work.

» The following counter-example clarifies the issue:

max x1 + 0.6x
st.: B0x; + 3lx
3x1 — 2x>

250
—4

IV INA

with being x1, xo > 0 and integer.

» An optimal solution to LP, xp; = (%, %) = (1.94,4.92),
could be rounded to obtain the solution xp; = (2,4).
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Rounding and Integer Programming

Issue

» The rounding strategy does not work.

» The following counter-example clarifies the issue:

max x1 + 0.6x
st.: B0x; + 3lx
3x1 — 2x>

250
—4

IV INA

with being x1, xo > 0 and integer.

» An optimal solution to LP, xp; = (%, %) = (1.94,4.92),

could be rounded to obtain the solution xp; = (2, 4).

» But this solution is quite “far’ from the optimal solution
x* = (5,0).
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Rounding and Integer Programming

x2

(376/193, 950/193)

Fecho convexo
. dos pontos inteiros
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Fundamentals of Integer Programming

Applications

» Several poblems of academic and practical relevance can be
formulade in integer programming.
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Fundamentals of Integer Programming

Applications
formulade in integer programming.
» Examples:

» Several poblems of academic and practical relevance can be

» combinatorial problems found in graph theory;
» problems in logic; and
> problems in logistics.
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Fundamentals of Integer Programming

Airline Crew Scheduling

> Allocation of flight crews subject to physical, temporal, and
work-related constraints.

» High economic impact on airline companies.

» Given flight legs for a type of airplane, the problem is to
allocate weekly crews to cyclic flight routes.
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Travel Salesman Problem

Background

» Choose an order for a travel salesman to leave his home city,
let us say city 1, visit the remaining n — 1 cities precisely once,
and then return to the home city.

» The distance traveled should be as short as possible.
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Travel Salesman Problem

Background

» Choose an order for a travel salesman to leave his home city,
let us say city 1, visit the remaining n — 1 cities precisely once,
and then return to the home city.

» The distance traveled should be as short as possible.

» We are given set of n cities.

> cjj is the cost o (distance) to travel from city / to city j.
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Travel Salesman Problem

Background

» The problem is to find the shortest route (circuit) that visits
each city precisely once and whose travel distance is minimum.

» Application are found in vehicle routing, welding of electronic
circuits, and garbage collection.
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17/35

Defining variables

1
Xjj = 0

if salesman travels from city 7 to city j
otherwise



Optlntro

|—App|ications

Travel Salesman Problem
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Defining constraints
a) The salesman departs from city i exactly once
n
d xj=1 i=1,...,n
j=1
b) The salesman arrives at city j exactly once:

n
injzl Jj=1...,n
i=1
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Defining constraints
c) Connectivity constraints:
PIES

VSC N, S#0
i€S j¢s
or subtour elimination:

YY) x<IsI-1

i€S JES, j#i

VSCN,2<|S|<n-1
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Defining the objective

n n
min E E CijXij

i=1 j=1
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Modeling Strategies

DA
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We wish to model the nonlinear function given by

_J f+px if0<x<c
h(x)_{o ifx=0
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' h(x)

>
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» Varidveis:

1 ifx>0
YTV o

if x=0
» Constraints and objective function:

h(x) = fy + px
x < cy

y €{0,1}

Model valid only for minimization.
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Discrete Alternatives and Disjunctions

disjunctions.

» A promising area in the theory and practice is disjunctive
programming, that is, models and algorithms based on
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Discrete Alternatives and Disjunctions

» A promising area in the theory and practice is disjunctive
programming, that is, models and algorithms based on
disjunctions.

» To understand disjunctive programming, suppose that x € R”

satisfies:
0<x<ue

alTx < by ou a2Tx < by

(1)

x must satisfy another linear constraints, not being necessary
that it will satisfy both constraints.



Optlntro

I—Modeling Strategies

L Modeling Disjunctions

Discrete Alternative and Disjunctions
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The feasible region of a disjunction with two constraints: notice
that the feasible region is nonconvex.

x2

a2Tx =b2|

Regiao Factivel

alﬁ:bl

x1
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Discrete Alternatives and Disjunctions

» How do we represent the disjunction (1) in mixed-integer
linear programming.
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Discrete Alternatives and Disjunctions

» How do we represent the disjunction (1) in mixed-integer
linear programming.

> Let M = max;:172{a;rx —bi: 0 < x < u}.

» Fist, we introduce two binary variables, y; and y», whose
semantics is explained below:

_ 1 if x satisfies aj x < by
no= 0 otherwise

{ 1 if x satisfies a2TX < by
Y2 =

0 otherwise
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Discrete Alternatives and Disjunctions
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Given the above variables, we can introduce the complete
formulation:

a'lfxg b1 + M(1 —yy)
agxg by + M(1 — y»)
yity2=1

y1,y2 € {0,1}
0<x<u
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Discrete Alternatives and Disjunctions

» Disjunctions appear in scheduling problem.

» Tasks 1 and 2 must be processed in a given machine, but not
simultaneously.
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Discrete Alternatives and Disjunctions

» Disjunctions appear in scheduling problem.

» Tasks 1 and 2 must be processed in a given machine, but not
simultaneously.

> Let p; be the processing time of task i and t; the time
processing begins.

» Then, we can express temporal precedence of one task in
relation to the other by a disjunction:

tbhtpr<bortr+p <t
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» The power function x?, p € N, with x € {0,1} is nonlinear.
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» The power function x?, p € N, with x € {0, 1} is nonlinear
> Notice that xP = x since:

» xP =0if x =0 and
» xP=1and x = 1.

» Thus, it is possible to linearize the term xP.
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Product of Binary Variables
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» Consider the term y = x3x2x3, in which x; € {0,1}.
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Product of Binary Variables

» Consider the term y = x3x2x3, in which x; € {0,1}.

» The nonlinear term can be reformulated as:

y<xi
y <x
y <x3
y>xi+xa+x3—2
y=0

x1,x2,x3 € {0,1}
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» The function sign(-) can be modeled using a binary variable
» Assuming that |x| < M, then:

x < Mz,

x> -M(1-2z2),
sign(x) = (2z — 1),

z€{0,1}
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Can you model the following functions in mixed-integer linear
programming?

> y = max{xy, x2}?
>y =|x]?

N
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Integer Programming
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» Thank you for attending this lecture!!!



