Introduction to Integer Programming

Eduardo Camponogara
Department of Automation and Systems Engineering
Federal University of Santa Catarina

October 2016

Introduciton

Rounding and Integer Programming

Applications

Modeling Strategies
OptIntro

L Introduciton

Summary

Introduciton

Rounding and Integer Programming

Applications

Modeling Strategies

What is an Integer Problem?

An integer problem can be expressed as:

$$
\begin{aligned}
& P L: \max \\
& c^{\mathrm{T}} x \\
& \text { s.t. } A x \leq b, \\
& x \geq 0
\end{aligned}
$$

where:

- $x \in \mathbb{R}^{n \times 1}$
- $A \in \mathbb{R}^{m \times n}$
- $c \in \mathbb{R}^{n \times 1}$
- $b \in \mathbb{R}^{m \times 1}$

Integer Problems

There are several classes of integer problems

- Integer (Linear) Problem
- Mixed-Integer (Linear) Problem
- Linear Binary Problem
- Combinatorial Optimization Problem

OptIntro

Integer Problem

Integer Linear Problem (IP):
$P L: \max c^{\mathrm{T}} x$

$$
\begin{aligned}
& \text { s.t. } A x \leq b, \\
& x \in \mathbb{Z}^{n}
\end{aligned}
$$

Mixed-Integer (Linear) Problem

Mixed-Integer Linear Problem (MILP):

$$
\begin{aligned}
P L: \max & c^{\mathrm{T}} x \\
\text { s.t. } & A x \leq b, \\
& x=\left(x_{\mathrm{C}}, x_{\mathrm{I}}\right) \\
& x_{\mathrm{C}} \geq 0 \\
& x_{\mathrm{I}} \in \mathbb{Z}^{n}
\end{aligned}
$$

OptIntro
$\left\llcorner_{\text {Rounding and Integer Programming }}\right.$

Summary

Introduciton

Rounding and Integer Programming

Applications

Modeling Strategies

Rounding and Integer Programming

Questão

- Why not use Linear Programming?
- We could disconsider the constraints on binary variables.
- Obtain an optimal solution x^{\star} for the resulting linear program.
- An then round x^{\star} such as to obtain a solution to the integer program.

Rounding and Integer Programming

Questão

- Why not use Linear Programming?
- We could disconsider the constraints on binary variables.
- Obtain an optimal solution x^{\star} for the resulting linear program.
- An then round x^{\star} such as to obtain a solution to the integer program.

Rounding and Integer Programming

Issue

- The rounding strategy does not work.
- The following counter-example clarifies the issue:

$$
\begin{array}{rrl}
\max & x_{1}+0.6 x_{2} & \\
\text { s.t. : } & 50 x_{1}+31 x_{2} \leq 250 \\
& 3 x_{1}-2 x_{2} \geq-4
\end{array}
$$

with being $x_{1}, x_{2} \geq 0$ and integer.

- An optimal solution to LP, $x_{P L}=\left(\frac{376}{193}, \frac{950}{193}\right)=(1.94,4.92)$, could be rounded to obtain the solution $\bar{x}_{P L}=(2,4)$.
- But this solution is quite "far" from the optimal solution $x^{\star}=(5,0)$.

Rounding and Integer Programming

Issue

- The rounding strategy does not work.
- The following counter-example clarifies the issue:

$$
\begin{array}{rrl}
\max & x_{1}+0.6 x_{2} & \\
\text { s.t. : } & 50 x_{1}+31 x_{2} \leq 250 \\
& 3 x_{1}-2 x_{2} \geq-4
\end{array}
$$

with being $x_{1}, x_{2} \geq 0$ and integer.

- An optimal solution to LP, $x_{P L}=\left(\frac{376}{193}, \frac{950}{193}\right)=(1.94,4.92)$, could be rounded to obtain the solution $\bar{x}_{P L}=(2,4)$.
- But this solution is quite "far" from the optimal solution $x^{\star}=(5,0)$.

Rounding and Integer Programming

Issue

- The rounding strategy does not work.
- The following counter-example clarifies the issue:

$$
\begin{array}{rr}
\max & x_{1}+0.6 x_{2} \\
\text { s.t. : } & 50 x_{1}+31 x_{2} \leq 250 \\
& 3 x_{1}-2 x_{2} \geq-4
\end{array}
$$

with being $x_{1}, x_{2} \geq 0$ and integer.

- An optimal solution to LP, $x_{P L}=\left(\frac{376}{193}, \frac{950}{193}\right)=(1.94,4.92)$, could be rounded to obtain the solution $\bar{x}_{P L}=(2,4)$.
- But this solution is quite "far" from the optimal solution $x^{\star}=(5,0)$.

Rounding and Integer Programming

OptIntro

LApplications

Summary

Introduciton

Rounding and Integer Programming

Applications

Modeling Strategies

Fundamentals of Integer Programming

Applications

- Several poblems of academic and practical relevance can be formulade in integer programming.
- combinatorial problems found in graph theory;
- problems in logic; and
- problems in logistics.

Fundamentals of Integer Programming

Applications

- Several poblems of academic and practical relevance can be formulade in integer programming.
- Examples:
- combinatorial problems found in graph theory;
- problems in logic; and
- problems in logistics.

Fundamentals of Integer Programming

Airline Crew Scheduling

- Allocation of flight crews subject to physical, temporal, and work-related constraints.
- High economic impact on airline companies.
- Given flight legs for a type of airplane, the problem is to allocate weekly crews to cyclic flight routes.

Travel Salesman Problem

Background

- Choose an order for a travel salesman to leave his home city, let us say city 1 , visit the remaining $n-1$ cities precisely once, and then return to the home city.
- The distance traveled should be as short as possible.
- We are given set of n cities.
- $c_{i j}$ is the cost o (distance) to travel from city i to city j.

Travel Salesman Problem

Background

- Choose an order for a travel salesman to leave his home city, let us say city 1 , visit the remaining $n-1$ cities precisely once, and then return to the home city.
- The distance traveled should be as short as possible.
- We are given set of n cities.
- $c_{i j}$ is the cost o (distance) to travel from city i to city j.

Travel Salesman Problem

Background

- The problem is to find the shortest route (circuit) that visits each city precisely once and whose travel distance is minimum.
- Application are found in vehicle routing, welding of electronic circuits, and garbage collection.

Travel Salesman Problem

Defining variables

$$
x_{i j}= \begin{cases}1 & \text { if salesman travels from city } i \text { to city } j \\ 0 & \text { otherwise }\end{cases}
$$

Travel Salesman Problem

Defining constraints
a) The salesman departs from city i exactly once:

$$
\sum_{j=1}^{n} x_{i j}=1 \quad i=1, \ldots, n
$$

b) The salesman arrives at city j exactly once:

$$
\sum_{i=1}^{n} x_{i j}=1 \quad j=1, \ldots, n
$$

Travel Salesman Problem

Defining constraints

c) Connectivity constraints:

$$
\sum_{i \in S} \sum_{j \notin S} x_{i j} \geq 1 \quad \forall S \subset N, S \neq \emptyset
$$

or subtour elimination:

$$
\sum_{i \in S} \sum_{j \in S, j \neq i} x_{i j} \leq|S|-1 \quad \forall S \subseteq N, 2 \leq|S| \leq n-1
$$

LApplications

Travel Salesman Problem

Travel Salesman Problem

Defining the objective

$$
\min \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j}
$$

$\left\llcorner_{\text {Modeling Strategies }}\right.$

Summary

Introduciton

Rounding and Integer Programming

Applications

Modeling Strategies

Modeling Fixed Cost

We wish to model the nonlinear function given by:

$$
h(x)= \begin{cases}f+p x & \text { if } 0<x \leq c \\ 0 & \text { if } x=0\end{cases}
$$

L Modeling Strategies
$\left\llcorner_{\text {Modeling Fixed Costs }}\right.$

Modeling Fixed Cost

Modeling Fixed Cost

- Variáveis:

$$
y= \begin{cases}1 & \text { if } x>0 \\ 0 & \text { if } x=0\end{cases}
$$

- Constraints and objective function:

$$
\begin{gathered}
h(x)=f y+p x \\
x \leq c y \\
y \in\{0,1\}
\end{gathered}
$$

Model valid only for minimization.

Discrete Alternatives and Disjunctions

- A promising area in the theory and practice is disjunctive programming, that is, models and algorithms based on disjunctions.
- To understand disjunctive programming, suppose that $x \in \mathbb{R}^{n}$ satisfies:
x must satisfy another linear constraints, not being necessary that it will satisfy both constraints.

Discrete Alternatives and Disjunctions

- A promising area in the theory and practice is disjunctive programming, that is, models and algorithms based on disjunctions.
- To understand disjunctive programming, suppose that $x \in \mathbb{R}^{n}$ satisfies:

$$
\begin{gather*}
0 \leq x \leq u \mathrm{e} \\
a_{1}^{\mathrm{T}} x \leq b_{1} \text { ou } a_{2}^{\mathrm{T}} x \leq b_{2} \tag{1}
\end{gather*}
$$

x must satisfy another linear constraints, not being necessary that it will satisfy both constraints.

Discrete Alternative and Disjunctions

The feasible region of a disjunction with two constraints: notice that the feasible region is nonconvex.

Discrete Alternatives and Disjunctions

- How do we represent the disjunction (1) in mixed-integer linear programming.
- Let $M=\max _{i=1,2}\left\{a_{i}^{T} x-b_{i}: 0 \leq x \leq u\right\}$.
- Fist, we introduce two binary variables, y_{1} and y_{2}, whose semantics is explained below:

Discrete Alternatives and Disjunctions

- How do we represent the disjunction (1) in mixed-integer linear programming.
- Let $M=\max _{i=1,2}\left\{a_{i}^{T} x-b_{i}: 0 \leq x \leq u\right\}$.
- Fist, we introduce two binary variables, y_{1} and y_{2}, whose semantics is explained below:

$$
\begin{aligned}
& y_{1}= \begin{cases}1 & \text { if } x \text { satisfies } a_{1}^{\mathrm{T}} x \leq b_{1} \\
0 & \text { otherwise }\end{cases} \\
& y_{2}= \begin{cases}1 & \text { if } x \text { satisfies } a_{2}^{\mathrm{T}} x \leq b_{2} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Discrete Alternatives and Disjunctions

Given the above variables, we can introduce the complete formulation:

$$
\begin{gathered}
a_{1}^{\mathrm{T}} x \leq b_{1}+M\left(1-y_{1}\right) \\
a_{2}^{\mathrm{T}} x \leq b_{2}+M\left(1-y_{2}\right) \\
y_{1}+y_{2}=1 \\
y_{1}, y_{2} \in\{0,1\} \\
0 \leq x \leq u
\end{gathered}
$$

Discrete Alternatives and Disjunctions

- Disjunctions appear in scheduling problem.
- Tasks 1 and 2 must be processed in a given machine, but not simultaneously.
\Rightarrow Let p_{i} be the processing time of task i and t_{i} the time processing begins.
- Then, we can express temporal precedence of one task in relation to the other by a disjunction:

Discrete Alternatives and Disjunctions

- Disjunctions appear in scheduling problem.
- Tasks 1 and 2 must be processed in a given machine, but not simultaneously.
- Let p_{i} be the processing time of task i and t_{i} the time processing begins.
- Then, we can express temporal precedence of one task in relation to the other by a disjunction:

$$
t_{1}+p_{1} \leq t_{2} \text { or } t_{2}+p_{2} \leq t_{1}
$$

Power of Binary Variables

- The power function $x^{p}, p \in \mathbb{N}_{+}$, with $x \in\{0,1\}$ is nonlinear.
- Notice that $x^{p}=x$ since:
- $x^{p}=0$ if $x=0$ and
- $x^{p}=1$ and $x=1$.
- Thus, it is possible to linearize the term x^{p}.

Power of Binary Variables

- The power function $x^{p}, p \in \mathbb{N}_{+}$, with $x \in\{0,1\}$ is nonlinear.
- Notice that $x^{p}=x$ since:
- $x^{p}=0$ if $x=0$ and
- $x^{p}=1$ and $x=1$.
- Thus, it is possible to linearize the term x^{p}.

Product of Binary Variables

- Consider the term $y=x_{1} x_{2} x_{3}$, in which $x_{i} \in\{0,1\}$.
- The nonlinear term can be reformulated as:

$x_{1}, x_{2}, x_{3} \in\{0,1\}$

Product of Binary Variables

- Consider the term $y=x_{1} x_{2} x_{3}$, in which $x_{i} \in\{0,1\}$.
- The nonlinear term can be reformulated as:

$$
\begin{aligned}
y & \leq x_{1} \\
y & \leq x_{2} \\
y & \leq x_{3} \\
y & \geq x_{1}+x_{2}+x_{3}-2 \\
y & \geq 0 \\
x_{1}, x_{2}, x_{3} & \in\{0,1\}
\end{aligned}
$$

Sign Function: $\operatorname{sign}(x)$

- The function $\operatorname{sign}(\cdot)$ can be modeled using a binary variable.
- Assuming that $|x| \leq M$, then:

$$
\begin{aligned}
x & \leq M z, \\
x & \geq-M(1-z), \\
\operatorname{sign}(x) & =(2 z-1), \\
z & \in\{0,1\}
\end{aligned}
$$

Some Challenges

Can you model the following functions in mixed-integer linear programming?

- $y=\max \left\{x_{1}, x_{2}\right\}$?
- $y=|x|$?

Integer Programming

- Thank you for attending this lecture!!!

