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Introduciton

What is an Integer Problem?

An integer problem can be expressed as:

PL : max cTx

s.t. Ax ≤ b,

x ≥ 0

where:

I x ∈ Rn×1

I A ∈ Rm×n

I c ∈ Rn×1

I b ∈ Rm×1
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Introduciton

Integer Problems

There are several classes of integer problems

I Integer (Linear) Problem

I Mixed-Integer (Linear) Problem

I Linear Binary Problem

I Combinatorial Optimization Problem
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Introduciton

Integer Problem

Integer Linear Problem (IP):

PL : max cTx

s.t. Ax ≤ b,

x ∈ Zn
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Introduciton

Mixed-Integer (Linear) Problem

Mixed-Integer Linear Problem (MILP):

PL : max cTx

s.t. Ax ≤ b,

x = (xC, xI)

xC ≥ 0

xI ∈ Zn
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Rounding and Integer Programming

Rounding and Integer Programming

Questão

I Why not use Linear Programming?

I We could disconsider the constraints on binary variables.

I Obtain an optimal solution x? for the resulting linear program.

I An then round x? such as to obtain a solution to the integer
program.
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Rounding and Integer Programming

Rounding and Integer Programming

Issue

I The rounding strategy does not work.

I The following counter-example clarifies the issue:

max x1 + 0.6x2
s.t. : 50x1 + 31x2 ≤ 250

3x1 − 2x2 ≥ −4

with being x1, x2 ≥ 0 and integer.

I An optimal solution to LP, xPL = (376193 ,
950
193) = (1.94, 4.92),

could be rounded to obtain the solution xPL = (2, 4).

I But this solution is quite “far” from the optimal solution
x? = (5, 0).



OptIntro 10 / 35

Rounding and Integer Programming

Rounding and Integer Programming

Issue

I The rounding strategy does not work.

I The following counter-example clarifies the issue:

max x1 + 0.6x2
s.t. : 50x1 + 31x2 ≤ 250

3x1 − 2x2 ≥ −4

with being x1, x2 ≥ 0 and integer.

I An optimal solution to LP, xPL = (376193 ,
950
193) = (1.94, 4.92),

could be rounded to obtain the solution xPL = (2, 4).

I But this solution is quite “far” from the optimal solution
x? = (5, 0).



OptIntro 10 / 35

Rounding and Integer Programming

Rounding and Integer Programming

Issue

I The rounding strategy does not work.

I The following counter-example clarifies the issue:

max x1 + 0.6x2
s.t. : 50x1 + 31x2 ≤ 250

3x1 − 2x2 ≥ −4

with being x1, x2 ≥ 0 and integer.

I An optimal solution to LP, xPL = (376193 ,
950
193) = (1.94, 4.92),

could be rounded to obtain the solution xPL = (2, 4).

I But this solution is quite “far” from the optimal solution
x? = (5, 0).



OptIntro 11 / 35

Rounding and Integer Programming

Rounding and Integer Programming
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Applications

Fundamentals of Integer Programming

Applications

I Several poblems of academic and practical relevance can be
formulade in integer programming.

I Examples:

I combinatorial problems found in graph theory;
I problems in logic; and
I problems in logistics.
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Applications

Fundamentals of Integer Programming

Airline Crew Scheduling

I Allocation of flight crews subject to physical, temporal, and
work-related constraints.

I High economic impact on airline companies.

I Given flight legs for a type of airplane, the problem is to
allocate weekly crews to cyclic flight routes.
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Applications

Travel Salesman Problem

Background

I Choose an order for a travel salesman to leave his home city,
let us say city 1, visit the remaining n− 1 cities precisely once,
and then return to the home city.

I The distance traveled should be as short as possible.

I We are given set of n cities.

I cij is the cost o (distance) to travel from city i to city j .
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Applications

Travel Salesman Problem

Background

I The problem is to find the shortest route (circuit) that visits
each city precisely once and whose travel distance is minimum.

I Application are found in vehicle routing, welding of electronic
circuits, and garbage collection.



OptIntro 17 / 35

Applications

Travel Salesman Problem

Defining variables

xij =

{
1 if salesman travels from city i to city j
0 otherwise
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Applications

Travel Salesman Problem

Defining constraints

a) The salesman departs from city i exactly once:

n∑
j=1

xij = 1 i = 1, . . . , n

b) The salesman arrives at city j exactly once:

n∑
i=1

xij = 1 j = 1, . . . , n
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Applications

Travel Salesman Problem

Defining constraints

c) Connectivity constraints:∑
i∈S

∑
j /∈S

xij ≥ 1 ∀S ⊂ N, S 6= ∅

or subtour elimination:∑
i∈S

∑
j∈S, j 6=i

xij ≤ |S | − 1 ∀S ⊆ N, 2 ≤ |S | ≤ n − 1
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Applications

Travel Salesman Problem

S N − S
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Applications

Travel Salesman Problem

Defining the objective

min
n∑

i=1

n∑
j=1

cijxij
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Modeling Strategies

Modeling Fixed Costs

Modeling Fixed Cost

We wish to model the nonlinear function given by:

h(x) =

{
f + px if 0 < x ≤ c
0 if x = 0
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Modeling Strategies

Modeling Fixed Costs

Modeling Fixed Cost

f

c

h(x)

x
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Modeling Strategies

Modeling Fixed Costs

Modeling Fixed Cost

I Variáveis:

y =

{
1 if x > 0
0 if x = 0

I Constraints and objective function:

h(x) = fy + px
x ≤ cy

y ∈ {0, 1}

Model valid only for minimization.
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Modeling Strategies

Modeling Disjunctions

Discrete Alternatives and Disjunctions

I A promising area in the theory and practice is disjunctive
programming, that is, models and algorithms based on
disjunctions.

I To understand disjunctive programming, suppose that x ∈ Rn

satisfies:
0 ≤ x ≤ u e

aT1 x ≤ b1 ou aT2 x ≤ b2
(1)

x must satisfy another linear constraints, not being necessary
that it will satisfy both constraints.
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Modeling Strategies

Modeling Disjunctions

Discrete Alternative and Disjunctions

The feasible region of a disjunction with two constraints: notice
that the feasible region is nonconvex.

x2

x1

a2Tx = b2
Regiao Factivel

a1Tx = b1
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Modeling Strategies

Modeling Disjunctions

Discrete Alternatives and Disjunctions

I How do we represent the disjunction (1) in mixed-integer
linear programming.

I Let M = maxi=1,2{aTi x − bi : 0 ≤ x ≤ u}.
I Fist, we introduce two binary variables, y1 and y2, whose

semantics is explained below:

y1 =

{
1 if x satisfies aT1 x ≤ b1
0 otherwise

y2 =

{
1 if x satisfies aT2 x ≤ b2
0 otherwise
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Modeling Strategies

Modeling Disjunctions

Discrete Alternatives and Disjunctions

Given the above variables, we can introduce the complete
formulation:

aT1 x ≤ b1 + M(1− y1)
aT2 x ≤ b2 + M(1− y2)

y1 + y2 = 1
y1, y2 ∈ {0, 1}

0 ≤ x ≤ u
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Modeling Strategies

Modeling Disjunctions

Discrete Alternatives and Disjunctions

I Disjunctions appear in scheduling problem.

I Tasks 1 and 2 must be processed in a given machine, but not
simultaneously.

I Let pi be the processing time of task i and ti the time
processing begins.

I Then, we can express temporal precedence of one task in
relation to the other by a disjunction:

t1 + p1 ≤ t2 or t2 + p2 ≤ t1
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Modeling Strategies

Modeling Variable Product

Power of Binary Variables

I The power function xp, p ∈ N+, with x ∈ {0, 1} is nonlinear.
I Notice that xp = x since:

I xp = 0 if x = 0 and
I xp = 1 and x = 1.

I Thus, it is possible to linearize the term xp.
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Modeling Strategies

Modeling Variable Product

Product of Binary Variables

I Consider the term y = x1x2x3, in which xi ∈ {0, 1}.
I The nonlinear term can be reformulated as:

y ≤ x1

y ≤ x2

y ≤ x3

y ≥ x1 + x2 + x3 − 2

y ≥ 0

x1, x2, x3 ∈ {0, 1}
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Modeling Strategies

Modeling Variable Product

Sign Function: sign(x)

I The function sign(·) can be modeled using a binary variable.

I Assuming that |x | ≤ M, then:

x ≤ Mz ,

x ≥ −M(1− z),

sign(x) = (2z − 1),

z ∈ {0, 1}
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Modeling Strategies

Modeling Variable Product

Some Challenges

Can you model the following functions in mixed-integer linear
programming?

I y = max{x1, x2}?
I y = |x |?
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Modeling Strategies

Modeling Variable Product

Integer Programming

I Thank you for attending this lecture!!!


