OptIntro 1/34

Introduction to Integer Programming

Eduardo Camponogara

Department of Automation and Systems Engineering Federal University of Santa Catarina

October 2016

Introduction

Rounding and Integer Programming

Applications

Modeling Strategies

Summary

Introduction

Rounding and Integer Programming

Applications

Modeling Strategies

Integer Problem

Integer Linear Problem (IP):

$$PL: \max c^{T}x$$
 s.t. $Ax \leq b$, $x \in \mathbb{Z}^{n}$

Mixed-Integer (Linear) Problem

Mixed-Integer Linear Problem (MILP):

```
IP: \max c^{\mathrm{T}}x s.t. Ax \leq b, x = (x_{\mathrm{C}}, x_{\mathrm{I}}) x_{\mathrm{C}} \geq 0 x_{\mathrm{I}} \in \mathbb{Z}^n
```

Integer Problems

There are several classes of integer problems

- ► Integer (Linear) Problem
- Mixed-Integer (Linear) Problem
- Linear Binary Problem
- Combinatorial Optimization Problem

Summary

Introduction

Rounding and Integer Programming

Applications

Modeling Strategies

Questão: Why not use Linear Programming?

- We could disregard the constraints on binary variables.
- \blacktriangleright Obtain an optimal solution x^* for the resulting linear program.
- ▶ And then round x* such as to obtain a solution to the integer program.

Questão: Why not use Linear Programming?

- We could disregard the constraints on binary variables.
- ▶ Obtain an optimal solution x^* for the resulting linear program.
- And then round x* such as to obtain a solution to the integer program.

Issue

- ► The rounding strategy does not work.
- ▶ The following counter-example clarifies the issue:

with being x_1 , $x_2 \ge 0$ and integer.

- An optimal solution to LP, $x = (\frac{376}{193}, \frac{950}{193}) = (1.94, 4.92)$, could be rounded to obtain the solution $\overline{x} = (2, 4)$.
- ▶ But this solution is quite "far" from the optimal solution $x^* = (5,0)$.

Issue

- ▶ The rounding strategy does not work.
- ▶ The following counter-example clarifies the issue:

with being x_1 , $x_2 \ge 0$ and integer.

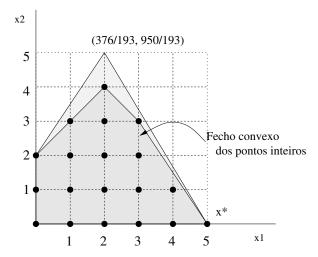
- An optimal solution to LP, $x = (\frac{376}{193}, \frac{950}{193}) = (1.94, 4.92)$, could be rounded to obtain the solution $\overline{x} = (2, 4)$.
- ▶ But this solution is quite "far" from the optimal solution $x^* = (5,0)$.

Issue

- ► The rounding strategy does not work.
- ▶ The following counter-example clarifies the issue:

with being x_1 , $x_2 \ge 0$ and integer.

- An optimal solution to LP, $x = (\frac{376}{193}, \frac{950}{193}) = (1.94, 4.92)$, could be rounded to obtain the solution $\overline{x} = (2, 4)$.
- ▶ But this solution is quite "far" from the optimal solution $x^* = (5, 0)$.



Summary

Introduction

Rounding and Integer Programming

Applications

Modeling Strategies

Fundamentals of Integer Programming

Applications

- Several problems of academic and practical relevance can be formulated in integer programming.
- ► Examples:
 - combinatorial problems found in graph theory (set covering, maximum clique);
 - problems in logic (satisfiability problem); and
 - problems in logistics.

Fundamentals of Integer Programming

Applications

- Several problems of academic and practical relevance can be formulated in integer programming.
- Examples:
 - combinatorial problems found in graph theory (set covering, maximum clique);
 - problems in logic (satisfiability problem); and
 - problems in logistics.

Fundamentals of Integer Programming

Airline Crew Scheduling

- Allocation of flight crews subject to physical, temporal, and work-related constraints.
- High economic impact on airline companies.
- ► Given flight legs for a type of airplane, the problem is to allocate weekly crews to cyclic flight routes.

Background

- ▶ Choose an order for a travel salesman to leave his home city, let us say city 1, visit the remaining n-1 cities precisely once, and then return to the home city.
- ▶ The distance traveled should be as short as possible.
- \triangleright We are given a set of n cities.
- $ightharpoonup c_{ij}$ is the cost (distance) to travel from city i to city j.

Background

- ▶ Choose an order for a travel salesman to leave his home city, let us say city 1, visit the remaining n-1 cities precisely once, and then return to the home city.
- ▶ The distance traveled should be as short as possible.
- ▶ We are given a set of *n* cities.
- $ightharpoonup c_{ii}$ is the cost (distance) to travel from city i to city j.

Background

- ► The problem is to find the shortest route (circuit) that visits each city precisely once and whose travel distance is minimum.
- ▶ Applications are found in vehicle routing, welding of electronic circuits, and garbage collection.

Defining variables

$$x_{ij} = \begin{cases} 1 & \text{if salesman travels from city } i \text{ to city } j \\ 0 & \text{otherwise} \end{cases}$$

Defining constraints

a) The salesman departs from city *i* exactly once:

$$\sum_{j=1}^{n} x_{ij} = 1 \qquad i = 1, \dots, n$$

b) The salesman arrives at city j exactly once:

$$\sum_{i=1}^{n} x_{ij} = 1 \qquad j = 1, \dots, n$$

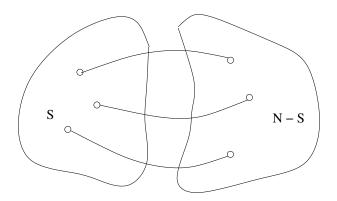
Defining constraints

c) Connectivity constraints:

$$\sum_{i \in S} \sum_{j \notin S} x_{ij} \ge 1 \qquad \forall S \subset N, \ S \neq \emptyset$$

or subtour elimination:

$$\sum_{i \in S} \sum_{i \in S, i \neq i} x_{ij} \le |S| - 1 \qquad \forall S \subseteq N, \ 2 \le |S| \le n - 1$$



Defining the objective

$$\min \sum_{i=1}^n \sum_{j=1}^n c_{ij} x_{ij}$$

Summary

Introduction

Rounding and Integer Programming

Applications

Modeling Strategies

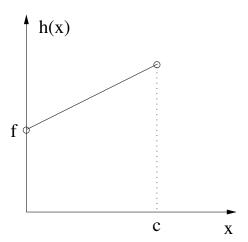
Modeling Strategies

Modeling Fixed Cost

We wish to model the nonlinear function given by:

$$h(x) = \begin{cases} f + px & \text{if } 0 < x \le c \\ 0 & \text{if } x = 0 \end{cases}$$

Modeling Fixed Cost



Modeling Fixed Cost

Variables:

$$y = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \end{cases}$$

Constraints and objective function:

$$h(x) = fy + px$$
$$x \le cy$$
$$y \in \{0, 1\}$$

Model valid only for minimization.

- A promising area in theory and practice is disjunctive programming, that is, models and algorithms based on disjunctions.
- ▶ To understand disjunctive programming, suppose that $x \in \mathbb{R}^n$ satisfies:

$$0 \le x \le u \text{ and}$$

$$(a_1^{\mathsf{T}} x \le b_1) \text{ or } (a_2^{\mathsf{T}} x \le b_2)$$

$$(1)$$

► x must satisfy one of the linear constraints, not necessarily both constraints.

- ▶ A promising area in theory and practice is disjunctive programming, that is, models and algorithms based on disjunctions.
- ▶ To understand disjunctive programming, suppose that $x \in \mathbb{R}^n$ satisfies:

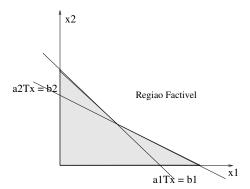
$$0 \le x \le u \text{ and}$$

$$(a_1^{\mathrm{T}} x \le b_1) \text{ or } (a_2^{\mathrm{T}} x \le b_2)$$

$$(1)$$

x must satisfy one of the linear constraints, not necessarily both constraints.

The feasible region of a disjunction with two constraints: notice that the feasible region is nonconvex.



How do we represent the disjunction (1) in mixed-integer linear programming.

- ▶ Let $M = \max_{i=1,2} \{a_i^T x b_i : 0 \le x \le u\}.$
- ▶ Fist, we introduce two binary variables, y_1 and y_2 , whose semantics is explained below:

$$y_1 = \begin{cases} 1 & \text{if } x \text{ satisfies } a_1^T x \leq b_1 \\ 0 & \text{otherwise} \end{cases}$$
 $y_2 = \begin{cases} 1 & \text{if } x \text{ satisfies } a_2^T x \leq b_2 \\ 0 & \text{otherwise} \end{cases}$

How do we represent the disjunction (1) in mixed-integer linear programming.

- ▶ Let $M = \max_{i=1,2} \{a_i^T x b_i : 0 \le x \le u\}.$
- Fist, we introduce two binary variables, y_1 and y_2 , whose semantics is explained below:

$$\begin{array}{lll} y_1 & = & \left\{ \begin{array}{ll} 1 & \text{if } x \text{ satisfies } a_1^{\mathrm{T}} x \leq b_1 \\ 0 & \text{otherwise} \end{array} \right. \\ y_2 & = & \left\{ \begin{array}{ll} 1 & \text{if } x \text{ satisfies } a_2^{\mathrm{T}} x \leq b_2 \\ 0 & \text{otherwise} \end{array} \right. \end{array}$$

Given the above variables, we can introduce the complete formulation:

$$a_1^{T}x \leq b_1 + M(1 - y_1)$$

$$a_2^{T}x \leq b_2 + M(1 - y_2)$$

$$y_1 + y_2 = 1$$

$$y_1, y_2 \in \{0, 1\}$$

$$0 \leq x \leq u$$

- Disjunctions appear in scheduling problems.
- ► Tasks 1 and 2 must be processed in a given machine, but not simultaneously.
- ▶ Let *p_i* be the processing time of task *i* and *t_i* the time processing begins.
- ► Then, we can express temporal precedence of one task in relation to the other by a disjunction:

$$(t_1 + p_1 \le t_2)$$
 or $(t_2 + p_2 \le t_1)$

- Disjunctions appear in scheduling problems.
- Tasks 1 and 2 must be processed in a given machine, but not simultaneously.
- ▶ Let *p_i* be the processing time of task *i* and *t_i* the time processing begins.
- ► Then, we can express temporal precedence of one task in relation to the other by a disjunction:

$$(t_1 + p_1 \le t_2)$$
 or $(t_2 + p_2 \le t_1)$

└ Modeling Variable Product

Power of Binary Variables

- ▶ The power function x^p , $p \in \mathbb{N}_+$, with $x \in \{0,1\}$ is nonlinear.
- Notice that $x^p = x$ since:
 - $x^p = 0$ if x = 0 and
 - $x^p = 1 \text{ and } x = 1.$
- ▶ Thus, it is possible to linearize the term x^p .

Modeling Variable Product

Power of Binary Variables

- ▶ The power function x^p , $p \in \mathbb{N}_+$, with $x \in \{0,1\}$ is nonlinear.
- Notice that $x^p = x$ since:
 - $x^p = 0$ if x = 0 and
 - $x^p = 1$ and x = 1.
- ▶ Thus, it is possible to linearize the term x^p .

Product of Binary Variables

- ▶ Consider the term $y = x_1x_2x_3$, in which $x_i \in \{0, 1\}$.
- ▶ The nonlinear term can be reformulated as:

$$y \le x_1$$

 $y \le x_2$
 $y \le x_3$
 $y \ge x_1 + x_2 + x_3 - 2$
 $y \ge 0$
 $x_2, x_3 \in \{0, 1\}$

Product of Binary Variables

- ► Consider the term $y = x_1x_2x_3$, in which $x_i \in \{0, 1\}$.
- The nonlinear term can be reformulated as:

$$y \le x_1$$

 $y \le x_2$
 $y \le x_3$
 $y \ge x_1 + x_2 + x_3 - 2$
 $y \ge 0$
 $x_1, x_2, x_3 \in \{0, 1\}$

Sign Function: sign(x)

- ▶ The function $sign(\cdot)$ can be modeled using a binary variable.
- Assuming that $|x| \leq M$, then:

$$x \le Mz,$$

$$x \ge -M(1-z),$$

$$sign(x) = (2z - 1),$$

$$z \in \{0, 1\}$$

Some Challenges

Can you model the following functions in mixed-integer linear programming?

$$y = \max\{x_1, x_2\}$$
?

▶
$$y = |x|$$
?

Modeling Strategies

└ Modeling Variable Product

Integer Programming

► Thank you for attending this lecture!!!