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Introduction

History of Linear Programmming

History

I Linear Programming was incepted in the 1930’s, experience
great advance in the 1940’s with the development of the
Smiplex Algorithm by George Dantzig.

I LP algorithms are rather efficient.

I Specially-tailored algorithms were proposed, particularly for
network-flow problems.



OptIntro 5 / 46

Introduction

History of Linear Programming

History

I In 1979, Khachiyan discovered the first polynomial-time
algorithms, which became known as the ellipsoid algorithm.

I It is not practical.
I The ellipsoid algorithm has significant impacts on integer

programming and in the solution of linear programming.
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Introduction

History of Linear Programming

History (continued)

I In 1984, Karmakar discovered the an interior-point algorithm
with polynomial time.

I This discovered led to breakthroughs in quadratic
programming and convex optimization, among other fields.

I Despite the polynomial-time of the interio-point method, the
Simplex algorithm remains widely used.
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Introduction

THe Linear Programming Problem

Programa Linear:

max cTx

s.t. Ax ≤ b

x ≥ 0
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Introduction

Transforming ≤ into =

a1x1 + a2x2 + . . .+ anxn ≥ b
⇔{

a1x1 + a2x2 + . . .+ anxn − s = b
s ≥ 0

Here, s is a (slack variable) since its value corresponds to the
amount resource b which is not used.
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Introduction

Dealing with Real Variables

We can convert sign-unconstrained variables into nonnegative
variables:

x ∈ R⇔


x = x+ − x−

x+ ≥ 0
x− ≥ 0
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Introduction

Infeasible Problem

I A problem is said to be infeasible if there does not exist a
candidate solution x ∈ Rn that meets all constraints.

I The problem below is infeasible since
S = {x ∈ Rn : Ax ≤ b, x ≥ 0} = ∅.

I Example of infeasible problem:

max 5x1 + 4x2
s.t. :

x1 + x2 ≤ 1
−2x1 − 2x2 ≤ −9
x1, x2 ≥ 0
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Introduction

Infeasible Problem
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Introduction

Unbounded Problem

I A problem is unbounded if there does not exist an upper
bound on the value of the objective.

I In other words, the objective value can grow arbitrarily large.

I An example of unbounded problem:

max x1 − 4x2
s.t. :

−2x1 + x2 ≤ −1
−x1 − 2x2 ≤ −2

x1, x2 ≥ 0
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Introduction

Unbounded Problem

5

4

3

2

1

1 2 3 4 5

Regiao Factivel

−1

−2

−3

−4

x1

x2

R1

Eq1

Eq2



OptIntro 14 / 46

Simplex Algorithm

Sumário

Introduction

Simplex Algorithm

Initial Solution

Duality



OptIntro 15 / 46

Simplex Algorithm

Simplex Algorithm

History

I Proposed by George Dantzig in the 1940’s.

I Today’s algorithm differs from the original version.

I It is the building-block of branch-and-bound and
branch-and-cut algorithms for integer programming.
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Simplex Algorithm

Standard Problem

Linear Program:

max cTx

s.t. Ax = b

x ≥ 0
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Simplex Algorithm

Simplex Algorith,

History

I Simplex can be viewed as camobinatorial search for the
optimal columns of constraints matrix: columns that induce
an optimal basis.

I There is an exponential number of column combinations.

I Despite this large number, Simplex is efficient in practice.
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Simplex Algorithm

Sample Problem

Consider the following linear program:

max 5x1 + 4x2 + 3x3
s.t. :

2x1 + 3x2 + x3 ≤ 5
4x1 + x2 + 2x3 ≤ 11
3x1 + 4x2 + 2x3 ≤ 8
x1, x2, x3 ≥ 0

(1)
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Simplex Algorithm

Sample Problem

After introducing slack variables, the problema assumes the form:

max δ = 0 + 5x1 + 4x2 + 3x3
s.t. :

w1 = 5 − 2x1 − 3x2 − x3
w2 = 11 − 4x1 − x2 − 2x3
w3 = 8 − 3x1 − 4x2 − 2x3

x1, x2, x3,w1,w2,w3 ≥ 0

(2)
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Simplex Algorithm

Sample Problem

Dictionary

I The system (2) cas the LP problem in a form known as
“dictionary.”

I In the “dictionary”, the solution is given in terms of a subset o
variables (basic variables), with cardinality equal to the
number of constraints, which are given as a function of the
remaining variables (nonbasic variables).

I The nonbasic variables assume value “zero.”

I Thus, a solution can be obtained directly from the dictionary.



OptIntro 20 / 46

Simplex Algorithm

Sample Problem

Dictionary

I The system (2) cas the LP problem in a form known as
“dictionary.”

I In the “dictionary”, the solution is given in terms of a subset o
variables (basic variables), with cardinality equal to the
number of constraints, which are given as a function of the
remaining variables (nonbasic variables).

I The nonbasic variables assume value “zero.”

I Thus, a solution can be obtained directly from the dictionary.



OptIntro 20 / 46

Simplex Algorithm

Sample Problem

Dictionary

I The system (2) cas the LP problem in a form known as
“dictionary.”

I In the “dictionary”, the solution is given in terms of a subset o
variables (basic variables), with cardinality equal to the
number of constraints, which are given as a function of the
remaining variables (nonbasic variables).

I The nonbasic variables assume value “zero.”

I Thus, a solution can be obtained directly from the dictionary.



OptIntro 21 / 46

Simplex Algorithm

Sample Problem

Dictionary (continued)

I In the above dictionary, the basis if formed by variables w1, w2

and w3.

I The nonbasic variables are x1, x2 e x3.

I Since nonbasic variables assume value zero, we obtain a
solution from the basic variables: w1 = 5, w2 = 11 and
w3 = 8.

I The resulting solution is feasible:
I All variables (basic and nonbasic) are nonnegative.
I The objective function has value δ = 0.
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Simplex Algorithm

Principles of Simplex

Iterative method

I Simplex is an iterative process that starts with a solution
y0 = (x01 . . . x0n w0

1 . . . w0
m)T , in which n = 3 and m = 3,

satisfying the equations of (1).

I Starting from (2), the Simplex seeks a new solution y1 such
that: 5x11 + 4x12 + 3x13 > 5x01 + 4x02 + 3x03 .

I To that end, it is necessary to bring a nonbasic variables, with
a positive coefficient in the equation δ, into the basis.

I This will raise the value of the nonbasic variable entering the
basis, thereby increasing the objective.
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Simplex Algorithm

Principles of Simplex

Iterative method (continued)

I Obviously, the variable that enters the basis cannot increase
indefinitely, unless the problem is unbounded.

I The first basic variable to become zero must leave the basis,
becoming nonbasic at the next iteration.

I The process is repeated until convergence to the optimum, or
the problem is detected to be unbounded.
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Simplex Algorithm

Simplex Algorithm: Example

Initialization
To start the iterative process, a feasible starting solution solution,
such as:

x01 = 0, x02 = 0, x03 = 0, w0
1 = 5, w0

2 = 11, w0
3 = 8

This solution y0 induces an objective value δ = 0.
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Simplex Algorithm

Simplex Algorithm: Example

Step 1

I The incumbent solution is not optimal.

I Any increase in the value of x1 increases the o valor de δ.

I The value of x1 cannot increase arbitrarily since it is limited by
the inequalities:

w1 = 5− 2x1 ≥ 0
w2 = 11− 4x1 ≥ 0
w3 = 8− 3x1 ≥ 0

⇒


x1 ≤ 5/2 = 2.5
x1 ≤ 11/4 = 2.75
x1 ≤ 8/3 = 2.667
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Simplex Algorithm

Simplex Algorithm: Example

Step 1 (continued)

Thus, the value of x1 at the next iteration should be less than
{5/2, 11/4, 8/3}, which leads to:

x1 =
5

2
− 1

2
w1 −

3

2
x2 −

1

2
x3 (3)
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Simplex Algorithm

Simplex Algorithm: Example

Step 1 (continued)

Replacing (3) in the system (2) in order to move w1 to the
right-hand size, we obtain:

x1 = 5
2 −

1
2w1 − 3

2x2 −
1
2x3

w2 = 11− 4
(
5
2 −

1
2w1 − 3

2x2 −
1
2x3
)
− x2 − 2x3

= 1 + 2w1 + 5x2

w3 = 8− 3
(
5
2 −

1
2w1 − 3

2x2 −
1
2x3
)
− 4x2 − 2x3

= 1
2 + 3

2w1 + 1
2x2 −

1
2x3

δ = 5
(
5
2 −

1
2w1 − 3

2x2 −
1
2x3
)

+ 4x2 + 3x3
= 25

2 −
5
2w1 − 7

2x2 + 1
2x3

(4)
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Simplex Algorithm

Simplex Algorithm: Example

Step 1 (continued)

Now, replacing equations (4) in the “dictionary” (2), the following
dictionary results:

max δ = 25
2 −5

2w1 −7
2x2 +1

2x3
x1 = 5

2 −1
2w1 −3

2x2 −1
2x3

w2 = 1 +2w1 +5x2
w3 = 1

2 +3
2w1 +1

2x2 −1
2x3

(5)
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Simplex Algorithm

Simplex Algorithm: Example

Step 1 (continued)

I The solution induced by the dictionary (5) is
y1 = (x11 , x

1
2 , x

1
3 ,w

1
1 ,w

1
2 ,w

1
3 ) = (52 , 0, 0, 0, 1,

1
2) with objective

é δ = 25
2 .

I In this dictionary, the variables x1, w2, e w3 are basic such
that the set B = {x1,w2,w3} contains all basic variables.

I The remaining variables N = {x2, x3,w1} form the set of
nonbasic variables.
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Simplex Algorithm

Simplex Algorithm: Example

Step 1 (continued)
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y1 = (x11 , x

1
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1
3 ,w

1
1 ,w

1
2 ,w

1
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1
2) with objective

é δ = 25
2 .

I In this dictionary, the variables x1, w2, e w3 are basic such
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Simplex Algorithm

Simplex Algorithm: Example

Step 2

I The incumbent solution is not optimal!

I Notice that a small increase in the value of x3 will invariable
increase the value of δ.

I We cannot increase the value of x3 indefinitely becasue it will
turn the solution infeasible — other variables may become
negative.
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Simplex Algorithm

Simplex Algorithm: Example

Step 2 (continued)

For the solution to remain feasible, the following inequalities must
be respected:{

x1 = 5
2 −

1
2x3 ≥ 0

w3 = 1
2 −

1
2x3 ≥ 0

⇒
{

x3 ≤ 5
x3 ≤ 1
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Simplex Algorithm

Simplex Algorithm: Example

Step 2 (continued)

I Therefore, w3 must leave the basis so that x3 enter the basis
without violating any constraint.

I After replacing equation x3 = 1 + 3w1 + x2 − 2w3 in the
equations of the dictionary (5), we obtain:

x1 = 5
2 −

1
2w1 − 3

2x2 −
1
2 (1 + 3w1 + x2 − 2w3)

= 2− 2w1 − 2x2 + w3

δ = 25
2 −

5
2w1 − 7

2x2 + 1
2 (1 + 3w1 + x2 − 2w3)

= 13− w1 − 3x2 − w3

(6)
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Simplex Algorithm

Simplex Algorithm: Example

Step 2 (continued)

Replacing the equations of the dictionary (5) by the equations (6)
results into a new dictionary:

Max δ = 13 −w1 −3x2 −w3

x1 = 2 −2w1 −2x2 +w3

w2 = 1 +2w1 +5x2
x3 = 1 +3w1 +x2 −2w3

(7)

whose basis is B = {x1, x3,w2}.
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Simplex Algorithm

Simplex Algorithm: Example

Step 2 (continued)

The solution give by the dictionary (7) is optimal:

I x1 = 2, x2 = 0, x3 = 1, w1 = 0, w2 = 1, w3 = 0

I δ = 13 is the optimal value because the coefficients of the
nonbasic variables in the equation δ are all negative, in the
dictionary given by (7),

I Increasing the value of any nonbasic variable will reduce the
value of the objective.
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Initial Solution

Auxiliary Problem

Original Problem

Maximize −2x1 − x2
Subject to :

−x1 + x2 ≤ −1
−x1 − 2x2 ≤ −2

x2 ≤ 1
x1, x2 ≥ 0
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Initial Solution

Auxiliary Problem

Auxiliary Problem

max −x0
s.t. :

−x1 + x2 − x0 ≤ −1
−x1 − 2x2 − x0 ≤ −2

x2 − x0 ≤ 1
x0, x1, x2 ≥ 0
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Initial Solution

Auxiliary Problem

Initial Dictionary

max δ = −x0
w1 = −1 +x1 −x2 +x0
w2 = −2 +x1 +2x2 +x0
w3 = 1 −x2 +x0
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Duality

Duality

I Associated to any linear programming problem P (primal) is
another linear programming probem, the dual, which is
denoted D.

I Theoretical consequences.

I Any solution for the dual D induces a limit for the optimum
value of the primal P, and vice versa.
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Duality

Motivation

Consider the sample problem:

P : max 4x1 + x2 + 3x3
s.t. :

x1 + 4x2 ≤ 1
3x1 − x2 + x3 ≤ 3
x1, x2, x3 ≥ 0

(8)

Any feasible solution to P induces a lower bound.

I For example, x ′ = (1, 0, 0) shows that the optimum objective
δ? ≥ 4.

I Using the solution x ′′ = (0, 0, 3), we discover that δ? ≥ 9.
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Duality

Motivation

Issues

I Are these lower bounds close to the optimum?

I Let’s multiply the first constraint of (8) by 2, multiply the
second constraint by 3, and then add them up as follows:

2(x1 + 4x2) ≤ 2(1)
3(3x1 − x2 + x3) ≤ 3(3)

11x1 + 5x2 + 3x3 ≤ 11

I Notice that 4x1 + x2 + 3x3 ≤ 11x1 + 5x2 + 3x3 ≤ 11, pois
xj ≥ 0.

I Then we conclude that 9 ≤ δ? ≤ 11.
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Duality

Motivation

I To obtain tight bound, we follow the same procedure but, this
time, we use vairables rather than fixed values.

I By multiplying the constraints with nonnegative variables:

y1(x1 + 4x2) ≤ y1
y2(3x1 − x2 + x3) ≤ 3y2
(y1 + 3y2)x1 + (4y1 − y2)x2 + y2x3 ≤ y1 + 3y2
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Duality

Motivation

Now, we stipulate that:

y1 + 3y2 ≥ 4
4y1 − y2 ≥ 1
y2 ≥ 3
y1, y2 ≥ 0

(9)

Values for (y1, y2) satisfying the inequalities (9) lead to the
following inequalities:

δ = 4x1 + x2 + 3x3

≤ (y1 + 3y2)x1 + (4y1 − y2)x2 + y2x3

≤ y1 + 3y2
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Duality

Motivation

I We obtain an upper bound (y1 + 3y2) for δ?.

I We wish to minimize this upper bound:

D : min y1 + 3y2
s.t. :

y1 + 3y2 ≥ 4
4y1 − y2 ≥ 1
y2 ≥ 3
y1, y2 ≥ 0
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Duality

Linear Programming

I Thank you for attending this lecture!!!


