Linear Programming

Fundamentals, Algorithm Simplex and Duality

Eduardo Camponogara
Department of Automation and Systems Engineering
Federal University of Santa Catarina

October $10^{\text {th }}-14^{\text {th }}, 2016$

Introduction

Simplex Algorithm

Initial Solution

Duality
OptIntro

L Introduction

Sumário

Introduction

Simplex Algorithm

Initial Solution

Duality

History of Linear Programmming

History

- Linear Programming was incepted in the 1930's, experience great advance in the 1940's with the development of the Smiplex Algorithm by George Dantzig.
- LP algorithms are rather efficient.
- Specially-tailored algorithms were proposed, particularly for network-flow problems.

History of Linear Programming

History

- In 1979, Khachiyan discovered the first polynomial-time algorithms, which became known as the ellipsoid algorithm.
- It is not practical.
- The ellipsoid algorithm has significant impacts on integer programming and in the solution of linear programming.

History of Linear Programming

History (continued)

- In 1984, Karmakar discovered the an interior-point algorithm with polynomial time.
- This discovered led to breakthroughs in quadratic programming and convex optimization, among other fields.
- Despite the polynomial-time of the interio-point method, the Simplex algorithm remains widely used.

THe Linear Programming Problem

Programa Linear:

$$
\begin{gathered}
\max c^{\mathrm{T}} x \\
\text { s.t. } A x \leq b \\
x \geq 0
\end{gathered}
$$

Transforming \leq into $=$

$$
\begin{gathered}
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n} \geq b \\
\Leftrightarrow \\
\left\{\begin{array}{l}
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}-s=b \\
s \geq 0
\end{array}\right.
\end{gathered}
$$

Here, s is a (slack variable) since its value corresponds to the amount resource b which is not used.

Dealing with Real Variables

We can convert sign-unconstrained variables into nonnegative variables:

$$
x \in \mathbb{R} \Leftrightarrow\left\{\begin{array}{l}
x=x^{+}-x^{-} \\
x^{+} \geq 0 \\
x^{-} \geq 0
\end{array}\right.
$$

Infeasible Problem

- A problem is said to be infeasible if there does not exist a candidate solution $x \in \mathbb{R}^{n}$ that meets all constraints.
- The problem below is infeasible since $S=\left\{x \in \mathbb{R}^{n}: A x \leq b, x \geq 0\right\}=\emptyset$.
- Example of infeasible problem:

$$
\begin{array}{ll}
\max & 5 x_{1}+4 x_{2} \\
\text { s.t.: } & \\
& x_{1}+\quad x_{2} \leq 1 \\
& -2 x_{1}-2 x_{2} \leq-9 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

OptIntro

L Introduction

Infeasible Problem

Unbounded Problem

- A problem is unbounded if there does not exist an upper bound on the value of the objective.
- In other words, the objective value can grow arbitrarily large.
- An example of unbounded problem:

$$
\begin{array}{ll}
\max & x_{1}-4 x_{2} \\
\text { s.t. : } \\
& -2 x_{1}+\quad x_{2} \leq-1 \\
& -x_{1}-2 x_{2} \leq-2 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Unbounded Problem

OptIntro

LSimplex Algorithm

Sumário

Introduction

Simplex Algorithm

Initial Solution

Duality

Simplex Algorithm

History

- Proposed by George Dantzig in the 1940's.
- Today's algorithm differs from the original version.
- It is the building-block of branch-and-bound and branch-and-cut algorithms for integer programming.

Standard Problem

Linear Program:

$$
\begin{aligned}
& \max c^{\mathrm{T}} x \\
& \text { s.t. } A x=b \\
& x \geq 0
\end{aligned}
$$

Simplex Algorith,

History

- Simplex can be viewed as camobinatorial search for the optimal columns of constraints matrix: columns that induce an optimal basis.
- There is an exponential number of column combinations.
- Despite this large number, Simplex is efficient in practice.

Sample Problem

Consider the following linear program:

$$
\begin{array}{ll}
\max & 5 x_{1}+4 x_{2}+3 x_{3} \\
\text { s.t. : } & \\
& 2 x_{1}+3 x_{2}+x_{3} \leq 5 \tag{1}\\
& 4 x_{1}+x_{2}+2 x_{3} \leq 11 \\
& 3 x_{1}+4 x_{2}+2 x_{3} \leq 8 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

Sample Problem

After introducing slack variables, the problema assumes the form:

$$
\begin{array}{lr}
\max & \delta=0+5 x_{1}+4 x_{2}+3 x_{3} \\
\text { s.t. : } & \\
& w_{1}=5-2 x_{1}-3 x_{2}-3 x_{3} \tag{2}\\
& w_{2}=11-4 x_{1}-x_{2}-2 x_{3} \\
& w_{3}=8-3 x_{1}-4 x_{2}-2 x_{3} \\
& x_{1}, x_{2}, x_{3}, w_{1}, w_{2}, w_{3} \geq 0
\end{array}
$$

Sample Problem

Dictionary

- The system (2) cas the LP problem in a form known as "dictionary."
\Rightarrow In the "dictionary", the solution is given in terms of a subset o variables (basic variables), with cardinality equal to the number of constraints, which are given as a function of the remaining variables (nonbasic variables).
- The nonbasic variables assume value "zero."
- Thus, a solution can be obtained directly from the dictionary.

Sample Problem

Dictionary

- The system (2) cas the LP problem in a form known as "dictionary."
- In the "dictionary", the solution is given in terms of a subset o variables (basic variables), with cardinality equal to the number of constraints, which are given as a function of the remaining variables (nonbasic variables).
- The nonbasic variables assume value "zero."
- Thus, a solution can be obtained directly from the dictionary.

Sample Problem

Dictionary

- The system (2) cas the LP problem in a form known as "dictionary."
- In the "dictionary", the solution is given in terms of a subset o variables (basic variables), with cardinality equal to the number of constraints, which are given as a function of the remaining variables (nonbasic variables).
- The nonbasic variables assume value "zero."
- Thus, a solution can be obtained directly from the dictionary.

Sample Problem

Dictionary (continued)

- In the above dictionary, the basis if formed by variables w_{1}, w_{2} and w_{3}.
- The nonbasic variables are x_{1}, x_{2} e x_{3}.
- Since nonbasic variables assume value zero, we obtain a solution from the basic variables: $w_{1}=5, w_{2}=11$ and $w_{3}=8$.
- The resulting solution is feasible:
- All variables (basic and nonbasic) are nonnegative.
- The objective function has value $\delta=0$.

Sample Problem

Dictionary (continued)

- In the above dictionary, the basis if formed by variables w_{1}, w_{2} and w_{3}.
- The nonbasic variables are x_{1}, x_{2} e x_{3}.
- Since nonbasic variables assume value zero, we obtain a solution from the basic variables: $w_{1}=5, w_{2}=11$ and $w_{3}=8$.
- The resulting solution is feasible:
- All variables (basic and nonbasic) are nonnegative.
- The objective function has value $\delta=0$.

Sample Problem

Dictionary (continued)

- In the above dictionary, the basis if formed by variables w_{1}, w_{2} and w_{3}.
- The nonbasic variables are x_{1}, x_{2} e x_{3}.
- Since nonbasic variables assume value zero, we obtain a solution from the basic variables: $w_{1}=5, w_{2}=11$ and $w_{3}=8$.
- The resulting solution is feasible:
- All variables (basic and nonbasic) are nonnegative.
- The objective function has value $\delta=0$.

Principles of Simplex

Iterative method

- Simplex is an iterative process that starts with a solution $y^{0}=\left(x_{1}^{0} \ldots x_{n}^{0} w_{1}^{0} \ldots w_{m}^{0}\right)^{T}$, in which $n=3$ and $m=3$, satisfying the equations of (1).
- Starting from (2), the Simplex seeks a new solution y^{1} such
- To that end, it is necessary to bring a nonbasic variables, with a positive coefficient in the equation δ, into the basis.
- This will raise the value of the nonbasic variable entering the basis, thereby increasing the objective.

Principles of Simplex

Iterative method

- Simplex is an iterative process that starts with a solution $y^{0}=\left(\begin{array}{llllll}x_{1}^{0} & \ldots & x_{n}^{0} & w_{1}^{0} & \ldots & w_{m}^{0}\end{array}\right)^{T}$, in which $n=3$ and $m=3$, satisfying the equations of (1).
- Starting from (2), the Simplex seeks a new solution y^{1} such that: $5 x_{1}^{1}+4 x_{2}^{1}+3 x_{3}^{1}>5 x_{1}^{0}+4 x_{2}^{0}+3 x_{3}^{0}$.
- To that end, it is necessary to bring a nonbasic variables, with a positive coefficient in the equation δ, into the basis.
- This will raise the value of the nonbasic variable entering the basis, thereby increasing the objective.

Principles of Simplex

Iterative method

- Simplex is an iterative process that starts with a solution $y^{0}=\left(x_{1}^{0} \ldots x_{n}^{0} w_{1}^{0} \ldots w_{m}^{0}\right)^{T}$, in which $n=3$ and $m=3$, satisfying the equations of (1).
- Starting from (2), the Simplex seeks a new solution y^{1} such that: $5 x_{1}^{1}+4 x_{2}^{1}+3 x_{3}^{1}>5 x_{1}^{0}+4 x_{2}^{0}+3 x_{3}^{0}$.
- To that end, it is necessary to bring a nonbasic variables, with a positive coefficient in the equation δ, into the basis.
- This will raise the value of the nonbasic variable entering the basis, thereby increasing the objective.

Principles of Simplex

Iterative method (continued)

- Obviously, the variable that enters the basis cannot increase indefinitely, unless the problem is unbounded.
- The first basic variable to become zero must leave the basis, becoming nonbasic at the next iteration.
- The process is repeated until convergence to the optimum, or the problem is detected to be unbounded.

Principles of Simplex

Iterative method (continued)

- Obviously, the variable that enters the basis cannot increase indefinitely, unless the problem is unbounded.
- The first basic variable to become zero must leave the basis, becoming nonbasic at the next iteration.
- The process is repeated until convergence to the optimum, or the problem is detected to be unbounded.

Simplex Algorithm: Example

Initialization
To start the iterative process, a feasible starting solution solution, such as:

$$
x_{1}^{0}=0, x_{2}^{0}=0, x_{3}^{0}=0, w_{1}^{0}=5, w_{2}^{0}=11, w_{3}^{0}=8
$$

This solution y^{0} induces an objective value $\delta=0$.

Simplex Algorithm: Example

Step 1

- The incumbent solution is not optimal.
- Any increase in the value of x_{1} increases the o valor de δ.
- The value of x_{1} cannot increase arbitrarily since it is limited by the inequalities:

Simplex Algorithm: Example

Step 1

- The incumbent solution is not optimal.
- Any increase in the value of x_{1} increases the o valor de δ.
- The value of x_{1} cannot increase arbitrarily since it is limited by the inequalities:

$$
\left\{\begin{array} { l }
{ w _ { 1 } = 5 - 2 x _ { 1 } \geq 0 } \\
{ w _ { 2 } = 1 1 - 4 x _ { 1 } \geq 0 } \\
{ w _ { 3 } = 8 - 3 x _ { 1 } \geq 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x_{1} \leq 5 / 2=2.5 \\
x_{1} \leq 11 / 4= \\
x_{1} \leq 8 / 3=2.667
\end{array}\right.\right.
$$

Simplex Algorithm: Example

Step 1 (continued)

Thus, the value of x_{1} at the next iteration should be less than $\{5 / 2,11 / 4,8 / 3\}$, which leads to:

$$
\begin{equation*}
x_{1}=\frac{5}{2}-\frac{1}{2} w_{1}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3} \tag{3}
\end{equation*}
$$

Simplex Algorithm: Example

Step 1 (continued)
Replacing (3) in the system (2) in order to move w_{1} to the right-hand size, we obtain:

$$
\begin{align*}
x_{1} & =\frac{5}{2}-\frac{1}{2} w_{1}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3} \\
w_{2} & =11-4\left(\frac{5}{2}-\frac{1}{2} w_{1}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}\right)-x_{2}-2 x_{3} \\
& =1+2 w_{1}+5 x_{2} \\
w_{3} & =8-3\left(\frac{5}{2}-\frac{1}{2} w_{1}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}\right)-4 x_{2}-2 x_{3} \tag{4}\\
& =\frac{1}{2}+\frac{3}{2} w_{1}+\frac{1}{2} x_{2}-\frac{1}{2} x_{3} \\
\delta & =5\left(\frac{5}{2}-\frac{1}{2} w_{1}-\frac{3}{2} x_{2}-\frac{1}{2} x_{3}\right)+4 x_{2}+3 x_{3} \\
& =\frac{25}{2}-\frac{5}{2} w_{1}-\frac{7}{2} x_{2}+\frac{1}{2} x_{3}
\end{align*}
$$

Simplex Algorithm: Example

Step 1 (continued)
Now, replacing equations (4) in the "dictionary" (2), the following dictionary results:

$$
\begin{align*}
& \max =\frac{25}{2}-\frac{5}{2} w_{1}-\frac{7}{2} x_{2}+\frac{1}{2} x_{3} \tag{5}\\
& x_{1}=\frac{5}{2}-\frac{1}{2} w_{1}-\frac{3}{2} x_{2} \\
&-\frac{1}{2} x_{3} \\
& w_{2}=1+2 w_{1}+5 x_{2} \\
& w_{3}=\frac{1}{2}+\frac{3}{2} w_{1}+\frac{1}{2} x_{2}
\end{align*}-\frac{1}{2} x_{3} .
$$

Simplex Algorithm: Example

Step 1 (continued)

- The solution induced by the dictionary (5) is $y^{1}=\left(x_{1}^{1}, x_{2}^{1}, x_{3}^{1}, w_{1}^{1}, w_{2}^{1}, w_{3}^{1}\right)=\left(\frac{5}{2}, 0,0,0,1, \frac{1}{2}\right)$ with objective é $\delta=\frac{25}{2}$.
\Rightarrow In this dictionary, the variables $x_{1}, w_{2}, e w_{3}$ are basic such that the set $\mathbb{B}=\left\{x_{1}, w_{2}, w_{3}\right\}$ contains all basic variables.
- The remaining variables $\mathbb{N}=\left\{x_{2}, x_{3}, w_{1}\right\}$ form the set of nonbasic variables.

Simplex Algorithm: Example

Step 1 (continued)

- The solution induced by the dictionary (5) is $y^{1}=\left(x_{1}^{1}, x_{2}^{1}, x_{3}^{1}, w_{1}^{1}, w_{2}^{1}, w_{3}^{1}\right)=\left(\frac{5}{2}, 0,0,0,1, \frac{1}{2}\right)$ with objective é $\delta=\frac{25}{2}$.
- In this dictionary, the variables x_{1}, w_{2}, e w_{3} are basic such that the set $\mathbb{B}=\left\{x_{1}, w_{2}, w_{3}\right\}$ contains all basic variables.
- The remaining variables $\mathbb{N}=\left\{x_{2}, x_{3}, w_{1}\right\}$ form the set of nonbasic variables.

Simplex Algorithm: Example

Step 2

- The incumbent solution is not optimal!
- Notice that a small increase in the value of x_{3} will invariable increase the value of δ.
- We cannot increase the value of x_{3} indefinitely becasue it will turn the solution infeasible - other variables may become negative.

Simplex Algorithm: Example

Step 2

- The incumbent solution is not optimal!
- Notice that a small increase in the value of x_{3} will invariable increase the value of δ.
- We cannot increase the value of x_{3} indefinitely becasue it will turn the solution infeasible - other variables may become negative.

Simplex Algorithm: Example

Step 2 (continued)

For the solution to remain feasible, the following inequalities must be respected:

$$
\left\{\begin{array} { l }
{ x _ { 1 } = \frac { 5 } { 2 } - \frac { 1 } { 2 } x _ { 3 } \geq 0 } \\
{ w _ { 3 } = \frac { 1 } { 2 } - \frac { 1 } { 2 } x _ { 3 } \geq 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x_{3} \leq 5 \\
x_{3} \leq 1
\end{array}\right.\right.
$$

Simplex Algorithm: Example

Step 2 (continued)

- Therefore, w_{3} must leave the basis so that x_{3} enter the basis without violating any constraint.
- After replacing equation $x_{3}=1+3 w_{1}+x_{2}-2 w_{3}$ in the equations of the dictionary (5), we obtain:

$$
\begin{align*}
x_{1} & =\frac{5}{2}-\frac{1}{2} w_{1}-\frac{3}{2} x_{2}-\frac{1}{2}\left(1+3 w_{1}+x_{2}-2 w_{3}\right) \\
& =2-2 w_{1}-2 x_{2}+w_{3} \\
\delta & =\frac{25}{2}-\frac{5}{2} w_{1}-\frac{7}{2} x_{2}+\frac{1}{2}\left(1+3 w_{1}+x_{2}-2 w_{3}\right) \tag{6}\\
& =13-w_{1}-3 x_{2}-w_{3}
\end{align*}
$$

Simplex Algorithm: Example

Step 2 (continued)
Replacing the equations of the dictionary (5) by the equations (6) results into a new dictionary:

$$
\begin{array}{rlrll}
\operatorname{Max} & =13 & -w_{1} & -3 x_{2} & -w_{3} \\
x_{1} & =2 & -2 w_{1} & -2 x_{2} & +w_{3} \\
w_{2} & =1+2 w_{1} & +5 x_{2} & \tag{7}\\
x_{3} & =1+3 w_{1} & +x_{2} & -2 w_{3}
\end{array}
$$

whose basis is $\mathbb{B}=\left\{x_{1}, x_{3}, w_{2}\right\}$.

Simplex Algorithm: Example

Step 2 (continued)
The solution give by the dictionary (7) is optimal:

- $x_{1}=2, x_{2}=0, x_{3}=1, w_{1}=0, w_{2}=1, w_{3}=0$
- $\delta=13$ is the optimal value because the coefficients of the nonbasic variables in the equation δ are all negative, in the dictionary given by (7),
- Increasing the value of any nonbasic variable will reduce the value of the objective.

Simplex Algorithm: Example

Step 2 (continued)

The solution give by the dictionary (7) is optimal:

- $x_{1}=2, x_{2}=0, x_{3}=1, w_{1}=0, w_{2}=1, w_{3}=0$
- $\delta=13$ is the optimal value because the coefficients of the nonbasic variables in the equation δ are all negative, in the dictionary given by (7),
- Increasing the value of any nonbasic variable will reduce the value of the objective.
OptIntro

L Initial Solution

Sumário

Introduction

Simplex Algorithm

Initial Solution

Duality

OptIntro
$L_{\text {Initial Solution }}$

Auxiliary Problem

Original Problem
Maximize $\quad-2 x_{1}-x_{2}$
Subject to :

$$
\begin{aligned}
-x_{1}+x_{2} & \leq-1 \\
-x_{1}-2 x_{2} & \leq-2 \\
& x_{2}
\end{aligned} \leq 1
$$

Auxiliary Problem

Auxiliary Problem

$\max -x_{0}$
s.t. :

$$
\begin{aligned}
& -x_{1}+x_{2}-x_{0} \leq r \\
& -x_{1}-2 x_{2}-x_{0} \leq r \\
& \text { x } \\
& x_{2}-x_{0} \leq 1 \\
& x_{0}, x_{1}, x_{2} \geq 0
\end{aligned}
$$

OptIntro

L Initial Solution

Auxiliary Problem

Initial Dictionary

$$
\begin{aligned}
& \max \quad \delta=\quad-x_{0} \\
& w_{1}=-1+x_{1}-x_{2}+x_{0} \\
& w_{2}=-2+x_{1}+2 x_{2}+x_{0} \\
& w_{3}=1 \quad-x_{2}+x_{0}
\end{aligned}
$$

OptIntro
$\left\llcorner_{\text {Duality }}\right.$

Sumário

Introduction

Simplex Algorithm

Initial Solution

Duality

Duality

- Associated to any linear programming problem P (primal) is another linear programming probem, the dual, which is denoted D.
- Theoretical consequences.
- Any solution for the dual D induces a limit for the optimum value of the primal P, and vice versa.

Duality

- Associated to any linear programming problem P (primal) is another linear programming probem, the dual, which is denoted D.
- Theoretical consequences.
- Any solution for the dual D induces a limit for the optimum value of the primal P, and vice versa.

Motivation

Consider the sample problem:

$$
P: \max 4 x_{1}+x_{2}+3 x_{3}
$$

s.t. :

$$
\begin{array}{ll}
x_{1}+4 x_{2} & \leq 1 \tag{8}\\
3 x_{1}-x_{2}+x_{3} & \leq 3 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{array}
$$

Any feasible solution to P induces a lower bound.

- For example, $x^{\prime}=(1,0,0)$ shows that the optimum objective
- Using the solution $x^{\prime \prime}=(0,0,3)$, we discover that $\delta^{\star} \geq 9$.

Motivation

Consider the sample problem:

$$
\begin{array}{rlr}
P: & \max & 4 x_{1}+x_{2}+3 x_{3} \\
& \text { s.t. : } & \\
& x_{1}+4 x_{2} & \leq 1 \tag{8}\\
& 3 x_{1}-x_{2}+x_{3} \leq 3 \\
& x_{1}, x_{2}, x_{3} & \geq 0
\end{array}
$$

Any feasible solution to P induces a lower bound.

- For example, $x^{\prime}=(1,0,0)$ shows that the optimum objective $\delta^{\star} \geq 4$.
- Using the solution $x^{\prime \prime}=(0,0,3)$, we discover that $\delta^{\star} \geq 9$.

Motivation

Issues

- Are these lower bounds close to the optimum?
- Let's multiply the first constraint of (8) by 2, multiply the second constraint by 3 , and then add them up as follows:

- Notice that $4 x_{1}+x_{2}+3 x_{3} \leq 11 x_{1}+5 x_{2}+3 x_{3} \leq 11$, pois $x_{j} \geq 0$.
- Then we conclude that $9 \leq \delta^{\star} \leq 11$.

Motivation

Issues

- Are these lower bounds close to the optimum?
- Let's multiply the first constraint of (8) by 2 , multiply the second constraint by 3 , and then add them up as follows:

$$
\begin{array}{ll}
2\left(x_{1}+4 x_{2}\right) & \leq 2(1) \\
3\left(3 x_{1}-x_{2}+x_{3}\right) & \leq 3(3) \\
\hline 11 x_{1}+5 x_{2}+3 x_{3} & \leq 11
\end{array}
$$

- Then we conclude that $9 \leq \delta^{\star} \leq 11$.

Motivation

Issues

- Are these lower bounds close to the optimum?
- Let's multiply the first constraint of (8) by 2, multiply the second constraint by 3 , and then add them up as follows:

$$
\begin{array}{ll}
2\left(x_{1}+4 x_{2}\right) & \leq 2(1) \\
3\left(3 x_{1}-x_{2}+x_{3}\right) & \leq 3(3) \\
\hline 11 x_{1}+5 x_{2}+3 x_{3} & \leq 11
\end{array}
$$

- Notice that $4 x_{1}+x_{2}+3 x_{3} \leq 11 x_{1}+5 x_{2}+3 x_{3} \leq 11$, pois $x_{j} \geq 0$.
- Then we conclude that $9 \leq \delta^{\star} \leq 11$.

Motivation

- To obtain tight bound, we follow the same procedure but, this time, we use vairables rather than fixed values.
- By multiplying the constraints with nonnegative variables:

Motivation

- To obtain tight bound, we follow the same procedure but, this time, we use vairables rather than fixed values.
- By multiplying the constraints with nonnegative variables:

$$
\begin{array}{ll}
y_{1}\left(x_{1}+4 x_{2}\right) & \leq y_{1} \\
y_{2}\left(3 x_{1}-x_{2}+x_{3}\right) & \leq 3 y_{2} \\
\hline\left(y_{1}+3 y_{2}\right) x_{1}+\left(4 y_{1}-y_{2}\right) x_{2}+y_{2} x_{3} & \leq y_{1}+3 y_{2}
\end{array}
$$

Motivation

Now, we stipulate that:

$$
\begin{array}{ll}
y_{1}+3 y_{2} & \geq 4 \\
4 y_{1}-y_{2} & \geq 1 \tag{9}\\
y_{2} & \geq 3 \\
y_{1}, y_{2} & \geq 0
\end{array}
$$

Values for $\left(y_{1}, y_{2}\right)$ satisfying the inequalities (9) lead to the following inequalities:

$$
\begin{aligned}
& \leq\left(y_{1}+3 y_{2}\right) x_{1}+\left(4 y_{1}-y_{2}\right) x_{2}+y_{2} x_{3} \\
& \leq y_{1}+3 y_{2}
\end{aligned}
$$

Motivation

Now, we stipulate that:

$$
\begin{array}{ll}
y_{1}+3 y_{2} & \geq 4 \\
4 y_{1}-y_{2} & \geq 1 \tag{9}\\
y_{2} & \geq 3 \\
y_{1}, y_{2} & \geq 0
\end{array}
$$

Values for $\left(y_{1}, y_{2}\right)$ satisfying the inequalities (9) lead to the following inequalities:

$$
\begin{aligned}
\delta & =4 x_{1}+x_{2}+3 x_{3} \\
& \leq\left(y_{1}+3 y_{2}\right) x_{1}+\left(4 y_{1}-y_{2}\right) x_{2}+y_{2} x_{3} \\
& \leq y_{1}+3 y_{2}
\end{aligned}
$$

Motivation

- We obtain an upper bound $\left(y_{1}+3 y_{2}\right)$ for δ^{\star}.
- We wish to minimize this upper bound:

$D: \min y_{1}+3 y_{2}$

Motivation

- We obtain an upper bound $\left(y_{1}+3 y_{2}\right)$ for δ^{\star}.
- We wish to minimize this upper bound:
$D: \min y_{1}+3 y_{2}$
s.t. :

$$
\begin{array}{ll}
y_{1}+3 y_{2} & \geq 4 \\
4 y_{1}-y_{2} & \geq 1 \\
y_{2} & \geq 3 \\
y_{1}, y_{2} & \geq 0
\end{array}
$$

OptIntro

Linear Programming

- Thank you for attending this lecture!!!

