Modeling Introduction

Eduardo Camponogara

Department of Automation and Systems Engineering
Federal University of Santa Catarina

October $10^{\text {th }}-14^{\text {th }}, 2016$

Linear Programming

Quadratic Programming

Convex Programming

Mixed-Integer Linear Programming

Mixed-Integer Linear Programming

General Formulation

Minimize $\quad f(x)$
Subject to :

$$
\begin{aligned}
& g(x) \leqslant 0 \\
& h(x)=0 \\
& x \in \mathbb{R}^{n}
\end{aligned}
$$

OptIntro
$L_{\text {Linear Programming }}$

Summary

Linear Programming

Quadratic Programming

Convex Programming

Mixed-Integer Linear Programming

Mixed-Integer Linear Programming

Linear Programming

- Objective function and constraints are all linear (actually affine).
- Mathematically,
- $f(x)=c^{\mathrm{T}} x$,
- $g(x)=A x-a \mathrm{e}$
- $h(x)=B x-b$
in which c, a and b are vectors and A and B are matrices.

Linear Programming

Canonical Form:

$$
\begin{aligned}
\max & c^{\mathrm{T}} x \\
\text { s.a }: & A x \leq b \\
& x \geq 0
\end{aligned}
$$

Problems can be reformulated in the canonical form to deal with:

1. equations/equalities;
2. real variables (which can assume negative values); and
3. minimization rather than maximization.

Geometric View

Find the maximum of a linear function $f(x)$ inside a polyhedron $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$.

Under normal conditions, there exists a vertex with the optimal solution \Longrightarrow combinatorial problem.

Linear Programming: Algorithms

Algorithms:

- Algorithms available off-the-shelf: Simplex and Interior-Point.
- Very large problems are solve efficientlhy: dozens of thousands of variables and constraints.

Example

- An enterprise has 4 plants where vehicles are assembled.
- Each plant has demands and limits on man-power, materials and emission to produce assemble a vehicle, as follows:

	man-power	materials	pollution
plant 1	2	3	15
plant 2	3	4	10
plant 3	4	5	9
plant 4	5	6	7

- At least 400 vehicles must be assembled at plant 3 .
- 3300 man-hours and 4000 material units are available.
- At most 12000 units of pollutions can be emitted
- The goal is to maximize the number of vehicles produced.

Example

- An enterprise has 4 plants where vehicles are assembled.
- Each plant has demands and limits on man-power, materials and emission to produce assemble a vehicle, as follows:

	man-power	materials	pollution
plant 1	2	3	15
plant 2	3	4	10
plant 3	4	5	9
plant 4	5	6	7

- At least 400 vehicles must be assembled at plant 3.
- 3300 man-hours and 4000 material units are available.
- At most 12000 units of pollutions can be emitted
- The goal is to maximize the number of vehicles produced

Example

- An enterprise has 4 plants where vehicles are assembled.
- Each plant has demands and limits on man-power, materials and emission to produce assemble a vehicle, as follows:

	man-power	materials	pollution
plant 1	2	3	15
plant 2	3	4	10
plant 3	4	5	9
plant 4	5	6	7

- At least 400 vehicles must be assembled at plant 3 .
- 3300 man-hours and 4000 material units are available.
- At most 12000 units of pollutions can be emitted.
- The goal is to maximize the number of vehicles produced

Example

- An enterprise has 4 plants where vehicles are assembled.
- Each plant has demands and limits on man-power, materials and emission to produce assemble a vehicle, as follows:

	man-power	materials	pollution
plant 1	2	3	15
plant 2	3	4	10
plant 3	4	5	9
plant 4	5	6	7

- At least 400 vehicles must be assembled at plant 3 .
- 3300 man-hours and 4000 material units are available.
- At most 12000 units of pollutions can be emitted.
- The goal is to maximize the number of vehicles produced.

Example

- An enterprise has 4 plants where vehicles are assembled.
- Each plant has demands and limits on man-power, materials and emission to produce assemble a vehicle, as follows:

	man-power	materials	pollution
plant 1	2	3	15
plant 2	3	4	10
plant 3	4	5	9
plant 4	5	6	7

- At least 400 vehicles must be assembled at plant 3.
- 3300 man-hours and 4000 material units are available.
- At most 12000 units of pollutions can be emitted.
- The goal is to maximize the number of vehicles produced.

Example

1. What are the variables?
$x_{1}, x_{2}, x_{3}, x_{4}$ in which x_{i} denotes the number of vehicles manufacture at plant i.
2. What is the goal?

Maximize $x_{1}+x_{2}+x_{3}+x_{4}$.
3. What are the constraints?

$$
\begin{aligned}
x_{i} & \geq 0, \forall i \\
x_{3} & \geq 400 \\
2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4} & \leq 3300 \\
3 x_{1}+4 x_{2}+5 x_{3}+6 x_{4} & \leq 4000 \\
15 x_{1}+10 x_{2}+9 x_{3}+7 x_{4} & \leq 12000
\end{aligned}
$$

Example

1. What are the variables?
$x_{1}, x_{2}, x_{3}, x_{4}$ in which x_{i} denotes the number of vehicles manufacture at plant i.
2. What is the goal?

Maximize $x_{1}+x_{2}+x_{3}+x_{4}$.
3. What are the constraints?

Example

1. What are the variables?
$x_{1}, x_{2}, x_{3}, x_{4}$ in which x_{i} denotes the number of vehicles manufacture at plant i.
2. What is the goal?

Maximize $x_{1}+x_{2}+x_{3}+x_{4}$.
3. What are the constraints?

Example

1. What are the variables?
$x_{1}, x_{2}, x_{3}, x_{4}$ in which x_{i} denotes the number of vehicles manufacture at plant i.
2. What is the goal?

Maximize $x_{1}+x_{2}+x_{3}+x_{4}$.
3. What are the constraints?

Example

1. What are the variables?
$x_{1}, x_{2}, x_{3}, x_{4}$ in which x_{i} denotes the number of vehicles manufacture at plant i.
2. What is the goal?

Maximize $x_{1}+x_{2}+x_{3}+x_{4}$.
3. What are the constraints?

$$
\begin{aligned}
x_{i} & \geq 0, \forall i, \\
x_{3} & \geq 400, \\
2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4} & \leq 3300, \\
3 x_{1}+4 x_{2}+5 x_{3}+6 x_{4} & \leq 4000 \\
15 x_{1}+10 x_{2}+9 x_{3}+7 x_{4} & \leq 12000
\end{aligned}
$$

AMPL

- AMPL is an algebraic modeling language that allows specification of math-programming problems at a high level.
- AMPL advocates the separation of model and data.
- It is very similar to the way we express optimization problems in math.
- The user is free from data manipulation.

- AMPL needs a model in mathematical programming which states the variables, objective and constraints.
- Further, it needs a data instance.
- The model and data files are fed into an optimization solver.
- AMPL acts as a parser and compiler.

AMPL Example

Implement in AMPL the vehicle assembly problem.

Summary

Linear Programming

Quadratic Programming

Convex Programming

Mixed-Integer Linear Programming

Mixed-Integer Linear Programming

Quadratic Programming

Canonical Formulation:

$$
\begin{gathered}
Q P: \min \frac{1}{2} x^{\mathrm{T}} Q x+c^{\mathrm{T}} x \\
\text { s.t. } A x \leq b
\end{gathered}
$$

Remarks:

- Extension to linear programming with a quadratic term.
- $Q \succ 0$ is a positive definite (or semidefinite) matrix.
- Convex Problem: minimize a convex objective within a convex feasible set.

Quadratic Programming: Algorithms

Algorithms:

- Active-set algorithms are efficient for QP.

Simplex for LP is a particular kind of active-set algorithm.

- Interior-point method is another class of efficient algorithms, with polynomial time.
- Large problems are solved efficiently.

Quadratic Programming: Algorithms

Algorithms:

- Active-set algorithms are efficient for QP.

Simplex for LP is a particular kind of active-set algorithm.

- Interior-point method is another class of efficient algorithms, with polynomial time.
- Large problems are solved efficiently.

Quadratic Programming: Algorithms

Algorithms:

- Active-set algorithms are efficient for QP.

Simplex for LP is a particular kind of active-set algorithm.

- Interior-point method is another class of efficient algorithms, with polynomial time.
- Large problems are solved efficiently.

Quadratic Programming: Example

$$
\min q(x)=\left(x_{1}-1\right)^{2}+\left(x_{2}-2.5\right)^{2}
$$

s.t. :

$$
\begin{array}{ll}
x_{1}-2 x_{2}+2 & \geq 0 \\
-x_{1}-2 x_{2}+6 & \geq 0 \\
-x_{1}+2 x_{2}+2 & \geq 0 \\
x_{1}, x_{2} & \geq 0
\end{array}
$$

Example

Example

Behavior of the active-set algorithm.

OptIntro

LConvex Programming

Summary

Linear Programming
 Quadratic Programming

Convex Programming

Mixed-Integer Linear Programming

Mixed-Integer Linear Programming
\qquad

Convex Problem

It consists of minimizing a convex function within a feasible convex set:

$$
\begin{gathered}
\min f(x) \\
\text { s.t. }: x \in \mathcal{X}
\end{gathered}
$$

in which $X \subseteq \mathbb{R}^{n}$ is a convex set.

Convex Problem: Explicit Representation

Standard Problem:

$$
\begin{aligned}
& \min f_{0}(x) \\
& \text { s.t. }: \\
& f_{i}(x) \leq 0, i=1, \ldots, m, \\
& \\
& \quad a_{i}^{\mathrm{T}} x=b_{i}, i=1, \ldots, p
\end{aligned}
$$

in which $f_{i}, i=0, \ldots, m$, are convex functions.

Notice that
$X=\left\{x: f_{i}(x) \leq 0, i=1, \ldots, m, a_{i}^{T} x=b_{i}, i=1, \ldots, p\right\}$ is a
convex set.

Convex Problem: Explicit Representation

Standard Problem:

$$
\begin{aligned}
& \min f_{0}(x) \\
& \text { s.t. }: \\
& f_{i}(x) \leq 0, i=1, \ldots, m, \\
& \\
& \quad a_{i}^{\mathrm{T}} x=b_{i}, i=1, \ldots, p
\end{aligned}
$$

in which $f_{i}, i=0, \ldots, m$, are convex functions.

Notice that
$X=\left\{x: f_{i}(x) \leq 0, i=1, \ldots, m, a_{i}^{\mathrm{T}} x=b_{i}, i=1, \ldots, p\right\}$ is a convex set.

Convex Problem: Algorithms

Algorithms:

- Efficient algorithms based on the interior-point method, with polynomial time.
- It is technology that enables the solution of large problems.
- There exist a range of direct application such as in nonlinear programming.

Classification: Support Vector Machines (SVM)

- Let D be training set, in the form:

$$
\mathcal{D}=\left\{\left(\mathbf{x}_{i}, y_{i}\right) \mid \mathbf{x}_{i} \in \mathbb{R}^{p}, y_{i} \in\{-1,1\}\right\}_{i=1}^{n}
$$

in which y_{i} indicates the class to which point x_{i} belongs.

- We want to find a hyperplane $w^{1} x-b=0$ of maximum margin that separates the data points labeled with $y_{i}=-1$ from those labeled with $y_{i}=+1$.
- The vectors that are on the separating hyperplane are said to be supporting vectors.

Classification: Support Vector Machines (SVM)

- Let D be training set, in the form:

$$
\mathcal{D}=\left\{\left(\mathbf{x}_{i}, y_{i}\right) \mid \mathbf{x}_{i} \in \mathbb{R}^{p}, y_{i} \in\{-1,1\}\right\}_{i=1}^{n}
$$

in which y_{i} indicates the class to which point x_{i} belongs.

- We want to find a hyperplane $w^{\mathrm{T}} x-b=0$ of maximum margin that separates the data points labeled with $y_{i}=-1$ from those labeled with $y_{i}=+1$.
- The vectors that are on the separating hyperplane are said to be supporting vectors.
- If the training set D is linearly separable, we can choose two hyperplanes:

$$
\begin{aligned}
& w^{\mathrm{T}} x-b=1 \\
& w^{\mathrm{T}} x-b=-1 .
\end{aligned}
$$

such that they separate the data, without any points between them.

- We see to maximize the distance between them, which is given by $2 /\|w\|$.
OptIntro
LConvex Programming

SVM

SVM: Convex Formulation

Formulation:

$$
\begin{aligned}
\underset{(w, b)}{\arg \min } & \frac{1}{2}\|w\|^{2} \\
\quad \text { s.t. : } & y_{i}\left(w^{\mathrm{T}} x_{i}-b\right) \geq 1, i=1, \ldots, n
\end{aligned}
$$

Summary

Linear Programming

Quadratic Programming

Convex Programming

Mixed-Integer Linear Programming

Mixed-Integer Linear Programming

Mixed-Integer Linear Programming

Generalization of linear programming in which variables can be continuous or discrete:

$$
\begin{aligned}
\max & c^{\mathrm{T}} x \\
\text { s.t. } & A x \leq b \\
& x=\left(x_{\mathrm{C}}, x_{\mathrm{I}}\right) \geq 0, \\
& x_{\mathrm{I}} \in \mathbb{Z}^{n_{\mathrm{I}}}
\end{aligned}
$$

L Mixed-Integer Linear Programming

Geometric View

Ideal Formulation

Mixed-Integer Linear Programming

Properties:

- Highly expressive languages.
- Several problems of academic and industrial relevance can be formulated.
- Coupling to efficient off-the-shelf solvers.
- Mature optimization technology.

Facility Location

Properties:

- Given a number of regions, the problem is to decide where to install a set of emergency-response stations.
- For each station location, it is known the installation cost and the regions that can be served by the station (e.g., in last than 8 minutes).
- Let $M=\{1, \ldots, m\}$ be the set of regions.
- Let $N=\{1, \ldots, n\}$ be the set of locations for emergency-response stations.

Facility Location

Properties:

- Let $S_{j} \subseteq M$ be the regions that can be served by station j.
- Let c_{j} be the installation cost of station j.

Facility Location

Problem Formulation:

- We build a matrix A such that $a_{i j}=1$ if $i \in S_{j}$ and $a_{i j}=0$ otherwise.
- Defining variables:

$$
x_{j}= \begin{cases}1 & \text { if a station } j \text { will be installed } \\ 0 & \text { otherwise }\end{cases}
$$

Facility Location

Defining Constraints:
a) At least one station must serve a region i :

$$
\sum_{j=1}^{n} a_{i j} x_{j} \geq 1 \quad \text { for } i=1, \ldots, m
$$

b) The variables are binary:

$$
x_{j} \in\{0,1\} \quad \text { para } j=1, \ldots, n
$$

Facility Location

Defining the objective:

$$
\min \sum_{j=1}^{n} c_{j} x_{j}
$$

OptIntro

L Mixed-Integer Linear Programming

Summary

> Linear Programming

> Quadratic Programming

> Convex Programming

> Mixed-Integer Linear Programming

> Mixed-Integer Linear Programming

Mixed-Integer Linear Programming

Minimize $\quad f(x)$
Subject to :

$$
\begin{aligned}
& g(x) \leqslant 0 \\
& h(x)=0 \\
& x=\left(x_{\mathrm{C}}, x_{\mathrm{I}}\right) \\
& x_{\mathrm{C}} \in \mathbb{R}^{n_{\mathrm{C}}} \\
& x_{\mathrm{I}} \in \mathbb{Z}^{n_{\mathrm{I}}}
\end{aligned}
$$

Mixed-Integer Linear Programming

Propriedades:

- One of the most representative classes of mathematical programming.
- Global optimization algorithms are not, in general, efficient.
- Heuristics and exact algorithms are applied in combination.
- Need of expert knowledge on methods and problems.

Mixed-Integer Linear Programming

Propriedades:

- One of the most representative classes of mathematical programming.
- Global optimization algorithms are not, in general, efficient.
- Heuristics and exact algorithms are applied in combination. ,
- Need of expert knowledge on methods and problems.

Example: Gas Transportation Network

- Belgium does not produce gas!
- Natural gas is imported from Norway, Holland, and Algeria.
- Gas should be supplied to demand points at the lowest possible cost.
- Gas is injected into the network by compressors.
- There are pressure constraints in the gas pipelines.

Example: Gas Transportation Network

- Belgium does not produce gas!
- Natural gas is imported from Norway, Holland, and Algeria.
- Gas should be supplied to demand points at the lowest possible cost.
- Gas is injected into the network by compressors.
- There are pressure constraints in the gas pipelines.

Example: Gas Transportation Network

- Network (N, A). $A=A_{p} \cup A_{a}$.
- A_{a} : active arcs model compressors. Flow can increase in the arc.
- A_{p} : passive arcs ensure flow conservation.
- $N_{s} \subseteq N$: set of supplier nodes.
- $c_{i}, i \in N_{s}$: price of gas unit.
- s_{i}, \bar{s}_{i} : lower and upper bounds on gas supply at node i.
- $\underline{p}_{i}, \bar{p}_{i}$: lower and upper bounds for pressure at node i.

Example: Gas Transportation Network

- Network (N, A). $A=A_{p} \cup A_{a}$.
- A_{a} : active arcs model compressors. Flow can increase in the arc.
- A_{p} : passive arcs ensure flow conservation.
- $N_{s} \subseteq N$: set of supplier nodes.
- $c_{i}, i \in N_{s}$: price of gas unit.
- $\underline{s}_{i}, \bar{s}_{i}$: lower and upper bounds on gas supply at node i.
- $\underline{p}_{i}, \bar{p}_{i}$
lower and upper bounds for pressure at node i.

Example: Gas Transportation Network

- Network (N, A). $A=A_{p} \cup A_{a}$.
- A_{a} : active arcs model compressors. Flow can increase in the arc.
- A_{p} : passive arcs ensure flow conservation.
- $N_{s} \subseteq N$: set of supplier nodes.
- $c_{i}, i \in N_{s}$: price of gas unit.
- $\underline{s}_{i}, \bar{s}_{i}$: lower and upper bounds on gas supply at node i.
- $\underline{p}_{i}, \bar{p}_{i}$: lower and upper bounds for pressure at node i.

Example: Gas Transportation Network

- $s_{i}, i \in N$: supply of node i :
- $s_{i}>0 \Longrightarrow$ gas injected into the network at node i.
- $s_{i}<0 \Longrightarrow$ gas drawn from the network at node i to meet the local demand.

Example: Gas Transportation Network

- $s_{i}, i \in N$: supply of node i :
- $s_{i}>0 \Longrightarrow$ gas injected into the network at node i.
- $s_{i}<0 \Longrightarrow$ gas drawn from the network at node i to meet the local demand.
- $f_{i j},(i, j) \in A$: flow in arc (i, j) :
- $f(i, j)>0 \Longrightarrow$ gas flow $i \rightarrow j$.
- $f(i, j)<0 \Longrightarrow$ gas flow $j \rightarrow i$.

Problem Formulation (Conceptual)

$$
\begin{array}{ll}
\min & \sum_{j \in N_{s}} c_{j} s_{j} \\
\text { s.t. : } & \sum_{j:(i, j) \in A} f_{i j}-\sum_{j:(j, i) \in A} f_{j i}=s_{i}, \forall i \in N, \\
& \operatorname{sign}\left(f_{i j}\right) f_{i j}^{2}=\psi_{i j}\left(p_{i}^{2}-p_{j}^{2}\right), \forall(i, j) \in A_{p} \\
& \operatorname{sign}\left(f_{i j}\right) f_{i j}^{2} \geq \psi_{i j}\left(p_{i}^{2}-p_{j}^{2}\right), \forall(i, j) \in A_{a} \\
& s_{i} \in\left[\underline{s}_{i}, \bar{s}_{i}\right], \forall i \in N \\
& p_{i} \in\left[\underline{p}_{i}, \bar{p}_{i}\right], \forall i \in N \\
& f_{i j} \geq 0, \forall(i, j) \in A_{a}
\end{array}
$$

Dealing with Function $\operatorname{sign}(\cdot)$

- We can model the function $\operatorname{sign}(\cdot)$ with a binary variable.
- Assuming that $\left|f_{i j}\right| \leq F_{i j}$ (constant), then:

$$
\begin{aligned}
f_{i j} & \leq F_{i j} z_{i j}, \\
f_{i j} & \geq-F_{i j}\left(1-z_{i j}\right), \\
\operatorname{sign}\left(f_{i j}\right) & =\left(2 z_{i j}-1\right), \\
z_{i j} & \in\{0,1\}
\end{aligned}
$$

which transforms the conceptual problem into a concrete MINLP.

Fundamentals

- Thank you for attending this lecture!!!

