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Summary

General Formulation

Minimize f (x)
Subject to :

g(x) 6 0
h(x) = 0
x ∈ Rn
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Linear Programming

Linear Programming

I Objective function and constraints are all linear (actually
affine).

I Mathematically,
I f (x) = cTx ,
I g(x) = Ax − a e
I h(x) = Bx − b

in which c, a and b are vectors and A and B are matrices.
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Linear Programming

Linear Programming

Canonical Form:

max cTx

s.a : Ax ≤ b

x ≥ 0

Problems can be reformulated in the canonical form to deal with:

1. equations/equalities;

2. real variables (which can assume negative values); and

3. minimization rather than maximization.
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Linear Programming

Geometric View
Find the maximum of a linear function f (x) inside a polyhedron
P = {x ∈ Rn : Ax ≤ b}.

x_1

x^0

x^1

c

c

x_2

x^2

x^3

Under normal conditions, there exists a vertex with the optimal solution =⇒
combinatorial problem.
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Linear Programming

Linear Programming: Algorithms

Algorithms:

I Algorithms available off-the-shelf: Simplex and Interior-Point.

I Very large problems are solve efficientlhy: dozens of thousands
of variables and constraints.
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Linear Programming

Example

I An enterprise has 4 plants where vehicles are assembled.

I Each plant has demands and limits on man-power, materials and emission
to produce assemble a vehicle, as follows:

man-power materials pollution

plant 1 2 3 15
plant 2 3 4 10
plant 3 4 5 9
plant 4 5 6 7

I At least 400 vehicles must be assembled at plant 3.

I 3300 man-hours and 4000 material units are available.

I At most 12000 units of pollutions can be emitted.

I The goal is to maximize the number of vehicles produced.
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Linear Programming

Example

1. What are the variables?

x1, x2, x3, x4 in which xi denotes the number of vehicles
manufacture at plant i .

2. What is the goal?

Maximize x1 + x2 + x3 + x4.

3. What are the constraints?

xi ≥ 0, ∀i ,
x3 ≥ 400,

2x1 + 3x2 + 4x3 + 5x4 ≤ 3300,

3x1 + 4x2 + 5x3 + 6x4 ≤ 4000,

15x1 + 10x2 + 9x3 + 7x4 ≤ 12000
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Linear Programming

AMPL

I AMPL is an algebraic modeling language that allows
specification of math-programming problems at a high level.

I AMPL advocates the separation of model and data.

I It is very similar to the way we express optimization problems
in math.

I The user is free from data manipulation.
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Linear Programming

AMPL

Interpretador
da linguagem

de modelagem

Solver 1

Solver 2

Solver 3

Interface de
Usuário

.

.

.

Banco de
dados

Tabelas

.

.

.
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Linear Programming

AMPL

I AMPL needs a model in mathematical programming which
states the variables, objective and constraints.

I Further, it needs a data instance.

I The model and data files are fed into an optimization solver.

I AMPL acts as a parser and compiler.
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Linear Programming

AMPL Example

Implement in AMPL the vehicle assembly problem.
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Quadratic Programming

Quadratic Programming

Canonical Formulation:

QP : min
1

2
xTQx + cTx

s.t. : Ax ≤ b

Remarks:

I Extension to linear programming with a quadratic term.

I Q � 0 is a positive definite (or semidefinite) matrix.

I Convex Problem: minimize a convex objective within a convex
feasible set.
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Quadratic Programming

Quadratic Programming: Algorithms

Algorithms:

I Active-set algorithms are efficient for QP.
Simplex for LP is a particular kind of active-set algorithm.

I Interior-point method is another class of efficient algorithms,
with polynomial time.

I Large problems are solved efficiently.
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Quadratic Programming

Quadratic Programming: Example

min q(x) = (x1 − 1)2 + (x2 − 2.5)2

s.t. :

x1 − 2x2 + 2 ≥ 0
−x1 − 2x2 + 6 ≥ 0
−x1 + 2x2 + 2 ≥ 0
x1, x2 ≥ 0
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Quadratic Programming

Example

(2,2)

x1

Curva de nivel

(3)

−x1−2x2+6=0
(1)

(4,1)

(2,0)

(0,1)

(2)

da funcao objetivo

x2

(5)

(4)
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Quadratic Programming

Example
Behavior of the active-set algorithm.
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Convex Programming

Summary
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Convex Programming

Convex Problem

It consists of minimizing a convex function within a feasible convex
set:

min f (x)

s.t. : x ∈ X

in which X ⊆ Rn is a convex set.
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Convex Programming

Convex Problem: Explicit Representation

Standard Problem:

min f0(x)

s.t. : fi (x) ≤ 0, i = 1, . . . ,m,

aTi x = bi , i = 1, . . . , p

in which fi , i = 0, . . . ,m, are convex functions.

Notice that
X = {x : fi (x) ≤ 0, i = 1, . . . ,m, aTi x = bi , i = 1, . . . , p} is a
convex set.
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Convex Programming

Convex Problem: Algorithms

Algorithms:

I Efficient algorithms based on the interior-point method, with
polynomial time.

I It is technology that enables the solution of large problems.

I There exist a range of direct application such as in nonlinear
programming.
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Convex Programming

Classification: Support Vector Machines (SVM)

I Let D be training set, in the form:

D = {(xi , yi ) | xi ∈ Rp, yi ∈ {−1, 1}}ni=1

in which yi indicates the class to which point xi belongs.

I We want to find a hyperplane wTx − b = 0 of maximum
margin that separates the data points labeled with yi = −1
from those labeled with yi = +1.

I The vectors that are on the separating hyperplane are said to
be supporting vectors.
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Convex Programming

SVM

I If the training set D is linearly separable, we can choose two
hyperplanes:

wTx − b = 1,

wTx − b = −1.

such that they separate the data, without any points between
them.

I We see to maximize the distance between them, which is
given by 2/‖w‖.
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Convex Programming

SVM
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Convex Programming

SVM: Convex Formulation

Formulation:

arg min
(w ,b)

1

2
‖w‖2

s.t. : yi (w
Txi − b) ≥ 1, i = 1, . . . , n
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Mixed-Integer Linear Programming

Mixed-Integer Linear Programming

Generalization of linear programming in which variables can be
continuous or discrete:

max cTx

s.t. : Ax ≤ b

x = (xC, xI) ≥ 0,

xI ∈ ZnI
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Mixed-Integer Linear Programming

Geometric View
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Mixed-Integer Linear Programming

Ideal Formulation

x1

x2

1

2

3

4

1 2 3 4 5

P3 P2

P1
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Mixed-Integer Linear Programming

Mixed-Integer Linear Programming

Properties:

I Highly expressive languages.

I Several problems of academic and industrial relevance can be
formulated.

I Coupling to efficient off-the-shelf solvers.

I Mature optimization technology.
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Mixed-Integer Linear Programming

Facility Location

Properties:

I Given a number of regions, the problem is to decide where to
install a set of emergency-response stations.

I For each station location, it is known the installation cost and
the regions that can be served by the station (e.g., in last
than 8 minutes).

I Let M = {1, . . . ,m} be the set of regions.

I Let N = {1, . . . , n} be the set of locations for
emergency-response stations.
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Mixed-Integer Linear Programming

Facility Location

Properties:

I Let Sj ⊆ M be the regions that can be served by station j .

I Let cj be the installation cost of station j .
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Mixed-Integer Linear Programming

Facility Location

Problem Formulation:

I We build a matrix A such that aij = 1 if i ∈ Sj and aij = 0
otherwise.

I Defining variables:

xj =

{
1 if a station j will be installed
0 otherwise
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Mixed-Integer Linear Programming

Facility Location

Defining Constraints:

a) At least one station must serve a region i :

n∑
j=1

aijxj ≥ 1 for i = 1, . . . ,m

b) The variables are binary:

xj ∈ {0, 1} para j = 1, . . . , n
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Mixed-Integer Linear Programming

Facility Location

Defining the objective:

min
n∑

j=1

cjxj
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Mixed-Integer Linear Programming

Summary
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Mixed-Integer Linear Programming

Mixed-Integer Linear Programming

Minimize f (x)
Subject to :

g(x) 6 0
h(x) = 0
x = (xC, xI)
xC ∈ RnC

xI ∈ ZnI
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Mixed-Integer Linear Programming

Mixed-Integer Linear Programming

Propriedades:

I One of the most representative classes of mathematical
programming.

I Global optimization algorithms are not, in general, efficient.

I Heuristics and exact algorithms are applied in combination. ,

I Need of expert knowledge on methods and problems.
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Mixed-Integer Linear Programming

Example: Gas Transportation Network

I Belgium does not produce gas!

I Natural gas is imported from
Norway, Holland, and Algeria.

I Gas should be supplied to demand
points at the lowest possible cost.

I Gas is injected into the network by
compressors.

I There are pressure constraints in
the gas pipelines.
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Mixed-Integer Linear Programming

Example: Gas Transportation Network

I Network (N,A). A = Ap ∪ Aa.
I Aa : active arcs model compressors. Flow can increase in the

arc.
I Ap : passive arcs ensure flow conservation.

I Ns ⊆ N : set of supplier nodes.

I ci , i ∈ Ns : price of gas unit.

I s i , s i : lower and upper bounds on gas supply at node i .

I p
i
, pi : lower and upper bounds for pressure at node i .
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Mixed-Integer Linear Programming

Example: Gas Transportation Network

I si , i ∈ N : supply of node i :
I si > 0 =⇒ gas injected into the network at node i .
I si < 0 =⇒ gas drawn from the network at node i to meet the

local demand.

I fij , (i , j) ∈ A : flow in arc (i , j):
I f (i , j) > 0 =⇒ gas flow i → j .
I f (i , j) < 0 =⇒ gas flow j → i .
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Mixed-Integer Linear Programming

Problem Formulation (Conceptual)

min
∑
j∈Ns

cjsj

s.t. :
∑

j :(i ,j)∈A

fij −
∑

j :(j ,i)∈A

fji = si , ∀i ∈ N,

sign(fij)f
2
ij = ψij(p

2
i − p2j ), ∀(i , j) ∈ Ap,

sign(fij)f
2
ij ≥ ψij(p

2
i − p2j ), ∀(i , j) ∈ Aa,

si ∈ [s i , s i ], ∀i ∈ N,

pi ∈ [p
i
, pi ], ∀i ∈ N,

fij ≥ 0, ∀(i , j) ∈ Aa
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Mixed-Integer Linear Programming

Dealing with Function sign(·)

I We can model the function sign(·) with a binary variable.

I Assuming that |fij | ≤ Fij (constant), then:

fij ≤ Fijzij ,

fij ≥ −Fij(1− zij),

sign(fij) = (2zij − 1),

zij ∈ {0, 1}

which transforms the conceptual problem into a concrete
MINLP.
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Mixed-Integer Linear Programming

Fundamentals

I Thank you for attending this lecture!!!
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