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Minimize f(x)
Subject to :
g(x) <0

h(x) =0
x € R"
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Linear Programming

» Objective function and constraints are all linear (actually
affine).
» Mathematically,
» f(x)=cTx,
» g(x)=Ax—ae
» h(x)=Bx—b

in which ¢, a and b are vectors and A and B are matrices.
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L Linear Programming

Linear Programming

Canonical Form:

max CTX

sa:Ax<b
x>0

Problems can be reformulated in the canonical form to deal with:
1. equations/equalities;
2. real variables (which can assume negative values); and

3. minimization rather than maximization.
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Geometric View
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Find the maximum of a linear function f(x) inside a polyhedron
P ={x€R": Ax < b}.

x 1
Under normal conditions, there exists a vertex with the optimal solution —-
combinatorial problem.
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Linear Programming: Algorithms

Algorithms:

» Algorithms available off-the-shelf: Simplex and Interior-Point.

» Very large problems are solve efficientlhy: dozens of thousands
of variables and constraints.
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Example

> An enterprise has 4 plants where vehicles are assembled.

» Each plant has demands and limits on man-power, materials and emission
to produce assemble a vehicle, as follows:

man-power materials  pollution

plant 1 2 3 15
plant 2 3 4 10
plant 3 4 5 9
plant 4 5 6 7
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> At least 400 vehicles must be assembled at plant 3.
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> An enterprise has 4 plants where vehicles are assembled.

» Each plant has demands and limits on man-power, materials and emission
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Example

> An enterprise has 4 plants where vehicles are assembled.

» Each plant has demands and limits on man-power, materials and emission
to produce assemble a vehicle, as follows:

man-power materials  pollution

plant 1 2 3 15
plant 2 3 4 10
plant 3 4 5 9
plant 4 5 6 7

> At least 400 vehicles must be assembled at plant 3.
» 3300 man-hours and 4000 material units are available.

» At most 12000 units of pollutions can be emitted.
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Example

An enterprise has 4 plants where vehicles are assembled.

> Each plant has demands and limits on man-power, materials and emission

vV v v Yy

to produce assemble a vehicle, as follows:

man-power materials  pollution

plant 1 2 3 15
plant 2 3 4 10
plant 3 4 5 9
plant 4 5 6 7

At least 400 vehicles must be assembled at plant 3.
3300 man-hours and 4000 material units are available.
At most 12000 units of pollutions can be emitted.

The goal is to maximize the number of vehicles produced.
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1. What are the variables?
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1. What are the variables?

X1, X2, X3, X4 in which x; denotes the number of vehicles
manufacture at plant J.
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Example

1. What are the variables?

X1, X2, X3, X4 in which x; denotes the number of vehicles
manufacture at plant J.

2. What is the goal?
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Example
1. What are the variables?
X1, X2, X3, X4 in which x; denotes the number of vehicles
manufacture at plant J.
2. What is the goal?
Maximize x; + xo + X3 + X.
=] = = E E DA
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Example

1. What are the variables?

X1, X2, X3, X4 in which x; denotes the number of vehicles
manufacture at plant J.

2. What is the goal?
Maximize x; + xo + X3 + X.

3. What are the constraints?

x; > 0, Vi,

x3 > 400,
2x1 4 3x2 + 4x3 + 5xq < 3300,
3x1 4+ 4x0 + 5x3 + 6x4 < 4000,
15x; + 10x0 + 9x3 + 7x4 < 12000

[m] = =
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AMPL

» AMPL is an algebraic modeling language that allows
specification of math-programming problems at a high level.

AMPL advocates the separation of model and data.

v

v

It is very similar to the way we express optimization problems
in math.

v

The user is free from data manipulation.
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L Linear Programming

AMPL

v

AMPL needs a model in mathematical programming which
states the variables, objective and constraints.

v

Further, it needs a data instance.

v

The model and data files are fed into an optimization solver.

v

AMPL acts as a parser and compiler.
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Implement in AMPL the vehicle assembly problem.
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Quadratic Programming
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LQuadratic Programming

Quadratic Programming

Canonical Formulation:

1
QP : min EXTQX +cTx
st.: Ax<b

Remarks:
» Extension to linear programming with a quadratic term.
» Q > 0is a positive definite (or semidefinite) matrix.
» Convex Problem: minimize a convex objective within a convex
feasible set.
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Algorithms:

» Active-set algorithms are efficient for QP.

Simplex for LP is a particular kind of active-set algorithm.

D¢
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Quadratic Programming: Algorithms

Algorithms:

» Active-set algorithms are efficient for QP.
Simplex for LP is a particular kind of active-set algorithm.

» Interior-point method is another class of efficient algorithms,
with polynomial time.
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Quadratic Programming: Algorithms

Algorithms:

» Active-set algorithms are efficient for QP.
Simplex for LP is a particular kind of active-set algorithm.

» Interior-point method is another class of efficient algorithms,
with polynomial time.

» Large problems are solved efficiently.
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Quadratic Programming: Example

min g(x) = (x1 — 1)® + (x2 — 2.5)°

s.t.:
X] — 2x2 + 2 > 0
—x1—2x+6 > 0
—x1+2x+2 > 0
X1, X2 > 0
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,,,,,, ..'*Curva de nivel

" da funcao objetivo

—x1-2x2+6=0

.1

x1
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Behavior of the active-set algorithm.

\"Curva de nivel

da funcao objetivo

—x1-2x2+6=0

.1

x1

D¢

30/63



optlntro

L Convex Programming

SUmmary

21/47

Convex Programming

Q>
31/63



Optlntro

L Convex Programming

Convex Problem

22/47

set:

It consists of minimizing a convex function within a feasible convex

min f(x)

st.:xe X
in which X C R" is a convex set.

D¢
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Standard Problem:

min fo(x)
s.it.: fi(x)<0,i=1,...,m,
a,-TX— b, i=1,...,p
in which f;,i =0,..., m, are convex functions.

a0
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Convex Problem: Explicit Representation

Standard Problem:

min fo(x)
s.it.: fi(x)<0,i=1,...,m,
alx=>bji=1,..p
in which f;,i =0,..., m, are convex functions.
Notice that

X={x:f(x)<0,i=1,....ma'x=b;,i=1,.

i
convex set.

..,p}isa
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L Convex Programming

Convex Problem: Algorithms

Algorithms:

» Efficient algorithms based on the interior-point method, with
polynomial time.

» It is technology that enables the solution of large problems.

» There exist a range of direct application such as in nonlinear
programming.
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Classification: Support Vector Machines (SVM)

» Let D be training set, in the form:

D= {(Xi;}’i) | X € Rp7 yi € {_1’ 1}}7:1

in which y; indicates the class to which point x; belongs.
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Classification: Support Vector Machines (SVM)

» Let D be training set, in the form:
D= {(Xi7Yi) ‘ Xj € Rp7 Yi € {_17 1}}7:1

in which y; indicates the class to which point x; belongs.

» We want to find a hyperplane wTx — b = 0 of maximum
margin that separates the data points labeled with y; = —1
from those labeled with y; = +1.

» The vectors that are on the separating hyperplane are said to
be supporting vectors.

25 /47
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L Convex Programming

SVM

> If the training set D is linearly separable, we can choose two
hyperplanes:

wix—b=1,
wix —b=—1.
such that they separate the data, without any points between

them.

» We see to maximize the distance between them, which is
given by 2/||w]|.
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SVM
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Formulation:

1
argmin ~||w|?

w,b

s.t.: y,-(wa,- —b)>1,i=1,

DA
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Mixed-Integer Linear Programming
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Mixed-Integer Linear Programming

Generalization of linear programming in which variables can be
continuous or discrete:

max ¢’ x
st.: Ax<b

x = (xc,x1) > 0,
xp € Z™

D¢
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Ideal Formulation

X2
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Mixed-Integer Linear Programming

Properties:

» Highly expressive languages.

» Several problems of academic and industrial relevance can be
formulated.

» Coupling to efficient off-the-shelf solvers.

» Mature optimization technology.
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Facility Location

Properties:

» Given a number of regions, the problem is to decide where to
install a set of emergency-response stations.

» For each station location, it is known the installation cost and
the regions that can be served by the station (e.g., in last
than 8 minutes).

» Let M = {1,..., m} be the set of regions.

» Let N ={1,...,n} be the set of locations for
emergency-response stations.
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Facility Location
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Properties:

» Let S; C M be the regions that can be served by station j.
> Let ¢; be the installation cost of station ;.

D¢
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Facility Location
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Problem Formulation:

» We build a matrix A such that a;; =1if i € 5; and a;; =0
otherwise.
» Defining variables:

1
=10

if a station j will be installed
otherwise

D¢
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Facility Location
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Defining Constraints:
a) At least one station must serve a region i
n
Za,-jszl fori=1,....m
j=1

b) The variables are binary:

xj € {0,1}

paraj=1,...,n

D¢
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Facility Location
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Defining the objective:

n
min E C_/XJ
j=1

DA
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Mixed-Integer Linear Programming
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Mixed-Integer Linear Programming

Minimize f(x)
Subject to :
g(x) <0
h(x) =0
x = (xc, x1)
xc € R
x| € ZM
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Mixed-Integer Linear Programming

Propriedades:

» One of the most representative classes of mathematical
programming.

» Global optimization algorithms are not, in general, efficient.

53/63



Optlntro 41/ 47

L Mixed-Integer Linear Programming

Mixed-Integer Linear Programming

Propriedades:

» One of the most representative classes of mathematical
programming.

» Global optimization algorithms are not, in general, efficient.
» Heuristics and exact algorithms are applied in combination. ,

> Need of expert knowledge on methods and problems.
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Example: Gas Transportation Network

The Netherlands

» Belgium does not produce gas!

Belgium

» Natural gas is imported from
Norway, Holland, and Algeria.

&
®1997 N Geographixt
(805) 68

100w maps com
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Example: Gas Transportation Network

The Netherlands

» Belgium does not produce gas!

» Natural gas is imported from
Norway, Holland, and Algeria.

» Gas should be supplied to demand
points at the lowest possible cost.

> Gas is injected into the network by
compressors.

» There are pressure constraints in
the gas pipelines.

3" s
1997 MAGELLAN Geographix®*
(805) 685-3100 wwawmaps com

Qe
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Example: Gas Transportation Network

» Network (N, A). A=A, UA,.
» A, : active arcs model compressors. Flow can increase in the
arc.

» A, : passive arcs ensure flow conservation.

D¢
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Example: Gas Transportation Network

» Network (N, A). A=A, UA,.
» A, : active arcs model compressors. Flow can increase in the
arc.

» A, : passive arcs ensure flow conservation
» N; C N : set of supplier nodes.

> ¢;, i € Ns : price of gas unit.
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Example: Gas Transportation Network

v

Network (N, A). A= A, UA,.
» A, : active arcs model compressors. Flow can increase in the
arc.
» A, : passive arcs ensure flow conservation.

» N; C N : set of supplier nodes.
> ¢;, i € Ng : price of gas unit.
> 5;,5; : lower and upper bounds on gas supply at node i.

> PPt lower and upper bounds for pressure at node i.
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Example: Gas Transportation Network

> s;, i € N : supply of node i:

» 5, >0 = gas injected into the network at node .

» s; <0 = gas drawn from the network at node / to meet the
local demand.
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Example: Gas Transportation Network

> s;, i € N : supply of node i:

» 5, >0 = gas injected into the network at node .

» s; <0 = gas drawn from the network at node / to meet the
local demand.

> fij, (i,j) € A: flow in arc (i,)):
» f(i,j) >0 = gas flow i — j.
> £(i,j) <0 = gas flow j — i.

QR
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Problem Formulation (Conceptual)

min E GjSj

JENs
st Y fi— > fi=s, VieN,
JG0)EA  jii)eA

sign(f)f7 = vi(p; — p7), V(i,j) € Ap,
sign(f)f7 > vi(p; — pf), V(i,j) € Aa,
S € [§,-, 5;], VieN,

pi € [p,: Pil, Vi€ N,

f; >0, Y(i,j) € A

DA
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» We can model the function sign(-) with a binary variable.
» Assuming that |f;;| < Fj; (constant), then:

f;..

< FIlej:
fj > —Fy(1 - zy),
sign(f,-j) = (2Zij — 1),

z; € {0,1}
MINLP.

which transforms the conceptual problem into a concrete
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» Thank you for attending this lecture!!!
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