OptIntro 1/47

Modeling Introduction

Eduardo Camponogara

Department of Automation and Systems Engineering Federal University of Santa Catarina

October 2016

Linear Programming

Quadratic Programming

Convex Programming

Mixed-Integer Linear Programming

Mixed-Integer Nonlinear Programming

General Formulation

Minimize
$$f(x)$$

Subject to:
$$g(x) \le 0$$
$$h(x) = 0$$
$$x \in \mathbb{R}^n$$

Summary

Linear Programming

Quadratic Programming

Convex Programming

Mixed-Integer Linear Programming

Mixed-Integer Nonlinear Programming

Linear Programming

- Objective function and constraints are all linear (actually affine).
- Mathematically,
 - $f(x) = c^{\mathrm{T}}x,$
 - ightharpoonup g(x) = Ax a and
 - h(x) = Bx b

in which c, a and b are vectors and A and B are matrices.

Linear Programming

Canonical Form:

$$\max c^{\mathrm{T}} x$$

$$\mathrm{s.a} : Ax \le b$$

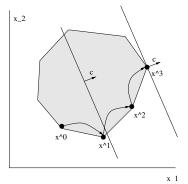
$$x \ge 0$$

Problems can be reformulated in the canonical form to deal with:

- 1. equations/equalities;
- 2. real variables (which can assume negative values); and
- 3. minimization rather than maximization.

Geometric View

Find the maximum of a linear function f(x) inside a polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b\}.$



Under normal conditions, there exists a vertex with the optimal solution \implies combinatorial problem.

Linear Programming: Algorithms

- Algorithms available off-the-shelf: Simplex and Interior-Point.
- Very large problems are solve efficiently: dozens of thousands of variables and constraints.

- An enterprise has 4 plants where vehicles are assembled.
- Each plant has demands and limits on man-power, materials and emissions to assemble a vehicle, as follows:

	man-power	materials	pollution
plant 1	2	3	15
plant 2	3	4	10
plant 3	4	5	9
plant 4	5	6	7

- ▶ At least 400 vehicles must be assembled at plant 3.
- ▶ 3300 man-hours and 4000 material units are available.
- At most 12000 units of pollution can be emitted
- The goal is to maximize the number of vehicles produced

- An enterprise has 4 plants where vehicles are assembled.
- Each plant has demands and limits on man-power, materials and emissions to assemble a vehicle, as follows:

	man-power	materials	pollution
plant 1	2	3	15
plant 2	3	4	10
plant 3	4	5	9
plant 4	5	6	7

- At least 400 vehicles must be assembled at plant 3.
- ▶ 3300 man-hours and 4000 material units are available
- At most 12000 units of pollution can be emitted.
- The goal is to maximize the number of vehicles produced

- An enterprise has 4 plants where vehicles are assembled.
- Each plant has demands and limits on man-power, materials and emissions to assemble a vehicle, as follows:

	man-power	materials	pollution
plant 1	2	3	15
plant 2	3	4	10
plant 3	4	5	9
plant 4	5	6	7

- ▶ At least 400 vehicles must be assembled at plant 3.
- ▶ 3300 man-hours and 4000 material units are available.
- At most 12000 units of pollution can be emitted.
- The goal is to maximize the number of vehicles produced.

- An enterprise has 4 plants where vehicles are assembled.
- Each plant has demands and limits on man-power, materials and emissions to assemble a vehicle, as follows:

	man-power	materials	pollution
plant 1	2	3	15
plant 2	3	4	10
plant 3	4	5	9
plant 4	5	6	7

- ▶ At least 400 vehicles must be assembled at plant 3.
- 3300 man-hours and 4000 material units are available.
- ▶ At most 12000 units of pollution can be emitted.
- The goal is to maximize the number of vehicles produced

- An enterprise has 4 plants where vehicles are assembled.
- Each plant has demands and limits on man-power, materials and emissions to assemble a vehicle, as follows:

	man-power	materials	pollution
plant 1	2	3	15
plant 2	3	4	10
plant 3	4	5	9
plant 4	5	6	7

- ▶ At least 400 vehicles must be assembled at plant 3.
- ▶ 3300 man-hours and 4000 material units are available.
- ▶ At most 12000 units of pollution can be emitted.
- ▶ The goal is to maximize the number of vehicles produced.

1. What are the variables?

 x_1 , x_2 , x_3 , x_4 in which x_i denotes the number of vehicles manufactured at plant i.

- 2. What is the goal? Maximize $x_1 + x_2 + x_3 + x_4$.
- 3. What are the constraints?

$$x_{i} \ge 0, \ \forall i,$$

$$x_{3} \ge 400,$$

$$2x_{1} + 3x_{2} + 4x_{3} + 5x_{4} \le 3300,$$

$$3x_{1} + 4x_{2} + 5x_{3} + 6x_{4} \le 4000,$$

$$5x_{1} + 10x_{2} + 9x_{3} + 7x_{4} \le 12000$$

- 1. What are the variables?
 - x_1 , x_2 , x_3 , x_4 in which x_i denotes the number of vehicles manufactured at plant i.
- 2. What is the goal? Maximize $x_1 + x_2 + x_3 + x_4$.
- 3. What are the constraints?

$$x_{i} \ge 0, \forall i,$$

$$x_{3} \ge 400,$$

$$2x_{1} + 3x_{2} + 4x_{3} + 5x_{4} \le 3300,$$

$$3x_{1} + 4x_{2} + 5x_{3} + 6x_{4} \le 4000,$$

$$5x_{1} + 10x_{2} + 9x_{3} + 7x_{4} \le 12000$$

1. What are the variables?

 x_1 , x_2 , x_3 , x_4 in which x_i denotes the number of vehicles manufactured at plant i.

2. What is the goal?

Maximize
$$x_1 + x_2 + x_3 + x_4$$
.

3. What are the constraints?

$$x_{i} \ge 0, \forall i,$$

$$x_{3} \ge 400,$$

$$2x_{1} + 3x_{2} + 4x_{3} + 5x_{4} \le 3300,$$

$$3x_{1} + 4x_{2} + 5x_{3} + 6x_{4} \le 4000,$$

$$5x_{1} + 10x_{2} + 9x_{3} + 7x_{4} \le 12000$$

- 1. What are the variables?
 - x_1 , x_2 , x_3 , x_4 in which x_i denotes the number of vehicles manufactured at plant i.
- 2. What is the goal? Maximize $x_1 + x_2 + x_3 + x_4$.
- 3. What are the constraints?

$$x_i \ge 0, \forall i,$$

$$x_3 \ge 400,$$

$$2x_1 + 3x_2 + 4x_3 + 5x_4 \le 3300,$$

$$3x_1 + 4x_2 + 5x_3 + 6x_4 \le 4000,$$

$$5x_1 + 10x_2 + 9x_3 + 7x_4 \le 12000$$

- 1. What are the variables?
 - x_1 , x_2 , x_3 , x_4 in which x_i denotes the number of vehicles manufactured at plant i.
- 2. What is the goal? Maximize $x_1 + x_2 + x_3 + x_4$.
- 3. What are the constraints?

$$x_i \ge 0, \forall i,$$

$$x_3 \ge 400,$$

$$2x_1 + 3x_2 + 4x_3 + 5x_4 \le 3300,$$

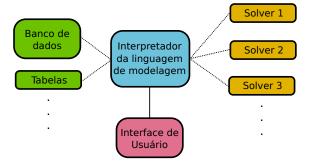
$$3x_1 + 4x_2 + 5x_3 + 6x_4 \le 4000,$$

$$15x_1 + 10x_2 + 9x_3 + 7x_4 \le 12000$$

AMPI

- ► AMPL is an algebraic modeling language that allows specification of math-programming problems at a high level.
- ▶ AMPL advocates the separation of model and data.
- ▶ It is very similar to the way we express optimization problems in math.
- ▶ The user is free from data manipulation.

AMPL



AMPL

- ► AMPL needs a model in mathematical programming which states the variables, objective and constraints.
- ▶ Further, it needs a data instance.
- ▶ The model and data files are fed into an optimization solver.
- AMPL acts as a parser and compiler.

AMPL Example

Implement in AMPL the vehicle assembly problem.

Summary

Linear Programming

Quadratic Programming

Convex Programming

Mixed-Integer Linear Programming

Mixed-Integer Nonlinear Programming

Quadratic Programming

Canonical Formulation:

$$QP : \min \frac{1}{2} x^{\mathrm{T}} Q x + c^{\mathrm{T}} x$$

s.t. : $Ax \le b$

Remarks:

- Extension to linear programming with a quadratic term.
- $ightharpoonup Q \succ 0$ is a positive definite (or semidefinite) matrix.
- Convex Problem: minimize a convex objective within a convex feasible set.

Quadratic Programming: Algorithms

- Active-set algorithms are efficient for QP.
 Simplex for LP is a particular kind of active-set algorithm.
- ▶ Interior-point method is another class of efficient algorithms, with polynomial time.
- ▶ Large problems are solved efficiently.

Quadratic Programming: Algorithms

- Active-set algorithms are efficient for QP.
 Simplex for LP is a particular kind of active-set algorithm.
- ▶ Interior-point method is another class of efficient algorithms, with polynomial time.
- ► Large problems are solved efficiently.

Quadratic Programming: Algorithms

- Active-set algorithms are efficient for QP.
 Simplex for LP is a particular kind of active-set algorithm.
- ▶ Interior-point method is another class of efficient algorithms, with polynomial time.
- Large problems are solved efficiently.

Quadratic Programming: Example

min
$$q(x) = (x_1 - 1)^2 + (x_2 - 2.5)^2$$

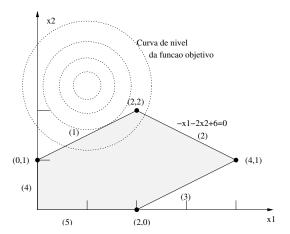
s.t.:

$$x_1 - 2x_2 + 2 \ge 0$$

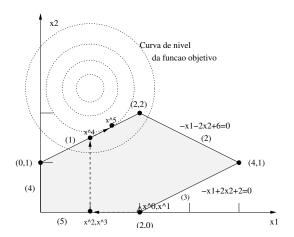
$$-x_1 - 2x_2 + 6 \ge 0$$

$$-x_1 + 2x_2 + 2 \ge 0$$

$$x_1, x_2 \ge 0$$



Behavior of the active-set algorithm.



Summary

Linear Programming

Quadratic Programming

Convex Programming

Mixed-Integer Linear Programming

Mixed-Integer Nonlinear Programming

Convex Problem

It consists of minimizing a convex function within a feasible convex set:

$$\min f(x)$$

s.t.: $x \in \mathcal{X}$

in which $X \subseteq \mathbb{R}^n$ is a convex set.

Convex Problem: Explicit Representation

Standard Problem:

min
$$f_0(x)$$

s.t.: $f_i(x) \le 0, i = 1,..., m,$
 $a_i^{\mathrm{T}} x = b_i, i = 1,..., p$

in which f_i , i = 0, ..., m, are convex functions.

Notice that

$$X = \{x : f_i(x) \le 0, i = 1, \dots, m, a_i^T x = b_i, i = 1, \dots, p\}$$
 is a convex set

Convex Problem: Explicit Representation

Standard Problem:

min
$$f_0(x)$$

s.t.: $f_i(x) \le 0, i = 1,..., m,$
 $a_i^{\mathrm{T}} x = b_i, i = 1,..., p$

in which f_i , i = 0, ..., m, are convex functions.

Notice that

$$X = \{x : f_i(x) \le 0, i = 1, ..., m, a_i^T x = b_i, i = 1, ..., p\}$$
 is a convex set.

Convex Problem: Algorithms

- Efficient algorithms based on the interior-point method, with polynomial time.
- ▶ It is a technology that enables the solution of large problems.
- There exist a range of direct application such as in nonlinear programming.

Classification: Support Vector Machines (SVM)

▶ Let *D* be training set, in the form:

$$\mathcal{D} = \{ (\mathbf{x}_i, y_i) \mid \mathbf{x}_i \in \mathbb{R}^p, y_i \in \{-1, 1\} \}_{i=1}^n$$

in which y_i indicates the class to which point x_i belongs.

- We want to find a hyperplane $w^Tx b = 0$ of maximum margin that separates the data points labeled with $y_i = -1$ from those labeled with $y_i = +1$.
- ▶ The vectors that are on the separating hyperplane are said to be supporting vectors.

Classification: Support Vector Machines (SVM)

▶ Let *D* be training set, in the form:

$$\mathcal{D} = \{ (\mathbf{x}_i, y_i) \mid \mathbf{x}_i \in \mathbb{R}^p, y_i \in \{-1, 1\} \}_{i=1}^n$$

in which y_i indicates the class to which point x_i belongs.

- We want to find a hyperplane $w^Tx b = 0$ of maximum margin that separates the data points labeled with $y_i = -1$ from those labeled with $y_i = +1$.
- ► The vectors that are on the separating hyperplane are said to be supporting vectors.

SVM

▶ If the training set *D* is linearly separable, we can choose two parallel hyperplanes:

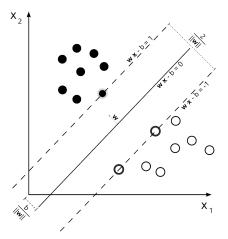
$$w^{\mathrm{T}}x - b = 1,$$

$$w^{\mathrm{T}}x - b = -1.$$

such that they separate the data, without any points between them.

▶ We seek to maximize the distance between them, which is given by 2/||w||.

SVM



SVM: Convex Formulation

Formulation:

$$\underset{(w,b)}{\operatorname{arg \, min}} \ \frac{1}{2} ||w||^{2}
\text{s.t.} : y_{i}(w^{T}x_{i} - b) \ge 1, \ i = 1, \dots, n$$

Summary

Linear Programming

Quadratic Programming

Convex Programming

Mixed-Integer Linear Programming

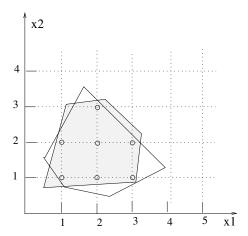
Mixed-Integer Nonlinear Programming

Mixed-Integer Linear Programming

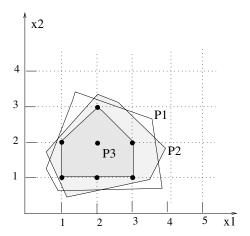
Generalization of linear programming in which variables can be continuous or discrete:

$$\begin{aligned} \max \ c^{\mathrm{T}} x \\ \mathrm{s.t.} : & Ax \leq b \\ & x = (x_{\mathrm{C}}, x_{\mathrm{I}}) \geq 0, \\ & x_{\mathrm{I}} \in \mathbb{Z}^{n_{\mathrm{I}}} \end{aligned}$$

Geometric View



Ideal Formulation



Mixed-Integer Linear Programming

- Highly expressive language.
- Several problems of academic and industrial relevance can be formulated.
- Coupling to efficient off-the-shelf solvers.
- Mature optimization technology.

Mixed-Integer Linear Programming

- Highly expressive language.
- Several problems of academic and industrial relevance can be formulated.
- Coupling to efficient off-the-shelf solvers.
- Mature optimization technology.

- ► Given a number of regions, the problem is to decide where to install a set of emergency-response stations.
- ► For each station location, it is known the installation cost and the regions that can be served by the station (e.g., in less than 8 minutes).
- ▶ Let $M = \{1, ..., m\}$ be the set of regions.
- ▶ Let $N = \{1, ..., n\}$ be the set of locations for emergency-response stations.

- Given a number of regions, the problem is to decide where to install a set of emergency-response stations.
- ► For each station location, it is known the installation cost and the regions that can be served by the station (*e.g.*, in less than 8 minutes).
- ▶ Let $M = \{1, ..., m\}$ be the set of regions.
- ▶ Let $N = \{1, ..., n\}$ be the set of locations for emergency-response stations.

- Given a number of regions, the problem is to decide where to install a set of emergency-response stations.
- ► For each station location, it is known the installation cost and the regions that can be served by the station (e.g., in less than 8 minutes).
- ▶ Let $M = \{1, ..., m\}$ be the set of regions.
- Let $N = \{1, ..., n\}$ be the set of locations for emergency-response stations.

- ▶ Let $S_j \subseteq M$ be the regions that can be served by station j.
- ▶ Let c_j be the installation cost of station j.

Problem Formulation:

- ▶ We build a matrix A such that $a_{ij} = 1$ if $i \in S_j$ and $a_{ij} = 0$ otherwise.
- Defining variables:

$$x_j = \begin{cases} 1 & \text{if a station } j \text{ will be installed} \\ 0 & \text{otherwise} \end{cases}$$

Defining Constraints:

a) At least one station must serve a region i:

$$\sum_{j=1}^{n} a_{ij} x_j \ge 1 \qquad \text{for } i = 1, \dots, m$$

b) The variables are binary:

$$x_i \in \{0, 1\}$$
 for $j = 1, ..., n$

Defining the objective:

$$\min \quad \sum_{j=1}^{n} c_{j} x_{j}$$

Summary

Linear Programming

Quadratic Programming

Convex Programming

Mixed-Integer Linear Programming

Mixed-Integer Nonlinear Programming

Mixed-Integer Nonlinear Programming

Minimize
$$f(x)$$

Subject to:

$$g(x) \leq 0$$

$$h(x) = 0$$

$$x = (x_{C}, x_{I})$$

$$x_{C} \in \mathbb{R}^{n_{C}}$$

$$x_{I} \in \mathbb{Z}^{n_{I}}$$

Mixed-Integer Nonlinear Programming

- One of the most representative classes of mathematical programming.
- ▶ Global optimization algorithms are not, in general, efficient.
- ▶ Heuristics and exact algorithms are applied in combination.
- ▶ Need of expert knowledge on methods and problems.

Mixed-Integer Nonlinear Programming

- One of the most representative classes of mathematical programming.
- ▶ Global optimization algorithms are not, in general, efficient.
- ▶ Heuristics and exact algorithms are applied in combination.
- ▶ Need of expert knowledge on methods and problems.

- ▶ Belgium does not produce gas!
- Natural gas is imported from Norway, Holland, and Algeria.
- Gas should be supplied to demand points at the lowest possible cost.
- Gas is injected into the network by compressors.
- ► There are pressure constraints in the gas pipelines.

- ▶ Belgium does not produce gas!
- Natural gas is imported from Norway, Holland, and Algeria.
- Gas should be supplied to demand points at the lowest possible cost.
- Gas is injected into the network by compressors.
- ► There are pressure constraints in the gas pipelines.

- ▶ Network (N, A). $A = A_p \cup A_a$.
 - A_a: active arcs model compressors. Flow can increase in the arc.
 - \triangleright A_p : passive arcs ensure flow conservation.
- $ightharpoonup N_s \subseteq N$: set of supplier nodes.
- $ightharpoonup c_i$, $i \in N_s$: price of gas unit.
- $\triangleright \underline{s}_i, \overline{s}_i$: lower and upper bounds on gas supply at node i.
- $ightharpoonup p_i, \overline{p}_i$: lower and upper bounds for pressure at node i.

- ▶ Network (N, A). $A = A_p \cup A_a$.
 - A_a: active arcs model compressors. Flow can increase in the arc.
 - $ightharpoonup A_p$: passive arcs ensure flow conservation.
- ▶ $N_s \subseteq N$: set of supplier nodes.
- ▶ c_i , $i \in N_s$: price of gas unit.
- $\triangleright \underline{s}_i, \overline{s}_i$: lower and upper bounds on gas supply at node i.
- $ightharpoonup \underline{p}_i, \overline{p}_i$: lower and upper bounds for pressure at node i.

- ▶ Network (N, A). $A = A_p \cup A_a$.
 - A_a: active arcs model compressors. Flow can increase in the arc.
 - \triangleright A_p : passive arcs ensure flow conservation.
- ▶ $N_s \subseteq N$: set of supplier nodes.
- ▶ c_i , $i \in N_s$: price of gas unit.
- $\triangleright \underline{s}_i, \overline{s}_i$: lower and upper bounds on gas supply at node i.
- $\triangleright p_i, \overline{p_i}$: lower and upper bounds for pressure at node i.

- ▶ s_i , $i \in N$: supply of node i:
 - $s_i > 0 \implies$ gas injected into the network at node i.
 - $s_i < 0 \implies$ gas drawn from the network at node i to meet the local demand.
- ▶ f_{ij} , $(i,j) \in A$: flow in arc (i,j): ▶ $f(i,j) > 0 \implies \text{gas flow } i \rightarrow j$. ▶ $f(i,j) < 0 \implies \text{gas flow } j \rightarrow i$.

- ▶ s_i , $i \in N$: supply of node i:
 - ▶ $s_i > 0$ \implies gas injected into the network at node i.
 - ▶ s_i < 0 ⇒ gas drawn from the network at node i to meet the local demand.
 </p>
- f_{ii} , $(i, j) \in A$: flow in arc (i, j):
 - $f(i,j) > 0 \implies \text{gas flow } i \rightarrow j$.
 - ▶ $f(i,j) < 0 \implies \text{gas flow } j \rightarrow i$.

Problem Formulation (Conceptual)

$$\begin{aligned} \min \sum_{j \in \mathcal{N}_s} c_j s_j \\ \text{s.t.} : \sum_{j:(i,j) \in A} f_{ij} - \sum_{j:(j,i) \in A} f_{ji} = s_i, \ \forall i \in \mathcal{N}, \\ \operatorname{sign}(f_{ij}) f_{ij}^2 &= \psi_{ij} (p_i^2 - p_j^2), \ \forall (i,j) \in A_p, \\ \operatorname{sign}(f_{ij}) f_{ij}^2 &\geq \psi_{ij} (p_i^2 - p_j^2), \ \forall (i,j) \in A_a, \\ s_i &\in [\underline{s}_i, \overline{s}_i], \ \forall i \in \mathcal{N}, \\ p_i &\in [\underline{p}_i, \overline{p}_i], \ \forall i \in \mathcal{N}, \\ f_{ij} &\geq 0, \ \forall (i,j) \in A_a \end{aligned}$$

Dealing with Function $sign(\cdot)$

- ▶ We can model the function sign(·) with a binary variable.
- ▶ Assuming that $|f_{ij}| \le F_{ij}$ (constant), then:

$$egin{aligned} f_{ij} & \leq F_{ij} z_{ij}, \ f_{ij} & \geq -F_{ij} (1-z_{ij}), \ ext{sign}(f_{ij}) & = (2z_{ij}-1), \ z_{ij} & \in \{0,1\} \end{aligned}$$

which transforms the conceptual problem into a concrete MINLP.

Introduction to Modeling

▶ Thank you for attending this lecture!!!