A Brief Introduction to Mixed-Integer Nonlinear Programming (MINLP)

Eduardo Camponogara
Department of Automation and Systems Engineering
Federal University of Santa Catarina

October 2016

Continuous Optimization

Mixed-Integer Optimization

Mixed-Integer Nonlinear Optimization

Global Optimization Strategy

LContinuous Optimization

Summary

Continuous Optimization

Mixed－Integer Optimization

Mixed－Integer Nonlinear Optimization

Global Optimization Strategy

Linear Programming

$$
\begin{array}{ll}
\min & c^{T} x \\
\text { s.t. }: & A x \leq b \\
& x \geq 0
\end{array}
$$

Remarks:

> Solvable in polynomial-time.

- Efficient algorithms: SIMPLEX and primal-dual interior-point method.

Linear Programming

$$
\begin{array}{ll}
\min & c^{\top} x \\
\text { s.t. }: & A x \leq b \\
& x \geq 0
\end{array}
$$

Remarks:

- Solvable in polynomial-time.
- Efficient algorithms: SIMPLEX and primal-dual interior-point method.

Quadratic Programming

$$
\begin{aligned}
& \min x^{T} Q x+c^{T} x \\
& \text { s.t. : } A x \leq b
\end{aligned}
$$

in which $Q \succ 0$.
Remarks:

- Solved efficiently with active-set and interior-point methods.

Quadratic Programming

$$
\begin{aligned}
& \min x^{T} Q x+c^{T} x \\
& \text { s.t. : } A x \leq b
\end{aligned}
$$

in which $Q \succ 0$.
Remarks:

- Solved efficiently with active-set and interior-point methods.

Convex Optimization

$$
\begin{array}{ll}
\min & f_{0}(x) \\
\text { s.t. : } & A x=b \\
& f_{j}(x) \leq 0, j=1, \ldots, m
\end{array}
$$

in which $f_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}, j=0, \ldots, m$, are convex functions.

- Solved efficiently with interior-point method and Newton's algorithm.

Convex Optimization

$$
\begin{array}{ll}
\min & f_{0}(x) \\
\text { s.t. : } & A x=b \\
& f_{j}(x) \leq 0, j=1, \ldots, m
\end{array}
$$

in which $f_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}, j=0, \ldots, m$, are convex functions.
Remarks:

- Solved efficiently with interior-point method and Newton's algorithm.

Properties of Convex Programs

- Any local solution x induces a global minimum.
- Any solution that satisfies first-order KKT optimality conditions is a local minimum, and therefore a global minimum.
- Several classes of problems can be shown to be convex.
OptIntro

LMixed－Integer Optimization

Summary

Continuous Optimization

Mixed－Integer Optimization

Mixed－Integer Nonlinear Optimization

Global Optimization Strategy

Mixed-Integer Linear Programming

$$
\begin{aligned}
\min & c_{\mathrm{x}}^{T} x+c_{\mathrm{y}}^{T} y \\
\text { s.t. }: & A_{\mathrm{x}} x+A_{\mathrm{y}} y \leq b \\
& x \geq 0, y \text { is integer }
\end{aligned}
$$

Mixed-Integer Linear Programming

$$
\begin{array}{ll}
\min & c_{\mathrm{x}}^{T} x+c_{\mathrm{y}}^{T} y \\
\text { s.t. }: & A_{\mathrm{x}} x+A_{\mathrm{y}} y \leq b \\
& x \geq 0, y \text { is integer }
\end{array}
$$

Remarks:

- NP-Hard problem.
- Can be solved in practice with branch-and-bound, branch-and-cut, and other strategies.

Mixed-Integer Convex Programming (MICP)

$$
\begin{array}{ll}
\min & f_{0}(x) \\
\text { s.t. : } & A x=b \\
& f_{j}(x) \leq 0, j=1, \ldots, m
\end{array}
$$

in which $x=\left(x_{\mathrm{C}}, x_{\mathrm{I}}\right)$ and x_{I} is integer.

Mixed-Integer Convex Optimization

Remarks:

- MILP and MICP are conceptually the same, in the sense that lower bounds can be obtained in polynomial-time.
- If we relax the integrality constraint, MILP becomes an LP and MICP becomes a convex program, both of which can be efficiently computed.

Implications:
 - Branch-and-bound can be applied to MICP, much like the way it is applied to MILP.
 - Of course, MICP will be much harder and the effectiveness will depend on how fast bounds are computed.

Mixed-Integer Convex Optimization

Remarks:

- MILP and MICP are conceptually the same, in the sense that lower bounds can be obtained in polynomial-time.
- If we relax the integrality constraint, MILP becomes an LP and MICP becomes a convex program, both of which can be efficiently computed.

Implications:

- Branch-and-bound can be applied to MICP, much like the way it is applied to MILP.
- Of course, MICP will be much harder and the effectiveness will depend on how fast bounds are computed.

Mixed-Integer Convex Optimization

Difficulties:

- For MILP, the dual Simplex algorithm provides hot start optimization from infeasible solutions produced by branch-and-bound.
- Introducing a bound on a variable renders the current dictionary infeasible in the primal, but suboptimal in the dual.
- a constraint in the primal becomes a variable in the dual.
- Such hot start mechanisms are not generally available for convex problems.

Mixed-Integer Convex Optimization

Difficulties:

- For MILP, the dual Simplex algorithm provides hot start optimization from infeasible solutions produced by branch-and-bound.
- Introducing a bound on a variable renders the current dictionary infeasible in the primal, but suboptimal in the dual.
- a constraint in the primal becomes a variable in the dual.
- Such hot start mechanisms are not generally available for convex problems.

Mixed-Integer Convex Optimization

Much of the literature explores the problem structure:

- Bonmin is a general solver for MICP.
- CPLEX can handle Mixed-Integer Quadratically Constrained Programs, in which the quadratic functions are convex.
$\left\llcorner_{\text {Mixed－Integer Nonlinear Optimization }}\right.$

Summary

Continuous Optimization

Mixed－Integer Optimization

Mixed－Integer Nonlinear Optimization

Global Optimization Strategy

Mixed-Integer Nonlinear Optimization

The general MINLP is a problem of the form:

$$
\begin{array}{ll}
\min & f(x) \\
\text { s.t. : } & g_{j}(x) \leq 0, j=1, \ldots, p \\
& h_{j}(x)=0, j=1, \ldots, q
\end{array}
$$

in which $x=\left(x_{\mathrm{C}}, x_{\mathrm{I}}\right)$ and x_{I} is integer.
Remarks:

- Very hard problem, for which there does not exist general methods.
- Can be solved for particular problems, and particular sizes.

Mixed-Integer Nonlinear Optimization

The general MINLP is a problem of the form:

$$
\begin{array}{ll}
\min & f(x) \\
\text { s.t. }: & g_{j}(x) \leq 0, j=1, \ldots, p \\
& h_{j}(x)=0, j=1, \ldots, q
\end{array}
$$

in which $x=\left(x_{\mathrm{C}}, x_{\mathrm{I}}\right)$ and x_{I} is integer.

Remarks:

- Very hard problem, for which there does not exist general methods.
- Can be solved for particular problems, and particular sizes.

Mixed-Integer Nonlinear Optimization

What will we do here?

- We address the general class in which the nonlinear terms are bilinear.
- For instance, $x \cdot y, x^{2}$, etc.
- Several applications are found in theory and practice.

Mixed-Integer Nonlinear Optimization

What will we do here?

- We address the general class in which the nonlinear terms are bilinear.
- For instance, $x \cdot y, x^{2}$, etc.
- Several applications are found in theory and practice.

Bilinear Optimization: Polynomials

- Polynomials can be converted into bilinear models.
- For instance,

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2} x_{3}
$$

can be converted to

$$
\begin{aligned}
f & =w_{1,1} \cdot w_{2,3} \\
w_{1,1} & =x_{1}^{2} \\
w_{2,3} & =x_{2} x_{3}
\end{aligned}
$$

Bilinear Optimization: Blending

Bilinear Optimization: Blending

For stable operations, the ratio of the "qualities" are held constant:

$$
\frac{q_{i}}{q}=\frac{\Delta q_{i}}{\Delta q} \Longleftrightarrow q_{i} \cdot \Delta q=\Delta q_{i} \cdot q
$$

in which:

- \boldsymbol{q} is the volume of the mixture in the tank.
- q_{i} is the volume of a product i in the mixture.
$\Delta \Delta_{q}$ is the volume being pumped out.
$\Rightarrow \Delta q_{i}$ is the volume of quality i being pumped out.

Bilinear Optimization: Blending

For stable operations, the ratio of the "qualities" are held constant:

$$
\frac{q_{i}}{q}=\frac{\Delta q_{i}}{\Delta q} \Longleftrightarrow q_{i} \cdot \Delta q=\Delta q_{i} \cdot q
$$

in which:

- q is the volume of the mixture in the tank.
- q_{i} is the volume of a product i in the mixture.
- Δq is the volume being pumped out.
- Δq_{i} is the volume of quality i being pumped out.

Bilinear Optimization: Modeling Trigonometric Functions

Polar coordinates,

$$
\begin{aligned}
& x=r \cos (\theta) \\
& y=r \sin (\theta)
\end{aligned}
$$

can be represented in Cartesian form

$$
x^{2}+y^{2}=r^{2}
$$

without the need of trigonometric functions.

McCormick Envelopes

Consider the bilinear function

$$
w=x y
$$

and suppose that bounds are known:

$$
\begin{aligned}
& x^{L} \leq x \leq x^{U} \\
& y^{L} \leq y \leq y^{U}
\end{aligned}
$$

McCormick Envelopes

First we manipulate the bounds

$$
\begin{array}{ll}
x-x^{L} \geq 0 & y-y^{L} \geq 0 \\
x^{U}-x \geq 0 & y^{U}-y \geq 0
\end{array}
$$

Mulitplying the first of each bound, we obtain

which is a linear inequality.

McCormick Envelopes

First we manipulate the bounds

$$
\begin{array}{ll}
x-x^{L} \geq 0 & y-y^{L} \geq 0 \\
x^{U}-x \geq 0 & y^{U}-y \geq 0
\end{array}
$$

Mulitplying the first of each bound, we obtain

$$
\begin{aligned}
&\left(x-x^{L}\right)\left(y-y^{L}\right) \geq 0 \Longleftrightarrow x y-x y^{L}-y x^{L}+x^{L} y^{L} \geq 0 \\
& \Longleftrightarrow w \geq x y^{L}+y x^{L}-x^{L} y^{L}
\end{aligned}
$$

which is a linear inequality.

McCormick Envelopes

- The underestimators of the function are represented by:

$$
\begin{aligned}
& w \geq x^{L} y+x y^{L}-x^{L} y^{L} \\
& w \geq x^{U} y+x y^{U}-x^{U} y^{U}
\end{aligned}
$$

- The overestimators of the function are represented by:

McCormick Envelopes

- The underestimators of the function are represented by:

$$
\begin{aligned}
& w \geq x^{L} y+x y^{L}-x^{L} y^{L} \\
& w \geq x^{U} y+x y^{U}-x^{U} y^{U}
\end{aligned}
$$

- The overestimators of the function are represented by:

$$
\begin{aligned}
& w \leq x^{U} y+x y^{L}-x^{U} y^{L} \\
& w \leq x y^{U}+x^{L} y-x^{L} y^{U}
\end{aligned}
$$

McCormick Envelopes

McCormick Envelopes

What do we gain from McCormick Envelopes?
Consider an NLP with only bilinear terms.

- Replacing the bilinear terms with McCormick Envelopes converts the NLP into an LP.
- The LP solution gives us a lower bound.
- Any feasible solution gives us an upper bound.

McCormick Envelopes

For an MINLP with only bilinear terms.

- Replacing the bilinear terms with McCormick Envelopes renders MINLP an MILP.
- The MILP solution gives us a lower bound.
- Any feasible solution gives us an upper bound.

McCormick Envelopes

What if we improve the bounds iteratively？
－We can produce a series of increasing lower bounds： $w^{L, k}, k=0,1$ ，
－And a series of decreasing upper bounds：$w^{U, k}, k=0,1, \ldots$
so that：

and we stop when $w^{U, k}-w^{L, k} \leq \epsilon$ ．

McCormick Envelopes

What if we improve the bounds iteratively?

- We can produce a series of increasing lower bounds:
$w^{L, k}, k=0,1, \ldots$
- And a series of decreasing upper bounds: $w^{U, k}, k=0,1, \ldots$

so that:

and we stop when $w^{U, k}-w^{L, k} \leq \epsilon$.

McCormick Envelopes

What if we improve the bounds iteratively?

- We can produce a series of increasing lower bounds:
$w^{L, k}, k=0,1, \ldots$
- And a series of decreasing upper bounds: $w^{U, k}, k=0,1, \ldots$
so that:

$$
\begin{gathered}
w^{L, 0} \leq w^{L, 1} \leq \cdots \leq w^{L, k} \\
w^{U, 0} \geq w^{U, 1} \geq \cdots \geq w^{U, k}
\end{gathered}
$$

and we stop when $w^{U, k}-w^{L, k} \leq \epsilon$.

McCormick Envelopes

How can we improve the bounds using McCormick Envelopes?

- We can splice the domain of the variables and impose McCormick Envelopes in each subdomain of the domain.

McCormick Envelopes

How can we improve the bounds using McCormick Envelopes?

- We can splice the domain of the variables and impose McCormick Envelopes in each subdomain of the domain.

Summary

> Continuous Optimization

> Mixed-Integer Optimization

> Mixed-Integer Nonlinear Optimization

Global Optimization Strategy

Problem Definition

$$
\begin{array}{ll}
\min & f_{0}(x) \\
\text { s.t. } & f_{q}(x) \leq 0, q \in \mathcal{Q} \backslash\{0\} \\
& f_{q}(x)=\sum_{(i, j) \in \mathcal{B L}} a_{i, j, q} x_{i} x_{j}+h_{q}(x), q \in \mathcal{Q} \\
& x^{L} \leq x \leq x^{U} \\
& x \in \mathbb{R}^{m}
\end{array}
$$

McCormick Envelopes

- In case of an NLP, an LP relaxation is derived by replacing each bilinear term with a new variable:

$$
w_{i j}=x_{i} \cdot x_{j}
$$

and adding four sets of constraints.

- In case of an MINLP, an MILP relaxation is derived.

This strategy is known as McCormick relaxation.

McCormick Envelopes

- In case of an NLP, an LP relaxation is derived by replacing each bilinear term with a new variable:

$$
w_{i j}=x_{i} \cdot x_{j}
$$

and adding four sets of constraints.

- In case of an MINLP, an MILP relaxation is derived.

This strategy is known as McCormick relaxation.

Piecewise McCormick Relaxation

In either case (NLP or MINLP), a tighter MILP relaxation can be obtained as follows:

- Partition the domain of one of the variables, let us say x_{j} of the bilinear term into n disjoint regions.
- Add new binary variables to the formulation to select the optimal partition x_{j}.

This strategy is known as piecewise McCormick relaxation.

Piecewise McCormick Relaxation

In either case (NLP or MINLP), a tighter MILP relaxation can be obtained as follows:

- Partition the domain of one of the variables, let us say x_{j} of the bilinear term into n disjoint regions.
- Add new binary variables to the formulation to select the optimal partition x_{j}.

This strategy is known as piecewise McCormick relaxation.

Piecewise McCormick Relaxation

- Let $x_{j n}^{L}$ and $x_{j n}^{U}$ be lower and upper bounds for x_{j} in partition n.
- If the value of x_{j} does belong to such a partition, then the binary variable $y_{j n}=1$ and the McCormick envelope hold.
- The piecewise McCormick relaxation can be formulated as a Generalized Disjunctive Program (Raman and Grossmann, 1994).
- PR-GDP is tighter because the use of partition-dependent $x_{j n}^{\prime}$ and $x_{j n}^{U}$ inside the disjunction, instead of the global bounds x_{j}^{L} and x_{j}^{U}

Piecewise McCormick Relaxation

- Let $x_{j n}^{L}$ and $x_{j n}^{U}$ be lower and upper bounds for x_{j} in partition n.
- If the value of x_{j} does belong to such a partition, then the binary variable $y_{j n}=1$ and the McCormick envelope hold.
- The piecewise McCormick relaxation can be formulated as a Generalized Disjunctive Program (Raman and Grossmann, 1994).
- PR-GDP is tighter because the use of partition-dependent $x_{j n}^{L}$ and $x_{j n}^{U}$ inside the disjunction, instead of the global bounds x_{j}^{L} and x_{j}^{U}.

Formulation

$$
\begin{aligned}
& \min z^{R}=f_{0}(x)=\sum_{(i, j) \in \mathcal{B L}} a_{i j 0} w_{i j}+h_{0}(x) \\
& \text { s.t. : } f_{q}(x)=\sum_{(i, j) \in \mathcal{B} \mathcal{L}} a_{i j q} w_{i j}+h_{q}(x) \leq 0, q \in \mathcal{Q} \backslash\{0\} \\
& \forall j,(i, j) \in \mathcal{B L}: \\
& \\
& \left.\bigvee_{n=1}^{N}\left[\begin{array}{c}
w_{i j} \geq x_{j n}^{L} x_{i}+x_{j} x_{i}^{L}-x_{j n}^{L} x_{i}^{L} \\
w_{i j} \geq x_{j n}^{U} x_{i}+x_{j} x_{i}^{U}-x_{j n}^{U} x_{i}^{U} \\
w_{i j} \leq x_{j n}^{U} x_{i}+x_{j} x_{i}^{L}-x_{j n}^{U} x_{i}^{L} \\
w_{i j} \leq x_{j n} x_{i}^{U}+x_{j n}^{L} x_{i}-x_{j n}^{L} x_{i}^{U} \\
x_{j n}^{L} \leq x_{j} \leq x_{j n}^{U}
\end{array}\right\} \forall i,(i, j) \in \mathcal{B L}\right]
\end{aligned}
$$

A Brief Introduction to MINLP Optimization

- End!
- Thank you for your attention.

