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min ¢’ x

st.: Ax<b

x>0
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min ¢’ x

st.: Ax<b

x>0
Remarks:

» Solvable in polynomial-time.

» Efficient algorithms: SIMPLEX and primal-dual interior-point
method.
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min x' Qx +c’x

st.: Ax<b
in which Q = 0.
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min x' Qx +c’x
st.: Ax<b
in which Q = 0.

Remarks:

> Solved efficiently with active-set and interior-point methods.
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min  fo(x)
st.: Ax=b

f(x)<0,j=1,....,m

in which f; : R" — R, j = 0,..., m, are convex functions.
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min  fo(x)
st.: Ax=b
filx)<0,j=1,...,m
in which f; : R"” — R, j = 0,..., m, are convex functions.
Remarks:
algorithm.

» Solved efficiently with interior-point method and Newton's
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Properties of Convex Programs

» Any local solution x induces a global minimum.

» Any solution that satisfies first-order KKT optimality
conditions is a local minimum, and therefore a global
minimum.

» Several classes of problems can be shown to be convex.
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Mixed-Integer Linear Programming

min ¢ x + cyTy
st.: Acx+ Ay < b

x > 0, y is integer
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min ¢ x + cyTy
st.: Acx+ Ay < b

x > 0, y is integer
Remarks:

» NP-Hard problem.

» Can be solved in practice with branch-and-bound,
branch-and-cut, and other strategies.
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Mixed-Integer Convex Programming (MICP)

min fo(x)
st.: Ax=b
fi(x) <0,j=1,

...,m
in which x = (xc, x1) and x is integer.
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Mixed-Integer Convex Optimization

Remarks:

» MILP and MICP are conceptually the same, in the sense that lower
bounds can be obtained in polynomial-time.

> If we relax the integrality constraint, MILP becomes an LP and
MICP becomes a convex program, both of which can be efficiently
computed.
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Mixed-Integer Convex Optimization

Remarks:

» MILP and MICP are conceptually the same, in the sense that lower
bounds can be obtained in polynomial-time.

> If we relax the integrality constraint, MILP becomes an LP and
MICP becomes a convex program, both of which can be efficiently
computed.

Implications:

» Branch-and-bound can be applied to MICP, much like the way it is
applied to MILP.

» Of course, MICP will be much harder and the effectiveness will
depend on how fast bounds are computed.
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Mixed-Integer Convex Optimization

Difficulties:

> For MILP, the dual Simplex algorithm provides hot start
optimization from infeasible solutions produced by
branch-and-bound.

» Introducing a bound on a variable renders the current
dictionary infeasible in the primal, but suboptimal in the dual.
> a constraint in the primal becomes a variable in the dual.
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Mixed-Integer Convex Optimization

Difficulties:

> For MILP, the dual Simplex algorithm provides hot start
optimization from infeasible solutions produced by
branch-and-bound.

» Introducing a bound on a variable renders the current
dictionary infeasible in the primal, but suboptimal in the dual.
> a constraint in the primal becomes a variable in the dual.

> Such hot start mechanisms are not generally available for convex
problems.
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Mixed-Integer Convex Optimization

Much of the literature explores the problem structure:
» Bonmin is a general solver for MICP.

» CPLEX can handle Mixed-Integer Quadratically Constrained
Programs, in which the quadratic functions are convex.
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The general MINLP is a problem of the form:

min f(x)
s.t.: gi(x) <0,j=1,.

P
hi(x)=0,j=1,....q
in which x = (xc, x1) and x is integer.
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The general MINLP is a problem of the form:

min f(x)
s.t.: gi(x) <0,j=1,.

P

hi(x)=0,j=1,...,q

in which x = (x¢, x1) and x is integer.
Remarks:

» Very hard problem, for which there does not exist general methods

» Can be solved for particular problems, and particular sizes.
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Mixed-Integer Nonlinear Optimization

What will we do here?



Optlntro

L Mixed-Integer Nonlinear Optimization

16 /35

Mixed-Integer Nonlinear Optimization

What will we do here?

» We address the general class in which the nonlinear terms are
bilinear.

» For instance, x - y, x2, etc.

» Several applications are found in theory and practice.
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» Polynomials can be converted into bilinear models
» For instance,

2
f(x1, X2, X3) = X7 X2X3
can be converted to

f=wi1- w3
2
W171 = X1
W2 3 = X2X3

N
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Bilinear Optimization: Blending

href

Unp
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Bilinear Optimization: Blending

qi _ Ag
g Agq

For stable operations, the ratio of the “qualities” are held constant:
~ = q-Aqg=Aqgi-q
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Bilinear Optimization: Blending

For stable operations, the ratio of the “qualities” are held constant:

. Ag:
B s g Ag=Dgi g
g Agq

in which:
» g is the volume of the mixture in the tank.
» g, is the volume of a product / in the mixture.
» Agq is the volume being pumped out.

> Ag; is the volume of quality i being pumped out.
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Bilinear Optimization: Modeling Trigonometric Functions

Polar coordinates,

x = rcos(f)

y = rsin(6)
can be represented in Cartesian form

X2y =r2
without the need of trigonometric functions.
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Consider the bilinear function

= Xy
and suppose that bounds are known:

L
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First we manipulate the bounds

X—XLZO

xY—x>0
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First we manipulate the bounds

x—xt>0 y—yt>0
xY—x>0

y—y=o0
Mulitplying the first of each bound, we obtain

(x—xHy—yH) >0 <= xy —xyt —yxt +xtyt >0

which is a linear inequality.

= w nyL—i—ny —XLyL
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» The underestimators of the function are represented by

w > xLy + xyL - xLyL

w > xVy +xy¥ — xUyY
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» The underestimators of the function are represented by
w > xby 4 xyt — xtyt
w > xYy 4 xyVU — xYUyY

» The overestimators of the function are represented by:

w < ny+XyL—XUyL

w < xy¥ 4 xby — xtyY

N
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McCormick Envelopes
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What do we gain from McCormick Envelopes?
Consider an NLP with only bilinear terms.

» Replacing the bilinear terms with McCormick Envelopes converts
the NLP into an LP.

» The LP solution gives us a lower bound.

> Any feasible solution gives us an upper bound.
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McCormick Envelopes

For an MINLP with only bilinear terms.
» Replacing the bilinear terms with McCormick Envelopes
renders MINLP an MILP.
» The MILP solution gives us a lower bound.

» Any feasible solution gives us an upper bound.
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What if we improve the bounds iteratively?
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What if we improve the bounds iteratively?

» We can produce a series of increasing lower bounds
Lk k=0,1,...

» And a series of decreasing upper bounds: wY"*, k =0,1,...
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What if we improve the bounds iteratively?
» We can produce a series of increasing lower bounds:
Lk k=0,1,...

» And a series of decreasing upper bounds: wY"*, k =0,1,...
so that:

whO < whl < ... < yhk

wUO > WUl s > Uk
and we stop when w!k — whk < ¢,

N
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How can we improve the bounds using McCormick Envelopes?
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How can we improve the bounds using McCormick Envelopes?

> We can splice the domain of the variables and impose McCormick
Envelopes in each subdomain of the domain.

N
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min fb(x)
fa(x) <0, g € Q\ {0}
fa(x) = Z ajjqXixj + he(x), g € Q
(iJ)eBL
x- < x<x

x eR™
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> In case of an NLP, an LP relaxation is derived by replacing
each bilinear term with a new variable:

Wij = Xj * Xj
and adding four sets of constraints.

In case of an MINLP, an MILP relaxation is derived.
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McCormick Envelopes

> In case of an NLP, an LP relaxation is derived by replacing
each bilinear term with a new variable:

Wij = Xj * Xj
and adding four sets of constraints.

» In case of an MINLP, an MILP relaxation is derived.

This strategy is known as McCormick relaxation.
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Piecewise McCormick Relaxation

In either case (NLP or MINLP), a tighter MILP relaxation can be
obtained as follows:

> Partition the domain of one of the variables, let us say x; of the
bilinear term into n disjoint regions.

» Add new binary variables to the formulation to select the optimal
partition Xx;.
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LGIobaI Optimization Strategy

Piecewise McCormick Relaxation

In either case (NLP or MINLP), a tighter MILP relaxation can be
obtained as follows:

> Partition the domain of one of the variables, let us say x; of the
bilinear term into n disjoint regions.

» Add new binary variables to the formulation to select the optimal
partition Xx;.

This strategy is known as piecewise McCormick relaxation.
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Piecewise McCormick Relaxation

> Let x{, and x{/ be lower and upper bounds for x; in partition n.

> If the value of x; does belong to such a partition, then the binary
variable y;, = 1 and the McCormick envelope hold.
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Piecewise McCormick Relaxation

> Let x and X be lower and upper bounds for x; in partition n.

> If the value of x; does belong to such a partition, then the binary
variable y;, = 1 and the McCormick envelope hold.

» The piecewise McCormick relaxation can be formulated as a
Generalized Disjunctive Program (Raman and Grossmann, 1994).

» PR-GDP is tighter because the use of partition- dependent x and

xjn inside the disjunction, instead of the global bounds XJ and XJ- .
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Formulation

min zf = = fo(x) = Z ajowij + ho(x)

(i.))eBL
fa(x) = Z ajgwij + he(x) <0, g € Q\ {0}
(i.j)eBL
vy, (i,j) € BL:

Yin
wij > X, x, + X X; L xLxL

Jn
N u u U
V W"for,x’“’ T Avilin) € BL
. wy < X X,—i—xj — Xjp Xi A
n= L U
W,,Sx,,,x + x ,,X, Xjn X
X < x5 < X
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A Brief Introduction to MINLP Optimization

» End!

» Thank you for your attention.
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