▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Gas-Lift Optimization in Satellite Wells

Eduardo Camponogara

Department of Automation and Systems Engineering Federal University of Santa Catarina

October 2016

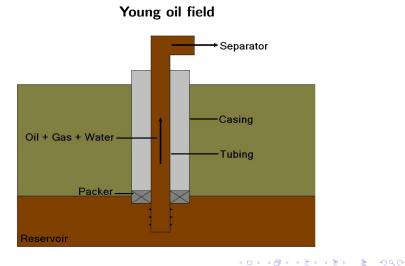
Motivation

Problem Formulation

Santos Multi-Reservoir Production System

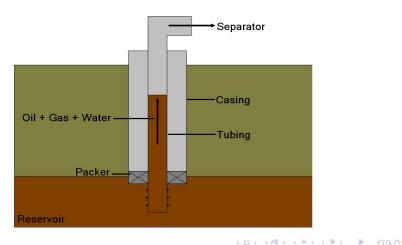
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Summary

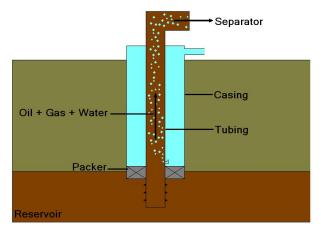

Motivation

Problem Formulation

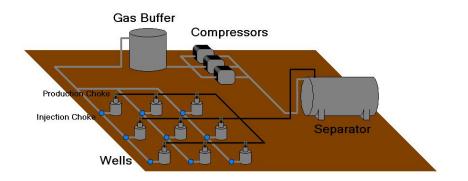
Santos Multi-Reservoir Production System


3/31

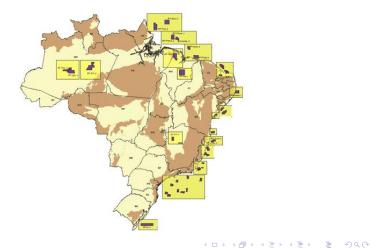
◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @


4/31

Mature oil field (without artificial lifting)



Mature oil field (with artificial lifting)


▲□▶ ▲□▶ ▲目▶ ▲目▶ 目目 - のへで

Gas-lift system

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

60% of Brazilian oil fields are gas-lifted

Summary

Motivation

Problem Formulation

Santos Multi-Reservoir Production System

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Practical Application

Petrobras bundled:

- An in-house well simulator (Marlim)
- Algebraic Modeling Languages (GAMS and AMPL)
- Optimization solvers (CPLEX, Gurobi, and CBC)

in a software package denominated BR-SIOP. It is available in Infogrid platform to run on a computer cluster.

Remarks:

- The baseline version of BR-SIOP optimizes daily production of platforms that operate with gas-lifted satellite wells.
- It is the most common configuration in Campos Basin.

Practical Application

Petrobras bundled:

- An in-house well simulator (Marlim)
- Algebraic Modeling Languages (GAMS and AMPL)
- Optimization solvers (CPLEX, Gurobi, and CBC)

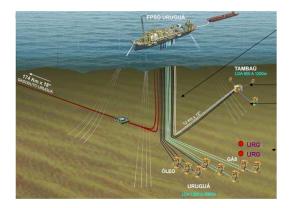
in a software package denominated BR-SIOP. It is available in Infogrid platform to run on a computer cluster.

Remarks:

- The baseline version of BR-SIOP optimizes daily production of platforms that operate with gas-lifted satellite wells.
- It is the most common configuration in Campos Basin.

- Mathematical model for gas-lift optimization of satellite wells in offshore operations.
- Model implemented in BR-SIOP, Petrobras.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ


FPSO Cidade de Santos

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

FPSO Cidade de Santos

FPSO Santos produces from two reservoirs, Tambau and Urugua.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• \mathcal{N} : set of production wells.

▶ \mathcal{P}_{wh}^{i} : breakpoints for well-head pressure of well *i*.

- ▶ Q_{gl}^i : breakpoints for gas-lift injection rate of well well *i*.
- ▶ Rⁱ: breakpoint pairs considering well-head pressure and lift-gas rate for well i, Pⁱ_{wh} × Qⁱ_{gl}, including naturally flowing conditions.
- ▶ \mathcal{R}^i_+ : breakpoint pairs not considering naturally flowing conditions, $\mathcal{P}^i_{wh} \times \{Q^i_{gl} \setminus \{0\}\}.$
- ▶ \mathcal{R}_{0}^{i} : breakpoint pairs considering only zero gas-lift injection rate, $\mathcal{P}_{wh}^{i} \times \{0\}.$

- \mathcal{N} : set of production wells.
- \mathcal{P}_{wh}^{i} : breakpoints for well-head pressure of well *i*.
- Q_{gl}^{i} : breakpoints for gas-lift injection rate of well well *i*.
- ▶ Rⁱ: breakpoint pairs considering well-head pressure and lift-gas rate for well i, Pⁱ_{wh} × Qⁱ_{gl}, including naturally flowing conditions.
- ▶ \mathcal{R}^i_+ : breakpoint pairs not considering naturally flowing conditions, $\mathcal{P}^i_{wh} \times \{Q^i_{gl} \setminus \{0\}\}.$
- ▶ \mathcal{R}_{0}^{i} : breakpoint pairs considering only zero gas-lift injection rate, $\mathcal{P}_{wh}^{i} \times \{0\}.$

- \mathcal{N} : set of production wells.
- \mathcal{P}_{wh}^{i} : breakpoints for well-head pressure of well *i*.
- Q_{gl}^{i} : breakpoints for gas-lift injection rate of well well *i*.
- ▶ Rⁱ: breakpoint pairs considering well-head pressure and lift-gas rate for well *i*, Pⁱ_{wh} × Qⁱ_{gl}, including naturally flowing conditions.
- ▶ \mathcal{R}^i_+ : breakpoint pairs not considering naturally flowing conditions, $\mathcal{P}^i_{wh} \times \{Q^i_{gl} \setminus \{0\}\}.$
- ▶ \mathcal{R}_{0}^{i} : breakpoint pairs considering only zero gas-lift injection rate, $\mathcal{P}_{wh}^{i} \times \{0\}.$

- \mathcal{N} : set of production wells.
- \mathcal{P}_{wh}^{i} : breakpoints for well-head pressure of well *i*.
- Q_{gl}^{i} : breakpoints for gas-lift injection rate of well well *i*.
- ▶ \mathcal{R}_{+}^{i} : breakpoint pairs not considering naturally flowing conditions, $\mathcal{P}_{wh}^{i} \times \{Q_{gl}^{i} \setminus \{0\}\}.$
- ▶ \mathcal{R}_0^i : breakpoint pairs considering only zero gas-lift injection rate, $\mathcal{P}_{wh}^i \times \{0\}.$

- \mathcal{N} : set of production wells.
- \mathcal{P}_{wh}^{i} : breakpoints for well-head pressure of well *i*.
- Q_{gl}^{i} : breakpoints for gas-lift injection rate of well well *i*.
- ▶ \mathcal{R}^{i}_{+} : breakpoint pairs not considering naturally flowing conditions, $\mathcal{P}^{i}_{wh} \times \{Q^{i}_{gl} \setminus \{0\}\}.$
- ▶ \mathcal{R}_0^i : breakpoint pairs considering only zero gas-lift injection rate, $\mathcal{P}_{wh}^i \times \{0\}.$

- ► $\hat{q}_{o}^{i}(whp^{i}, q_{g1}^{i})$: oil rate from well *i*, at well-head pressure whp^{i} and lift-gas injection q_{g1}^{i} .
- ▶ *gorⁱ*: gas-oil ration for well *i*.
- ▶ *wcutⁱ*: water cut.
- qⁱ_{gl,min}: minimum lift-gas injection rate.
- ▶ qⁱ_{gl,max}: maximum lift-gas injection rate.
- ▶ *whp*^{*i*}_{min}: minimum pressure.
- whpⁱ_{max}: maximum pressure.

- ▶ *gorⁱ*: gas-oil ration for well *i*.
- wcutⁱ: water cut.
- qⁱ_{gl,min}: minimum lift-gas injection rate.
- ▶ qⁱ_{gl,max}: maximum lift-gas injection rate.
- ▶ *whpⁱ*_{min}: minimum pressure.
- whpⁱ_{max}: maximum pressure.

- ▶ *gorⁱ*: gas-oil ration for well *i*.
- wcutⁱ: water cut.
- ▶ qⁱ_{gl,min}: minimum lift-gas injection rate.
- ▶ qⁱ_{gl,max}: maximum lift-gas injection rate.
- ▶ *whp*^{*i*}_{min}: minimum pressure.
- whpⁱ_{max}: maximum pressure.

- ▶ *gorⁱ*: gas-oil ration for well *i*.
- wcutⁱ: water cut.
- qⁱ_{gl,min}: minimum lift-gas injection rate.
- ► $q_{\text{gl,max}}^i$: maximum lift-gas injection rate.
- whpⁱ_{min}: minimum pressure.
- whpⁱ_{max}: maximum pressure.

- ► *q*_{l,max}: Liquid handling capacity of the platform.
- $q_{w,max}$: Water handling capacity of the platform.
- ► *q*_{flare,max}: Limit for gas flaring.
- ▶ *q*_{flare,min}: Minimum rate for gas flaring.
- qgtc: Gas compression capacity.
- q_{turbine}: Gas demand for electric turbine.
- ► *q*^{max}_{exp}: Maximum rate for gas exportation.

- $q_{l,max}$: Liquid handling capacity of the platform.
- $q_{w,max}$: Water handling capacity of the platform.
- q_{flare,max}: Limit for gas flaring.
- ► *q*_{flare,min}: Minimum rate for gas flaring.
- qgtc: Gas compression capacity.
- *q*_{turbine}: Gas demand for electric turbine.
- ► *q*^{max}_{exp}: Maximum rate for gas exportation.

- $q_{l,max}$: Liquid handling capacity of the platform.
- $q_{w,max}$: Water handling capacity of the platform.
- q_{flare,max}: Limit for gas flaring.
- ► *q*_{flare,min}: Minimum rate for gas flaring.
- *qgtc*: Gas compression capacity.
- ▶ *q*_{turbine}: Gas demand for electric turbine.
- q_{\exp}^{\max} : Maximum rate for gas exportation.

(tⁱ_{lb} and tⁱ_{ub}) are two parameters that impose conditions on well operations:

- (0,0) forces well *i* to be closed during the optimization process.
- (0,1) allows the optimization algorithm to decide whether to operate well *i* or not.
- (1,1) forces well *i* to be producing.
- ▶ (1,0) not a viable setting.
- enableⁱ allows well i to operate without gas-lift injection, naturally flowing production.

- (tⁱ_{lb} and tⁱ_{ub}) are two parameters that impose conditions on well operations:
 - (0,0) forces well *i* to be closed during the optimization process.
 - (0,1) allows the optimization algorithm to decide whether to operate well *i* or not.
 - (1,1) forces well *i* to be producing.
 - (1,0) not a viable setting.
- enableⁱ allows well *i* to operate without gas-lift injection, naturally flowing production.

- (tⁱ_{lb} and tⁱ_{ub}) are two parameters that impose conditions on well operations:
 - (0,0) forces well *i* to be closed during the optimization process.
 - (0,1) allows the optimization algorithm to decide whether to operate well *i* or not.
 - ▶ (1,1) forces well *i* to be producing.
 - (1,0) not a viable setting.
- enableⁱ allows well *i* to operate without gas-lift injection, naturally flowing production.

Platform Variables:

- $q_{\text{gas-prod}}$: total gas produced.
- $q_{\text{gas-lift}}$: total gas allocated for injection.
- ► *q*_{exp}: total gas exported.
- ▶ *q*_{flare}: total gas flared.

Well *i*'s Variables:

- q_o^i : oil production rate from well *i*.
- q_{g}^{i} : gas production rate from well *i*.
- $q_{\rm w}^i$: water produced from well *i*.
- ▶ q_{gl}^i : lift-gas injected.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Platform Variables:

- $q_{\text{gas-prod}}$: total gas produced.
- $q_{\text{gas-lift}}$: total gas allocated for injection.
- ► *q*_{exp}: total gas exported.
- ▶ *q*_{flare}: total gas flared.

Well *i*'s Variables:

- q_o^i : oil production rate from well *i*.
- q_g^i : gas production rate from well *i*.
- $q_{\rm w}^i$: water produced from well *i*.
- ▶ qⁱ_{gl}: lift-gas injected.

- whpⁱ: well i's head pressure.
- tⁱ: well activation, 1 if well is active, 0 otherwise.
- ▶ t_{gl}^i : glc operation, 1 if gas is injected, 0 otherwise.
- tⁱ_{surg}: assumes value 1 if well is naturally flowing, 0 if operated with lift-gas injection.
- κ_q^i : auxiliary SOS2 variable.
- κ_p^i : auxiliary SOS2 variable.
- $\mu_{p,q}^{i}$: weighting variable for piecewise-linear approximation.

- whpⁱ: well i's head pressure.
- tⁱ: well activation, 1 if well is active, 0 otherwise.
- t_{gl}^{i} : glc operation, 1 if gas is injected, 0 otherwise.
- tⁱ_{surg}: assumes value 1 if well is naturally flowing, 0 if operated with lift-gas injection.
- $\triangleright \kappa_q^i$: auxiliary SOS2 variable.
- $\triangleright \kappa_{p}^{i}$: auxiliary SOS2 variable.
- $\mu_{p,a}^{i}$: weighting variable for piecewise-linear approximation.

- whpⁱ: well i's head pressure.
- tⁱ: well activation, 1 if well is active, 0 otherwise.
- t_{gl}^{i} : glc operation, 1 if gas is injected, 0 otherwise.
- tⁱ_{surg}: assumes value 1 if well is naturally flowing, 0 if operated with lift-gas injection.
- $\triangleright \kappa_q^i$: auxiliary SOS2 variable.
- $\triangleright \kappa_p^i$: auxiliary SOS2 variable.
- $\mu_{p,q}^i$: weighting variable for piecewise-linear approximation.

Problem Formulation

Cascading objectives:

1. $f_1 = \max \sum_{i \in \mathcal{N}} q_o^i$: oil production maximization.

2. $f_2 = \min q_{\text{flare}}$: gas flare minimization.

3. $f_3 = \min \sum_{i \in \mathcal{N}} q_{g1}^i$: gas-lift injection minimization.

Problem Formulation

Cascading objectives:

1.
$$f_1 = \max \sum_{i \in \mathcal{N}} q_o^i$$
: oil production maximization.

2. $f_2 = \min q_{\text{flare}}$: gas flare minimization.

3. $f_3 = \min \sum_{i \in \mathcal{N}} q_{gl}^i$: gas-lift injection minimization.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Problem Formulation

Cascading objectives:

1.
$$f_1 = \max \sum_{i \in \mathcal{N}} q_o^i$$
: oil production maximization.

2. $f_2 = \min q_{\text{flare}}$: gas flare minimization.

3. $f_3 = \min \sum_{i \in \mathcal{N}} q_{gl}^i$: gas-lift injection minimization.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Platform constraints:

- ► $q_{\text{gas-prod}} = \sum_{i \in \mathcal{N}} q_{\text{g}}^{i}$
- $q_{\text{gas-lift}} = \sum_{i \in \mathcal{N}} q_{\text{gl}}^i$
- $ightarrow q_{
 m exp} = q_{
 m gas-prod} q_{
 m flare} q_{
 m turbine}$
- $\blacktriangleright \ q_{\rm gas-prod} + q_{\rm gas-lift} q_{\rm flare} \leq qgtc$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Platform constraints:

- ► $q_{\text{gas-prod}} = \sum_{i \in \mathcal{N}} q_{\text{g}}^{i}$
- ► $q_{\text{gas-lift}} = \sum_{i \in \mathcal{N}} q_{\text{gl}}^i$
- $ightarrow q_{
 m exp} = q_{
 m gas-prod} q_{
 m flare} q_{
 m turbine}$
- $\blacktriangleright \ q_{\rm gas-prod} + q_{\rm gas-lift} q_{\rm flare} \leq qgtc$

Platform constraints:

- ► $q_{\text{gas-prod}} = \sum_{i \in \mathcal{N}} q_{\text{g}}^{i}$
- ► $q_{\text{gas-lift}} = \sum_{i \in \mathcal{N}} q_{\text{gl}}^i$
- $\blacktriangleright q_{\rm exp} = q_{\rm gas-prod} q_{\rm flare} q_{\rm turbine}$
- $\blacktriangleright q_{\rm gas-prod} + q_{\rm gas-lift} q_{\rm flare} \leq qgtc$

Platform constraints:

- ► $q_{\text{gas-prod}} = \sum_{i \in \mathcal{N}} q_{\text{g}}^{i}$
- ► $q_{\text{gas-lift}} = \sum_{i \in \mathcal{N}} q_{\text{gl}}^i$
- $\blacktriangleright q_{\rm exp} = q_{\rm gas-prod} q_{\rm flare} q_{\rm turbine}$
- $\blacktriangleright \ q_{\rm gas-prod} + q_{\rm gas-lift} q_{\rm flare} \leq qgtc$

Platform constraints:

- ► $q_{\exp} \leq q_{\exp}^{\max}$
- $\blacktriangleright \ q_{\rm flare,min} \leq q_{\rm flare} \leq q_{\rm flare,max}$
- $\blacktriangleright ~ \sum_{i \in \mathcal{N}} \left(q_{\mathrm{o}}^{i} + q_{\mathrm{w}}^{i}
 ight) \leq q_{\mathrm{l,max}}$
- \blacktriangleright $\sum_{i\in\mathcal{N}} q_{\mathrm{w}}^i \leq q_{\mathrm{w},\mathrm{max}}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Platform constraints:

- ► $q_{\exp} \leq q_{\exp}^{\max}$
- $\blacktriangleright \ q_{\rm flare,min} \leq q_{\rm flare} \leq q_{\rm flare,max}$
- $\blacktriangleright ~ \sum_{i \in \mathcal{N}} \left(q_{\mathrm{o}}^{i} + q_{\mathrm{w}}^{i}
 ight) \leq q_{\mathrm{l,max}}$
- \blacktriangleright $\sum_{i\in\mathcal{N}} q_{\mathrm{w}}^i \leq q_{\mathrm{w},\mathrm{max}}$

Platform constraints:

- ► $q_{\exp} \leq q_{\exp}^{\max}$
- $\blacktriangleright \ q_{\rm flare,min} \leq q_{\rm flare} \leq q_{\rm flare,max}$
- $\blacktriangleright \sum_{i \in \mathcal{N}} \left(q_{\mathrm{o}}^{i} + q_{\mathrm{w}}^{i}
 ight) \leq q_{\mathrm{l,max}}$
- \blacktriangleright $\sum_{i\in\mathcal{N}} q_{\mathrm{w}}^i \leq q_{\mathrm{w},\mathrm{max}}$

Platform constraints:

- ► $q_{\exp} \leq q_{\exp}^{\max}$
- $\blacktriangleright \ q_{\rm flare,min} \leq q_{\rm flare} \leq q_{\rm flare,max}$
- $\blacktriangleright \sum_{i \in \mathcal{N}} \left(q_{\mathrm{o}}^{i} + q_{\mathrm{w}}^{i}
 ight) \leq q_{\mathrm{l,max}}$
- \blacktriangleright $\sum_{i\in\mathcal{N}} q_{\mathrm{w}}^i \leq q_{\mathrm{w},\mathrm{max}}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Constraints on each well $i \in \mathcal{N}$:

$$q_{\mathrm{o}}^{i} = \sum_{(p,q)\in\mathcal{R}_{+}^{i}} \mu_{p,q}^{i} \cdot \widehat{q}_{\mathrm{o}}^{i}(p,q) + \sum_{(p,q)\in\mathcal{R}_{0}^{i}} \mu_{p,q}^{i} \cdot \widehat{q}_{\mathrm{o}}^{i}(p,q)$$

 $q_g^i = rgo^i \cdot q_o^i$

$$m{q}_{w}^{i}=rac{bsw^{i}}{1-bsw^{i}}\cdotm{q}_{o}^{i}$$

$$whp^{i} = \sum_{(p,q)\in\mathcal{R}^{i}_{+}} \mu^{i}_{p,q} \cdot p + \sum_{(p,q)\in\mathcal{R}^{i}_{0}} \mu^{i}_{p,q} \cdot p$$

$$q_{\mathrm{gl}}^{i} = \sum_{(p,q)\in\mathcal{R}^{i}_{+}} \mu_{p,q}^{i} \cdot q$$

(ロ)、(型)、(E)、(E)、 E) の(()

Constraints on each well $i \in \mathcal{N}$:

$$egin{aligned} q_{\mathrm{o}}^i &= \sum_{(m{
ho},m{q})\in\mathcal{R}_+^i} \mu_{m{
ho},m{q}}^i \cdot \widehat{q}_{\mathrm{o}}^i(m{
ho},m{q}) + \sum_{(m{
ho},m{q})\in\mathcal{R}_0^i} \mu_{m{
ho},m{q}}^i \cdot \widehat{q}_{\mathrm{o}}^i(m{
ho},m{q}) \end{aligned}$$

$$q_g^i = rgo^i \cdot q_o^i$$

$$q_w^i = rac{b s w^i}{1-b s w^i} \cdot q_o^i$$

$$whp^{i} = \sum_{(p,q)\in\mathcal{R}^{i}_{+}} \mu^{i}_{p,q} \cdot p + \sum_{(p,q)\in\mathcal{R}^{i}_{0}} \mu^{i}_{p,q} \cdot p$$

$$q_{ ext{gl}}^i = \sum_{(
ho,q)\in\mathcal{R}^i_+} \mu^i_{
ho,q}\cdot q$$

Constraints on each well $i \in \mathcal{N}$:

$$egin{aligned} q_{\mathrm{o}}^i &= \sum_{(m{
ho},m{q})\in\mathcal{R}_+^i} \mu_{m{
ho},m{q}}^i \cdot \widehat{q}_{\mathrm{o}}^i(m{
ho},m{q}) + \sum_{(m{
ho},m{q})\in\mathcal{R}_0^i} \mu_{m{
ho},m{q}}^i \cdot \widehat{q}_{\mathrm{o}}^i(m{
ho},m{q}) \end{aligned}$$

$$q_g^i = rgo^i \cdot q_o^i$$

$$q_w^i = rac{bsw^i}{1-bsw^i} \cdot q_o^i$$

$$whp^{i} = \sum_{(p,q)\in\mathcal{R}^{i}_{+}} \mu^{i}_{p,q} \cdot p + \sum_{(p,q)\in\mathcal{R}^{i}_{0}} \mu^{i}_{p,q} \cdot p$$

$$q_{\mathrm{gl}}^{i} = \sum_{(p,q)\in\mathcal{R}^{i}_{+}} \mu_{p,q}^{i} \cdot q$$

Constraints on each well $i \in \mathcal{N}$:

$$egin{aligned} q_{\mathrm{o}}^i &= \sum_{(m{
ho},m{q})\in\mathcal{R}_+^i} \mu_{m{
ho},m{q}}^i \cdot \widehat{q}_{\mathrm{o}}^i(m{
ho},m{q}) + \sum_{(m{
ho},m{q})\in\mathcal{R}_0^i} \mu_{m{
ho},m{q}}^i \cdot \widehat{q}_{\mathrm{o}}^i(m{
ho},m{q}) \end{aligned}$$

$$q_g^i = rgo^i \cdot q_o^i$$

$$q_w^i = rac{bsw^i}{1-bsw^i}\cdot q_o^i$$

$$whp^{i} = \sum_{(p,q)\in\mathcal{R}^{i}_{+}} \mu^{i}_{p,q} \cdot p + \sum_{(p,q)\in\mathcal{R}^{i}_{0}} \mu^{i}_{p,q} \cdot p$$

$$q_{\mathrm{gl}}^i = \sum_{(p,q)\in\mathcal{R}^i_+} \mu^i_{p,q}\cdot q$$

Constraints on each well $i \in \mathcal{N}$:

$$egin{aligned} q_{\mathrm{o}}^i &= \sum_{(m{
ho},m{q})\in\mathcal{R}_+^i} \mu_{m{
ho},m{q}}^i \cdot \widehat{q}_{\mathrm{o}}^i(m{
ho},m{q}) + \sum_{(m{
ho},m{q})\in\mathcal{R}_0^i} \mu_{m{
ho},m{q}}^i \cdot \widehat{q}_{\mathrm{o}}^i(m{
ho},m{q}) \end{aligned}$$

$$q_g^i = rgo^i \cdot q_o^i$$

$$q_w^i = rac{bsw^i}{1-bsw^i} \cdot q_o^i$$

$$whp^{i} = \sum_{(p,q)\in\mathcal{R}^{i}_{+}} \mu^{i}_{p,q} \cdot p + \sum_{(p,q)\in\mathcal{R}^{i}_{0}} \mu^{i}_{p,q} \cdot p$$

$$oldsymbol{q}_{ ext{gl}}^i = \sum_{(p,q)\in\mathcal{R}^i_+} \mu^i_{p,q}\cdotoldsymbol{q}$$

Constraints on each well $i \in \mathcal{N}$:

$$t^i_{ ext{gl}} \cdot oldsymbol{q}^i_{ ext{gl},\mathsf{min}} \leq oldsymbol{q}^i_{oldsymbol{gl}} \leq oldsymbol{q}^i_{ ext{gl},\mathsf{max}} \cdot oldsymbol{t}^i_{ ext{gl}}$$

 $t^i \cdot whp^i_{\mathsf{min}} \leq whp^i \leq whp^i_{\mathsf{max}} \cdot t^i$

$$\sum_{(p,q)\in \mathcal{R}^i_+} \mu^i_{p,q} = t^i_{\mathrm{g}}$$

$$\sum_{(p,q)\in \mathcal{R}_0^i} \mu_{p,q}^i = t_{ ext{surg}}^i$$

$$t^i = t^i_{
m gl} + t^i_{
m surg}$$

 $t^i_{
m lb} \leq t^i \leq t^i_{
m ul}$

Constraints on each well $i \in \mathcal{N}$:

$$t^i_{ ext{gl}} \cdot oldsymbol{q}^i_{ ext{gl},\mathsf{min}} \leq oldsymbol{q}^i_{oldsymbol{gl}} \leq oldsymbol{q}^i_{ ext{gl},\mathsf{max}} \cdot oldsymbol{t}^i_{ ext{gl}}$$

$$t^i \cdot whp^i_{\mathsf{min}} \leq whp^i \leq whp^i_{\mathsf{max}} \cdot t^i$$

$$\sum_{(p,q)\in\mathcal{R}^i_+}\mu^i_{p,q}=t^i_{
m g}$$

$$\sum_{(p,q)\in \mathcal{R}_0^i} \mu_{p,q}^i = t_{ ext{surg}}^i$$

$$t^i = t^i_{
m gl} + t^i_{
m surg}$$

 $t^i_{
m lb} \leq t^i \leq t^i_{
m ul}$

Constraints on each well $i \in \mathcal{N}$:

$$t^{i}_{ ext{gl}} \cdot oldsymbol{q}^{i}_{ ext{gl},\mathsf{min}} \leq oldsymbol{q}^{i}_{oldsymbol{gl}} \leq oldsymbol{q}^{i}_{ ext{gl},\mathsf{max}} \cdot oldsymbol{t}^{i}_{ ext{gl}}$$

$$t^i \cdot whp^i_{\mathsf{min}} \leq whp^i \leq whp^i_{\mathsf{max}} \cdot t^i$$

$$\sum_{(p,q)\in\mathcal{R}^i_+}\mu^i_{p,q}=t^i_{\rm g}$$

$$\sum_{(p,q)\in \mathcal{R}_0^i} \mu_{p,q}^i = t_{ ext{surg}}^i$$

$$t^i = t^i_{
m gl} + t^i_{
m surg}$$

 $t^i_{
m lb} \leq t^i \leq t^i_{
m ul}$

Constraints on each well $i \in \mathcal{N}$:

$$t^{i}_{ ext{gl}} \cdot oldsymbol{q}^{i}_{ ext{gl},\mathsf{min}} \leq oldsymbol{q}^{i}_{oldsymbol{gl}} \leq oldsymbol{q}^{i}_{ ext{gl},\mathsf{max}} \cdot oldsymbol{t}^{i}_{ ext{gl}}$$

$$t^i \cdot whp^i_{\mathsf{min}} \leq whp^i \leq whp^i_{\mathsf{max}} \cdot t^i$$

$$\sum_{(p,q)\in\mathcal{R}^i_+}\mu^i_{p,q}=t^i_{\mathrm{g}}$$

$$\sum_{(p,q)\in \mathcal{R}_0^i} \mu_{p,q}^i = t_{ ext{surg}}^i$$

$$t^i = t^i_{
m gl} + t^i_{
m surg}$$

 $t^i_{
m lb} \leq t^i \leq t^i_{
m ul}$

Constraints on each well $i \in \mathcal{N}$:

$$t^{i}_{ ext{gl}} \cdot oldsymbol{q}^{i}_{ ext{gl},\mathsf{min}} \leq oldsymbol{q}^{i}_{oldsymbol{gl}} \leq oldsymbol{q}^{i}_{ ext{gl},\mathsf{max}} \cdot oldsymbol{t}^{i}_{ ext{gl}}$$

$$t^i \cdot whp^i_{\mathsf{min}} \leq whp^i \leq whp^i_{\mathsf{max}} \cdot t^i$$

$$\sum_{(p,q)\in\mathcal{R}^i_+}\mu^i_{p,q}=t^i_{\mathrm{g}}$$

$$\sum_{(p,q)\in \mathcal{R}_0^i} \mu_{p,q}^i = t_{ ext{surg}}^i$$

$$t^i = t^i_{
m gl} + t^i_{
m surg}$$

 $t^i_{
m lb} \leq t^i \leq t^i_{
m u}$

Constraints on each well $i \in \mathcal{N}$:

$$t^{i}_{ ext{gl}} \cdot oldsymbol{q}^{i}_{ ext{gl},\mathsf{min}} \leq oldsymbol{q}^{i}_{oldsymbol{gl}} \leq oldsymbol{q}^{i}_{ ext{gl},\mathsf{max}} \cdot oldsymbol{t}^{i}_{ ext{gl}}$$

$$t^i \cdot whp^i_{\mathsf{min}} \leq whp^i \leq whp^i_{\mathsf{max}} \cdot t^i$$

$$\sum_{(p,q)\in\mathcal{R}^i_+}\mu^i_{p,q}=t^i_{\mathrm{g}}$$

$$\sum_{(p,q)\in \mathcal{R}_0^i} \mu_{p,q}^i = t_{ ext{surg}}^i$$

$$t^i = t^i_{
m gl} + t^i_{
m surg}$$

 $t^i_{
m lb} \leq t^i \leq t^i_{
m ub}$

(ロ)、(型)、(E)、(E)、 E) の(()

SOS2 Constraints

To impose the piecewise-linear approximation of the production functions, for each well $i \in \mathcal{N}$:

$$egin{aligned} &\kappa_{p}^{i} = \sum_{q \in \mathcal{Q}_{\mathrm{gl}}^{i} \setminus \{0\}} \mu_{p,q}^{i}, \, orall p \in \mathcal{P}_{\mathrm{wh}}^{i} \ &\kappa_{q}^{i} = \sum_{p \in \mathcal{P}_{\mathrm{wh}}^{i}} \mu_{p,q}^{i}, \, orall q \in \mathcal{Q}_{\mathrm{gl}}^{i} \setminus \{0\} \end{aligned}$$

and

$$(\mu_{p,q}^i)_{(p,q)\in R_0^i}, (\kappa_p^i)_{p\in \mathcal{P}_{wh}^i} \text{ and } (\kappa_q^i)_{q\in \mathcal{Q}_{gl}^i \setminus \{0\}} \text{ are SOS2}$$

and

$$ext{enable}^i \leq \textit{t}^i_{ ext{surg}}$$

SOS2 Constraints

To impose the piecewise-linear approximation of the production functions, for each well $i \in \mathcal{N}$:

$$egin{aligned} &\kappa_{p}^{i} = \sum_{q \in \mathcal{Q}_{\mathrm{gl}}^{i} \setminus \{0\}} \mu_{p,q}^{i}, \, orall p \in \mathcal{P}_{\mathrm{wh}}^{i} \ &\kappa_{q}^{i} = \sum_{p \in \mathcal{P}_{\mathrm{wh}}^{i}} \mu_{p,q}^{i}, \, orall q \in \mathcal{Q}_{\mathrm{gl}}^{i} \setminus \{0\} \end{aligned}$$

and

$$(\mu_{p,q}^i)_{(p,q)\in R_0^i}, (\kappa_p^i)_{p\in \mathcal{P}_{\mathrm{wh}}^i} \text{ and } (\kappa_q^i)_{q\in \mathcal{Q}_{\mathrm{gl}}^i\setminus\{0\}} \text{ are SOS2}$$

 $ext{enable}^i \leq \textit{t}^i_{ ext{surg}}$

SOS2 Constraints

To impose the piecewise-linear approximation of the production functions, for each well $i \in \mathcal{N}$:

$$egin{aligned} &\kappa_{p}^{i} = \sum_{q \in \mathcal{Q}_{\mathrm{gl}}^{i} \setminus \{0\}} \mu_{p,q}^{i}, \, orall p \in \mathcal{P}_{\mathrm{wh}}^{i} \ &\kappa_{q}^{i} = \sum_{p \in \mathcal{P}_{\mathrm{wh}}^{i}} \mu_{p,q}^{i}, \, orall q \in \mathcal{Q}_{\mathrm{gl}}^{i} \setminus \{0\} \end{aligned}$$

and

and

$$(\mu_{p,q}^i)_{(p,q)\in R_0^i}, (\kappa_p^i)_{p\in \mathcal{P}_{wh}^i} \text{ and } (\kappa_q^i)_{q\in \mathcal{Q}_{gl}^i\setminus\{0\}} \text{ are SOS2}$$

 $\text{enable}^i \leq t^i_{\text{surg}}$

Summary

Motivation

Problem Formulation

Santos Multi-Reservoir Production System

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Santos Basin

Santos Basin is a very large, multi-reservoir oil field.


Features:

- 300 Km off the coast.
- Several reservoirs: Gas, Post-Salt, and Pre-Salt.
- 5 operational FPSOs, 27 to be commissioned.
- Shared drainage and processing facilities.

(日) (四) (日) (日) (日)

Santos Basin: Production System

Several production units sharing resources, facilities and goals.

▶ High content of CO₂ in gas produced from Pre-Salt reservoirs.

Santos Basin: Production System

Challenges:

- Several production units sharing resources, facilities and goals.
- Dynamically evolving production infrastructure.

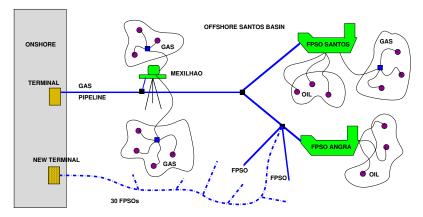
Needs for Production Optimization:

- General models for production units.
- Models of shared resources.
- Coordination of production and control.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Santos Basin: Production System

Challenges:


- Several production units sharing resources, facilities and goals.
- Dynamically evolving production infrastructure.

Needs for Production Optimization:

- General models for production units.
- Models of shared resources.
- Coordination of production and control.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Santos Basin: Future Production System

- New subsea gas pipeline.
- > 27 FPSOs to be commissioned.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Gas-Lift Optimization in Satellite Wells

End!

Thank you for your attention.