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Engineering problems involve experiments, and simulations, to
variables.

evaluate objectives and constraints which are functions of several

Optimal design of jet
engine.

Rolls-Royce whole engine
structural model (VIVACE project)
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Surrogate Model

Engineering problems involve experiments, and simulations, to
evaluate objectives and constraints which are functions of several

variables.

Advanced recovery of oil
and gas reservoirs.
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Surrogate Model

Challenges:

» In real-world problems, a simulation run can take several minutes,
hours and even days.

» Design optimization and case studies may become impractical due
to the potential need of thousands of simulations.
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Alternative:

> Propose approximate models (“Surrogate Models”) that emulate the
cost.

behavior of systems and simulators, however at a low computational
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Alternative:

> Propose approximate models (“Surrogate Models”) that emulate the
behavior of systems and simulators, however at a low computational
cost.

» Surrogate Models are built from data, since the simulation model
might not be known or is too complicated to be expressed in explicit
form.
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LMotivation

Surrogate Model

Alternative:

> Propose approximate models (“Surrogate Models”) that emulate the
behavior of systems and simulators, however at a low computational
cost.

» Surrogate Models are built from data, since the simulation model
might not be known or is too complicated to be expressed in explicit
form.

» Knowledge of the input-output behavior is known or given.
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“All models are wrong, the practical question is how

wrong do they have to be to not be useful.” George Box



Optlntro

LMotivation

8/29
Piecewise-Linear Approximation

Models are obtained from linear (affine) combination of input-output
data: qoir(ginj)-

Separator
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> Models are obtained from linear (affine) combination of
input-output data: qoir(qinj)-

> Data: {(q}nﬁq})il)v (ql'211j7qgil)7 s (ahys aon) )

(qid.q04) (@i6.q06)
saon
QO2 | 7(qi3,q03)
qol g
7 (qgil.qol)
x1 x2 x3 x4 x5 X6 qin
0 qil qi2

qik(n)

=
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Piecewise-Linear Approximation

Function f(x, y) with a two dimensional domain.
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Question:

programming?

» How does one represent piecewise-linear functions in mathematical
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Piecewise-Linear Approximation

Question:

» How does one represent piecewise-linear functions in mathematical
programming?

Several Models:
» CC (Convex Combination)
Inc (Incremental)
DCC (Disaggregated Convex Combination)
Log (Logarithmic Convex Combination)
DLog (Disaggregated Logarithmic Convex Combination)
Multiple Choice
SOS2 (Specially Ordered Sets of Type 2)

vV Vv vV VY
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Piecewise-Linear Models
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Data: {(x0,¥0), (x1,¥1),---,(Xn, ¥n)}-
i=0 i=0
=3
i=0

ANi>0,i=0,...,n
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Data: {(x0,¥0), (x1,¥1), -, (Xns ¥n)}

n
X = E A,'X,'
i=0

y= Z Aiyi
i—0
1= i i
i=0

Ai>0,i=0,...,n
1=z z€{0,1},i=1,...,n
i=1
Ao <z
)\nSZn

N<zi+zi,i=1,...,n—1

Remark: zi =1 if x € [xj_1, xi].
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Givens: {(x0,¥0), (x1,1)

k) (Xn,yn)}-
X = X0 + 25;

=1
91 < (a — xo0)
0i < (Xi — xi—1)zi—1, i =2

6 > (X,' —X,'_1)Z,, i=1

..,n—1
Remarks:

> Ifzi=1thenzi=1forj=1,...
> If z; =1, then §; = (xi — xi—1)

i1

yo-l—z

0n >0

z€{0,1},i=1,

— Yi- 1)(5'

Xi — Xi— 1)
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Disaggregated Convex Combination (DCC)
Givens: {(xo0, ¥0), (x1,)1), -

) (Xn,}/n)}-

X = Z()\,LXI—I + )\,Rx,-)

i=1

i=1

y= Z(/\:Ly:;l + /\,Ryi)
A AR>0,i=1,...,n

zl:)\lL'i_)\})L’l

=1,...,n
n
IZZZ,‘
i=1
z€{0,1},i=1,...,n
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Logarithmic Disaggregated Convex Combination (DLog)

Consists of a logarithmic encoding of the binary variables y;, which
correspond to intervals.

ﬂ Let:
1 000
> 001 > B = {i: code of i has value 0 at position j}.
3 010 > B} = {i: code of i has value 1 at position j}.
4 011 Example:
2 18(1) » B =1{1,3,5,7}.
> B} ={3,4,7,8}.
7 110 2 D
8 111

u}
o)
I
i
it
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X = Z()\,inq + )\})“x,-)
i=1
y =Y (A\yi-1+Ay)
i=1
AAR>0,i=1,...,n



Optlntro

|—Piecewise-Linear Models

n

17/29
Logarithmic Disaggregated Convex Combination (DLog)

i=1

x = Z()\:in—l + Afxi)

y =Y (A\yi-1+Ay)
i=1
AAR>0,i=1,...,n

n

i=1

STOF AN =1,

N+ <y, i€B,j=1,...,log,nl,

N +AN<1-4,i€B,j=1,...,log,n,
5f€{071}7j:17"-7|—|0g2n-|
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Remarks:

» DLog has the same number of continuous variables and
constraints of DCC.

» However DLog needs a logarithmic number of binary variables.
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A set of variables, let us say {Xo, ..., An}, is SOS2 (Special
Ordered Set of Variables Type 2) if:

1. At most two variables are positive.

2. If two variables are positive, then they are consecutive in the
ordered set, let us say A\; and Aj11.
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Piecewise-Linear Model Based on SOS2

Givens: {(x0,¥0), (x1,¥1), .., (Xn, ¥n)}-

n
X = E A,'X,'
i=0

y = Z Aiyi
i—0
1= i i
i=0

ANi>0,i=0,...,n
{Ai}, is SOS2
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Implemented directly by the optimization solver

> Suppose that {Ag,...,\,} is a SOS2 set.
> Let {5\0,

., An} be the incumbent solution, in which A, A, > 0
for ki, ko € {0,...,n}, ki < ko, and ko — ky > 2.




Optlntro 21/29
L Piecewise-Linear Models

How Does SOS2 Work?

Implemented directly by the optimization solver:
> Suppose that {Ag,...,\,} is a SOS2 set.

> Let {N\g,...,\,} be the incumbent solution, in which A, A, > 0
for ki, ko € {0,...,n}, ki < ko, and ko — ky > 2.

The infeasibility can be ruled out by "branching’™
> Constraint A\g = --- = Ay, = 0 on the left branch.

> Constraint Ay, 42 = --- = A, = 0 on the right branch.
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Logarithmic Convex Combination (Log)

Remarks:

constraints.

» Version of the CC model with a logarithmic number of variables and
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Logarithmic Convex Combination (Log)

Remarks:

» Version of the CC model with a logarithmic number of variables and
constraints.

» Needs an encoding corresponding to a Gray-Code.

> Complex structure of constraints, particularly in multidimensional
domains.

> Requires a domain partitioning given by a J-1 triangulation.
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Let f: R — R be a function with a piecewise-linear model
> Set of breakpoints: X = {xo, xi,

ey Xn}
> Set of function values: Y = {y; = f(x;) : x; € X'}
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Let f: R — R be a function with a piecewise-linear model
> Set of breakpoints: X = {xo, xi,

ey Xn}
> Set of function values: Y = {y; = f(x;) : x; € X'}
Implementation:

> Set of domain intervals: Z = {i,

., in}, such that
> i1 = [x0,x1], o = [x1,x2], ... in = [Xa—1, Xn)-
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Let f: R — R be a function with a piecewise-linear model
> Set of breakpoints: X = {xo, xi,

cyXn}
> Set of function values: Y = {y; = f(x;) : x; € X'}
Implementation:

> Set of domain intervals: Z = {i,

., in}, such that
> i1 = [x0,x1], o = [x1,x2], ... in = [Xa—1, Xn)-

» B:7Z — {0,1}'® 7| is a bijection defining a "Gray Code:"
» B(i) differs from B(i + 1) by just one bit.
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Log Model: Example

B(i) = B([x0, x1])
B(2) = B([x1, x2])
B(i3) = B([x, x3])
B(is) = B([x3, xa])
B(is) = B([xs, xs])
B(is) = B([xs, x6])
B(i7) = B([xs, x7])
B(ig) = B([x7, xs])

HHRRFROOOO
HOOrRrHHOO
== O O0OOKF KO

[ e (A (|
A~ S~ S S S
N N N N N N N N

o I z = T 9ac



Optlntro

|—Piecewise-Linear Models

Log Model: Example

25 /29

Let J"(B,1) C X be the subset of breakpoints such that:

> for each x € J*(B, /), the interval I(x) € Z to which it belongs, has value
1 at position / of the binary code B(/(x)).

N
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L Piecewise-Linear Models

Log Model: Example

Let J"(B,1) C X be the subset of breakpoints such that:

> for each x € J*(B, /), the interval I(x) € Z to which it belongs, has value
1 at position / of the binary code B(/(x)).

Let J°(B, /) C X be the subset of breakpoints such that:

> for each x € J*(B, ), the interval I(x) € T to which it belongs, has value
0 at position / of binary code B(/(x)).
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J+(87 1) = {X27 X7, X8}
JO(B, 1) = {Xo, X4, X5}
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For | =1:
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J+(87 1) = {X27 X7, XS}
JO(B, 1) = {Xo, X4, X5}

For [ = 2:

J+(B,2) = {X3, X4, Xg}
JO(B,Q) = {Xo7 X1, Xﬁ}
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For | =1:

J+(87 1) = {X27 X7, XS}
JO(B, 1) = {Xo, X4, X5}

For /=3
JT(B,3) = {xs5, X6, X7, xg}
For | =2: J2(B,3) = {x0, x1, %2, x3}
JT(B,2) = {x3, xa, xg}
(B, 2) = {x0, x1, x6}
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For | = 1:

J+(87 1) = {X27 X7, XS}
JO(B7 1) = {Xo, X4, X5}

For | = 3:
JH(B,3) = {xs, X6, X7, Xa}
For | =2: J2(B,3) = {x0, x1, %2, x3}
JT(B,2) = {x3, xa, xg}
J°(B,2) = {x0, x1, X6}

Remark: This structure leads to a "branching scheme” compatible with SOS2.
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F=> v\,

vEV
1=> "\,
vEV
)\v S Z yp,
PEP(v)

A >0, veV,
yp €{0,1}, PP

(3) e (5).

(4)
Remark: The Log models offers a logarithmic representation of the equations

X = Zv)\v,

vEV

(1)

(2)
=> v,

PeP

(3)

(5)
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f=> f(vA, (6)
X = Z VA, (7)
1=>"\,

A >0, veV,

(8)
9)
> A<y, lefl,... flog, [T}, (10)
veJt(B,I)
Z AVS(]‘_.y/)zIe{]-a"'7|rlog2 ‘IH}:
veSO(B,1)

yr € {0,1}, 1 € {1,.

(11)
-+ [log, T}

(12)
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Piecewise-Linear Approximation: One Dimensional

» End!

» Thank you for your attention.



