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Motivation

Surrogate Model

Engineering problems involve experiments, and simulations, to
evaluate objectives and constraints which are functions of several
variables.

Optimal design of jet

engine.
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Engineering problems involve experiments, and simulations, to
evaluate objectives and constraints which are functions of several
variables.

Advanced recovery of oil

and gas reservoirs.
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Motivation

Surrogate Model

Challenges:

I In real-world problems, a simulation run can take several minutes,
hours and even days.

I Design optimization and case studies may become impractical due
to the potential need of thousands of simulations.
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Motivation

Surrogate Model

Alternative:

I Propose approximate models (“Surrogate Models”) that emulate the
behavior of systems and simulators, however at a low computational
cost.

I Surrogate Models are built from data, since the simulation model
might not be known or is too complicated to be expressed in explicit
form.

I Knowledge of the input-output behavior is known or given.
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Motivation

Surrogate Model

“All models are wrong, the practical question is how
wrong do they have to be to not be useful.“ George Box
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Piecewise-Linear Approximation

Models are obtained from linear (affine) combination of input-output

data: qoil(qinj).
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Motivation

Piecewise-Linear Approximation

I Models are obtained from linear (affine) combination of
input-output data: qoil(qinj).

I Data: {(q1inj , q1oil), (q2inj , q
2
oil), . . . , (q

n
inj , q

n
oil)}.
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Motivation

Piecewise-Linear Approximation

Function f (x , y) with a two dimensional domain.
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Motivation

Piecewise-Linear Approximation

Question:

I How does one represent piecewise-linear functions in mathematical
programming?

Several Models:

I CC (Convex Combination)

I Inc (Incremental)

I DCC (Disaggregated Convex Combination)

I Log (Logarithmic Convex Combination)

I DLog (Disaggregated Logarithmic Convex Combination)

I Multiple Choice

I SOS2 (Specially Ordered Sets of Type 2)
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Piecewise-Linear Models

Convex Combination (CC)

Data: {(x0, y0), (x1, y1), . . . , (xn, yn)}.

x =
n∑

i=0

λixi y =
n∑

i=0

λiyi

1 =
n∑

i=0

λi λi ≥ 0, i = 0, . . . , n

1 =
n∑

i=1

zi zi ∈ {0, 1}, i = 1, . . . , n

λ0 ≤ z1 λi ≤ zi + zi+1, i = 1, . . . , n − 1

λn ≤ zn

Remark: zi = 1 if x ∈ [xi−1, xi ].
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Piecewise-Linear Models

Incremental (INC)

Givens: {(x0, y0), (x1, y1), . . . , (xn, yn)}.

x = x0 +
n∑

i=1

δi y = y0 +
n∑

i=1

(yi − yi−1)

(xi − xi−1)
δi

δ1 ≤ (x1 − x0)

δi ≤ (xi − xi−1)zi−1, i = 2, . . . , n δn ≥ 0

δi ≥ (xi − xi−1)zi , i = 1, . . . , n − 1 zi ∈ {0, 1}, i = 1, . . . , n − 1

Remarks:

I If zi = 1, then zj = 1 for j = 1, . . . , i − 1.

I If zi = 1, then δi = (xi − xi−1).
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Piecewise-Linear Models

Disaggregated Convex Combination (DCC)

Givens: {(x0, y0), (x1, y1), . . . , (xn, yn)}.

x =
n∑

i=1

(λL
i xi−1 + λR

i xi )

y =
n∑

i=1

(λL
i yi−1 + λR

i yi )

λL
i , λ

R
i ≥ 0, i = 1, . . . , n

zi = λL
i + λR

i , i = 1, . . . , n

1 =
n∑

i=1

zi

zi ∈ {0, 1}, i = 1, . . . , n
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Piecewise-Linear Models

Logarithmic Disaggregated Convex Combination (DLog)

Consists of a logarithmic encoding of the binary variables yi , which

correspond to intervals.

i δ3δ2δ1
1 000
2 001
3 010
4 011
5 100
6 101
7 110
8 111

Let:

I B0
j = {i : code of i has value 0 at position j}.

I B1
j = {i : code of i has value 1 at position j}.

Example:

I B0
1 = {1, 3, 5 , 7}.

I B1
2 = {3, 4, 7, 8}.
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Piecewise-Linear Models

Logarithmic Disaggregated Convex Combination (DLog)

x =
n∑

i=1

(λL
i xi−1 + λR

i xi )

y =
n∑

i=1

(λL
i yi−1 + λR

i yi )

λL
i , λ

R
i ≥ 0, i = 1, . . . , n

n∑
i=1

(λL
i + λR

i ) = 1,

λL
i + λR

i ≤ δj , i ∈ B1
j , j = 1, . . . , dlog2 ne,

λL
i + λR

i ≤ 1− δj , i ∈ B0
j , j = 1, . . . , dlog2 ne,

δj ∈ {0, 1}, j = 1, . . . , dlog2 ne
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Piecewise-Linear Models

DCC e DLog

Remarks:

I DLog has the same number of continuous variables and
constraints of DCC.

I However DLog needs a logarithmic number of binary variables.
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Piecewise-Linear Models

SOS2

A set of variables, let us say {λ0, . . . , λn}, is SOS2 (Special
Ordered Set of Variables Type 2) if:

1. At most two variables are positive.

2. If two variables are positive, then they are consecutive in the
ordered set, let us say λi and λi+1.
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Piecewise-Linear Models

Piecewise-Linear Model Based on SOS2

Givens: {(x0, y0), (x1, y1), . . . , (xn, yn)}.

x =
n∑

i=0

λixi y =
n∑

i=0

λiyi

1 =
n∑

i=0

λi λi ≥ 0, i = 0, . . . , n

{λi}ni=0 is SOS2
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Piecewise-Linear Models

How Does SOS2 Work?

Implemented directly by the optimization solver:

I Suppose that {λ0, . . . , λn} is a SOS2 set.

I Let {λ̃0, . . . , λ̃n} be the incumbent solution, in which λ̃k1 , λ̃k2 > 0
for k1, k2 ∈ {0, . . . , n}, k1 < k2, and k2 − k1 ≥ 2.

The infeasibility can be ruled out by ”branching”:

I Constraint λ0 = · · · = λk1 = 0 on the left branch.

I Constraint λk1+2 = · · · = λn = 0 on the right branch.
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Piecewise-Linear Models

Logarithmic Convex Combination (Log)

Remarks:

I Version of the CC model with a logarithmic number of variables and
constraints.

I Needs an encoding corresponding to a Gray-Code.

I Complex structure of constraints, particularly in multidimensional
domains.

I Requires a domain partitioning given by a J-1 triangulation.
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Piecewise-Linear Models

Log Model: Example

Let f : R→ R be a function with a piecewise-linear model:

I Set of breakpoints: X = {x0, x1, . . . , xn}.
I Set of function values: Y = {yj = f (xj) : xj ∈ X}.

Implementation:

I Set of domain intervals: I = {i1, . . . , in}, such that

I i1 = [x0, x1], i2 = [x1, x2], . . ., in = [xn−1, xn].

I B : I → {0, 1}log2 |I| is a bijection defining a ”Gray Code:“

I B(i) differs from B(i + 1) by just one bit.
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Piecewise-Linear Models

Log Model: Example

B(i1) = B([x0, x1]) = (0, 0, 0)
B(i2) = B([x1, x2]) = (0, 0, 1)
B(i3) = B([x2, x3]) = (0, 1, 1)
B(i4) = B([x3, x4]) = (0, 1, 0)
B(i5) = B([x4, x5]) = (1, 1, 0)
B(i6) = B([x5, x6]) = (1, 0, 0)
B(i7) = B([x6, x7]) = (1, 0, 1)
B(i8) = B([x7, x8]) = (1, 1, 1)
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Piecewise-Linear Models

Log Model: Example

Let J+(B, l) ⊆ X be the subset of breakpoints such that:

I for each x ∈ J+(B, l), the interval I (x) ∈ I to which it belongs, has value
1 at position l of the binary code B(I (x)).

Let J0(B, l) ⊆ X be the subset of breakpoints such that:

I for each x ∈ J+(B, l), the interval I (x) ∈ I to which it belongs, has value
0 at position l of binary code B(I (x)).



OptIntro 25 / 29

Piecewise-Linear Models

Log Model: Example

Let J+(B, l) ⊆ X be the subset of breakpoints such that:

I for each x ∈ J+(B, l), the interval I (x) ∈ I to which it belongs, has value
1 at position l of the binary code B(I (x)).

Let J0(B, l) ⊆ X be the subset of breakpoints such that:

I for each x ∈ J+(B, l), the interval I (x) ∈ I to which it belongs, has value
0 at position l of binary code B(I (x)).



OptIntro 26 / 29

Piecewise-Linear Models

Log Model: Example

For l = 1:

J+(B, 1) = {x2, x7, x8}
J0(B, 1) = {x0, x4, x5}

For l = 2:

J+(B, 2) = {x3, x4, x8}
J0(B, 2) = {x0, x1, x6}

For l = 3:

J+(B, 3) = {x5, x6, x7, x8}
J0(B, 3) = {x0, x1, x2, x3}

Remark: This structure leads to a ”branching scheme” compatible with SOS2.
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Piecewise-Linear Models

CC Model

f =
∑
v∈V

f (v)λv , x =
∑
v∈V

vλv , (1)

1 =
∑
v∈V

λv , (2)

λv ≤
∑

P∈P(v)

yP , 1 =
∑
P∈P

yP , (3)

λv ≥ 0, v ∈ V, (4)

yP ∈ {0, 1}, P ∈ P (5)

Remark: The Log models offers a logarithmic representation of the equations

(3) e (5).
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Piecewise-Linear Models

Log Model

f =
∑
v∈V

f (v)λv , (6)

x =
∑
v∈V

vλv , (7)

1 =
∑
v∈V

λv , (8)

λv ≥ 0, v ∈ V, (9)∑
v∈J+(B,l)

λv ≤ yl , l ∈ {1, . . . , dlog2 |I|e}, (10)

∑
v∈J0(B,l)

λv ≤ (1− yl), l ∈ {1, . . . , dlog2 |I|e}, (11)

yl ∈ {0, 1}, l ∈ {1, . . . , dlog2 |I|e}. (12)
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Piecewise-Linear Models

Piecewise-Linear Approximation: One Dimensional

I End!

I Thank you for your attention.


