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Cutting-Plane Algorithm: Principles

» Assume that that feasible set is X = PN 2Z"

> Let F be a family of valid inequalities for X:

m' x < mo, (m,m) € F,
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» Assume that that feasible set is X = PN Z".

> Let F be a family of valid inequalities for X:

m' x < mo, (m,m) € F,

many).

> Typically, 7 may contain a large number of elements (exponentially

» Thus we cannot introduce all inequalities a priori.
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Cutting-Plane Algorithm: Principles

v

Assume that that feasible set is X = PN Z".

Let F be a family of valid inequalities for X:

77 x < o, (m,m0) € F,

Typically, F may contain a large number of elements (exponentially
many).

Thus we cannot introduce all inequalities a priori.

From a practical standpoint, we don't need a full representation of
conv(X), only an approximation around the optimal solution.
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Here we present a baseline cutting-plane algorithm for /P,

max{c”x; x € X}, which generates “useful” cuts from the family F.
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Cutting-Plane Algorithm

Initialization
Define t = 0 and P° = P
Iteration T
Solve the linear program z' = max{c’x:x € Pt}
Let x' be an optimal soltuion
If x* € Z", stop since x'is an optimal solution for /P
If x' ¢ Z", find an inequality (m,m) € F
such that 7' x! > mg
If an inequality (m, 7p) was found,
then do P = Pt N {x:7"x < 7o},
increase t and repeat
Otherwise, stop
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> If the algorithm terminates without finding an integer
solution, at least
Pt = Pﬁ{XCﬂ'iT < o, i

=1,2,...,t}
is a “tighter” formulation than the initial formulation P.
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Valid Inequalities

> If the algorithm terminates without finding an integer
solution, at least

Pt=Pn{x:n] <mio,i=1,2,...,t}
is a “tighter” formulation than the initial formulation P.

» We can proceed from P! with a branch-and-bound algorithm.



optlntro

|_Gom‘;>,,y Cuts

SUmmary

8/37

Gomory Cuts
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» Here we concentrate in the following integer program:

max {c”x : Ax = b,x > 0 and integer}
basis.

» The strategy is to solve the linear relaxation and find an optimal
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Cutting-Plane Algorithm with Gomory Cuts

v

Here we concentrate in the following integer program:

max {c”x : Ax = b,x > 0 and integer}
The strategy is to solve the linear relaxation and find an optimal
basis.
From the optimal basis, we choose a fractional basic variable.

Then we generate a Chvatal-Gomory cut associated with this basic
variables, aiming to cut it off, that is, eliminate this solution form
the relaxation polyhedron.
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Cutting-Plane Algorithm with Gomory Cuts

Given an optimal basis, the problem/dictionary can be expressed

as:
max oo + ., dojX;
jeNB
st Xpy+ Y, AyXj=aw foru=1,...,m
jENB
x > 0 and integer

where:
1. a5 <0 for j € NB,
2. 3yo=20foru=1,...,m, and

3. NB is the set of nonbasic variables, therefore
{By:u=1,....m}UNB ={1,...,n}.
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Cutting-Plane Algorithm with Gomory Cuts

> If the optimal basic solution x* is not integer, then there must
exist a row u such that a,, ¢ Z.
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Cutting-Plane Algorithm with Gomory Cuts

> If the optimal basic solution x* is not integer, then there must
exist a row u such that a,, ¢ Z.

» Choosing this row, the Chvatal-Gomory for the row u
becomes:

XBuy + Z I_EujJXj < LEUOJ (1)

jeNB

u}

o)
I

i
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Cutting-Plane Algorithm with Gomory Cuts

> If the optimal basic solution x* is not integer, then there must
exist a row u such that a,, ¢ Z.

» Choosing this row, the Chvatal-Gomory for the row u
becomes:

XBy + Z I_EujJXj < LEUOJ (1)
jENB

» Rewriting (1) so as to eliminate xp,, we obtain:

XBu = Auo — Z aujX; (2)

JENB
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Cutting-Plane Algorithm with Gomory Cuts

From (2), we deduce that:

Auo — Z ayjiXj + Z LgujJXj < LEUOJ
jeNB

JjeNB

jENB

= Y (3 — [3u]) % = Fuo

— [l (3)
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In a more compact form, we can rewrite the cutting plane:

> Gy — [35)) % > Fuo — [Fuo]
JjENB
as.

D % = fuo (4)
jens
in which:
> fuj =ay — LgujJ and
> fuo = auo

— | 3uo] -




Optlntro

|—Gomory Cuts

14 /37

Cutting-Plane Algorithm with Gomory Cuts
Remark
Since 0 < fj <1and 0 < f,, <1, and x* = 0 for each variable
Jj € NB in the solution x*, the inequality
Z fquj 2 fuo

JENB
cuts off the incumbent solution x*.
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Example

Consider the integer program:

z=max 4x3
s.t.: Txq

2X1
X1,

X2
2X2
X2
2X2
X2

WV NN N

14
3
3
07

integer

(5)
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Example

After introducing slack variables x3, x4 e x5, we can apply the Simplex
method and obtain an optimal solution:

max 5—79 — éX3 — %X4
s.t.: X1 + 3x3 + 3xg = 2 (=2.8571)
Xo + Xxa = 3
- 3+ Wy o+ o B (=3.2857)

X1, X2, X3, Xa, xs > 0 and integer

(6)

u}
o)
I
i
it
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» The optimal solution for the linear relaxation is
2 2
x*=(%,3,2,0,0) ¢ Z5.
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27
77)070

) ¢ 23

» The optimal solution for the linear relaxation is
x*= (%23

fractional.

> Thus, we use the first row of (6), in which the basic variables x; is

N
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» The optimal solution for the linear relaxation is
20 9 27

X>k = (7,3, FE 0,0) ¢ Zi

fractional.

> Thus, we use the first row of (6), in which the basic variables x; is

> This generates the cut:

at+ Mot 2ae<|2] = <2
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Example

Introducing a slack variable, we obtain:

x1+5s=2,
x1:2—7°—%X3—§X4 = 27—0—%X3—%X4—|-S=2
= 5:2—2—70+%X3+%X4
1 2
= S=—$+7X3+7X4

with s, x3, x4 > 0 and integer.

u}
o)

I

i
it
)
»
?)
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Introducing the variable s and the cut

6+1 +2
S=—z =X3 = X4
7T 7 7
we obtain a second formulation:
15 1
max 3 - 3x5 — 3s
s.t. : X1 + s = 2
X2 - i + s = 3
X3 - X3 — bs =1
Xy + %Xg, + 6s = g
X1, X2, X3, X4, X5, s > 0 and integer.

(7)

An optimal solution for the relaxation (7), yields x = (2,3,1,3,0,0).

u}
o)
I
i
it
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integer.

The incumbent solution remains fractional because x> and x; are not
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Example

The incumbent solution remains fractional because x> and x; are not
integer.

The application of the Chavatal-Gomory cut on the second row yields:

X+ -3+ |ls< 3] = x—x+s5<0
= xo—x5+s+t=0,t>0
= (3+3x—s)—-xs+s+t=0
= t—ix=-3,1t>0

u}
o)
I
i
it
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After introducing the variable t > 0 and the cut t — %X5 = we obtain

the solution below for the linear relaxation:

_1
21

max 7 - 35 — t
s.t. : X1 + s = 2
X2 + s -t = 1
X3 — bs — 2t = 2
X4 + 6s + t = 2
X5 - t =1
X1, X2, X3, X4, Xsg, s, t > 0 and integer

> The obtained solution is optimal because all values are integer.

> The optimal solution is x* = (2,1,2,2,1) with objective value
zF=T.



optlntro

L Disjunctive Cuts

SUmmary

22/37

Disjunctive Cuts
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> Let X = XL U X2 with X' C R

» That is, X is the disjunction (union) of two sets X! and X?
» Some important results are given below.
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Proposition

If ZJ'-’ZI 7rj><j < ) is a valid inequality for X/, i = 1,2, then the inequality

n
DT <o
j=1
is valid for X if:

> m; < min{r}, 77} for j=1,...,n; and

> o = max{n}, 72}
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Disjunctive Cuts

Proposition

> if PP={x€R7:Ax < b} for i = 1,2 are nonempty polyhedra,

» then (7, ) is a valid inequality for conv(P! U P?) if, and only if,

uy, up = 0 such that:

3 3
-

o

o

A\YARA\VARV/ N/

IS
> >
N T

Tbl

<
firy

Tb2

<
N
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» Consider the following polyhedra

P! = {xeR?*: —x+x<1, xx+x <5}
P> = {XERQ.X2\4,—2X1+X2\ —6,
—3X2 < 2}
> By letting u; =

(2,1) and v, = (3, 3,0), and then applying the
proposition above, the following results:

WA= [ 2 1][‘} H:[_l 3]

ul Bt =7




Optlntro
[ Disjunctive Cuts

Example

Example

27/37

» We further obtain:

0 1
wA =2 1 0]]| 2
1

-3

for PL U P2.

» This allows us to obtain the inequality —x; + 3x> < 7, which is valid

[ -1 3]

ul B =17
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Figura : Disjunctive inequalities

m]
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I
i
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Disjunctive Inequalities for Pure 0-1 Programs

> Specializing even further, we restrict the analysis to pure 0-1
programs, in which:

» X=PNZ"C{0,1}" and
» P={xeR": Ax < b,0 < x < 1}.
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Disjunctive Inequalities for Pure 0-1 Programs

> Specializing even further, we restrict the analysis to pure 0-1
programs, in which:
» X=PNZ"C{0,1}" and
» P={xeR": Ax < b,0 < x < 1}.
> Let PO =PnN{x eR": x; = 0}.
> Let Pt =PN{x eR": x; =1} for some j € {1,...,n}.
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Disjunctive Inequalities for Pure 0-1 Programs

Proposition

The inequality (7, ) is valid for conv(P° U P!) if there exists u;
v; € R7, w; € RY for i = 0,1 such that:

T

T < ug—A—i—vo—FWoej
T < ulTA +vi— we
T = ug-b—i-lTvo

o = u/b+1Tvy —w

€RT,



Optlntro

[ Disjunctive Cuts

Disjunctive Inequalities for Pure 0-1 Programs

31/37

Disjunctive Inequalities for Pure 0-1 Programs

Proof

Apply the previous preposition with
> PO —

{xeR] : Ax < b,x < 1,x O}and
> Pl—{XGRﬂr:Axgb,xgl,
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max 12xq

Consider the following instance of the knapsack problem:
s.t.:

+ 1ldx, 4+ Tx3
4X]_ —|—

5X2 —|—

+ 12X4

3X3 —|—

6X4 < 8
x € B*
with optimal linear solution x* = (1,0.8,0, 0).
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> Since x; = 0.8 is fractional, we choose j = 2.
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> Since x5 = 0.8 is fractional, we choose j = 2.

» Defining P° and P!, we look for an inequality (7, mo) which is
violated according to the proposition above.

N
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> Since x5 = 0.8 is fractional, we choose j = 2.

» Defining P° and P!, we look for an inequality (7, mo) which is
violated according to the proposition above.

> To that end, we solve the linear programming problem maximizing
7T x* — o within the polyhedron that expresses the coefficients for
the valid inequalities given by the proposition.
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Example
This linear program is given by:
max 1.0m; + 0.8m — 7o

7r1<4u0+vf

m < 4dut + v

7y < 500 + v + wP

m < 5ut + v —wh

73 < 3u0 + VY

7r3<3u1—i—v3:,l

7r4<6u°+v£

74 < 6U + v}

mo = 8+ v + v + v+ v
mo=8ul +vi+vi4+vitvi—w!

O it VO vt O wl >0

s.t.:

u}
o)

I

i
it
N
»
i)
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Disjunctive Inequalities for Pure 0-1 Programs

» Aiming to render the space of feasible solutions bound, we should
introduce a normalization criterion.
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Disjunctive Inequalities for Pure 0-1 Programs

» Aiming to render the space of feasible solutions bound, we should
introduce a normalization criterion.
» Two possibilities are:

a) 2;2175' <1
b) o = 1
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Disjunctive Inequalities for Pure 0-1 Programs

» Aiming to render the space of feasible solutions bound, we should
introduce a normalization criterion.
» Two possibilities are:

a) 2;2175' <1
b) o = 1

» Then we obtain the following cutting plane:

x1 + 70 <L
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Disjunctive Inequalities for Pure 0-1 Programs

» For PP, the inequality is a combination of the constraints x; < 1
and x; < 0 with vy =1 and wd = %, respectively.
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Disjunctive Inequalities for Pure 0-1 Programs

» For PP, the inequality is a combination of the constraints x; < 1
and x; < 0 with vy =1 and wd = %, respectively.

» For P!, the inequality is a combination of the constraints
4x1 + 5x + 3x3 + 6x4 < 8 and —x; < —1 with v* = } and w? =1,
respectively.

u}
o)
I
i
it
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» Thank you for attending this lecture!!!



