Cutting Plane Algorithm, Gomory Cuts, and Disjunctive Cuts

Eduardo Camponogara
Department of Automation and Systems Engineering
Federal University of Santa Catarina

October 2016

Cutting-Plane Algorithm

Gomory Cuts

Disjunctive Cuts
OptIntro

LCutting-Plane Algorithm

Summary

Cutting-Plane Algorithm

Gomory Cuts

Disjunctive Cuts

Cutting-Plane Algorithm: Principles

- Assume that that feasible set is $X=P \cap \mathbb{Z}^{n}$.
- Let \mathcal{F} be a family of valid inequalities for X :

$$
\pi^{T} x \leqslant \pi_{0},\left(\pi, \pi_{0}\right) \in \mathcal{F}
$$

- Typically, \mathcal{F} may contain a large number of elements (exponentially many)
- Thus we cannot introduce all inequalities a priori.
- From a practical standpoint, we don't need a full representation of $\operatorname{conv}(X)$, only an approximation around the optimal solution.

Cutting-Plane Algorithm: Principles

- Assume that that feasible set is $X=P \cap \mathbb{Z}^{n}$.
- Let \mathcal{F} be a family of valid inequalities for X :

$$
\pi^{T} x \leqslant \pi_{0},\left(\pi, \pi_{0}\right) \in \mathcal{F}
$$

- Typically, \mathcal{F} may contain a large number of elements (exponentially many).
- Thus we cannot introduce all inequalities a priori.
- From a practical standpoint, we don't need a full representation of $\operatorname{conv}(X)$, only an approximation around the optimal solution.

Cutting-Plane Algorithm: Principles

- Assume that that feasible set is $X=P \cap \mathbb{Z}^{n}$.
- Let \mathcal{F} be a family of valid inequalities for X :

$$
\pi^{T} x \leqslant \pi_{0},\left(\pi, \pi_{0}\right) \in \mathcal{F}
$$

- Typically, \mathcal{F} may contain a large number of elements (exponentially many).
- Thus we cannot introduce all inequalities a priori.
- From a practical standpoint, we don't need a full representation of $\operatorname{conv}(X)$, only an approximation around the optimal solution.

Cutting-Plane Algorithm

Here we present a baseline cutting-plane algorithm for $I P$, $\max \left\{c^{T} x ; x \in X\right\}$, which generates "useful" cuts from the family \mathcal{F}.

Cutting-Plane Algorithm

Initialization

Define $t=0$ and $P^{0}=P$
Iteration T
Solve the linear program $\bar{z}^{t}=\max \left\{c^{T} x: x \in P^{t}\right\}$
Let x^{t} be an optimal soltuion
If $x^{t} \in \mathbb{Z}^{n}$, stop since x^{t} is an optimal solution for $I P$
If $x^{t} \notin \mathbb{Z}^{n}$, find an inequality $\left(\pi, \pi_{0}\right) \in \mathcal{F}$
such that $\pi^{T} x^{t}>\pi_{0}$
If an inequality $\left(\pi, \pi_{0}\right)$ was found,
then do $P^{t+1}=P^{t} \cap\left\{x: \pi^{T} x \leqslant \pi_{0}\right\}$,
increase t and repeat
Otherwise, stop

Valid Inequalities

- If the algorithm terminates without finding an integer solution, at least

$$
P^{t}=P \cap\left\{x: \pi_{i}^{T} \leqslant \pi_{i 0}, i=1,2, \ldots, t\right\}
$$

is a "tighter" formulation than the initial formulation P.

- We can proceed from P^{t} with a branch-and-bound algorithm.

Valid Inequalities

- If the algorithm terminates without finding an integer solution, at least

$$
P^{t}=P \cap\left\{x: \pi_{i}^{T} \leqslant \pi_{i 0}, i=1,2, \ldots, t\right\}
$$

is a "tighter" formulation than the initial formulation P.

- We can proceed from P^{t} with a branch-and-bound algorithm.

OptIntro
$L_{\text {Gomory Cuts }}$

Summary

Cutting-Plane Algorithm

Gomory Cuts

Disjunctive Cuts

Cutting-Plane Algorithm with Gomory Cuts

- Here we concentrate in the following integer program:

$$
\max \left\{c^{\top} x: A x=b, x \geqslant 0 \text { and integer }\right\}
$$

- The strategy is to solve the linear relaxation and find an optimal basis.
- From the optimal basis, we choose a fractional basic variable.
- Then we generate a Chvátal-Gomory cut associated with this basic variables, aiming to cut it off, that is, eliminate this solution form the relaxation polyhedron.

Cutting-Plane Algorithm with Gomory Cuts

- Here we concentrate in the following integer program:

$$
\max \left\{c^{\top} x: A x=b, x \geqslant 0 \text { and integer }\right\}
$$

- The strategy is to solve the linear relaxation and find an optimal basis.
- From the optimal basis, we choose a fractional basic variable.
- Then we generate a Chvátal-Gomory cut associated with this basic variables, aiming to cut it off, that is, eliminate this solution form the relaxation polyhedron.

Cutting-Plane Algorithm with Gomory Cuts

Given an optimal basis, the problem/dictionary can be expressed as:

$$
\begin{array}{ll}
\max & \bar{a}_{o o}+\sum_{j \in N B} \bar{a}_{o j} x_{j} \\
\text { s.t.: } & x_{B u}+\sum_{j \in N B} \bar{a}_{u j} x_{j}=\bar{a}_{\text {uo }} \text { for } u=1, \ldots, m \\
& x \geqslant 0 \text { and integer }
\end{array}
$$

where:

1. $\bar{a}_{o j} \leqslant 0$ for $j \in N B$,
2. $\bar{a}_{u о} \geqslant 0$ for $u=1, \ldots, m$, and
3. $N B$ is the set of nonbasic variables, therefore $\left\{B_{u}: u=1, \ldots, m\right\} \cup N B=\{1, \ldots, n\}$.

Cutting-Plane Algorithm with Gomory Cuts

- If the optimal basic solution x^{*} is not integer, then there must exist a row u such that $\bar{a}_{u 0} \notin \mathbb{Z}$.
- Choosing this row, the Chvátal-Gomory for the row u becomes:

$$
x_{B u}+\sum_{j \in N B}\left\lfloor\bar{a}_{u j}\right\rfloor x_{j} \leqslant\left\lfloor\bar{a}_{u 0}\right\rfloor
$$

- Rewriting (1) so as to eliminate $x_{B u}$, we obtain:

$$
x_{B u}=\bar{a}_{u 0}-\sum_{j \in N B} \bar{a}_{u j} x_{j}
$$

Cutting-Plane Algorithm with Gomory Cuts

- If the optimal basic solution x^{*} is not integer, then there must exist a row u such that $\bar{a}_{\text {uo }} \notin \mathbb{Z}$.
- Choosing this row, the Chvátal-Gomory for the row u becomes:

$$
\begin{equation*}
x_{B u}+\sum_{j \in N B}\left\lfloor\bar{a}_{u j}\right\rfloor x_{j} \leqslant\left\lfloor\bar{a}_{u o}\right\rfloor \tag{1}
\end{equation*}
$$

- Rewriting (1) so as to eliminate $x_{B u}$, we obtain:

Cutting-Plane Algorithm with Gomory Cuts

- If the optimal basic solution x^{*} is not integer, then there must exist a row u such that $\bar{a}_{\text {uo }} \notin \mathbb{Z}$.
- Choosing this row, the Chvátal-Gomory for the row u becomes:

$$
\begin{equation*}
x_{B u}+\sum_{j \in N B}\left\lfloor\bar{a}_{u j}\right\rfloor x_{j} \leqslant\left\lfloor\bar{a}_{u o}\right\rfloor \tag{1}
\end{equation*}
$$

- Rewriting (1) so as to eliminate $x_{B u}$, we obtain:

$$
\begin{equation*}
x_{B u}=\bar{a}_{u o}-\sum_{j \in N B} \bar{a}_{u j} x_{j} \tag{2}
\end{equation*}
$$

Cutting-Plane Algorithm with Gomory Cuts

From (2), we deduce that:

$$
\begin{align*}
\bar{a}_{u o}-\sum_{j \in N B} \bar{a}_{u j} x_{j}+ & \sum_{j \in N B}\left\lfloor\bar{a}_{u j}\right\rfloor x_{j} \leqslant\left\lfloor\bar{a}_{u o}\right\rfloor \\
& \Longrightarrow \sum_{j \in N B}\left(\bar{a}_{u j}-\left\lfloor\bar{a}_{u j}\right\rfloor\right) x_{j} \geqslant \bar{a}_{u o}-\left\lfloor\bar{a}_{u o}\right\rfloor \tag{3}
\end{align*}
$$

Cutting-Plane Algorithm with Gomory Cuts

In a more compact form, we can rewrite the cutting plane:

$$
\sum_{j \in N B}\left(\bar{a}_{u j}-\left\lfloor\bar{a}_{u j}\right\rfloor\right) x_{j} \geqslant \bar{a}_{u o}-\left\lfloor\bar{a}_{u o}\right\rfloor
$$

as:

$$
\begin{equation*}
\sum_{j \in N B} f_{u j} x_{j} \geqslant f_{u o} \tag{4}
\end{equation*}
$$

in which:

- $f_{u j}=\bar{a}_{u j}-\left\lfloor\bar{a}_{u j}\right\rfloor$ and
- $f_{u o}=\bar{a}_{u o}-\left\lfloor\bar{a}_{u o}\right\rfloor$.

Cutting-Plane Algorithm with Gomory Cuts

Remark

Since $0 \leqslant f_{u j}<1$ and $0<f_{u o}<1$, and $x_{j}^{*}=0$ for each variable $j \in N B$ in the solution x^{*}, the inequality

$$
\sum_{j \in N B} f_{u j} x_{j} \geqslant f_{u o}
$$

cuts off the incumbent solution x^{*}.

Example

Consider the integer program:

$$
\begin{align*}
z=\max & 4 x_{1}-x_{2} \\
\text { s.t. }: & 7 x_{1}-2 x_{2} \leqslant 14 \\
& \tag{5}\\
& 2 x_{1}-2 x_{2} \leqslant 3 \\
& x_{1},
\end{align*} x_{2} \geqslant 0, \quad \text { integer }
$$

Example

After introducing slack variables x_{3}, x_{4} e x_{5}, we can apply the Simplex method and obtain an optimal solution:

\max	$\frac{59}{7}$			$-\frac{4}{7} x_{3}$	$-\frac{1}{7} x_{4}$		
s.t. :		x_{1}		$+\frac{1}{7} x_{3}$	$+\frac{2}{7} x_{4}$		$=\frac{20}{7}(=2.8571)$
		x_{2}					
			$-\frac{2}{7} x_{3}$	$+\frac{10}{7} x_{4}+$	x_{5}	$=\frac{23}{7}(=3.2857)$	
				x_{3},		x_{4},	x_{5}

Example

- The optimal solution for the linear relaxation is $x^{*}=\left(\frac{20}{7}, 3, \frac{27}{7}, 0,0\right) \notin \mathbb{Z}_{+}^{5}$.
- Thus, we use the first row of (6), in which the basic variables x_{1} is fractional.
- This generates the cut:

Example

- The optimal solution for the linear relaxation is $x^{*}=\left(\frac{20}{7}, 3, \frac{27}{7}, 0,0\right) \notin \mathbb{Z}_{+}^{5}$.
- Thus, we use the first row of (6), in which the basic variables x_{1} is fractional.
- This generates the cut:

Example

- The optimal solution for the linear relaxation is $x^{*}=\left(\frac{20}{7}, 3, \frac{27}{7}, 0,0\right) \notin \mathbb{Z}_{+}^{5}$.
- Thus, we use the first row of (6), in which the basic variables x_{1} is fractional.
- This generates the cut:

$$
x_{1}+\left\lfloor\frac{1}{7}\right\rfloor x_{3}+\left\lfloor\frac{2}{7}\right\rfloor x_{4} \leqslant\left\lfloor\frac{20}{7}\right\rfloor \quad \Rightarrow \quad x_{1} \leqslant 2
$$

Example

Introducing a slack variable, we obtain:

$$
\begin{aligned}
& \begin{array}{l}
x_{1}+s=2 \\
x_{1}=\frac{20}{7}-\frac{1}{7} x_{3}-\frac{2}{7} x_{4}
\end{array} \Rightarrow \quad \frac{20}{7}-\frac{1}{7} x_{3}-\frac{2}{7} x_{4}+s=2 \\
& \\
& \\
& \Rightarrow \quad s=2-\frac{20}{7}+\frac{1}{7} x_{3}+\frac{2}{7} x_{4} \\
& \\
& \Rightarrow \quad s=-\frac{6}{7}+\frac{1}{7} x_{3}+\frac{2}{7} x_{4} \\
& \\
& \\
& \\
& \text { with } s, x_{3}, x_{4} \geqslant 0 \text { and integer. }
\end{aligned}
$$

Example

Introducing the variable s and the cut

$$
s=-\frac{6}{7}+\frac{1}{7} x_{3}+\frac{2}{7} x_{4},
$$

we obtain a second formulation:

max	$\frac{15}{2}$					-	$\frac{1}{2} x_{5}$	-	$3 s$			
s.t. :		χ_{1}						+	S	$=$	2	
			X_{2}			-	$\frac{1}{2} x_{5}$	+	S	$=$	$\frac{1}{2}$	
				x_{3}		-	x_{5}	-	$5 s$	$=$	1	
					X_{4}	+	$\frac{1}{2} x_{5}$	+	$6 s$	$=$	$\frac{5}{2}$	
		χ_{1},	x_{2},	x_{3},	X_{4},		x_{5},		S	\geqslant	0	and integer.

An optimal solution for the relaxation (7), yields $x=\left(2, \frac{1}{2}, 1, \frac{5}{2}, 0,0\right)$.

Example

The incumbent solution remains fractional because x_{2} and x_{4} are not integer.

The application of the Chavátal-Gomory cut on the second row yields:

Example

The incumbent solution remains fractional because x_{2} and x_{4} are not integer.

The application of the Chavátal-Gomory cut on the second row yields:

$$
\begin{aligned}
x_{2}+\left\lfloor-\frac{1}{2}\right\rfloor x_{5}+\lfloor 1\rfloor s \leqslant\left\lfloor\frac{1}{2}\right\rfloor & \Rightarrow x_{2}-x_{5}+s \leqslant 0 \\
& \Rightarrow x_{2}-x_{5}+s+t=0, t \geqslant 0 \\
& \Rightarrow\left(\frac{1}{2}+\frac{1}{2} x_{5}-s\right)-x_{5}+s+t=0 \\
& \Rightarrow t-\frac{1}{2} x_{5}=-\frac{1}{2}, t \geqslant 0
\end{aligned}
$$

Example

After introducing the variable $t \geqslant 0$ and the cut $t-\frac{1}{2} x_{5}=-\frac{1}{2}$, we obtain the solution below for the linear relaxation:

- The obtained solution is optimal because all values are integer.
- The optimal solution is $x^{*}=(2,1,2,2,1)$ with objective value $z^{*}=7$.

OptIntro
$\left\llcorner_{\text {Disjunctive }}\right.$ Cuts

Summary

Cutting-Plane Algorithm

Gomory Cuts

Disjunctive Cuts

Disjunctive Cuts

- Let $X=X^{1} \cup X^{2}$ with $X^{i} \subseteq \mathbb{R}_{+}^{n}$.
- That is, X is the disjunction (union) of two sets X^{1} and X^{2}.
- Some important results are given below.

Disjunctive Cuts

Proposition

If $\sum_{j=1}^{n} \pi_{j}^{i} x_{j} \leqslant \pi_{0}^{i}$ is a valid inequality for $X^{i}, i=1,2$, then the inequality

$$
\sum_{j=1}^{n} \pi_{j} x_{j} \leqslant \pi_{0}
$$

is valid for X if:

- $\pi_{j} \leqslant \min \left\{\pi_{j}^{1}, \pi_{j}^{2}\right\}$ for $j=1, \ldots, n$; and
- $\pi_{0} \geqslant \max \left\{\pi_{0}^{1}, \pi_{0}^{2}\right\}$.

Disjunctive Cuts

Proposition

- if $P^{i}=\left\{x \in \mathbb{R}_{+}^{n}: A^{i} x \leqslant b^{i}\right\}$ for $i=1,2$ are nonempty polyhedra,
- then $\left(\pi, \pi_{0}\right)$ is a valid inequality for $\operatorname{conv}\left(P^{1} \cup P^{2}\right)$ if, and only if, $u_{1}, u_{2} \geqslant 0$ such that:

$$
\begin{aligned}
\pi^{T} & \leqslant u_{1}^{T} A^{1} \\
\pi^{T} & \leqslant u_{2}^{T} A^{2} \\
\pi_{0} & \geqslant u_{1}^{T} b^{1} \\
\pi_{0} & \geqslant u_{2}^{T} b^{2}
\end{aligned}
$$

Example

- Consider the following polyhedra:

$$
\begin{array}{r}
P^{1}=\left\{x \in \mathbb{R}^{2}:-x_{1}+x_{2} \leqslant 1, x_{1}+x_{2} \leqslant 5\right\} \\
P^{2}=\left\{x \in \mathbb{R}^{2}: x_{2} \leqslant 4,-2 x_{1}+x_{2} \leqslant-6\right. \\
\left.\quad x_{1}-3 x_{2} \leqslant-2\right\}
\end{array}
$$

- By letting $u_{1}=(2,1)$ and $u_{2}=\left(\frac{5}{2}, \frac{1}{2}, 0\right)$, and then applying the proposition above, the following results:

$$
u_{1}^{T} A^{1}=\left[\begin{array}{ll}
2 & 1
\end{array}\right]\left[\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
-1 & 3
\end{array}\right] \quad u_{1}^{T} b^{1}=7
$$

Example

- We further obtain:

$$
u_{2}^{T} A^{2}=\left[\begin{array}{lll}
\frac{5}{2} & \frac{1}{2} & 0
\end{array}\right]\left[\begin{array}{rr}
0 & 1 \\
-2 & 1 \\
1 & -3
\end{array}\right]=\left[\begin{array}{ll}
-1 & 3
\end{array}\right] \quad u_{2}^{T} b^{2}=7
$$

- This allows us to obtain the inequality $-x_{1}+3 x_{2} \leqslant 7$, which is valid for $P^{1} \cup P^{2}$.
$\left\llcorner_{\text {Disjunctive }}\right.$ Cuts
- Example

Example

Figura: Disjunctive inequalities

Disjunctive Inequalities for Pure 0-1 Programs

- Specializing even further, we restrict the analysis to pure 0-1 programs, in which:
- $X=P \cap \mathbb{Z}^{n} \subseteq\{0,1\}^{n}$ and
- $P=\left\{x \in \mathbb{R}^{n}: A x \leqslant b, 0 \leqslant x \leqslant 1\right\}$.
- Let $P^{0}=P \cap\left\{x \in \mathbb{R}^{n}: x_{j}=0\right\}$
- Let $P^{1}=P \cap\left\{x \in \mathbb{R}^{n}: x_{j}=1\right\}$ for some $j \in\{1, \ldots, n\}$

Disjunctive Inequalities for Pure 0-1 Programs

- Specializing even further, we restrict the analysis to pure 0-1 programs, in which:
- $X=P \cap \mathbb{Z}^{n} \subseteq\{0,1\}^{n}$ and
- $P=\left\{x \in \mathbb{R}^{n}: A x \leqslant b, 0 \leqslant x \leqslant 1\right\}$.
- Let $P^{0}=P \cap\left\{x \in \mathbb{R}^{n}: x_{j}=0\right\}$.
- Let $P^{1}=P \cap\left\{x \in \mathbb{R}^{n}: x_{j}=1\right\}$ for some $j \in\{1, \ldots, n\}$.

Disjunctive Inequalities for Pure 0-1 Programs

Proposition

The inequality $\left(\pi, \pi_{0}\right)$ is valid for $\operatorname{conv}\left(P^{0} \cup P^{1}\right)$ if there exists $u_{i} \in \mathbb{R}_{+}^{m}$, $v_{i} \in \mathbb{R}_{+}^{n}, w_{i} \in \mathbb{R}_{+}^{1}$ for $i=0,1$ such that:

$$
\begin{aligned}
& \pi^{T} \leqslant u_{0}^{T} A+v_{0}+w_{0} e_{j} \\
& \pi^{T} \leqslant u_{1}^{T} A+v_{1}-w_{1} e_{j} \\
& \pi_{0} \geqslant u_{0}^{T} b+1^{T} v_{0} \\
& \pi_{0} \geqslant u_{1}^{T} b+1^{T} v_{1}-w_{1}
\end{aligned}
$$

Disjunctive Inequalities for Pure 0-1 Programs

Proof

Apply the previous preposition with:

- $P^{0}=\left\{x \in \mathbb{R}_{+}^{n}: A x \leqslant b, x \leqslant 1, x_{j} \leqslant 0\right\}$ and
- $P^{1}=\left\{x \in \mathbb{R}_{+}^{n}: A x \leqslant b, x \leqslant 1,-x_{j} \leqslant-1\right\}$

Example

Consider the following instance of the knapsack problem:

$$
\begin{gathered}
\max 12 x_{1}+14 x_{2}+7 x_{3}+12 x_{4} \\
\text { s.t. }: 4 x_{1}+5 x_{2}+3 x_{3}+6 x_{4} \leqslant 8 \\
x \in \mathbb{B}^{4}
\end{gathered}
$$

with optimal linear solution $x^{*}=(1,0.8,0,0)$.
$\left\llcorner_{\text {Disjunctive }}\right.$ Cuts

- Example

Example

- Since $x_{2}^{*}=0.8$ is fractional, we choose $j=2$.
- Defining P^{0} and P^{1}, we look for an inequality $\left(\pi, \pi_{0}\right)$ which is violated according to the proposition above.
= To that end, we solve the linear programming problem maximizing $\pi^{\top} x^{*}-\pi_{0}$ within the polyhedron that expresses the coefficients for the valid inequalities given by the proposition.

Example

- Since $x_{2}^{*}=0.8$ is fractional, we choose $j=2$.
- Defining P^{0} and P^{1}, we look for an inequality $\left(\pi, \pi_{0}\right)$ which is violated according to the proposition above.
- To that end, we solve the linear programming problem maximizing $\pi^{\top} x^{*}-\pi_{0}$ within the polyhedron that expresses the coefficients for the valid inequalities given by the proposition.

Example

- Since $x_{2}^{*}=0.8$ is fractional, we choose $j=2$.
- Defining P^{0} and P^{1}, we look for an inequality (π, π_{0}) which is violated according to the proposition above.
- To that end, we solve the linear programming problem maximizing $\pi^{T} x^{*}-\pi_{0}$ within the polyhedron that expresses the coefficients for the valid inequalities given by the proposition.

Example

This linear program is given by:

$$
\left.\left.\begin{array}{rl}
\max & 1.0 \pi_{1}+0.8 \pi_{2}-\pi_{0} \\
\text { s.t. : } & \left\{\begin{array}{l}
\pi_{1} \leqslant 4 u^{0}+v_{1}^{0} \\
\pi_{1} \leqslant 4 u^{1}+v_{1}^{1}
\end{array}\right. \\
& \left\{\begin{array}{l}
\pi_{2} \leqslant 5 u^{0}+v_{2}^{0}+w^{0} \\
\pi_{2} \leqslant 5 u^{1}+v_{2}^{1}-w^{1} \\
\pi_{3} \leqslant 3 u^{0}+v_{3}^{0}
\end{array}\right. \\
\pi_{3} \leqslant 3 u^{1}+v_{3}^{1}
\end{array}\right\} \begin{array}{l}
\pi_{4} \leqslant 6 u^{0}+v_{4}^{0} \\
\pi_{4} \leqslant 6 u^{1}+v_{4}^{1} \\
\pi_{0} \geqslant 8 u^{0}+v_{1}^{0}+v_{2}^{0}+v_{3}^{0}+v_{4}^{0} \\
\pi_{0} \geqslant 8 u^{1}+v_{1}^{1}+v_{2}^{1}+v_{3}^{1}+v_{4}^{1}-w^{1}
\end{array}\right\}
$$

Disjunctive Inequalities for Pure 0-1 Programs

- Aiming to render the space of feasible solutions bound, we should introduce a normalization criterion.
- Two possibilities are:

- Then we obtain the following cutting plane:

Disjunctive Inequalities for Pure 0-1 Programs

- Aiming to render the space of feasible solutions bound, we should introduce a normalization criterion.
- Two possibilities are:
a) $\sum_{j=1}^{n} \pi_{j} \leqslant 1$
b) $\pi_{0}=1$
- Then we obtain the following cutting plane:

Disjunctive Inequalities for Pure 0-1 Programs

- Aiming to render the space of feasible solutions bound, we should introduce a normalization criterion.
- Two possibilities are:
a) $\sum_{j=1}^{n} \pi_{j} \leqslant 1$
b) $\pi_{0}=1$
- Then we obtain the following cutting plane:

$$
x_{1}+\frac{1}{4} x_{2} \leqslant 1 .
$$

Disjunctive Inequalities for Pure 0-1 Programs

- For P^{0}, the inequality is a combination of the constraints $x_{1} \leqslant 1$ and $x_{2} \leqslant 0$ with $v_{1}^{0}=1$ and $w^{0}=\frac{1}{4}$, respectively.
- For P^{1}, the inequality is a combination of the constraints $4 x_{1}+5 x_{2}+3 x_{3}+6 x_{4} \leqslant 8$ and $-x_{2} \leqslant-1$ with $u^{1}=\frac{1}{4}$ and $w^{1}=1$, respectively.

Disjunctive Inequalities for Pure 0-1 Programs

- For P^{0}, the inequality is a combination of the constraints $x_{1} \leqslant 1$ and $x_{2} \leqslant 0$ with $v_{1}^{0}=1$ and $w^{0}=\frac{1}{4}$, respectively.
- For P^{1}, the inequality is a combination of the constraints $4 x_{1}+5 x_{2}+3 x_{3}+6 x_{4} \leqslant 8$ and $-x_{2} \leqslant-1$ with $u^{1}=\frac{1}{4}$ and $w^{1}=1$, respectively.

Cutting-Plane Algorithm

- Thank you for attending this lecture!!!

