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Cutting-Plane Algorithm: Principles

I Assume that that feasible set is X = P ∩ Zn.

I Let F be a family of valid inequalities for X :

πT x 6 π0, (π, π0) ∈ F ,

I Typically, F may contain a large number of elements (exponentially
many).

I Thus we cannot introduce all inequalities a priori.

I From a practical standpoint, we don’t need a full representation of
conv(X ), only an approximation around the optimal solution.
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Cutting-Plane Algorithm

Here we present a baseline cutting-plane algorithm for

IP : max{cT x ; x ∈ X}

, which generates “useful” cuts from the family F .
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Cutting-Plane Algorithm

Initialization
Define t = 0 and P0 = P

Iteration T
Solve the linear program z t = max{cT x : x ∈ P t}
Let x t be an optimal solution

If x t ∈ Zn, stop since x t is an optimal solution for IP
If x t /∈ Zn, find an inequality (π, π0) ∈ F

such that πT x t > π0
If an inequality (π, π0) was found,

then do P t+1 = P t ∩ {x : πT x 6 π0},
increase t and repeat

Otherwise, stop
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Valid Inequalities

I If the algorithm terminates without finding an integer
solution, at least

Pt = P ∩ {x : πTi 6 πi0, i = 1, 2, . . . , t}

is a “tighter” formulation than the initial formulation P.

I We can proceed from Pt with a branch-and-bound algorithm.
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Cutting-Plane Algorithm with Gomory Cuts

I Here we concentrate in the following integer program:

max {cT x : Ax = b, x > 0 and integer}

I The strategy is to solve the linear relaxation and find an optimal
basis.

I From the optimal basis, we choose a fractional basic variable.

I Then we generate a Chvátal-Gomory cut associated with this basic
variable, aiming to cut it off, that is, eliminate this solution from the
relaxation polyhedron.
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Cutting-Plane Algorithm with Gomory Cuts

Given an optimal basis, the problem/dictionary can be expressed
as:

max aoo +
∑

j∈NB
aojxj

s.t.: xBu +
∑

j∈NB
aujxj = auo for u = 1, . . . ,m

x > 0 and integer

where:

1. aoj 6 0 for j ∈ NB,

2. auo > 0 for u = 1, . . . ,m, and

3. NB is the set of nonbasic variables, therefore
{Bu : u = 1, . . . ,m} ∪ NB = {1, . . . , n}.
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Cutting-Plane Algorithm with Gomory Cuts

I If the optimal basic solution x∗ is not integer, then there must
exist a row u such that auo /∈ Z.

I Choosing this row, the Chvátal-Gomory for the row u
becomes:

xBu +
∑
j∈NB
baujcxj 6 bauoc (1)

I Rewriting (1) so as to eliminate xBu, we obtain:

xBu = auo −
∑
j∈NB

aujxj (2)
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Cutting-Plane Algorithm with Gomory Cuts

From (2), we deduce that:

auo −
∑
j∈NB

aujxj +
∑
j∈NB
baujcxj 6 bauoc

=⇒
∑
j∈NB

(auj − baujc) xj > auo − bauoc (3)
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Cutting-Plane Algorithm with Gomory Cuts

In a more compact form, we can rewrite the cutting plane:∑
j∈NB

(auj − baujc) xj > auo − bauoc

as: ∑
j∈NB

fujxj > fuo (4)

in which:

I fuj = auj − baujc and

I fuo = auo − bauoc.
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Cutting-Plane Algorithm with Gomory Cuts

Remark
Since 0 6 fuj < 1 and 0 < fuo < 1, and x∗j = 0 for each variable
j ∈ NB in the solution x∗, the inequality∑

j∈NB
fujxj > fuo

cuts off the incumbent solution x∗.
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Example

Example

Consider the integer program:

z = max 4x1 − x2
s.t. : 7x1 − 2x2 6 14

x2 6 3
2x1 − 2x2 6 3
x1, x2 > 0, integer

(5)
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Example

After introducing slack variables x3, x4 and x5, we can apply the Simplex
method and obtain an optimal solution:

max 59
7 − 4

7x3 − 1
7x4

s.t. : x1 + 1
7x3 + 2

7x4 = 20
7 (= 2.8571)

x2 + x4 = 3
− 2

7x3 + 10
7 x4 + x5 = 23

7 (= 3.2857)
x1, x2, x3, x4, x5 > 0 and integer

(6)
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Example

I The optimal solution for the linear relaxation is
x∗ = ( 20

7 , 3,
27
7 , 0, 0) /∈ Z5

+.

I Thus, we use the first row of (6), in which the basic variables x1 is
fractional.

I This generates the cut:

x1 + b 17cx3 + b 27cx4 6 b
20
7 c =⇒ x1 6 2
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Introducing a slack variable, we obtain:

x1 + s = 2,
x1 = 20

7 −
1
7x3 −

2
7x4 =⇒ 20

7 −
1
7x3 −

2
7x4 + s = 2

=⇒ s = 2− 20
7 + 1

7x3 + 2
7x4

=⇒ s = − 6
7 + 1

7x3 + 2
7x4

with s, x3, x4 > 0 and integer.
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Example

Introducing the slack variable s and the cut

s = −6

7
+

1

7
x3 +

2

7
x4,

we obtain a second formulation:

max 15
2 − 1

2x5 − 3s
s.t. : x1 + s = 2

x2 − 1
2x5 + s = 1

2
x3 − x5 − 5s = 1

x4 + 1
2x5 + 6s = 5

2
x1, x2, x3, x4, x5, s > 0 and integer.

(7)

An optimal solution for the relaxation (7), yields x = (2, 12 , 1,
5
2 , 0, 0).
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Example

The incumbent solution remains fractional because x2 and x4 are not
integer.

The application of the Chavátal-Gomory cut on the second row yields:

x2 + b− 1
2cx5 + b1cs 6 b 12c =⇒ x2 − x5 + s 6 0

=⇒ x2 − x5 + s + t = 0, t > 0
=⇒ ( 1

2 + 1
2x5 − s)− x5 + s + t = 0

=⇒ t − 1
2x5 = − 1

2 , t > 0
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The application of the Chavátal-Gomory cut on the second row yields:

x2 + b− 1
2cx5 + b1cs 6 b 12c =⇒ x2 − x5 + s 6 0

=⇒ x2 − x5 + s + t = 0, t > 0
=⇒ ( 1

2 + 1
2x5 − s)− x5 + s + t = 0

=⇒ t − 1
2x5 = − 1

2 , t > 0



OptIntro 21 / 37

Gomory Cuts

Example

Example

After introducing the variable t > 0 and the cut t − 1
2x5 = − 1

2 , we obtain
the solution below for the linear relaxation:

max 7 − 3s − t
s.t. : x1 + s = 2

x2 + s − t = 1
x3 − 5s − 2t = 2

x4 + 6s + t = 2
x5 − t = 1

x1, x2, x3, x4, x5, s, t > 0 and integer

I The obtained solution is optimal because all values are integer.

I The optimal solution is x∗ = (2, 1, 2, 2, 1) with objective value
z∗ = 7.
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Disjunctive Cuts

I Let X = X 1 ∪ X 2 with X i ⊆ Rn
+.

I That is, X is the disjunction (union) of two sets X 1 and X 2.

I Some important results are given below.
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Disjunctive Cuts

Proposition
If
∑n

j=1 π
i
jxj 6 πi

0 is a valid inequality for X i , i = 1, 2, then the inequality

n∑
j=1

πjxj 6 π0

is valid for X if:

I πj 6 min{π1
j , π

2
j } for j = 1, . . . , n; and

I π0 > max{π1
0 , π

2
0}.
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Disjunctive Cuts

Proposition

I if P i = {x ∈ Rn
+ : Aix 6 bi} for i = 1, 2 are nonempty polyhedra,

I then (π, π0) is a valid inequality for conv(P1 ∪ P2) if, and only if,
u1, u2 > 0 such that:

πT 6 uT1 A
1

πT 6 uT2 A
2

π0 > uT1 b
1

π0 > uT2 b
2
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I Consider the following polyhedra:

P1 = {x ∈ R2 : −x1 + x2 6 1, x1 + x2 6 5}
P2 = {x ∈ R2 : x2 6 4,−2x1 + x2 6 −6,

x1 − 3x2 6 −2}

I By letting u1 = (2, 1) and u2 = ( 5
2 ,

1
2 , 0), and then applying the

proposition above, the following results:

uT1 A
1 =

[
2 1

] [ −1 1
1 1

]
=
[
−1 3

]
uT1 b

1 = 7
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I We further obtain:

uT2 A
2 =

[
5
2

1
2 0

]  0 1
−2 1

1 −3

 =
[
−1 3

]
uT2 b

2 = 7

I This allows us to obtain the inequality −x1 + 3x2 6 7, which is valid
for P1 ∪ P2.
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1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

x_1

x_2

Figura : Disjunctive inequalities
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Disjunctive Inequalities for Pure 0-1 Programs

I Specializing even further, we restrict the analysis to pure 0-1
programs, in which:

I X = P ∩ Zn ⊆ {0, 1}n and
I P = {x ∈ Rn : Ax 6 b, 0 6 x 6 1}.

I Let P0 = P ∩ {x ∈ Rn : xj = 0}.
I Let P1 = P ∩ {x ∈ Rn : xj = 1} for some j ∈ {1, . . . , n}.
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Disjunctive Inequalities for Pure 0-1 Programs

Proposition
The inequality (π, π0) is valid for conv(P0 ∪ P1) if there exists ui ∈ Rm

+,
vi ∈ Rn

+, wi ∈ R1
+ for i = 0, 1 such that:

πT 6 uT0 A + v0 + w0ej
πT 6 uT1 A + v1 − w1ej
π0 > uT0 b + 1T v0
π0 > uT1 b + 1T v1 − w1
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Disjunctive Inequalities for Pure 0-1 Programs

Proof
Apply the previous preposition with:

I P0 = {x ∈ Rn
+ : Ax 6 b, x 6 1, xj 6 0} and

I P1 = {x ∈ Rn
+ : Ax 6 b, x 6 1,−xj 6 −1}
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Consider the following instance of the knapsack problem:

max 12x1 + 14x2 + 7x3 + 12x4
s.t. : 4x1 + 5x2 + 3x3 + 6x4 6 8

x ∈ B4

with optimal linear solution x∗ = (1, 0.8, 0, 0).
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I Since x∗2 = 0.8 is fractional, we choose j = 2.

I Defining P0 and P1, we look for an inequality (π, π0) which is
violated according to the proposition above.

I To that end, we solve the linear programming problem maximizing
πT x∗ − π0 within the polyhedron that expresses the coefficients for
the valid inequalities given by the proposition.
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This linear program is given by:

max 1.0π1 + 0.8π2 − π0

s.t. :

{
π1 6 4u0 + v0

1

π1 6 4u1 + v1
1{

π2 6 5u0 + v0
2 + w0

π2 6 5u1 + v1
2 − w1{

π3 6 3u0 + v0
3

π3 6 3u1 + v1
3{

π4 6 6u0 + v0
4

π4 6 6u1 + v1
4{

π0 > 8u0 + v0
1 + v0

2 + v0
3 + v0

4

π0 > 8u1 + v1
1 + v1

2 + v1
3 + v1

4 − w1

u0, u1, v0, v1,w0,w1 > 0
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Disjunctive Inequalities for Pure 0-1 Programs

I Aiming to render the space of feasible solutions bound, we should
introduce a normalization criterion.

I Two possibilities are:

a)
∑n

j=1 πj 6 1
b) π0 = 1

I Then we obtain the following cutting plane:

x1 +
1

4
x2 6 1.
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Disjunctive Inequalities for Pure 0-1 Programs

I For P0, the inequality is a combination of the constraints x1 6 1
and x2 6 0 with v0

1 = 1 and w0 = 1
4 , respectively.

I For P1, the inequality is a combination of the constraints
4x1 + 5x2 + 3x3 + 6x4 6 8 and −x2 6 −1 with u1 = 1

4 and w1 = 1,
respectively.
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Cutting-Plane Algorithm

I Thank you for attending this lecture!!!


