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Introduction

Agenda

I Study of cutting-plane algorithms that add valid inequalities
to the linear relaxation until an integer solution is obtained.

I Gomory cuts, which can be applied to any integer linear
program (or mixed-integer).

I Cutes that are specialized for specific problems.
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Integer Problem

The integer problem its general form:

IP : max{cT x : x ∈ X}, where X = {x : Ax 6 b, x ∈ Zn
+}

Proposition

conv(X ) = {x : Ãx 6 b̃, x > 0} is a polyhedron.
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I The result above states that IP can be reformulated as a
linear programming problem:

LP : max{cT x : Ãx 6 b̃, x > 0}

I Notice that any extreme point of this LP is an optimal
solution of IP.

I For some problems, such as the network flow problem, a
complete description of conv(X ) is known.
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I In general, and particularly for NP-Hard problems, there is no hope
of finding a complete description of conv(X ).

I In other situations, such a description can contain an exponential
number of constraints/inequalities.

I Given an NP-Hard problem, here the concern is on finding an
approximation for conv(X ).

I An approximation will be constructed gradually, by adding valid and
nontrivial inequalities, preferably inequalities that touch the
polyhedron that describes conv(X ).



OptIntro 7 / 39

Introduction

Introduction to cutting planes

Introduction to Cutting Planes

I In general, and particularly for NP-Hard problems, there is no hope
of finding a complete description of conv(X ).

I In other situations, such a description can contain an exponential
number of constraints/inequalities.

I Given an NP-Hard problem, here the concern is on finding an
approximation for conv(X ).

I An approximation will be constructed gradually, by adding valid and
nontrivial inequalities, preferably inequalities that touch the
polyhedron that describes conv(X ).



OptIntro 8 / 39

Introduction

Introduction to cutting planes

Introduction to Cutting Planes

Valid Inequalities

An inequality πT x 6 π0 is valid for X ⊆ Rn if πT x 6 π0 for all
x ∈ X .

Questions
Some issues come up:

a) Which inequalities are “useful?”

b) If know a family of valid inequalities for a given problem, how
can we use them effectively?
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Introduction to Cutting Planes

Topics

Examples of valid inequalities expressing logic conditions will be
presented.
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Pure 0-1 Set

Pure 0-1 Set

I The feasible set X of solution for a 0-1 knapsack problem is given
by:

X = {x ∈ B5 : 3x1 − 4x2 + 2x3 − 3x4 + x5 6 −2}

I For x2 = x4 = 0, we have the inequality:

3x1 + 2x3 + x5 6 −2

which becomes impossible to meet.

I Thus, we conclude that solution must satisfy:

x2 + x4 > 1
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Pure 0-1 Set

I If x1 = 1 e x2 = 0, the following inequality results:

2x3 − 3x4 + x5 6 −5

which cannot be satisfied.

I Thus:
x1 6 x2

is a valid inequality, which can be introduced in the
formulation of X .
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Pure 0-1 Set

From the above deductions, we can propose a revised formulation
for the problem at hand:

X = {x ∈ B5 : 3x1 − 4x2 + 2x3 − 3x4 + x5 6 −2
x2 + x4 > 1
x1 6 x2}
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Mixed-Integer 0-1 Set

I A example of mixed-integer (continuous and discrete) set of
solutions X is:

X = {(x , y) : x 6 9999y , 0 6 x 6 5, y ∈ B}

I It is easy to verify the validity of the inequality x 6 5y .



OptIntro 14 / 39

Examples of Valid Inequalities

Mixed-Integer 0-1 Set

Mixed-Integer 0-1 Set

I A example of mixed-integer (continuous and discrete) set of
solutions X is:

X = {(x , y) : x 6 9999y , 0 6 x 6 5, y ∈ B}

I It is easy to verify the validity of the inequality x 6 5y .



OptIntro 15 / 39

Examples of Valid Inequalities

Mixed-Integer 0-1 Set

Mixed-Integer 0-1 Set

I Consider the set:

X = {(x , y) : 0 6 x 6 10y , 0 6 x 6 14, y ∈ Z+}

I We can verify the validity of the inequality:

x 6 14− 4(2− y)
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2 4 6 8 10 12 14 16 x

y

x <= 6 + 4y

x <= 10y

(14,2)

(10,1)1

2

3

Figura : Feasible space a valid inequality x 6 14− 4(2− y)



OptIntro 17 / 39

Examples of Valid Inequalities

Combinatorial Set

Combinatorial Set

Let X be the set of incidence vectors for the matching problem:

X = {x ∈ Z|E |
+ :

∑
e∈δ(i)

xe 6 1 for all i ∈ V }

where:

I G = (V ,E ) is an undirected graph;

I δ(i) = {e ∈ E : e = (i , j) for some j ∈ V }.
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Combinatorial Set

I Let T ⊆ V be any edge set of odd cardinality.

I The number of edges having both ends in T is at most (|T | − 1)/2,
therefore we obtain the inequality:∑

e∈E(T )

xe 6
|T | − 1

2
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I conv(X ) can be obtained by adding all inequalities of the family
above.

I That is, conv(X ) is precisely the polyhedron given by:

{x ∈ R|E |+ :
∑

e∈δ(i)

xe 6 1 ∀i ∈ V∑
e∈E(T )

xe 6
|T |−1

2 ∀T ⊆ V , |T | odd and |T | > 3}
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Integer Rounding

I Consider the regions:

X = P ∩ Z4 e

P = {x ∈ R4
+ : 13x1 + 20x2 + 11x3 + 6x4 > 72}

I Diving the inequality by 11, we obtain the following inequality valid
for P:

13

11
x1 +

20

11
x2 +

11

11
x3 +

6

11
x4 >

72

11
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I Since x > 0, we can round the coefficients of x to the nearest
integer:

d13
11ex1 + d20

11ex2 + x3 + d 6
11ex4 > 72

11 ⇒
2x1 + 2x2 + x3 + x4 > 72

11 ⇒
2x1 + 2x2 + x3 + x4 > d72

11e ⇒
2x1 + 2x2 + x3 + x4 > 7

I Notice that an integer greater or equal to 6 + 6
11 must be

greater or equal to 7.
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Mixed-Integer Rounding

I Consider the example above with the addition of a continuous
variable.

I Let X = P ∩ (Z4 × R) where:

P = {(y , s) ∈ R4
+ × R+ : 13y1 + 20y2 + 11y3 + 6y4 + s > 72}

I Dividing the inequality by 11, we obtain

13
11y1 + 20

11y2 + 11
11y3 + 6

11y4 + s
11 > 72

11 ⇒
13
11y1 + 20

11y2 + 11
11y3 + 6

11y4 > 72−s
11
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Mixed-Integer Rounding

I We can observe that:

2y1 + 2y2 + y3 + y4 > d 72
11e = 7 se s = 0

2y1 + 2y2 + y3 + y4 > d 72−6
11 e = 6 se s = 6

I This suggest the following valid inequality:

2y1 + 2y2 + y3 + y4 + αs > 7

for some α.

The above inequality is valid for α > 1
6 .
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Theory of Valid Inequalities

The concepts on valid inequalities will be investigated in more
depth.
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Valid Inequalities for Linear Programs

I Consider the polyhedron:

P = {x : Ax 6 b, x > 0}

and the inequality inequality:

πT x 6 π0.

I Is the inequality (π, π0) valid for P?
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Proposition

πT x 6 π0 is valid for P = {x : Ax 6 b, x > 0} 6= ∅ if, and only if,

a) there exists u > 0 and v > 0 such that uTA− vT = πT and
uTb 6 π0, or

b) there exists u > 0 such that uTA > πT and uTb 6 π0
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Valid Inequalities for Linear Programs

Proof (b)

If there exists u > 0 such that uTA > πT and uTb 6 π0, then any
x ∈ P,

Ax 6 b ⇒ uTAx 6 uTb

⇒ πT x 6 uTAx 6 uTb 6 π0

⇒ (π, π0) is a valid inequality.

�
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Valid Inequalities for Integer Programs

Proposition

The inequality y 6 bbc is valid for X = {y ∈ Z : y 6 b}.
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Valid Inequalities for Integer Programs

Example

We can use the proposition above to generate valid inequalities for
the polyhedron given by the following inequalities:

7x1 − 2x2 6 14

x2 6 3

2x1 − 2x2 6 3

x > 0, x integer
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Valid Inequalities for Integer Programs

Example

i) Multiplying the constraint by a vector of nonnegative values
u = ( 2

7 ,
37
63 , 0), we obtain a valid inequality:

2x1 +
1

63
x2 6

121

21

ii) Reducing the coefficients on the left-hand size to the nearest
integer, we obtain:

2x1 + 0x2 6
121

21
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Valid Inequalities for Integer Programs

Example

iii) Since the left-hand size assumes integer values, we can reduce
the right-hand side to the nearest integer, leading to another
inequality:

2x1 6 b
121

21
c = 5 ⇒ x1 6

5

2
⇒ x1 6 2
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Chvátal-Gomory Procedure

I The CG (Chvátal-Gomory) procedure formalizes the steps
followed about to genera all valid inequalities of an integer
program.

I Let X = P ∩ Zn be a set of solutions where:
I P = {x ∈ Rn

+ : Ax 6 b} is a polyhedron, and
I A ∈ Rm×n is a matrix with coluns {a1, a2, . . . , an}.
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Given u ∈ Rm
+, the procedure consists of the following steps:

Step 1: the inequality:

n∑
j=1

uTajxj 6 uTb

is valid for P because u > 0 and
n∑

j=1
ajxj 6 b.
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Chvátal-Gomory Procedure

Step 2: The inequality:

n∑
j=1

buTajcxj 6 uTb

is valid for P since x > 0.
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Chvátal-Gomory Procedure

Step 3: The inequality

n∑
j=1

buTajcxj 6 buTbc

is valid for P since x is integer and further because

n∑
j=1

buTajcxj

is integer.
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Chvátal-Gomory Procedure

Important

The fact that the CG procedure can yield all valid inequalities of an
integer program is of major relevance.
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Chvátal-Gomory Procedure

Theorem
Every valid inequality for X can be obtained by application of a
finite number of the Chvátal-Gomory procedure.
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Chvátal-Gomory Procedure

Cutting Planes

I Thank you for attending this lecture!!!


