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Introduction

Agenda

» Study of cutting-plane algorithms that add valid inequalities
to the linear relaxation until an integer solution is obtained.

» Gomory cuts, which can be applied to any integer linear
program (or mixed-integer).

» Cutes that are specialized for specific problems.
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Introduction to Cutting Planes

Integer Problem

The integer problem its general form:
IP:

max{c"x:x € X}, where X = {x:

Ax < b,x € Z'}
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Introduction to Cutting Planes

Integer Problem

The integer problem its general form
IP:

max{c'x:x € X}, where X = {x: A
Proposition

<bxeZl}
conv(X) =

{x: Ax < b, x

> 0} is a polyhedron
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Introduction to Cutting Planes

» The result above states that /P can be reformulated as a
linear programming problem:

LP: max{ch cAx < E,X >0}

» Notice that any extreme point of this LP is an optimal
solution of IP.

» For some problems, such as the network flow problem, a
complete description of conv(X) is known.
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Introduction to Cutting Planes

> In general, and particularly for NP-Hard problems, there is no hope
of finding a complete description of conv(X).

» In other situations, such a description can contain an exponential
number of constraints/inequalities.
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Introduction to Cutting Planes

> In general, and particularly for NP-Hard problems, there is no hope
of finding a complete description of conv(X).

» In other situations, such a description can contain an exponential
number of constraints/inequalities.

> Given an NP-Hard problem, here the concern is on finding an
approximation for conv(X).

> An approximation will be constructed gradually, by adding valid and
nontrivial inequalities, preferably inequalities that touch the
polyhedron that describes conv(X).
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Valid Inequalities

x e X.

An inequality 77 x < mg is valid for X C R" if 7Tx < 7o for all
q y
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Introduction to Cutting Planes

Valid Inequalities
An inequality 7Tx < mg is valid for X C R" if 7Tx < 7o for all
x € X.

Questions
Some issues come up:

a) Which inequalities are “useful?”

b) If know a family of valid inequalities for a given problem, how
can we use them effectively?
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Topics

Examples of valid inequalities expressing logic conditions will be
presented.
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> The feasible set X of solution for a 0-1 knapsack problem is given

X ={x€B”:3x; —4xy +2x3 — 3x4 + x5 < —2}
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> The feasible set X of solution for a 0-1 knapsack problem is given
X ={x€B”:3x; —4xy +2x3 — 3x4 + x5 < —2}

» For x, = x4 = 0, we have the inequality:

3x1 + 2x3 + x5 < —2
which becomes impossible to meet.
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by:

> The feasible set X of solution for a 0-1 knapsack problem is given

X ={x€B”:3x; —4xy +2x3 — 3x4 + x5 < —2}

» For x, = x4 = 0, we have the inequality:
3x1 + 2x3 + x5 < —2
which becomes impossible to meet.

» Thus, we conclude that solution must satisfy:

Xo+x4 =1
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> If x1 =1 e xx =0, the following inequality results

2x3 — 3x4 + x5 < —5
which cannot be satisfied.
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> If x1 =1 e xx =0, the following inequality results

2x3 —3x4 + x5 < =5
which cannot be satisfied.
» Thus:

X1 < X2

is a valid inequality, which can be introduced in the
formulation of X.




Optlntro

|—Examples of Valid Inequalities
L Pure 0-1 Set

Pure 0-1 Set

13/39

From the above deductions, we can propose a revised formulation
for the problem at hand:

X={x€eB%: 3xg—4xp+2x3 —3x4 + x5 < —2
X2+ x4 =1

x1 < xo}



Optlntro

|—Examples of Valid Inequalities
LMixed-Integer 0-1 Set

Mixed-Integer 0-1 Set

14 /39

» A example of mixed-integer (continuous and discrete) set of
solutions X is:

X ={(x,y) : x <9999y,0 < x < 5,y € B}
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» A example of mixed-integer (continuous and discrete) set of
solutions X is:

X ={(x,y) : x <9999y,0 < x < 5,y € B}

> It is easy to verify the validity of the inequality x < by.
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» Consider the set:

X={(x,y):0<x<10y,0<x<14,ycZ;}
» We can verify the validity of the inequality:

x<14—-4(2—-y)
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X={xezf': Y x<1

ecd(i)
where:

forall i € V}

» G = (V,E) is an undirected graph;

» §(i)={e€ E:e=(i,j) for some j € V}.

Let X be the set of incidence vectors for the matching problem
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» Let T C V be any edge set of odd cardinality.

> The number of edges having both ends in T is at most (| T| —1)/2,
therefore we obtain the inequality:

Z xe<|T|—_1

2
e€E(T)
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above.

> conv(X) can be obtained by adding all inequalities of the family
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above.

> conv(X) can be obtained by adding all inequalities of the family

> That is, conv(X) is precisely the polyhedron given by:

{XERIf‘: > oxe<1 VieV
ecd(i)
Z Xe < |T|—1
ecE(T) 2

VT C V,|T| odd and |T| > 3}
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> Consider the regions:

X_
P

PNZ*e

{x € R% : 13xq + 20x, + 11x3 + 6xq > 72}
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> Consider the regions:

X

PNZ*e
P

{x € R% : 13xq + 20x, + 11x3 + 6xq > 72}

» Diving the inequality by 11, we obtain the following inequality valid
for P:
13x+20x x+6 >72
T T
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Integer Rounding

» Since x > 0, we can round the coefficients of x to the nearest

integer:

13
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Integer Rounding

» Since x > 0, we can round the coefficients of x to the nearest

integer:
i—:ﬂxl + f%}xz + x3 + f%}x;; > i—i =
2x1 + 2% + 3 + X > {5 =
2x1 + 2x + x3 + xa > [2] =
2x1 + 2x + x3 + x4 = 7

» Notice that an integer greater or equal to 6 + % must be
greater or equal to 7.
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variable.

» Consider the example above with the addition of a continuous

> Let X = PN (Z* x R) where:

P={(y,s) € R% x Ry : 13y; + 20y> + 11ys + 6ys + s > 72}
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» Consider the example above with the addition of a continuous
variable.

> Let X = PN (Z* x R) where:

P={(y,s) € R% x Ry : 13y; + 20y> + 11ys + 6ys + s > 72}

1

Bt

» Dividing the inequality by 11, we obtain

ﬁ)@ + %}/4 +
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» \We can observe that

21+ 2+ 3+ oy 2> ]&1 = 7 ses=0
21+ 2 + 3 + oy = [B2] = 6 ses=6
» This suggest the following valid inequality
2y1 + 2y tys+ystas
for some a.

=7

. . 1
The above inequality is valid for a > ¢
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Theory of Valid Inequalities
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Theory of Valid Inequalities

The concepts on valid inequalities will be investigated in more
depth.
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» Consider the polyhedron:

P={x:Ax < b,x >0}
and the inequality inequality:

XSTI'()
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Valid Inequalities for Linear Programs

» Consider the polyhedron:

P={x:Ax < b,x >0}
and the inequality inequality:

XST('O

» |s the inequality (7, mg) valid for P?
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Proposition
7TTX

uTb < mo, or

< o is valid for P = {x : Ax < b,x > 0} # () if, and only if,
a) there exists u > 0 and v > 0 such that uTA—vT =77 and

b) there exists u > 0 such that u” A > 77 and u” b < 7o
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Valid Inequalities for Linear Programs

Proof (b)

If there exists u > 0 such that u” A > 77 and u” b < 7, then any
x € P,

Ax< b= uT Ax < uThb

= 7lx < uT Ax < u'b < 7o

= (m,mo) is a valid inequality.
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Valid Inequalities for Integer Programs

Proposition

The inequality y < |b] is valid for X = {y € Z : y < b}.



Optlntro
L Theory of Valid Inequalities
LVaIid Inequalities for Integer Programs

30/39

Valid Inequalities for Integer Programs

Example

We can use the proposition above to generate valid inequalities for
the polyhedron given by the following inequalities:

x1—2xp < 14
X2 <
2x1 — 2xp <
x 2= 0, x integer
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Valid Inequalities for Integer Programs
Example
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) Multiplying the constraint by a vector of nonnegative values
u= (7, 63,O) we obtain a valid inequality:

o i Ly, o120
T 632 S o1
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Valid Inequalities for Integer Programs
Example

i) Multiplying the constraint by a vector of nonnegative values
u= (7, 63,0) we obtain a valid inequality:
121

1
—xy <
Pat gz s 5

i) Reducing the coefficients on the left-hand size to the nearest
integer, we obtain:

121

2X]_ + OX2 < E
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Valid Inequalities for Integer Programs

Example
iii) Since the left-hand size assumes integer values, we can reduce

the right-hand side to the nearest integer, leading to another
inequality:

= x1 <2

N
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» The CG (Chvatal-Gomory) procedure formalizes the steps
program.

followed about to genera all valid inequalities of an integer
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Chvatal-Gomory Procedure

» The CG (Chvatal-Gomory) procedure formalizes the steps
followed about to genera all valid inequalities of an integer
program.

> Let X = PN Z" be a set of solutions where:

» P ={x€R] : Ax < b} is a polyhedron, and
» A€ R™"is a matrix with coluns {a1, az,...,an}.
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Given u € R'7, the procedure consists of the following steps
Step 1: the inequality:

n
g uTaJ-xJ- < u'b
j=1

n

is valid for P because v > 0 and ) ajx;

ixj < b.
Jj=1
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Step 2: The inequality:

n

j=1

> luTayly < uTh

is valid for P since x > 0.
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Step 3: The inequality

> luTajlx < [uTb)
j=1

n

ZLUTQJ'

| xj
j=1

is valid for P since x is integer and further because

is integer.
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Important

The fact that the CG procedure can vyield all valid inequalities of an
integer program is of major relevance.
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Theorem

Every valid inequality for X can be obtained by application of a
finite number of the Chvatal-Gomory procedure.
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» Thank you for attending this lecture!!!



