Integer Programming: Cutting Planes

Eduardo Camponogara
Department of Automation and Systems Engineering
Federal University of Santa Catarina

October 2016

Introduction

Examples of Valid Inequalities

Theory of Valid Inequalities
OptIntro

L Introduction

Summary

Introduction

Examples of Valid Inequalities

Theory of Valid Inequalities

Introduction

Agenda

- Study of cutting-plane algorithms that add valid inequalities to the linear relaxation until an integer solution is obtained.
- Gomory cuts, which can be applied to any integer linear program (or mixed-integer).
- Cutes that are specialized for specific problems.

Introduction to Cutting Planes

Integer Problem
The integer problem its general form:
IP : $\quad \max \left\{c^{\top} x: x \in X\right\}, \quad$ where $X=\left\{x: A x \leqslant b, x \in \mathbb{Z}_{+}^{n}\right\}$

Proposition
$\operatorname{conv}(X)=\{x: \tilde{A} x \leqslant \tilde{b}, x \geqslant 0\}$ is a polyhedron.

Introduction to Cutting Planes

Integer Problem

The integer problem its general form:
IP : $\quad \max \left\{c^{\top} x: x \in X\right\}, \quad$ where $X=\left\{x: A x \leqslant b, x \in \mathbb{Z}_{+}^{n}\right\}$

Proposition
$\operatorname{conv}(X)=\{x: \tilde{A} x \leqslant \tilde{b}, x \geqslant 0\}$ is a polyhedron.

Introduction to Cutting Planes

- The result above states that $I P$ can be reformulated as a linear programming problem:

$$
L P: \quad \max \left\{c^{\top} x: \tilde{A} x \leqslant \tilde{b}, x \geqslant 0\right\}
$$

- Notice that any extreme point of this $L P$ is an optimal solution of $I P$.
- For some problems, such as the network flow problem, a complete description of $\operatorname{conv}(X)$ is known.

Introduction to Cutting Planes

- In general, and particularly for NP-Hard problems, there is no hope of finding a complete description of $\operatorname{conv}(X)$.
- In other situations, such a description can contain an exponential number of constraints/inequalities.
- Given an NP-Hard problem, here the concern is on finding an approximation for $\operatorname{conv}(X)$.
- An approximation will be constructed gradually, by adding valid and nontrivial inequalities, preferably inequalities that touch the polyhedron that describes conv (X).

Introduction to Cutting Planes

- In general, and particularly for NP-Hard problems, there is no hope of finding a complete description of $\operatorname{conv}(X)$.
- In other situations, such a description can contain an exponential number of constraints/inequalities.
- Given an NP-Hard problem, here the concern is on finding an approximation for $\operatorname{conv}(X)$.
- An approximation will be constructed gradually, by adding valid and nontrivial inequalities, preferably inequalities that touch the polyhedron that describes $\operatorname{conv}(X)$.

Introduction to Cutting Planes

Valid Inequalities

An inequality $\pi^{T} x \leqslant \pi_{0}$ is valid for $X \subseteq \mathbb{R}^{n}$ if $\pi^{T} x \leqslant \pi_{0}$ for all $x \in X$.

Questions
Some issues come up:
a) Which inequalities are "useful?"
b) If know a family of valid inequalities for a given problem, how can we use them effectively?

Introduction to Cutting Planes

Valid Inequalities
An inequality $\pi^{T} x \leqslant \pi_{0}$ is valid for $X \subseteq \mathbb{R}^{n}$ if $\pi^{T} x \leqslant \pi_{0}$ for all $x \in X$.

Questions
Some issues come up:
a) Which inequalities are "useful?"
b) If know a family of valid inequalities for a given problem, how can we use them effectively?

OptIntro

LExamples of Valid Inequalities

Summary

Introduction

Examples of Valid Inequalities

Theory of Valid Inequalities

Introduction to Cutting Planes

Topics
Examples of valid inequalities expressing logic conditions will be presented.

Pure 0-1 Set

- The feasible set X of solution for a $0-1$ knapsack problem is given by:

$$
X=\left\{x \in B^{5}: 3 x_{1}-4 x_{2}+2 x_{3}-3 x_{4}+x_{5} \leqslant-2\right\}
$$

- For $x_{2}=x_{4}=0$, we have the inequality:
which becomes impossible to meet.
- Thus, we conclude that solution must satisfy:

Pure 0-1 Set

- The feasible set X of solution for a $0-1$ knapsack problem is given by:

$$
X=\left\{x \in B^{5}: 3 x_{1}-4 x_{2}+2 x_{3}-3 x_{4}+x_{5} \leqslant-2\right\}
$$

- For $x_{2}=x_{4}=0$, we have the inequality:

$$
3 x_{1}+2 x_{3}+x_{5} \leqslant-2
$$

which becomes impossible to meet.

- Thus, we conclude that solution must satisfy:

Pure 0-1 Set

- The feasible set X of solution for a $0-1$ knapsack problem is given by:

$$
X=\left\{x \in B^{5}: 3 x_{1}-4 x_{2}+2 x_{3}-3 x_{4}+x_{5} \leqslant-2\right\}
$$

- For $x_{2}=x_{4}=0$, we have the inequality:

$$
3 x_{1}+2 x_{3}+x_{5} \leqslant-2
$$

which becomes impossible to meet.

- Thus, we conclude that solution must satisfy:

$$
x_{2}+x_{4} \geqslant 1
$$

Pure 0-1 Set

- If $x_{1}=1$ e $x_{2}=0$, the following inequality results:

$$
2 x_{3}-3 x_{4}+x_{5} \leqslant-5
$$

which cannot be satisfied.

- Thus:
is a valid inequality, which can be introduced in the formulation of X.

Pure 0-1 Set

- If $x_{1}=1$ e $x_{2}=0$, the following inequality results:

$$
2 x_{3}-3 x_{4}+x_{5} \leqslant-5
$$

which cannot be satisfied.

- Thus:

$$
x_{1} \leqslant x_{2}
$$

is a valid inequality, which can be introduced in the formulation of X.

Pure 0-1 Set

From the above deductions, we can propose a revised formulation for the problem at hand:

$$
\begin{aligned}
X=\left\{x \in B^{5}:\right. & 3 x_{1}-4 x_{2}+2 x_{3}-3 x_{4}+x_{5} \leqslant-2 \\
& x_{2}+x_{4} \geqslant 1 \\
& \left.x_{1} \leqslant x_{2}\right\}
\end{aligned}
$$

Mixed-Integer 0-1 Set

- A example of mixed-integer (continuous and discrete) set of solutions X is:

$$
X=\{(x, y): x \leqslant 9999 y, 0 \leqslant x \leqslant 5, y \in \mathbb{B}\}
$$

- It is easy to verify the validity of the inequality $x \leqslant 5 y$.

Mixed-Integer 0-1 Set

- A example of mixed-integer (continuous and discrete) set of solutions X is:

$$
X=\{(x, y): x \leqslant 9999 y, 0 \leqslant x \leqslant 5, y \in \mathbb{B}\}
$$

- It is easy to verify the validity of the inequality $x \leqslant 5 y$.

Mixed-Integer 0-1 Set

- Consider the set:

$$
X=\left\{(x, y): 0 \leqslant x \leqslant 10 y, 0 \leqslant x \leqslant 14, y \in \mathbb{Z}_{+}\right\}
$$

- We can verify the validity of the inequality:

$$
x \leqslant 14-4(2-y)
$$

LExamples of Valid Inequalities
$\square_{\text {Mixed-Integer 0-1 Set }}$

Mixed-Integer 0-1 Set

Combinatorial Set

Let X be the set of incidence vectors for the matching problem:

$$
X=\left\{x \in \mathbb{Z}_{+}^{|E|}: \sum_{e \in \delta(i)} x_{e} \leqslant 1 \quad \text { for all } i \in V\right\}
$$

where:

- $G=(V, E)$ is an undirected graph;
- $\delta(i)=\{e \in E: e=(i, j)$ for some $j \in V\}$.

Combinatorial Set

- Let $T \subseteq V$ be any edge set of odd cardinality.
- The number of edges having both ends in T is at most $(|T|-1) / 2$, therefore we obtain the inequality:

$$
\sum_{e \in E(T)} x_{e} \leqslant \frac{|T|-1}{2}
$$

Combinatorial Set

- $\operatorname{conv}(X)$ can be obtained by adding all inequalities of the family above.
- That is, $\operatorname{conv}(X)$ is precisely the polyhedron given by:

Combinatorial Set

- $\operatorname{conv}(X)$ can be obtained by adding all inequalities of the family above.
- That is, $\operatorname{conv}(X)$ is precisely the polyhedron given by:

$$
\begin{array}{rll}
\left\{x \in \mathbb{R}_{+}^{|E|}:\right. & \sum_{e \in \delta(i)} x_{e} \leqslant 1 & \forall i \in V \\
& \left.\sum_{e \in E(T)} x_{e} \leqslant \frac{|T|-1}{2} \quad \forall T \subseteq V,|T| \text { odd and }|T| \geqslant 3\right\}
\end{array}
$$

LExamples of Valid Inequalities
LInteger Rounding

Integer Rounding

- Consider the regions:

$$
\begin{aligned}
X & =P \cap \mathbb{Z}^{4} \mathrm{e} \\
P & =\left\{x \in \mathbb{R}_{+}^{4}: 13 x_{1}+20 x_{2}+11 x_{3}+6 x_{4} \geqslant 72\right\}
\end{aligned}
$$

- Diving the inequality by 11 , we obtain the following inequality valid

Integer Rounding

- Consider the regions:

$$
\begin{aligned}
X & =P \cap \mathbb{Z}^{4} \mathrm{e} \\
P & =\left\{x \in \mathbb{R}_{+}^{4}: 13 x_{1}+20 x_{2}+11 x_{3}+6 x_{4} \geqslant 72\right\}
\end{aligned}
$$

- Diving the inequality by 11 , we obtain the following inequality valid for P :

$$
\frac{13}{11} x_{1}+\frac{20}{11} x_{2}+\frac{11}{11} x_{3}+\frac{6}{11} x_{4} \geqslant \frac{72}{11}
$$

Integer Rounding

- Since $x \geqslant 0$, we can round the coefficients of x to the nearest integer:

| $\left\lceil\frac{13}{11}\right\rceil x_{1}$ | $+\left\lceil\frac{20}{11}\right\rceil x_{2}$ | $+x_{3}+\left\lceil\frac{6}{11}\right\rceil x_{4}$ | $\geqslant \frac{72}{11}$ | \Rightarrow |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $2 x_{1}$ | $+2 x_{2}$ | $+x_{3}+x_{4}$ | $\geqslant \frac{72}{11}$ | \Rightarrow |
| $2 x_{1}$ | $+2 x_{2}$ | $+x_{3}+x_{4}$ | $\geqslant\left\lceil\frac{72}{11}\right\rceil$ | \Rightarrow |
| $2 x_{1}$ | $+2 x_{2}$ | $+x_{3}+x_{4}$ | $\geqslant 7$ | |

- Notice that an integer greater or equal to $6+\frac{6}{11}$ must be greater or equal to 7 .

Integer Rounding

- Since $x \geqslant 0$, we can round the coefficients of x to the nearest integer:

- Notice that an integer greater or equal to $6+\frac{6}{11}$ must be greater or equal to 7 .

Mixed-Integer Rounding

- Consider the example above with the addition of a continuous variable.
- Let $X=P \cap\left(\mathbb{Z}^{4} \times \mathbb{R}\right)$ where:

$$
P=\left\{(y, s) \in \mathbb{R}_{+}^{4} \times \mathbb{R}_{+}: 13 y_{1}+20 y_{2}+11 y_{3}+6 y_{4}+s \geqslant 72\right\}
$$

- Dividing the inequality by 11 , we obtain

Mixed-Integer Rounding

- Consider the example above with the addition of a continuous variable.
- Let $X=P \cap\left(\mathbb{Z}^{4} \times \mathbb{R}\right)$ where:

$$
P=\left\{(y, s) \in \mathbb{R}_{+}^{4} \times \mathbb{R}_{+}: 13 y_{1}+20 y_{2}+11 y_{3}+6 y_{4}+s \geqslant 72\right\}
$$

- Dividing the inequality by 11 , we obtain

$$
\begin{aligned}
\frac{13}{11} y_{1}+\frac{20}{11} y_{2}+\frac{11}{11} y_{3}+\frac{6}{11} y_{4}+\frac{s}{11} & \geqslant \frac{72}{11} \Rightarrow \\
\frac{13}{11} y_{1}+\frac{20}{11} y_{2}+\frac{11}{11} y_{3}+\frac{6}{11} y_{4} & \geqslant \frac{72-s}{11}
\end{aligned}
$$

Mixed-Integer Rounding

- We can observe that:

$$
\begin{aligned}
& 2 y_{1}+2 y_{2}+y_{3}+y_{4} \geqslant\left\lceil\frac{72}{11}\right\rceil=7 \\
& 2 y_{1}+2 y_{2}+y_{3}+y_{4} \geqslant\left\lceil\frac{72-6}{11}\right\rceil=6 \quad \text { se } s=0 \\
& \text { se } s=6
\end{aligned}
$$

- This suggest the following valid inequality:

$$
2 y_{1}+2 y_{2}+y_{3}+y_{4}+\alpha s \geqslant 7
$$

for some α.
The above inequality is valid for $\alpha \geqslant \frac{1}{6}$.

LTheory of Valid Inequalities

Summary

Introduction

Examples of Valid Inequalities

Theory of Valid Inequalities
OptIntro

Theory of Valid Inequalities

The concepts on valid inequalities will be investigated in more depth.

Valid Inequalities for Linear Programs

- Consider the polyhedron:

$$
P=\{x: A x \leqslant b, x \geqslant 0\}
$$

and the inequality inequality:

$$
\pi^{T} x \leqslant \pi_{0}
$$

- Is the inequality $\left(\pi, \pi_{0}\right)$ valid for P ?

Valid Inequalities for Linear Programs

- Consider the polyhedron:

$$
P=\{x: A x \leqslant b, x \geqslant 0\}
$$

and the inequality inequality:

$$
\pi^{T} x \leqslant \pi_{0}
$$

- Is the inequality $\left(\pi, \pi_{0}\right)$ valid for P ?

Valid Inequalities for Linear Programs

Proposition
$\pi^{T} x \leqslant \pi_{0}$ is valid for $P=\{x: A x \leqslant b, x \geqslant 0\} \neq \emptyset$ if, and only if,
a) there exists $u \geqslant 0$ and $v \geqslant 0$ such that $u^{T} A-v^{T}=\pi^{T}$ and $u^{T} b \leqslant \pi_{0}$, or
b) there exists $u \geqslant 0$ such that $u^{T} A \geqslant \pi^{T}$ and $u^{T} b \leqslant \pi_{0}$

Valid Inequalities for Linear Programs

Proof (b)
If there exists $u \geqslant 0$ such that $u^{T} A \geqslant \pi^{T}$ and $u^{T} b \leqslant \pi_{0}$, then any $x \in P$,

$$
\begin{aligned}
A x \leqslant b & \Rightarrow u^{T} A x \leqslant u^{T} b \\
& \Rightarrow \pi^{T} x \leqslant u^{T} A x \leqslant u^{T} b \leqslant \pi_{0} \\
& \Rightarrow\left(\pi, \pi_{0}\right) \text { is a valid inequality. }
\end{aligned}
$$

Valid Inequalities for Integer Programs

Proposition
The inequality $y \leqslant\lfloor b\rfloor$ is valid for $X=\{y \in \mathbb{Z}: y \leqslant b\}$.

Valid Inequalities for Integer Programs

Example

We can use the proposition above to generate valid inequalities for the polyhedron given by the following inequalities:

$$
\begin{aligned}
7 x_{1}-2 x_{2} & \leqslant 14 \\
x_{2} & \leqslant 3 \\
2 x_{1}-2 x_{2} & \leqslant 3 \\
x & \geqslant 0, \quad x \text { integer }
\end{aligned}
$$

Valid Inequalities for Integer Programs

Example
i) Multiplying the constraint by a vector of nonnegative values $u=\left(\frac{2}{7}, \frac{37}{63}, 0\right)$, we obtain a valid inequality:

$$
2 x_{1}+\frac{1}{63} x_{2} \leqslant \frac{121}{21}
$$

ii) Reducing the coefficients on the left-hand size to the nearest integer, we obtain:

Valid Inequalities for Integer Programs

Example
i) Multiplying the constraint by a vector of nonnegative values $u=\left(\frac{2}{7}, \frac{37}{63}, 0\right)$, we obtain a valid inequality:

$$
2 x_{1}+\frac{1}{63} x_{2} \leqslant \frac{121}{21}
$$

ii) Reducing the coefficients on the left-hand size to the nearest integer, we obtain:

$$
2 x_{1}+0 x_{2} \leqslant \frac{121}{21}
$$

Valid Inequalities for Integer Programs

Example
iii) Since the left-hand size assumes integer values, we can reduce the right-hand side to the nearest integer, leading to another inequality:

$$
2 x_{1} \leqslant\left\lfloor\frac{121}{21}\right\rfloor=5 \Rightarrow x_{1} \leqslant \frac{5}{2} \Rightarrow x_{1} \leqslant 2
$$

Chvátal-Gomory Procedure

- The CG (Chvátal-Gomory) procedure formalizes the steps followed about to genera all valid inequalities of an integer program.
- Let $X=P \cap \mathbb{Z}^{n}$ be a set of solutions where: - $P=\left\{x \in \mathbb{R}_{+}^{n}: A x \leqslant b\right\}$ is a polyhedron, and - $A \in \mathbb{R}^{m \times n}$ is a matrix with coluns $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$

Chvátal-Gomory Procedure

- The CG (Chvátal-Gomory) procedure formalizes the steps followed about to genera all valid inequalities of an integer program.
- Let $X=P \cap \mathbb{Z}^{n}$ be a set of solutions where:
- $P=\left\{x \in \mathbb{R}_{+}^{n}: A x \leqslant b\right\}$ is a polyhedron, and
- $A \in \mathbb{R}^{m \times n}$ is a matrix with coluns $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.

Chvátal-Gomory Procedure

Given $u \in \mathbb{R}_{+}^{m}$, the procedure consists of the following steps:
Step 1: the inequality:

$$
\sum_{j=1}^{n} u^{T} a_{j} x_{j} \leqslant u^{T} b
$$

is valid for P because $u \geqslant 0$ and $\sum_{j=1}^{n} a_{j} x_{j} \leqslant b$.

Chvátal-Gomory Procedure

Step 2: The inequality:

$$
\sum_{j=1}^{n}\left\lfloor u^{T} a_{j}\right\rfloor x_{j} \leqslant u^{T} b
$$

is valid for P since $x \geqslant 0$.

Chvátal-Gomory Procedure

Step 3: The inequality

$$
\sum_{j=1}^{n}\left\lfloor u^{T} a_{j}\right\rfloor x_{j} \leqslant\left\lfloor u^{T} b\right\rfloor
$$

is valid for P since x is integer and further because

$$
\sum_{j=1}^{n}\left\lfloor u^{T} a_{j}\right\rfloor x_{j}
$$

is integer.

Chvátal-Gomory Procedure

Important

The fact that the CG procedure can yield all valid inequalities of an integer program is of major relevance.

Chvátal-Gomory Procedure

Theorem
Every valid inequality for X can be obtained by application of a finite number of the Chvátal-Gomory procedure.

Cutting Planes

- Thank you for attending this lecture!!!

