▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Integer Programming: Cutting Planes

Eduardo Camponogara

Department of Automation and Systems Engineering Federal University of Santa Catarina

October 2016

Examples of Valid Inequalities

Theory of Valid Inequalities

Summary

Introduction

Examples of Valid Inequalities

Theory of Valid Inequalities

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Agenda

- Study of cutting-plane algorithms that add valid inequalities to the linear relaxation until an integer solution is obtained.
- Gomory cuts, which can be applied to any integer linear program (or mixed-integer).
- Cutes that are specialized for specific problems.

Introduction to Cutting Planes

Integer Problem

The integer problem its general form:

 $IP: \quad \max\{c^T x : x \in X\}, \quad \text{where } X = \{x : Ax \leq b, x \in \mathbb{Z}_+^n\}$

Proposition $conv(X) = \{x : \widetilde{A}x \leqslant \widetilde{b}, x \geqslant 0\}$ is a polyhedron.

Introduction to Cutting Planes

Integer Problem

The integer problem its general form:

 $IP: \quad \max\{c^T x : x \in X\}, \quad \text{where } X = \{x : Ax \leq b, x \in \mathbb{Z}_+^n\}$

Proposition $conv(X) = \{x : \tilde{A}x \leq \tilde{b}, x \geq 0\}$ is a polyhedron.

The result above states that IP can be reformulated as a linear programming problem:

$$LP: \qquad \max\{c^{\mathsf{T}}x: \tilde{A}x \leqslant \tilde{b}, x \ge 0\}$$

- Notice that any extreme point of this LP is an optimal solution of IP.
- For some problems, such as the network flow problem, a complete description of conv(X) is known.

- In general, and particularly for NP-Hard problems, there is no hope of finding a complete description of conv(X).
- In other situations, such a description can contain an exponential number of constraints/inequalities.
- ▶ Given an NP-Hard problem, here the concern is on finding an approximation for conv(X).
- An approximation will be constructed gradually, by adding valid and nontrivial inequalities, preferably inequalities that touch the polyhedron that describes *conv(X)*.

- In general, and particularly for NP-Hard problems, there is no hope of finding a complete description of conv(X).
- In other situations, such a description can contain an exponential number of constraints/inequalities.
- ► Given an NP-Hard problem, here the concern is on finding an approximation for conv(X).
- An approximation will be constructed gradually, by adding valid and nontrivial inequalities, preferably inequalities that touch the polyhedron that describes conv(X).

Valid Inequalities

An inequality $\pi^T x \leq \pi_0$ is valid for $X \subseteq \mathbb{R}^n$ if $\pi^T x \leq \pi_0$ for all $x \in X$.

Questions

Some issues come up:

- a) Which inequalities are "useful?"
- b) If know a family of valid inequalities for a given problem, how can we use them effectively?

Valid Inequalities

An inequality $\pi^T x \leq \pi_0$ is valid for $X \subseteq \mathbb{R}^n$ if $\pi^T x \leq \pi_0$ for all $x \in X$.

Questions

Some issues come up:

- a) Which inequalities are "useful?"
- b) If know a family of valid inequalities for a given problem, how can we use them effectively?

Summary

Introduction

Examples of Valid Inequalities

Theory of Valid Inequalities

Topics

Examples of valid inequalities expressing logic conditions will be presented.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The feasible set X of solution for a 0-1 knapsack problem is given by:

$$X = \{x \in B^5 : 3x_1 - 4x_2 + 2x_3 - 3x_4 + x_5 \leqslant -2\}$$

For $x_2 = x_4 = 0$, we have the inequality:

 $3x_1 + 2x_3 + x_5 \leqslant -2$

which becomes impossible to meet.

Thus, we conclude that solution must satisfy:

 $x_2 + x_4 \ge 1$

The feasible set X of solution for a 0-1 knapsack problem is given by:

$$X = \{x \in B^5 : 3x_1 - 4x_2 + 2x_3 - 3x_4 + x_5 \leqslant -2\}$$

• For $x_2 = x_4 = 0$, we have the inequality:

 $3x_1 + 2x_3 + x_5 \leqslant -2$

which becomes impossible to meet.

Thus, we conclude that solution must satisfy:

 $x_2 + x_4 \ge 1$

The feasible set X of solution for a 0-1 knapsack problem is given by:

$$X = \{x \in B^5 : 3x_1 - 4x_2 + 2x_3 - 3x_4 + x_5 \leqslant -2\}$$

• For $x_2 = x_4 = 0$, we have the inequality:

 $3x_1 + 2x_3 + x_5 \leqslant -2$

which becomes impossible to meet.

Thus, we conclude that solution must satisfy:

 $x_2 + x_4 \ge 1$

• If $x_1 = 1$ e $x_2 = 0$, the following inequality results:

 $2x_3 - 3x_4 + x_5 \leqslant -5$

which cannot be satisfied.

► Thus:

$x_1 \leqslant x_2$

is a valid inequality, which can be introduced in the formulation of *X*.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

• If $x_1 = 1$ e $x_2 = 0$, the following inequality results:

 $2x_3 - 3x_4 + x_5 \leqslant -5$

which cannot be satisfied.

Thus:

 $x_1 \leqslant x_2$

is a valid inequality, which can be introduced in the formulation of X.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

From the above deductions, we can propose a revised formulation for the problem at hand:

$$X = \{ x \in B^5 : 3x_1 - 4x_2 + 2x_3 - 3x_4 + x_5 \leqslant -2 \\ x_2 + x_4 \geqslant 1 \\ x_1 \leqslant x_2 \}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Mixed-Integer 0-1 Set

Mixed-Integer 0-1 Set

A example of mixed-integer (continuous and discrete) set of solutions X is:

 $X = \{(x, y) : x \leqslant 9999y, 0 \leqslant x \leqslant 5, y \in \mathbb{B}\}$

• It is easy to verify the validity of the inequality $x \leq 5y$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Mixed-Integer 0-1 Set

Mixed-Integer 0-1 Set

A example of mixed-integer (continuous and discrete) set of solutions X is:

 $X = \{(x, y) : x \leqslant 9999y, 0 \leqslant x \leqslant 5, y \in \mathbb{B}\}$

• It is easy to verify the validity of the inequality $x \leq 5y$.

Mixed-Integer 0-1 Set

Mixed-Integer 0-1 Set

Consider the set:

 $X = \{(x, y) : 0 \leqslant x \leqslant 10y, 0 \leqslant x \leqslant 14, y \in \mathbb{Z}_+\}$

We can verify the validity of the inequality:

 $x \leqslant 14 - 4(2 - y)$

Mixed-Integer 0-1 Set

Mixed-Integer 0-1 Set

Combinatorial Set

Combinatorial Set

Let X be the set of incidence vectors for the matching problem:

$$X = \{x \in \mathbb{Z}^{|\mathcal{E}|}_+ : \sum_{e \in \delta(i)} x_e \leqslant 1 \quad ext{ for all } i \in V\}$$

where:

- G = (V, E) is an undirected graph;
- ► $\delta(i) = \{ e \in E : e = (i, j) \text{ for some } j \in V \}.$

Combinatorial Set

Combinatorial Set

- Let $T \subseteq V$ be any edge set of odd cardinality.
- ► The number of edges having both ends in T is at most (|T| 1)/2, therefore we obtain the inequality:

$$\sum_{e\in E(T)} x_e \leqslant \frac{|T|-1}{2}$$

Combinatorial Set

Combinatorial Set

- conv(X) can be obtained by adding all inequalities of the family above.
- That is, conv(X) is precisely the polyhedron given by:

$$\{ x \in \mathbb{R}_{+}^{|E|} : \sum_{e \in \delta(i)} x_{e} \leq 1 \qquad \forall i \in V$$
$$\sum_{e \in E(T)} x_{e} \leq \frac{|T|-1}{2} \quad \forall T \subseteq V, |T| \text{ odd and } |T| \geq 3 \}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Combinatorial Set

Combinatorial Set

- conv(X) can be obtained by adding all inequalities of the family above.
- That is, conv(X) is precisely the polyhedron given by:

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Integer Rounding

Integer Rounding

Consider the regions:

 $\begin{array}{rcl} X & = & P \cap \mathbb{Z}^4 \ \mathrm{e} \\ P & = & \{ x \in \mathbb{R}^4_+ : 13x_1 + 20x_2 + 11x_3 + 6x_4 \geqslant 72 \} \end{array}$

Diving the inequality by 11, we obtain the following inequality valid for P:

 13
 20
 11
 6
 72

 $\frac{13}{11}x_1 + \frac{20}{11}x_2 + \frac{11}{11}x_3 + \frac{6}{11}x_4 \ge \frac{72}{11}$

Integer Rounding

Integer Rounding

Consider the regions:

 $\begin{array}{rcl} X & = & P \cap \mathbb{Z}^4 \ \mathrm{e} \\ P & = & \{ x \in \mathbb{R}^4_+ : 13x_1 + 20x_2 + 11x_3 + 6x_4 \ge 72 \} \end{array}$

Diving the inequality by 11, we obtain the following inequality valid for P:

 13
 20
 11
 6
 72

 $\frac{13}{11}x_1 + \frac{20}{11}x_2 + \frac{11}{11}x_3 + \frac{6}{11}x_4 \ge \frac{72}{11}$

Integer Rounding

Since x ≥ 0, we can round the coefficients of x to the nearest integer:

$$\begin{bmatrix} \frac{13}{11} \\ x_1 \end{bmatrix} + \begin{bmatrix} \frac{20}{11} \\ x_2 \end{bmatrix} + \begin{bmatrix} x_3 \\ x_3 \end{bmatrix} + \begin{bmatrix} \frac{6}{11} \\ 1 \end{bmatrix} + \begin{bmatrix} \frac{72}{11} \\ x_4 \end{bmatrix} \Rightarrow \begin{bmatrix} \frac{72}{11} \\ \frac{72}{11} \end{bmatrix} \Rightarrow 2x_1 + 2x_2 + x_3 + x_4 \Rightarrow \begin{bmatrix} \frac{72}{11} \\ \frac{72}{11} \end{bmatrix} \Rightarrow 2x_1 + 2x_2 + x_3 + x_4 \Rightarrow \begin{bmatrix} \frac{72}{11} \\ \frac{72}{11} \end{bmatrix} \Rightarrow 2x_1 + 2x_2 + x_3 + x_4 \Rightarrow 7$$

Notice that an integer greater or equal to 6 + ⁶/₁₁ must be greater or equal to 7.

Integer Rounding

Integer Rounding

Since x ≥ 0, we can round the coefficients of x to the nearest integer:

$$\begin{bmatrix} \frac{13}{11} \end{bmatrix} x_1 + \begin{bmatrix} \frac{20}{11} \end{bmatrix} x_2 + x_3 + \begin{bmatrix} \frac{6}{11} \end{bmatrix} x_4 \ge \frac{72}{11} \Rightarrow 2x_1 + 2x_2 + x_3 + x_4 \ge \frac{72}{11} \Rightarrow 2x_1 + 2x_2 + x_3 + x_4 \ge \begin{bmatrix} \frac{72}{11} \end{bmatrix} \Rightarrow 2x_1 + 2x_2 + x_3 + x_4 \ge \begin{bmatrix} \frac{72}{11} \end{bmatrix} \Rightarrow 2x_1 + 2x_2 + x_3 + x_4 \ge 7$$

Notice that an integer greater or equal to 6 + ⁶/₁₁ must be greater or equal to 7.

Mixed-Integer Rounding

- Consider the example above with the addition of a continuous variable.
- Let $X = P \cap (\mathbb{Z}^4 \times \mathbb{R})$ where:

 $P = \{(y, s) \in \mathbb{R}^4_+ \times \mathbb{R}_+ : 13y_1 + 20y_2 + 11y_3 + 6y_4 + s \ge 72\}$

Dividing the inequality by 11, we obtain

Mixed-Integer Rounding

- Consider the example above with the addition of a continuous variable.
- Let $X = P \cap (\mathbb{Z}^4 \times \mathbb{R})$ where:

 $P = \{(y, s) \in \mathbb{R}^4_+ \times \mathbb{R}_+ : 13y_1 + 20y_2 + 11y_3 + 6y_4 + s \ge 72\}$

Dividing the inequality by 11, we obtain

Mixed-Integer Rounding

Mixed-Integer Rounding

We can observe that:

This suggest the following valid inequality:

 $2y_1 + 2y_2 + y_3 + y_4 + \alpha s \ge 7$

for some α .

The above inequality is valid for $\alpha \ge \frac{1}{6}$.

Summary

Introduction

Examples of Valid Inequalities

Theory of Valid Inequalities

(ロ)、(型)、(E)、(E)、 E) のQ(()

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theory of Valid Inequalities

The concepts on valid inequalities will be investigated in more depth.

└─Valid Inequalities for Linear Programs

Valid Inequalities for Linear Programs

Consider the polyhedron:

 $P = \{x : Ax \leqslant b, x \ge 0\}$

and the inequality inequality:

 $\pi^T x \leqslant \pi_0.$

▶ Is the inequality (π, π_0) valid for *P*?

└─Valid Inequalities for Linear Programs

Valid Inequalities for Linear Programs

Consider the polyhedron:

 $P = \{x : Ax \leqslant b, x \ge 0\}$

and the inequality inequality:

 $\pi^T x \leqslant \pi_0.$

• Is the inequality (π, π_0) valid for *P*?

└─ Valid Inequalities for Linear Programs

27 / 39

Valid Inequalities for Linear Programs

Proposition

 $\pi^T x \leq \pi_0$ is valid for $P = \{x : Ax \leq b, x \geq 0\} \neq \emptyset$ if, and only if,

- a) there exists $u \ge 0$ and $v \ge 0$ such that $u^T A v^T = \pi^T$ and $u^T b \le \pi_0$, or
- b) there exists $u \ge 0$ such that $u^T A \ge \pi^T$ and $u^T b \le \pi_0$

└─Valid Inequalities for Linear Programs

28 / 39

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Valid Inequalities for Linear Programs

Proof (b)

If there exists $u \ge 0$ such that $u^T A \ge \pi^T$ and $u^T b \le \pi_0$, then any $x \in P$,

$$\begin{aligned} Ax \leqslant b \Rightarrow u^T Ax \leqslant u^T b \\ \Rightarrow \pi^T x \leqslant u^T Ax \leqslant u^T b \leqslant \pi_0 \\ \Rightarrow (\pi, \pi_0) \text{ is a valid inequality} \end{aligned}$$

└─Valid Inequalities for Integer Programs

Valid Inequalities for Integer Programs

Proposition

The inequality $y \leq \lfloor b \rfloor$ is valid for $X = \{y \in \mathbb{Z} : y \leq b\}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

└─Valid Inequalities for Integer Programs

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Valid Inequalities for Integer Programs

Example

We can use the proposition above to generate valid inequalities for the polyhedron given by the following inequalities:

$$7x_1 - 2x_2 \leqslant 14$$

$$x_2 \leqslant 3$$

$$2x_1 - 2x_2 \leqslant 3$$

$$x \geqslant 0, x \text{ integen}$$

└─Valid Inequalities for Integer Programs

Valid Inequalities for Integer Programs

Example

i) Multiplying the constraint by a vector of nonnegative values $u = (\frac{2}{7}, \frac{37}{63}, 0)$, we obtain a valid inequality:

$$2x_1 + \frac{1}{63}x_2 \leqslant \frac{121}{21}$$

ii) Reducing the coefficients on the left-hand size to the nearest integer, we obtain:

$$2x_1 + 0x_2 \leqslant \frac{121}{21}$$

└─Valid Inequalities for Integer Programs

Valid Inequalities for Integer Programs

Example

i) Multiplying the constraint by a vector of nonnegative values $u = (\frac{2}{7}, \frac{37}{63}, 0)$, we obtain a valid inequality:

$$2x_1 + \frac{1}{63}x_2 \leqslant \frac{121}{21}$$

ii) Reducing the coefficients on the left-hand size to the nearest integer, we obtain:

$$2x_1 + 0x_2 \leqslant \frac{121}{21}$$

└─Valid Inequalities for Integer Programs

32 / 39

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Valid Inequalities for Integer Programs

Example

iii) Since the left-hand size assumes integer values, we can reduce the right-hand side to the nearest integer, leading to another inequality:

$$2x_1 \leqslant \lfloor \frac{121}{21} \rfloor = 5 \implies x_1 \leqslant \frac{5}{2} \implies x_1 \leqslant 2$$

Chvátal-Gomory Procedure

- The CG (Chvátal-Gomory) procedure formalizes the steps followed about to genera all valid inequalities of an integer program.
- Let $X = P \cap \mathbb{Z}^n$ be a set of solutions where:
 - $P = \{x \in \mathbb{R}^n_+ : Ax \leq b\}$ is a polyhedron, and
 - $A \in \mathbb{R}^{m \times n}$ is a matrix with colums $\{a_1, a_2, \ldots, a_n\}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Chvátal-Gomory Procedure

- The CG (Chvátal-Gomory) procedure formalizes the steps followed about to genera all valid inequalities of an integer program.
- Let $X = P \cap \mathbb{Z}^n$ be a set of solutions where:
 - $P = \{x \in \mathbb{R}^n_+ : Ax \leq b\}$ is a polyhedron, and
 - $A \in \mathbb{R}^{m \times n}$ is a matrix with colums $\{a_1, a_2, \ldots, a_n\}$.

Chvátal-Gomory Procedure

Given $u \in \mathbb{R}^{m}_{+}$, the procedure consists of the following steps: Step 1: the inequality:

$$\sum_{j=1}^n u^T a_j x_j \leqslant u^T b$$

is valid for *P* because $u \ge 0$ and $\sum_{j=1}^{n} a_j x_j \le b$.

Chvátal-Gomory Procedure

Chvátal-Gomory Procedure

Step 2: The inequality:

$$\sum_{j=1}^{n} \lfloor u^{\mathsf{T}} a_j \rfloor x_j \leqslant u^{\mathsf{T}} b$$

is valid for *P* since $x \ge 0$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Chvátal-Gomory Procedure

Chvátal-Gomory Procedure

Step 3: The inequality

$$\sum_{j=1}^{n} \lfloor u^{\mathsf{T}} a_j \rfloor x_j \leqslant \lfloor u^{\mathsf{T}} b \rfloor$$

is valid for P since x is integer and further because

$$\sum_{j=1}^{n} \lfloor u^{T} a_{j} \rfloor x_{j}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

is integer.

Chvátal-Gomory Procedure

Chvátal-Gomory Procedure

Important

The fact that the CG procedure can yield all valid inequalities of an integer program is of major relevance.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Chvátal-Gomory Procedure

Chvátal-Gomory Procedure

Theorem

Every valid inequality for X can be obtained by application of a finite number of the Chvátal-Gomory procedure.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

OptIntro

- Theory of Valid Inequalities

Chvátal-Gomory Procedure

Cutting Planes

Thank you for attending this lecture!!!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ