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Introduction

Optimization

Definition
Discipline concerned with:

I the computation of values for decision variables
that induce optimal performance and
which satisfy constraints of a mathematical model.
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Introduction

Problem Modeling

Need of representing the real-world:

I impossibility to interact directly with the world,

I economic hurdles,

I complexity.

We seek a representation of the world by means of well-structured
models that are representative of the reality.
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Introduction

Problem Modeling

Models are simplified representations of the reality that,
under some conditions and situations, are sufficiently
representative.
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Introduction

Model Characteristics

Desired characteristics:

I representation of the world;

I simplicity.
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Introduction

Modeling: Pressure Drop in Flowlines
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Introduction

Optimization Models

Models:

I Aim to maximize a performance criterion, such oil and gas
production,

I subject to constraints that define the operating envelope.

Optimization problems are define in “Mathematical Programming,”
declarative language which is universally adopted.
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Introduction

Elements of an Optimization Formulation

1) Decision variables

2) Objective function

3) Constraints
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Introduction

General Formulation

Minimize f (x)
Subject to :

g(x) 6 0
h(x) = 0
x ∈ Rn
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Fundamentals

Linear Combination

I Let X = {x1, . . . , xn} be a set of vectors in Rn;

I A vector x is said to be a linear combination of X if:

x = α1x1 + α2x2 + · · ·+ αnxn
α1, . . . , αn ∈ R
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Fundamentals

Affine Combination

I Let X = {x1, . . . , xn} be a set of vectors in Rn;

I A vector x is said to be an affine combination of X if:

x = α1x1 + α2x2 + · · ·+ αnxn
α1 + α2 + · · ·+ αn = 1

α1, . . . , αn ∈ R
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Fundamentals

Convex Combination

I Let X = {x1, . . . , xn} be a set of vectors in Rn;

I A vector x is said to be a convex combination of X if:

x = α1x1 + α2x2 + · · ·+ αnxn
α1 + α2 + · · ·+ αn = 1

α1, . . . , αn ≥ 0
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Fundamentals

Vector Space

A set of vectors S is a vector space if:

I closed with respect to addition:

x + y ∈ S , ∀x , y ∈ S

I closed with respect to scalar multiplication:

αx ∈ S , ∀x ∈ S , ∀α ∈ R
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Fundamentals

Affine Hull

Affine Hull of a set of vectors X ⊂ Rn is the set

aff(X ) = {x : x is an affine combination of elements of X}

I Example: {x ∈ Rn : Ax = b} is an affine set.

I Exercise: prove this property.
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Fundamentals

Linear Function

A function f : Rn → R is linear if:

I f (αx) = αf (x) for all x ∈ Rn, α ∈ R.

I f (x + y) = f (x) + f (y) for all x , y ∈ Rn.
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Fundamentals

Taylor’s Expansion

I Let f : R→ R be a continuously differentiable function.

I Then:

f (x) =
n∑

k=0

f (k)(x̂)(x − x̂)k

k!
+O(|x − x̂ |n+1)

I A polynomial is a universal approximator.
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Fundamentals

Taylor’s Expansion

Let f : R→ R be a continuously differentiable function. Then:

f (x) = f (x̂) +∇f (x̂)T(x − x̂)

+
1

2
(x − x̂)T∇2f (x̂)(x − x̂) +O(‖x − x̂‖3)

in which:

I ∇f (x̂) is the gradient; and

I ∇2f (x̂) is the Hessian matrix.
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Fundamentals

Convex Function

A function f : Rn → R is convex if:

I if the domain of f is a convex set and

I for all x , y ∈ dom f , and θ such that 0 ≤ θ ≤ 1, we have that:

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y)
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Fundamentals

Convex Function

Geometrically, the inequality means that the chord between
(x , f (x)) and (y , f (y)) lies above the graph of f :
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Fundamentals

Convex Function: Example

Consider a system of linear equations:

Ax = b

If b 6∈ range(A)⇐⇒ rank(A) < rank([A b]), then an approximate
solution can be sought by solving a least squares problem:

min
x

f (x) = ‖Ax − b‖2

Notice that f (x) is a convex function.
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Fundamentals

Convex Function: First-Order Condition

If f is differential, then the f is convex if and only if dom f is a
convex set and

f (y) ≥ f (x) +∇f (x)T(y − x)

for all x , y ∈ dom f .
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Fundamentals

Convex Function: Second-Order Condition

If f is differential, then the f is convex if and only if dom f is a
convex set and its Hessian is positive semidefinite:

∇2f (x) � 0 ∀x ∈ dom f

Exercise: show that the least squares problem is convex.
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System Identification

System Identification

I Propose a model of a system whose internal elements and
connections are unknown.

I Only input signals and corresponding outputs are given.

I Carry out experiments by introducing input values
u(t), t = 0, . . . ,N, and then observing the resulting outputs
y(t), t = 0, . . . ,N over time.
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System Identification

System Identification

SISTEMA
u(t) y(t)
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System Identification

System Identification

A simple and widely used model is the moving average:

ŷ(t) = h0u(t) + h1u(t − 1) + h2u(t − 2) + · · ·+ hnu(t − n)

with n delays.
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System Identification

System Identification

I ŷ(t) is the prediction of y(t) produced by the model for the
current input, u(t),, and past n inputs,
u(t − 1), u(t − 2), . . . , u(t − n).

I h0, h1, . . . , hn are the parameters that define the linear
combination of the inputs.
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System Identification

Input-Output Example
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System Identification

Least Squares Estimation

Find a model that minimizes the prediction error:

min E =

[
t=N∑
t=n

(ŷ(t)− y(t))2

] 1
2

h0, . . . , hn
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System Identification

Least Squares Estimation

Notice that the error E can be expressed in matrix form, by letting:

E =

[
t=N∑
t=n

(ŷ(t)− y(t))2

] 1
2

= ‖Ax − b‖

A =


u(n) u(n − 1) u(n − 2) . . . u(0)

u(n + 1) u(n) u(n − 1) . . . u(1)
u(n + 2) u(n + 1) u(n) . . . u(2)

...
...

...
...

...
u(N) u(N − 1) u(N − 2) . . . u(N − n)
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System Identification

Least Squares Estimation

x =


h0

h1

h2
...

hn

 e b =


yn

yn+1

yn+2
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yN
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System Identification

Least Squares Estimation

The estimation problem can be cast as least squares problem:

min
x∈Rn+1

‖Ax − b‖2
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System Identification

System Identification of a Simple Motor-Generator

I Generator connected to a motor by a belt.
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System Identification

System Identification of a Simple Motor-Generator

Prediction model takes into account past outputs:

ŷ(t) = h0u(t) + h1u(t − 1) + h2u(t − 2) + · · ·+ hnu(t − n)+

+ w1y(t − 1) + w2y(t − 2) + · · ·+ wny(t − n)

This models uses feedback, whereas a model purely based on
inputs would be an open-loop model.
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System Identification

System Identification (n = 3)
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The errror vector e = y(t)− ŷ(t) has norm ‖e‖ = 0.5495.
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System Identification

System Identification (n = 10)
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The error vector e = y(t)− ŷ(t) has norm ‖e‖ = 0.4778.
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System Identification

Fundamentals

I Thank you for attending this lecture!!!
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