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Abstract

This note goes through Example 13.1 in detail, highlighting Procedure 13.1 and
some of the theory from Chapter 13.3. The example from the textbook is included
at the end; errors are marked with red boxes.

Optimization Problem

Let us first state the linear optimization problem as

min  — 4z — 2z (1a)
st. zp+axy<5H (1b)
221 + (1/2)xe < 8 (1c)
x>0 (1d)

This problem is illustrated in Figure 1.
By adding the slack variables x3 and x4 to constraints (1b) and (1c), respectively, we
can write problem (1) in standard form,

min ¢'z (2)
s.t. Ax =
x>0
with
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Iteration 1

We start with the basis B = {3,4}, which means we must have N' = {1,2}. By the
definition of nonbasic variables, this means we have
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Figure 1: Illustration of problem (1), with all constraints included. The feasible area is
the blue polytope. The gradient of the objective function is indicated and all iterations
are marked.

Furthermore, the matrix B contains the 3rd and 4th columns of A; that is,

B = [(1) (1)] and B!'= B (1)] (5)

Similarly, N contains the 1st and 2nd columns of A:
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We can now calculate the values of xg, A and sy:
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Notice that the value of value of xg can be anticipated by looking at Ax = b with
x1 = x9 = 0. The value of \ can also be predicted, since none of the inequality constraints
(Ib)-(1c) are active at this point. We also note that the objective function value at this
point is ¢'x = 0.



The smallest element in sy is s = —4. We then set the index of the variable entering
the basis to 1, that is, ¢ = 1 and z, = x; will enter the basis. Furthermore, A, = A, so
we use the first column of A to calculate the direction d:

el

The entering variable, z, = x;, will get the value xtj = z{ at the next point/basis.
This value can also be interpreted as a form of step length in the direction d. We calculate
this value with the minimum ratio test:

+ 4 (zB)i R ()1 (zB)2 _
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>0

min{fl—j,z—j} - min{?,g} —min {54} =4 (9)

This value corresponds to the 2nd element of the basis, and hence p = 2 (the minimizing
i). The 2nd element of the basis vector is x4, so this element will leave the basis.
Using the direction d and the “step length” z7, we now find the new value of the

current basis vector:
+
i = o] =t =[] [ 1= @

Notice that x4 goes to zero, while x3 does not. This is exactly as anticipated, as x4 is
to leave the basis, and by definition must be zero at the new point; x3 will stay in the
basis and can not go to zero. (If x3 had gone to zero, the new basis would have been
degenerate.) Since z{ = 4, we know that the vector of nonbasic variables at the new

point must be
T * 4
=) - m

Since x4 is leaving the basis and z; is entering, we update the basis from B = {3,4}

and N = {1,2} to B={3,1} and N = {4,2}.

Iteration 2

With B = {3,1} and N’ = {4, 2}, the vector of nonbasic variables must be

bl

while the matrices B, B! and N are

B= [(1) ;] and B™'= % [g _ﬂ (13a)
N = [(1) ﬂ (13b)



With these matrices, the vectors xg, A and sy become
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Notice that the value of zg did not have to be calculated. We knew from equation
(10) that we would have z3 = 1, and we know from equation (9) that z; = 4. The
objective function value at this point is ¢'x = —16, a decrease of 16 from the previous
value (0). Notice that this matches sz} = s;27 = —4 -4 = —16 (see equation (13.24)
in the textbook). Also notice that Ay has become nonzero, as we have hit the second
inequality constraint (1c).

The only negative component of sy is s; = —1. Hence, ¢ = 2, which means that x5
will enter the basis. The direction d is then calculated using the 2nd column of A:
12 —1][1 3
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Using the minimum ratio test to find z} = T4 gives
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This value corresponds to the 1st element of the basis, and hence p = 1 (the minimizing
i). The 1st element of the basis vector is x3, so this element will leave the basis.
With d and 3 the new value of the current basis vector becomes

e 1 R

We see that as anticipated, x3, which is leaving the basis, is zero at the next point,
whereas 1, which stays in the basis, stays nonzero. Since we have 3 = %, the new value

3 )
of the current nonbasic vector must be
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Now, sxy = soxy = —1

37 T3
be —16 — % —32 at the next point.
Since x3 is leaving the basis and x5 is entering, we update the basis from B = {3,1}

3
and N = {4,2} to B={2,1} and N = {4, 3}.

indicating that the objective function value will



Iteration 3

With B = {2,1} and N/ = {4, 3} the vector of nonbasic variables must be

n-f]-l

while B, B~! and N are

B = E ;] and B~'= ; {_g _H (20a)
N = E’ é} (20D)

The vectors zg, A and sy then become
4
il } (21a)
3

we[] et
? _ﬂ [:ﬂ B [:g] (21b)
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Again, we could have predicted the value of xp from equations (16) and (17). Notice
that since both inequality constraints (1b)-(1c)are active at this point, both elements of
A are nonzero.

The objective function value at this point is ¢’z = —%, as predicted above. Since
both elements of sy are positive, we can conclude that the solution to the LP is found at
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The Example in Nocedal and Wright

(1 ExampLE 13.1

Consider the problem

min —4x; —2x,  subject to
X1+ x3 +x3 =5,
2x1 4+ (1/2)x; 4+ x4 = 8,

x >0.

Suppose we start with the basis B = {3, 4}, for which we have
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and an objective value of ¢ x = 0. Since both elements of s, are negative, we could choose

either 1 or 2 to be the entering variable. Suppose we choose ¢ = 1. We obtain d = (1, 2)7,

so we cannot (yet) conclude that the problem is unbounded. By performing the ratio

calculation, we find that p = 2 (corresponding to the index 4) and x;” = 4. We update the

basic and nonbasic index sets to B = {3, 1} and N' = {4, 2}, and move to the next iteration.
At the second iteration, we have

X3 1 0 S4 3 / 2
xB — - 9 )\' - ’ SN - - 9
X1 4 52 -5 / 4
with an objective value of[=12.]We see that s, has one negative component, corresponding

to the index g = 2, so we select this index to enter the basis. We obtain d =|(3/2, —1/2)7}

so again we do not detect unboundedness. Continuing, we find that the maximum value of
x; is 4/3, and that p = 1, which indicates that index 3 will leave the basis 5. We update the
index sets to B = {2, 1} and N/ = {4, 3} and continue.

At the start of the third iteration, we have

-xB = = . )\, = s SN = = .
x| 11/3 —2/3 53 5/3

with an objective value of ¢’ x = [-41/3.|We see that s, > 0, so the optimality test is
satisfied, and we terminate. a




