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Abstract: This paper deals with set invariance for time delay systems. The first goal of the
paper is to review the known necessary or sufficient conditions for the existence of invariant
sets with respect to dynamical systems described by discrete-time delay difference equations
(dDDEs). Secondly, we address the construction of invariant sets in the original state space
(also called D-invariant sets) by exploiting the forward mappings.
As novelties, the present paper contains a sufficient condition for the existence of ellipsoidal
D-contractive sets for dDDEs, and a necessary and sufficient condition for the existence of D-
invariant sets in relation to time-varying dDDE stability. Another contribution is the clarification
of the relationship between convexity (convex hull operation) and D-invariance. In short, it is
shown that the convex hull of two D-invariant sets is not D-invariant but the convex hull of a
non-convex D-invariant set is D-invariant.
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1. INTRODUCTION

Positive invariance is an essential concept in control the-
ory, with applications in constrained control analysis, un-
certainty handling and design problems (Blanchini (1999),
Blanchini and Miani (2008)). It serves as basic tool in
many topics, such as model predictive control (Mayne
et al. (2000)) and fault tolerant control (Olaru et al.
(2010)).

The response of a dynamical system to external excitation
is rarely instantaneous. The time-delay offers the appro-
priate modeling framework for such propagation phenom-
ena. Time-delay systems have been considered in different
control applications (see for example the recent results by
Avila Alonso et al. (2014); Boussaada et al. (2012); Seuret
et al. (2014)).

Delay difference equations (DDEs) form an important
modeling class, since most modern controllers are imple-
mented via computers or dedicated embedded systems.
Two main approaches exist in the literature dealing with
positive invariant sets for discrete-time delay difference
equations (dDDEs). The first approach is enabled by the
fact that the discrete-time DDE allows a finite-dimensional
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extended state space model. This extended state space,
whose dimension is finite but in direct relation with the
delay value, leads to invariant set characterization with
respect to an equivalent linear time-invariant model. This
concept is well understood and popular in the literature,
but it suffers from an increased numerical complexity
when delays are relatively large. The second approach has
been formulated in the ’90s and re-investigated in the last
decade, to obtain an invariant set for the DDE in the
original state space, which is independent of the delay
value. This concept is also denoted as D-invariance, and
is often conservative as long as the existence conditions
are restrictive. The link between the two representations
and their invariant sets has received recently a unifying
characterization via set factorization - Olaru et al. (2014).

In this paper we address the existence of positive invariant
sets in the state space of the original dDDE, which are
also referred to as D-invariant sets and which can be seen
as invariant sets in both the current and the retarded
state space and further related to the stability based on
Lyapunov-Razumikhin approach. A necessary and suffi-
cient characterization for the existence of D-invariant sets
was provided by Hennet and Tarbouriech (1998); Vassilaki
and Bitsoris (1999). Particularly, as regards the construc-
tion of D-invariant sets, we can find a series of results
by Lombardi et al. (2011b,a). We provide in the present
paper an interesting example for which the condition by
Stankovic et al. (2014) is verified but the existing algo-
rithms fail to construct a D-invariant set.



As main contributions we : i) propose a sufficient condition
for the existence of ellipsoidal D-invariant sets for dDDEs;
ii) establish the relationship between time-varying dDDE
stability and the existence of D-invariant sets; iii) prove
two properties related to convexity and convex operations
over D-invariant sets. Notably, it is established that a
dDDE admits a D-invariant set if and only if it is time-
varying-delay independent stable.

This paper is structured as follows. Section 2 presents
some preliminary mathematical notions and definitions.
Basic properties of D-invariance concept are addressed
in Section 3. In the same section we present necessary
and sufficient conditions for the existence of non trivial
sets, the relationship between D-invariance and stability
of dDDEs concludes the section. Algorithmic construction
based on set iteration using the forward mappings, and
some illustrative examples are revisited in Section 4, and
finally Section 5 draws some concluding remarks.

2. DEFINITION AND CONSIDERED DYNAMICS

2.1 Notations

We denote by R, R+, Z and Z+ sets of real numbers, non-
negative reals, integer numbers and non-negative integers,
respectively. For an arbitrary set A ⊆ R

n, int(A) denotes
the interior of A. Bn

r (0) denotes the ball of radius r in
Euclidean norm, centered in the origin of Rn. ⊕ denotes
the Minkowski sum of sets.

Definition 1. A set P ⊆ R
n is bounded if there exists

r ∈ R+ such that P ⊂ B
n
r (0).

Definition 2. A set P ⊆ R
n is closed if ∀x /∈ P there

exists ǫ ∈ R+ such that B
n
ǫ (x) ∩ P = ∅.

Definition 3. A set P ⊆ R
n is compact if it is bounded and

closed.

Definition 4. A set P ⊆ R
n is a (proper) C-set if is convex,

compact and includes the origin in its strict interior.

We denote by Com(Rn) and ComC(Rn) the space of com-
pact subsets and the space of C-subsets of Rn containing
the origin, respectively. The spectrum of a matrix A ∈
R

n×n is the set of the eigenvalues of A, denoted by λ(A),
while the spectral radius is defined as ρ(A) := max

ξ∈λ(A)
(|ξ|).

The spectral norm will be denoted by σ(A) and is defined

as σ(A) :=
√

ρ(ATA).

2.2 System Dynamics

In the present paper we will consider discrete-time delay
difference equations in the form:

x(k + 1) = A0x(k) +Adx(k − d) (1)

where x(k) ∈ R
n is the state vector at the time k ∈ Z+,

d ∈ Z+ is the fixed time-delay, the matrices Aj ∈ R
n×n,

for j ∈ Z{0,d} and the initial conditions are considered to
be given by x(−i) = x−i ∈ R

n, for i ∈ Z{0,d}.

3. D-INVARIANCE PROPERTIES

3.1 Definitions

Definition 5. A set P ⊆ R
n is called D-invariant for the

system (1) with initial conditions x−i ∈ P for all i ∈ Z[0,d]

if the state trajectory satisfies xk ∈ P, ∀k ∈ Z+. �

Lemma 6. The following statements are equivalent:

i P ⊆ R
n is D-invariant for system (1).

ii A0P ⊕AdP ⊆ P.

Several properties fix a set of basic relations between D-
invariant sets.

Proposition 7. The following properties hold:

i If P ∈ R
n is D-invariant then αP is D-invariant for

any α ∈ R>0.
ii Let P1,P2 ⊆ R

n be two D-invariant sets for (1). Then
P1 ∩ P2 is a D-invariant set for the same dynamical
system.

iii If for some d1, d2 ∈ N+, d1 6= d2, the set P ∈ R
n is

D-invariant for the system

x(k + 1) = A0x(k − d1) +Adx(k − d2) (2)

then P is D-invariant for

x(k + 1) = A0x(k − d̄1) +Adx(k − d̄2) (3)

for any d̄1, d̄2 ∈ N+.
iv The convex hull of D-invariant sets is not necessarily

D-invariant.

Proof. For the proof of Lemma 6 and Properties i, ii and
iii of Proposition 7 see Lombardi (2011). For property iv
of Proposition 7, consider the system:

x(k+1) =

[

0.2 0.01
0 0.7

]

x(k) +

[

0.6 0
0.005 0.25

]

x(k− 1), (4)

Then the set

D1 =

{

x ∈ R
2|
[

−0.1
−1

]

≤ x ≤
[

0.1
1

]}

is D-invariant as well as

D2 =

{

x ∈ R
2|
[

−1
−0.1

]

≤ x ≤
[

1
0.1

]}

On the other hand the set obtained as convex hull D =
Conv(D1, D2) is not D-invariant. �

3.2 Necessary conditions for D-invariance

Basic algebraic conditions Let us introduce the following
notation for the extended state-space matrix:

Aξ =















A0 0 . . . 0 Ad

I 0 . . . 0 0

0 I
. . . 0 0

...
. . .

. . .
. . .

...
0 0 · · · I 0















(5)

Proposition 8. (Lombardi et al. (2011b)) Considering the
system (1), the existence of a D-invariant C-set P implies
that:

i the spectral radii of the matrices A0, Ad and Aξ are
subunitary: ρ(Ai) ≤ 1, ∀i ∈ {0, d, ξ};

ii the spectral radius of the matrix (A0+Ad) is subuni-
tary: ρ (A0 +Ad) ≤ 1.



Specific algebraic conditions for 2 delay dDDEs For
dDDEs with two delay parameters, Stankovic et al. (2014)
recently provided a computationally efficient numerical
condition which is necessary to guarantee the existence
of Lyapunov-Razumikhin contractive sets. This test is
sufficient for the robust asymptotic stability 1 with respect
to the delay parameter and can be employed in the D-
invariance context. We denote by D, ∂D the open unit
disc and the unit circle, respectively. For the matrix
pair (A,B), the set of generalized eigenvalues and the
Kronecker product are denoted by γ(A,B) and A ⊗ B,
respectively. In ∈ R

n×n and 0n×m ∈ R
n×m denote the

identity and the null matrix, respectively. The main result
is in the next theorem.

Theorem 9. (Stankovic et al. (2014)) Assume that ρ(A0+
Ad) ≤ 1. Then, system (1) admits a D-contractive set only
if γ(U, V ) ∩ ∂D = ∅, where

U =

(

0n2×n2 In2

−B0 −B1

)

, V =

(

In2 0n2×n2

0n2×n2 B2

)

(6)

B0 = A0⊗AT
d , B1 = A0⊗AT

0 +Ad⊗AT
d −In2 , B2 = Ad⊗AT

0
(7)

As stated by Stankovic et al. (2014), the condition of
Theorem 9 covers the existing necessary conditions for the
two delay case. However, we report here an interesting
example which points out the possible limitation of this
condition.

Example 10. Consider the system (1) with:

A0 =

(

0.5 0.5
0 0

)

; Ad =

(

0 0.5
−0.5 0.5

)

(8)

For this numerical example, one can compute:

ρ(A0 +Ad) = 0.8660 < 1

and

γ(U, V ) = 1.7442± 1.9433i, 0.2558± 0.2850i, 0, 0, inf, inf.

The necessary condition proposed in Stankovic et al.
(2014) is fulfilled. However, up to the existing constructive
routines (see next section) there is no numerical construc-
tion able to determine a D-invariant set for this system.
�

3.3 Sufficient conditions for D-invariance

The converse problem of establishing sufficient conditions
for the existence of D-invariant sets was stated by Lom-
bardi (2011) with two tests that concentrate on the spec-
tral norms of the matrices appearing in the dDDE (1).
A different approach for establishing sufficient conditions
is to exploit the structural properties of specific classes
of candidate D-invariant sets. We propose next a con-
tribution in this sense with a sufficient condition for the
existence of ellipsoidal D-contractive sets for a dDDE. As
it is often the case in this framework, the test are based
on LMIs.

1 See Stankovic et al. (2014) for a formal definition of robust

asymptotic stability.

Theorem 11. Considering the dynamical system:

xk+1 = A0xk−d0
+A1xk−d1

, (9)

the existence of an ellipsoidal D-invariant set is guaranteed
if the following two LMIs hold for some P = PT ≻ 0:

(

AT
0 PA0 − P AT

0 PA1

AT
1 PA0 AT

1 PA1

)

≺ 0 (10)

(

AT
0 PA0 AT

0 PA1

AT
1 PA0 AT

1 PA1 − P

)

≺ 0. (11)

Proof. The set

Ψ =
{

x ∈ R
n, xTPx ≤ 1

}

is D-invariant for the system described by the dDDE (9)if
xk+1 ∈ Ψ, ∀xk−d0

, xk−d1
∈ Ψ. This is equivalent to the

simultaneous verification of the two inequalities :

xT
k+1Pxk+1 − xT

k−d0
Pxk−d0

< 0, (12)

xT
k+1Pxk+1 − xT

k−d1
Pxk−d1

< 0 (13)

Exploiting the dDDE relationship one has:

xT
k+1Pxk+1 − xT

k−d0
Pxk−d0

=

(A0xk−d0
+A1xk−d1

)TP (A0xk−d0
+A1xk−d1

) =

xT
k−d0

(AT
0 PA0 − P )xk−d0

+ xT
k−d1

(AT
1 PA1)xk−d1

+

xT
k−d0

(AT
0 PA1)xk−d1

+ xT
k−d1

(AT
1 PA0)xk−d0

< 0

and in the equivalent matrix formulation:

(

xT
k−d0

xT
k−d1

)

(

AT
0 PA0 − P AT

0 PA1

AT
1 PA0 AT

1 PA1

)(

xk−d0

xk−d1

)

≺ 0

(14)
Analogously for the second inequality:

(

xT
k−d0

xT
k−d1

)

(

AT
0 PA0 AT

0 PA1

AT
1 PA0 AT

1 PA1 − P

)(

xk−d0

xk−d1

)

≺ 0

(15)
We can conclude that the existence of a positive definite
matrix P = PT is a sufficient condition for the existence
of an ellipsoidal D-invariant set, and the proof is complete.
�

For illustration let us consider the system (9) with:

A0 =

(

0.35 0.13
0.51 −0.01

)

, A1 =

(

0.51 −0.01
0.03 0.51

)

. (16)

The condition for the existence of a D-contractive set
proposed in Theorem 11 is fulfilled and the D-contractive
set exists as shown in Figure 1. It is interesting to note
that the sufficient condition ‖A0‖p+‖A1‖p ≤ 1 by Hennet
and Tarbouriech (1998); Lombardi et al. (2011b) does not
hold for this numerical example.

3.4 Relationship between D-invariance and dDDE stability

In this subsection we aim to complement the overview of
the necessary and sufficient conditions with a theoretical
result which establishes a link between the stability in
presence of time-varying delay and the existence of D-
invariant sets. This result is outlined in the following
theorem which is stated without proof, for brevity.



Fig. 1. D-contractive set for the dDDE (9) with A0, A1 in
(16)

Theorem 12. The dDDE:

x(k + 1) = A0x(k − d0) +A1x(k − d1) (17)

admits a proper D-invariant set if and only if the time-
varying dDDE

x(k + 1) = A0x(k − d0(k)) +A1x(k − d1(k)) (18)

is delay-independent stable 2 .

Proposition 13. If the compact set containing the origin
P is D-invariant, then its convex hull Conv(P) is D-
invariant.

Proof. One can exploit the relationship:

A1Conv(P)⊕A2Conv(P) = (19)

Conv(A1P)⊕ Conv(A2P) = (20)

Conv(A1P ⊕A2P) (21)

The first equality is straightforward. For the second one,
let P1,P2 ⊂ R

n, and let x ∈ Conv(P1 ⊕ P2), then
x =

∑

λi(xi + yi) with xi ∈ P1 and yi ∈ P2, λi ≥ 0
and

∑

λi = 1, then x =
∑

λixi +
∑

λiyi ∈ Conv(P1) ⊕
Conv(P2). Suppose now that x ∈ Conv(P1) ⊕ Conv(P2)
then x =

∑

λixi +
∑

βjyj ,with
∑

λi =
∑

βj = 1,
and λi, βj ≥ 0, xi ∈ P1, yj ∈ P2. since

∑

λi

∑

βj =
∑

i,j λiβj = 1 we can write x =
∑

i,j λiβj(xi + yj), then

x ∈ Conv(P1 ⊕ P2). Note that

A1P ⊕A2P ⊂ P =⇒ Conv(A1P ⊕A2P) ⊂ Conv(P)
(22)

to conclude that:

A1Conv(P)⊕A2Conv(P) ⊂ Conv(P) (23)

�

Remark 14. Property iv of Proposition 7 raises a warning
on the convex hull (with two or more operands) which
is not a closed operation over the class of D-invariant
sets. However, Proposition 13 points out that for one D-
invariant operand, the convex hull operation preserves D-
invariance.

4. CONSTRUCTION OF D-INVARIANT SETS
BASED ON SET ITERATIONS

Supposing that (1) admits a D-invariant set, we address
now the construction procedures. We use the fact that
the existence of a D-invariant set is exactly equivalent,
by Lemma 6, to the verification of A0P ⊕ AdP ⊆ P.

2 See Stankovic et al. (2014) for the formal definition of delay-

independent stability.

To simplify the explanation, we first define the forward
mapping :

Φ : Com(Rn) → Com(Rn)
Φ(P) = A0P ⊕AdP;

(24)

and the mapping based on the union:

Ψ : Com(Rn) → Com(Rn)
Ψ(P) =

⋃

(P, A0P ⊕AdP) =
⋃

(P,Φ(P)).
(25)

Note that even if P is convex, Ψ(P) is not necessarily
convex.

Remark 15. We enumerate here some useful properties of
the mappings defined in (24-25):

S1 If a given set P (convex or not) is D-invariant for (1),
then Φ(P) ⊆ P.

S2 k-iterates over the family of sets is set-wise non
decreasing Ψk−1(P) ⊆ Ψk(P), ∀k ≥ 1 with Ψk(P) =
Ψ(Ψk−1(P)) for k > 0 and Ψ0(P) = P.

S3 If P is D-invariant for (1) then Φk(P) is set-wise non
increasing Φk(P) ⊆ Φk−1(P), ∀k ≥ 1 .

4.1 Basic set-iterates procedure for the construction of
D-invariant sets

We describe in this part the basic steps of an iterative
construction of D-invariant sets. Under the assumption
that such an invariant set exists for the system (1), we
can always scale it using property “i” of Proposition 7
such that it encompasses the initial set Q.

This algorithm considers as an input argument an arbi-
trary bounded set Q containing the origin.

Algorithm 1. Basic (non-convex) set-iterates procedure
Input: A bounded set Q ∈ R

n containing the
origin; the matrices A0, Ad ∈ R

n×n describing the
system (1)

Output: R a D-invariant set

R0 = Q;
R1 = Φ(Q) = A0Q⊕AdQ;
i = 1;
while Ri 6⊂ Ri−1 do

Ri+1 = Ψ(Ri) =
⋃

(Ri, A0Ri ⊕AdRi);
i = i+ 1;

end

returnR = Conv(Ri)

Remark 16. If there exists a D-invariant set for the sys-
tem (1), then Algorithm 1 constructs a non-decreasing
sequence which converges to a D-invariant set. The finite
determinedness is related to the asymptotic stability of the
system (1).

Note that the iterations and the limit set are non-convex
and this is related to the union operation in Ψ(·). Since
the intersection of D-invariant sets is also D-invariant (see
property ii of Proposition 7), the sequence of Algorithm
1 converges toward the closest, in the sense of Hausdorff
distance, D-invariant superset.

Example 17. Let us consider the following dynamical sys-
tem:

x(k + 1) =

[

0.1 0
0.4 0.1

]

x(k) +

[

0.1 −0.2
0.4 0.5

]

x(k − d), (26)



Consider the initialization set Q as the ∞-norm unit circle
in R

2. A non-convex D-invariant set is obtained iteratively
by applying Algorithm 1 with 4 iterations.

Figure 2 presents this invariant set (the left one), and the
image (the right one) of this set by the forward mapping
Φ(·). Their superposition (inclusion) shows that the non-
convex set obtained is D-invariant.

Fig. 2. Graphical illustration of D-invariance for a non-
convex set. The D-invariant set P in green(left); the
set A0P ⊕AdP in red(right)

Figure 3 presents the Convex hull of the obtained non-
convex D-invariant set and shows that it is D-invariant as
theoretically proved by Proposition 13.

Fig. 3. Graphical illustration of the convex D-invariant set.
The D-invariant set–green; the set A0P ⊕AdP –red

4.2 Convex set-iterates procedure for the construction of
D-invariant sets

We describe briefly in this part the main steps of an iter-
ative construction of D-invariant sets while manipulating
only convex sets. This algorithmic routine was proposed
by Lombardi et al. (2011b), but we recall it here in light
of Theorem 12 and Algorithm 1. Let us define the two
mappings :

Ω : ComC(Rn) → ComC(Rn)
Ω(P) = A0P ⊕AdP;

(27)

Ξ : ComC(Rn) → ComC(Rn)
Ξ(P) = Conv(P, A0P ⊕AdP) = Conv(P,Ω(P)).

(28)
Given a convex set P ∈ ComC(Rn), the sequence
Ξk(P), k > 0 converges toward a convex D-invariant set
(Lombardi et al. (2011b)). The main objective of this pro-
cedure remains the same as the previous one: enlarge the
candidate set via the Convex hull operation, by exploiting
its inclusion in a D-invariant superset.

Algorithm 2. Convex set-iterates converging to aD-invariant
set

Input: A convex setQ ∈ R
n containing the origin

in the interior; the matrices A0, Ad ∈ R
n×n

Output: R Convex D-invariant set

R0 = Q;
R1 = Ω(Q) = A0Q⊕A1Q;
i = 1;
while Ri 6⊂ Ri−1 do

Ri+1 = Ξ(Ri) = Co(Ri, A0Ri ⊕AdRi);
i = i+ 1;

end

returnR = Ri

This algorithm, unlike the previous one, manipulates con-
vex sets with all their computational advantages. In each
iteration, the convex hull of the present set and the forward
mapping of the same set Pi is obtained. In comparison
with Algorithm 1, the main objective is to enlarge the
set Pi in each iteration, without checking if the set in
question is convex or not. The common objective is to
obtain a D-invariant set and exploit Proposition 13 which
guarantees that the convex hull of this set is also D-
invariant. This characteristic can be very interesting from
the computational point of view since the iteration avoids
the enumeration of the convex sub-sets defining the non-
convex regions.

4.3 Complexity and speed of convergence

In this section, we point to the possible extension of Al-
gorithms 1-2 in order to improve the convergence speed.
Instead of performing one forward mapping in each iter-
ation before checking D-invariance, N forward mappings
are performed in each iteration. This alternative can offer
a compromise between the complexity of the intermediary
sets and the number of iterations.

Algorithm 3. Auxiliary set-iterates procedure
Input: A bounded convex set containing the

origin Q ∈ R
n; the matrices A0, Ad ∈ R

n×n;N
the number of forward mappings in one iteration

Output: R Convex D-invariant set

R0 = Q;
R1 = Ω(Q) = A0Q⊕A1Q;
Aux1 = R0;
i = 1;
while Ri 6⊂ Ri−1 do

for m = 1 : N do
Auxm+1 = Φ(Auxm)

end

Aux = [Aux1, Aux2, . . . , AuxN+1];
Ri = Conv(Aux);
Ri+1 = Ω(Ri);
i = i+ 1;
Aux1 = Ri;
end

returnR = Ri

Example 18. Let us consider the following dynamical sys-
tem :



x(k + 1) =

[

0.2 0.1
0 0.6

]

x(k) +

[

0.5 0
0.1 0.3

]

x(k − d). (29)

Let

Q=















x ∈ R
2|









√
2 −

√
2

−
√
2

√
2√

2
√
2

−
√
2 −

√
2









x ≤







0.5
1
0.5
1





















be the initialization set. By applying on one hand Algo-
rithm 3 with N = 2 and on the other hand Algorithm
2, two different D-invariant sets are obtained for the dy-
namical system (29) in 2 ∗ (N = 2) and 18 iterations,
respectively. Figure 4 presents these sets.

Fig. 4. Graphical illustration of D-invariant sets obtained
by Algorithm 2 (left) and Algorithm 3 (right)

It becomes clear that under the assumption that a D-
invariant set exists, a construction procedure exists. More
than that, one can also use the algorithmic construction
(Algorithm 2) as an induced tool to check if a D-invariant
set can/cannot be obtained, whenever the dDDE satisfies
the necessary conditions for the existence of such invariant
sets. To illustrate this idea, Example 10, which raises a
doubt about the sufficiency of the matrix-pencil based
conditions (Stankovic et al. (2014)), will be discussed in
the sequel. By computing the set iterations up to strict
inclusion into the initial one, convergence/divergence can
be inferred. If the initial set Q for Algorithm 2 is the
∞-norm unit circle in R

2 and the dDDE is given by the
matrices in Example 10, then

Fig. 5. Sequence of the forward mappings Conv(P, A0P ⊕
AdP) leading to a strict superset in 4 iterations

after 4 iterations one obtains the sequence in Figure 5. The
set iteration can be stopped as long as Q is a strict subset
of P4. This represents a proof by construction that forward
set iterations diverge and the system does not admit a D-
invariant set.

5. CONCLUSION

This paper discusses the positive invariance for discrete
time-delay systems. Necessary or sufficient conditions for
the existence of D-invariant sets have been gathered
and discussed. The relationship between D-invariance and
stability was studied for discrete delay difference equations
(dDDEs). The construction of D-invariant sets via set
iterations was shown to benefit from the convexification
despite the fact that set forward mappings based on the
original dDDE lead to a non-convex D-invariant set.
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