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Abstract: This paper addresses the real-time optimal control of a Pendubot using nonlinear
model predictive control (NMPC) combined with nonlinear moving horizon estimation (MHE).
This fast, under-actuated nonlinear mechatronic system apparently poses a challenging bench-
mark problem that may benefit from a nonlinear optimization scheme. To overcome the related
computational difficulties we make use of the ACADO Code Generation tool allowing to export
a highly efficient Gauss-Newton real-time iteration algorithm tailored to the nonlinear optimal
control and estimation problem while respecting the imposed constraints. We show experimental
results illustrating the overall closed-loop control performance, as well as the advantages of the
nonlinear MHE-based NMPC scheme.
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1. INTRODUCTION

The double inverted Pendubot, introduced in Spong and
Block (1995), is a well-known academic benchmark from
the class of under-actuated mechatronic systems. These
tend to be often used to demonstrate various concepts in
linear and nonlinear control such as swing-up, stabilization
or trajectory tracking of unstable systems; see e.g. Xin and
Liu (2014); Choukchou-Braham et al. (2014). With regards
to process nonlinearities, constraints, and stability guaran-
tees, optimization-based techniques such as MPC can be
thus sought as a systematic methodology to address these
challenging problems. The Pendubot, as a nonlinear under-
actuated mechatronic system with fast dynamics, though
lacks a complex control strategy capable of addressing the
aforementioned control problems and phenomena.
With the recent development of efficient convex program-
ming solvers, linear MPC quickly became well-established
in both academia and industry, in particular when aiming
at fast systems and processes, often by means of embed-
ded control hardware. Similarly, in case of fast nonlinear
mechatronic systems, as is the Pendubot, an increasing
interest is in achieving reliable and accurate performance
over the widest operating range possible while accounting
for model nonlinearities. In such control scenarios, instead
of re-linearizing the system dynamics as often as possible,
the related optimal control problem (OCP) can be instead
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cast as a nonlinear MPC problem. Its non-convex nature
and inherent convergence issues, however, typically come
at price of fairly higher computational requirements for
effective solution, as compared to linear formulations. The
applicability of NMPC was therefore primarily associated
with systems exhibiting rather slower dynamics. This was
the motivation for several approaches to tackle the control
of fast, nonlinear, and constrained systems, which have
been proposed over the last decade; among them the con-
tinuation/GMRES method, the advanced step controller,
or the real-time iteration scheme. For a comprehensive
overview of algorithms aiming at nonlinear optimal control
we refer to Diehl et al. (2009); Johansen (2011).
Within this study we propose to employ an MHE-NMPC
algorithm tailored for the Pendubot’s unstable equilibria
tracking problem. It builds upon the real-time iteration
(RTI) scheme of Diehl et al. (2002) exploiting the method
of direct multiple shooting (Bock and Plitt. (1984)). Since
targeting a system with fast dynamics at high sampling
rates, to address the restrictive computational times typi-
cally arising in conventional NMPC/MHE we make use of
an efficient customized source code generated by means
of the ACADO toolkit of Houska et al. (2011a), namely
its Code Generation tool (Houska et al. (2011b)). The
efficacy of the RTI scheme stems mainly from performing
only one Newton-type sequential quadratic programming
(SQP) iteration per sampling instant (Diehl et al. (2005)).
In contrast to numerous works, wherein the Pendubot-
like systems are usually controlled by a switching swing-
up/balancing strategy for a single equilibrium, the pro-
posed NMPC scheme exploits the full nonlinear dynamic
model and thus allows for more complex control tasks. As
outlined above, the control framework is augmented by
the complementary nonlinear MHE scheme to estimate the
unmeasured states and unknown parameters of the system.
The overall performance is verified experimentally.
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Fig. 1. Schematic of the Pendubot in the relative coordi-
nate system.

2. SYSTEM MODEL

The Pendubot is essentially a two-link planar robot that
is referred to as under-actuated since the number of its
control inputs is less than the number of its degrees of
freedom, which renders it challenging to control. It has a
single actuator at the base, "shoulder", of the first link,
whilst the "elbow" joint between the two links is unactu-
ated and thus allowed to swing freely. Its mathematical
model can be derived by means of the Lagrange formalism

d
dt

∂

∂q̇k
L(q, q̇) − ∂

∂qk
L(q, q̇) + ∂

∂q̇k
R(q̇) = τ k = 1,2 (1)

with the Lagrange function L(q, q̇) = T(q, q̇)−V(q) defined
as the difference between the kinetic energy and the po-
tential energy, respectively, and the Rayleigh dissipation
function R accounting for friction. The generalized coor-
dinates summarized in the vector q = [q1, q2]T here stand
for the angular positions of the two links, and τ = [τ1,0]T

denotes the external control force vector.
By applying (1), the resulting equation of motion can be
cast in the standard vector/matrix form:

D(q)q̈ +C(q, q̇)q̇ + F (q̇) + g(q) = τ (2)
where D(q) is the symmetric positive definite inertia ma-
trix, C(q, q̇) contains the Coriolis and centrifugal terms,
F (q̇) is the vector of viscous frictional terms, and g(q) de-
notes the vector of gravitational terms. For the Pendubot
system, schematically illustrated in Fig. 1, the following
quantities can be obtained:

D(q) = [θ1 + θ2 + 2θ3 cos q2 θ2 + θ3 cos q2
θ2 + θ3 cos q2 θ2

],

C(q, q̇) = [−θ3 sin(q2)q̇2 −θ3 sin(q2)q̇2 − θ3 sin(q2)q̇1
θ3 sin(q2)q̇1 0 ],

g(q) = [θ4g cos q1 + θ5g cos(q1 + q2)
θ5g cos(q1 + q2) ] ,

where
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Fig. 2. Illustration of the Pendubot’s un/stable equilibria
w.r.t. the arrangement of its links; from left to right:
down-down ⇊, down-up �, up-down �, up-up ⇈.
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are the parameter equations necessary for the subsequent
control design. Taking into account viscous friction in both
joints, the dynamic system (2) can be rewritten as follows:

q̈1=
1

θ1θ2−θ2
3cos2q2

[θ2θ3sinq2(q̇1+q̇2)2+θ2
3cosq2sin(q2)q̇2

1

− θ2θ4gcosq1+θ3θ5gcosq2cos(q1+q2)+θ2τ1−θ2b1q̇1

+ (θ2+θ3cosq2)b2q̇2] (3)

q̈2=
1

θ1θ2−θ2
3cos2q2

[−θ3(θ2+θ3cosq2)sinq2(q̇1+q̇2)2

− (θ1+θ3cosq2)θ3sin(q2)q̇2
1+(θ2+θ3cosq2)(θ4gcosq1−τ1)

− (θ1+θ3cosq2)θ5gcos(q1 + q2)+(θ2+θ3cosq2)b1q̇1

− (θ1 + θ2+2θ3cosq2)b2q̇2] (4)

yielding Pendubot’s non-linear equations of motion, which
are used for design of a nonlinear predictive controller.
By introducing the state vector x(t) = [x1, ẋ1, x2, ẋ2]T =
[q1, q̇1, q2, q̇2]T and denoting u = τ1, the equations of
motion of the Pendubot may be formulated as follows:

{ẋ = f(x,u, b)
y = h(x, b) (5)

Note that for u = 0 the system (5) exhibits four equilibrium
positions, see Fig. 2, the first being a stable and the
other three unstable ones. From these, challenging from
the control standpoint are mainly the down-up (further �)
and up-up (⇈) Pendubot’s unstable positions. In the scope
of this work is a point-to-point transition task between
different equilibria, by exploiting the system’s nonlinear
dynamics (5) subject to constraints.
The parameters such as masses mi, the pendulum links’
lengths li, and the distance lci of the center of mass to the
corresponding joint are directly measurable, and read as
m1 = 0.265 kg, m2 = 0.226 kg, l1 = 0.206 m, l2 = 0.298 m,
lc1 = 0.107 m and lc2 = 0.133 m. Even the moments of
inertia I1 and I2 can be analytically determined accurately
enough. On the other hand, the viscous friction coefficients
b = [b1 b2]T are due to their uncertainty and sensitivity
intended to be estimated together with the unmeasured
system states via the MHE scheme discussed further.



3. CONTROLLER SYNTHESIS

This section states the formulation and implementation of
the present control scheme based on combined nonlinear
MHE and MPC for the fast Pendubot system. For clarity,
we introduce the formulation first by deriving the estima-
tion scheme.

3.1 MHE formulation

As it tends to be the case in many practical applications,
also the number of available measurements provided by
Pendubot’s sensors is smaller than the number of states
within its dynamic model. Specifically, only the angular
positions of its links are measured by means of dedicated
encoders, leaving the respective velocities up to the esti-
mator. The state vector is moreover augmented by the un-
known model parameters b = [b1 b2]T , i.e. viscous friction
coefficients. We remark, that compared to other nonlinear
estimation methods, the optimization-based MHE allows
for joint state and parameter estimation within one prob-
lem, and importantly, for the incorporation of constraints.
The nonlinear MHE state and parameter estimation prob-
lem is proposed to take form of a constrained least-squares
(LSQ) dynamic optimization problem

min
x(⋅),b,u(⋅)

1
2
(∥x − x̄
b − b̄∥

2

PE
)

t=t0−TE

+ 1
2

t0

∫
t0−TE

(∥h(x, b) − ȳ∥2
QE
+ ∥u − ū∥2

RE
)dt, (6a)

s.t. d
dt
x = f(x,u, b), (6b)

hineq(x,u, b) ≤ 0 (6c)
solved repeatedly at every time instant tk = kTs (k =
0,1, . . . ), where Ts is the sampling time. The moving hori-
zon objective penalizes the deviation between the measure-
ment model h(⋅) and the set of measurement data ȳ. Note
that the controls are made decision variables and included
in the objective to account for the noise collected during
signal transfer and actuator inaccuracies. Additionally, the
first summand in (6a) is considered to approximate the
so-called arrival costs and thus summarize the information
prior to t0−TE, where TE is the estimation horizon. Within
this study we use the approach of Kühl et al. (2011) to
obtain the a priori estimates x̄ and b̄. The LSQ terms
are penalized by appropriately chosen weighting matrices
QE ⪰ 0, and PE,RE ≻ 0. The equality (6b) describes the
propagation of the system state. The upper and lower
bounds for states and parameters can be imposed via (6c).
This way estimated states and unknown model parameters
are subsequently fed as the initial state estimate (x̂, b̂) to
the NMPC controller.

3.2 NMPC formulation

The considered nonlinear MPC scheme is based on repeat-
edly solving the following optimal control problem (OCP)
in effort of finding a function

u⋆(⋅) =arg min
u(⋅),x(⋅)

1
2
(∥x − xref∥2

P )t=t0+TP

+ 1
2

t0+TP

∫
t0

(∥x − xref∥2
Q + ∥u − uref∥2

R)dt, (7a)

s.t. x(t0) = x̂(t0), (7b)
d
dt
x = f(x,u, b̂), (7c)

hineq(x,u) ≤ 0 (7d)

where TP denotes the NMPC control horizon. This LSQ
cost function penalizes the deviation of the process control
inputs u and states x from their reference trajectories, uref

and xref , respectively. Its first summand evaluates the final
costs raised by controlled variables at the given end time
tk+TP . This so-called Mayer term, in this context usually
referred to as cost-to-go or terminal penalty function is
often included for stability reasons. As usual in tracking
MPC applications, the norms in the objective are weighted
with matrices Q,P ⪰ 0 and R ≻ 0.

The nonlinear right-hand side function f(x,u, b̂) in (7c)
describes the system dynamics with ordinary differential
equations (ODEs). With regards to the dependence of
the optimal control u⋆(tk, xk, bk) on state xk and model
parameters b, the full initial state (xk, bk) must be known.
For this purpose we employ the aforementioned estimation
scheme implied by the initial state constraint (7b). Vectors
x̂(tk), b̂(tk) are the system state and chosen model param-
eters estimated at time instant tk by solving the nonlinear
MHE problem (6). This way the NMPC problem (7) can
be regarded as a parametric nonlinear OCP. Finally, the
inequality (7d) lumps together state and input constraints
imposed on the system.
The nonlinear MHE and NMPC are treated here together
since they are almost identical in the approach and im-
plementation, even though they solve two different, yet
complementary problems. Therefore, we apply the same
solution methods to tackle both the MHE and the NMPC
problem, as shown in e.g. Zanon et al. (2013); Debrouwere
et al. (2014). In the following, we recall an efficient pro-
cedure to handle the infinite-dimensional least-squares ob-
jectives subject to nonlinear dynamics and constraints, as
in (6) and (7).

3.3 Real-time implementation approach

With respect to the unstable model dynamics, the prob-
lems (6) and (7) are conveniently treated using the simul-
taneous approaches Diehl et al. (2009); Johansen (2011),
such as the direct multiple shooting, which transforms the
infinite-dimensional optimal control or estimation problem
into a finite-dimensional optimization problem (Bock and
Plitt. (1984)). The resulting discretized OCP in fact ren-
ders a least-square nonlinear programming (NLP) prob-
lem, which can be efficiently solved e.g. by the sequential
quadratic programming or interior-point approach.
It is well known that the computational effort necessary to
solve nonlinear optimal control and estimation problems
exactly tends to easily become prohibitive, in particular
for systems with fast-evolving dynamics. To overcome this
issue, the real-time iteration scheme of Diehl et al. (2002)
performs only a single SQP iteration with Gauss-Newton
Hessian approximation per sampling time. Although solv-



ing the problems only approximately, its established effi-
cacy is supported by employing the aforementioned simul-
taneous NLP parametrization, direct multiple-shooting
method with/without condensing, and the so-called ini-
tial value embedding which constraints the initial value
in the NLP to coincide with the estimated state of the
system. This way most of the computations are performed
before the current estimated state becomes available. The
computations within each iteration are therefore divided
into a more demanding preparation phase (linearization,
condensing, etc.) and a shorter feedback phase solving just
one dense/sparse QP subproblem.
Needless to say, to solve a whole sequence of "neighbour-
ing" NLPs, in both the MHE and NMPC formulation we
efficiently utilize a so-called shift initialization Diehl et al.
(2009) to initialize the subsequent problems based on pre-
vious information. For a detailed description, contractivity
and stability proof of the RTI scheme we refer to Diehl
et al. (2002, 2005). As outlined in the introductory section,
in order to numerically solve the optimization problems we
make use of the ACADO Code Generation tool (Houska
et al. (2011b)), exploiting direct multiple-shooting, RTI
and sequential quadratic programming.

4. EXPERIMENTAL RESULTS

In this section we put forward and analyze the experimen-
tal results obtained for the nonlinear Pendubot system us-
ing the on-line estimation-based predictive control scheme
introduced in Section 3.

4.1 Hardware & software approach

The real-time experiments were performed on a real-life
laboratory setup designed at the authors’ workplace. The
actuator of the system is a Mitsubishi HC-KFS43 servo
motor with a WITTENSTEIN alpha CP060 gearbox. It
utilizes a Mitsubishi MR-J2S-40A control unit working in
torque control mode. It is also equipped with an absolute
encoder allowing the real-time measurement of the angular
position of the first link. In order to measure the angle
that the second – free link makes with the actuated arm,
an incremental rotary encoder OMRON E6B2-C is used.
For more details, model parameters and previous work, we
refer to Gulan et al. (2014).
As outlined, we make use of the ACADO Code Generation
tool for exporting an instance of the RTI scheme, tailored
for both the NMPC and the MHE optimization prob-
lem. The exported solvers, provided as a self-contained
plain C code, are utilized together within one custom
executable code, and subsequently called repeatedly at
each sampling instant. To efficiently solve the underly-
ing QP subproblems of the SQP-based RTI scheme, we
make use of efficient quadratic programming solvers. In
particular, for the MHE problem we utilize a condensing-
based qpOASES parametric solver implementing the on-
line active set strategy proposed in Ferreau et al. (2008).
Based on experimental observations that lead to choosing
a rather longer NMPC prediction horizon of 100 steps
(compared to the sufficient 50 steps for MHE), we address
the QPs arising in the NMPC problem by an open-source
implementation of the qpDUNES solver Frasch et al. (2014),

based upon the dual Newton strategy which combines the
warm-starting capabilities of active-set methods and the
structure-exploiting features of interior-point methods. We
remark that the choice to use a dense solver within MHE
problem is relevant due to a still tractable problem size, yet
supported by the fact that the latter solver strategy is not
interfaced for arrival cost update’s computation within the
ACADO framework at the time of herein presented study.
The presented estimator-controller scheme is implemented
on an ADLINK MXC-6321 embedded computer (Intel i7,
2.3 GHz, 12 GB RAM) featuring Ubuntu 14.04 with an RT
preemptive real-time kernel as operating system.

4.2 Experimental setup

System dynamics given by the continuous ODE model (3)-
(4) is parametrized by the multiple-shooting technique us-
ing uniform intervals of Ts = 10 ms. For discretization over
the shooting intervals we use an implicit Gauss-Legendre
Runge-Kutta integrator of order two. The estimation and
prediction horizon are chosen as TE = 0.5 s and TC = 1 s,
respectively. Moreover, at each sampling time the related
nonlinear optimization problems are solved with the fol-
lowing bounds on controls and state

−2 N m ≤ u ≤ 2 N m
−2π rad ≤ x1 ≤ 0π rad.

while requiring nonnegative values for the estimated pa-
rameters, i.e. b1, b2 ≥ 0. Within the above box constraints,
the system input u is constrained by the internal limita-
tions of the actuator. Similarly, the constraint imposed on
the Pendubot arm’s angular position x1 is inherited from
its physical limits to prevent twisting of the encoder cable.
The state and control references within the NMPC scheme
are kept zero except of the references for angular positions
of both links which are changed online to track the desired
equilibria, i.e. [cosxref

1 , sinxref
1 ,0, cosxref

2 , sinxref
2 ,0]T 1 and

uref = 0. The respective NMPC weighting matrices were
set as P = Q = diag([1e2,1e2,1,1e2,1e2,1]), with in-
put weights Ri = {1.5e2,1e1,4e1,3e1} heuristically tuned
for each set-point in order of switching. Next, the MHE
weights were selected as QE = diag([2,2]), RE = 0.1 and
PE defined following Kühl et al. (2011). Note that the units
of the weights are consistent with the variables in order to
yield a dimensionless cost, and are omitted here for brevity.

4.3 Real-time estimator-controller performance

The performance of the exported MHE-NMPC scheme is
demonstrated in a point-to-point motions’ scenario where
multiple set-point changes are imposed to the controller,
corresponding to the unstable equilibrium positions of the
system. Specifically, starting off from its slightly disturbed
⇊ stable equilibrium, the Pendubot is shortly afterwards
stepwise prompted to achieve the unstable equilibria in
order of �-�-⇈. This unified swing-up+balancing task is
finally concluded by performing the so-called swing-down
maneuver, i.e. returning both links into the initial resting
1 This form of state and its associated reference vector was utilized
within the NMPC objective to ease the reference angle tracking since
each of the two links may, in theory, exhibit infinitely many possible
angular values (with 2π period) for a given equilibrium.
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Fig. 3. Experimental results: red line - system state and control input estimates, gray markers - measurements, black
line - references; the equilibrium set-point tracking task is performed in 10 s intervals, in the order of �-�-⇈-⇊.

position in the shortest time possible. Notice that within
the 50 samples prior to the main part of the experiment,
only the MHE routine is engaged in order to fill its buffer
for providing accurate estimates for the NMPC algorithm
which is triggered thereafter (Fig. 3). During this short
initialization phase the system is excited by a sinusoidal
signal in the vicinity of the ⇊ stable equilibrium position.
The acquired angular position measurements for the given
control scenario are denoted in Fig. 3. by grey markers (+),
together with their estimates depicted with solid red lines.
The remaining states, i.e. estimated angular velocities, and
the corresponding control input acting on the first link
are shown as well. We recall that the relatively smooth
velocity estimates are fed to the controller instead of the
rather noisy ones calculated by means of finite differences
(not shown). The reliable MHE estimates fairly contribute
to the robustness of the NMPC scheme, which has been
observed mainly in the otherwise critical transfers between
set-points. As can be seen in Fig. 3, expectedly the most
challenging set-point to track is the ⇈ position when both

links simultaneously aim to achieve their unstable equilib-
ria. In this configuration, the system is clearly most sen-
sitive to any external disturbances, unmodelled dynamics
or mismatch between the actual system behaviour and its
mathematical representation. This fact has also reflected
into the monitored Karush-Kuhn-Tucker tolerance which
indicates the measure of suboptimality of the solution,
closely related to the problem nonlinearity. Similarly, the
estimates of the friction coefficients (not shown for brevity)
were fairly influenced during this control phase, possi-
bly suggesting to devise a more advanced friction model
that would capture this phenomenon in a more complex
fashion, and thus extend and further improve the overall
performance of the estimator-controller scheme.
Nevertheless, based on the obtained experimental results,
the investigated scheme has been shown to perform ade-
quately well for the equilibrium point-to-point transition
objective of a fast mechatronic system, while respecting
the upper and the lower bounds on both input and state
variable(s).



Table 1. Average and maximum computation
times of one MHE-NMPC iteration in [ms].

qpOASES qpDUNES

phase tavg tmax tavg tmax

MHE
(NE = 50)

estimation 0.243 1.770
preparation 0.766 1.410

full RTI 1.092 2.683

NMPC
(NC = 100)

feedback 0.256 0.600
preparation 1.073 1.400

full RTI 1.374 1.800

total execution time† tavg = 2.426, tmax = 4.083
† Based on particular MHE-NMPC iterations.

To assess the computational complexity of the scheme, in
Table 1 reports the execution times of its main algorith-
mic routines. For this purpose, we treat the iterations of
the RTI scheme for both the MHE and NMPC problem
separately, and split the computation effort of each into a
preparation phase and a feedback (estimation, in case of
MHE) phase. As outlined earlier, for solution of the non-
linear MHE problem we utilize the condensing qpOASES-
based approach while the longer-horizon NMPC problem
is tackled by the sparsity exploiting qpDUNES-based ap-
proach. Both approaches clearly evidence that the RTI
execution time is dominated by the preparation phase,
where the effort is put mainly into linearization of the
NLP. This is in particular significant for the former ap-
proach which additionally carries out a condensing routine
resulting in the reduced-size QP. Overall, the remaining
feedback/estimation phase is subsequently devoted to the
solution of a single sparse/dense QP subproblem. The
results indicate that the lower per-iteration complexity of
the sparse QP strategy (see Frasch et al. (2014)) allows
for computation times to scale better with the problem
size, as compared to the condensing-based approach. The
worst-case computational effort over all real-time steps is
reported as well. The total execution time of the estimator-
controller including all the auxiliary tasks (data communi-
cation, logging, etc.) on average yields 2.43 ms, with peak
computation time at 4.08 ms, which still offers a reasonable
safety margin within the sampling time of 10 ms.

5. CONCLUSION

In this paper, we presented a real-time implementation of
the combined NMHE-NMPC framework for the Pendubot
control task. This efficient RTI-based scheme exploiting
the full nonlinear model allowed for a good unstable
equilibria-tracking performance of the NMPC controller,
to certain extent due to the necessary MHE estimates
of unmeasured system states. The solution approach has
been experimentally verified to be fast enough for real-time
deployment on a laboratory Pendubot system, leading to
feasible computation times and a good estimation/control
performance. The further work may clearly benefit from a
more advanced friction model, and computationally from
parallelization of the two nonlinear optimization routines,
which is the subject of ongoing research.
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