
Analysis of data structures and exploration techniques applied to large
3D marine structures using UAS*

Margarida Faria1 Ivan Maza2 and Antidio Viguria1

Abstract— This paper is focused on the analysis and compar-
ison of different data structures for 3D space representation in
autonomous exploration of large marine structures with UAS.
The classical and widely used frontier exploration approach
is applied: the frontier cells, which are the locations in the
world representation map that are explored and unoccupied
but has unexplored space in its vicinity, are of particular
interest as they yield the highest information gain. Thus, the
data structures have been compared from the point of view
of their performance to be applied in the frontier exploration
approach. The same algorithm has been run for the different
data structures under different scenarios, both with synthetic
and real datasets gathered with an UAS. The results are
analyzed in detail taking into account the amount of iterations
required and the number of computed frontier cells.

Index Terms— Structure Inspection, 3D Space Representa-
tion, UAS Applications

I. INTRODUCTION

The increasing need of UAS usage for remote off-shore
monitoring activities has raised challenges for marine en-
vironment protection and sustainable management. The Eu-
ropean Strategy for Marine and Maritime Research states
the need to protect the vulnerable natural environment and
marine resources in a sustainable manner. The use of UAS
provides increased endurance and flexibility while reducing
environmental impact, risk for human operators and total
cost of operations. This study has been carried out in
MarineUAS 1 framework, an European Union funded doc-
toral program which strategically strengthens research train-
ing on Unmanned Aerial Systems for Marine and Coastal
Monitoring.

Several constraints come with this type of scenario. The
large size of the area, as it can be clearly seen in Fig. 1, is one
such constrint. The structures that need to be inspected are
several orders of magnitude bigger than the UAS. In some
cases, there is no “a priori” 3D available map usable by
the UAS for the navigation. Examples of offshore structures
that would benefit from regular systematic and autonomous
inspection are petro-stations and windmill farms. They have
several structural features that need to be explored in vertical,
calling for a full 3D exploration. This exploration must be

*This project has received funding from the European Unions Horizon
2020 research and innovation programme under the Marie Sklodowska-
Curie grant agreement No 642153.

1Margarida Faria and Antidio Viguria are with the Center for Advanced
Aerospace Technologies, Sevilla, Spain mfaria@catec.aero and
aviguria@catec.aero

2Ivan Maza is the Robotics, Vision and Control Group, University
of Seville, Avda. de los Descubrimientos s/n, 41092, Sevilla, Spain
imaza@us.es

1http://marineuas.eu

done in an reduced amount of time, as it may require the
activity of the facility to be suspended. In addition, exploring
underneath the petro-station in Fig. 1 also requires operating
in GPS-denied areas.

Any work done off shore is extremely expensive and has
inherently rougher conditions. Reduction in inspection time
will lower its cost. Enabling a systematic and autonomous
inspection will shift to machines the work at which they
excel: repetition without deviation, taking into account many
factors. Also by simplifying the inspection, they will get done
more often. Additionally as humans need to do less hands
on work, they became less exposed to risky situations.

Fig. 1. Inspecting under this offshore petro-station offers an example of
inspection that cannot rely on GPS localization.

The first step to achieve autonomous exploration is to have
a clear understanding of one of the core components of the
architecture of any robot that intends exploration: the data
structure used for world representation. The characteristics
of real world scenarios need to be taken into account. These
scenarios will strain the memory capacity of the system.
In real world scenarios, the free space is usually grouped
together. Particularly in offshore structures, it is also likely
to occupy most of the space. And the occupied space is also
likely to be group together. Like the pillars in an offshore
platform, the windmill’s tower or its blades.

The characteristics of the features used for autonomous
navigation should be also taken into account. The driving
goal of the UAS is to explore a given area. Many options
are available, but this work is focused on the classical and
widely used frontier exploration approach. A frontier cell is a
location in the world representation map that is explored and
unoccupied but has unexplored space in its vicinity. These
locations are of particular interest as they yield the highest
information gain, and the UAS will only be able to complete
its map if it samples all the locations.

However, in real world applications the inspection is done
with a concrete purpose. Common objectives are updating a
3D map of the structure for later inspection, getting images
of particular points in the structures, transporting tools, etc.
Each one trimming down the amount of combinations of
waypoint sequences that compose useful and efficient plans.

This paper is organized as follows. Section II reviews
related work and Section III characterizes readily available
data structures. Section IV describes the algorithm used by
the implemented system to process the world representation
on the different data structures under analysis. Section V
presents series of simulations done is several environments,
whereas in Section VI is detailed the application to exper-
imental data gathered by an UAS. Finally, conclusions and
future work are discussed in Section VII.

II. RELATED WORK

As it has been metioned above, the driving goal of the
UAS is to explore a given area and this work is focused on
the classical and widely used frontier exploration approach.
Then, in this paper the data structures will be examined
from the point of view of their suitability to identify the
locations that yield the greater information gain. These
frontier locations satisfy two conditions: they are in free
space and are connected to unexplored space.

Unmanned Ground Vehicles (UGVs) are particularly well
suited to reduce the search space to 2D, due to their locomo-
tion. Many applications use probabilistic occupancy grids to
tackle the task of exploring unknown (or partially unknown)
spaces in a 2D search space. Reference [1] explains the
concept of frontier cells over a regular grid in the context
of probabilistic occupancy. This concept is not new, it was
presented in [2] but due to its simplicity it is still in use
today. In [3] an UGV is directed to the nearest frontier
region, leaving the task of path planning to a lower level
of the architecture with purely reactive obstacle avoidance.
In [4], an UGV also travels to the nearest unexplored cell
but creates roadmaps, i.e. Voronoi diagrams generated from
the occupancy grid.

Many approaches ([3], [5], [6], [7]) encode the status
of the cells as free, unknown and occupied either explicitly
or by probability thresholds. Here each cells encodes a
somewhat different approach to status: free, warning, travel
and far. In [8] this approach is extended to multiple vehi-
cles. Each frontier cell is scored according to an heuristic
combination of occupancy probability and travel distance.
With this combination, the path finding problem is resolved
with steepest descent of the heuristic function. In [9] the
concept of frontier is combined with a topological map: these
edges are calculated as equidistant points to obstacles, the
robot then travels this edges marking them as explored. The
process continues for as long as there are unexplored edges.
Reference [3] is an example of applying this approach to
UAS by setting a safe altitude. The frontier cells found at this
altitude are then clustered into labeled regions, disregarding
the small and inaccessible frontiers. The remaining ones are

considered as goals for the UAS, finding the next goal by
applying a vector field histogram.

In 3D space there are some applications of probabilistic
occupancy grids to solve the next best view problem for
robotic arms. In [7], to distinguish between unknown and
unoccupied cells a ray casting algorithm is used to extrap-
olate free regions from the sensor location and occupied
points. Holes in sensor measurements are extrapolated with
Markov Random Fields. Integrating all this information,
the frontier cells are scored relatively to information gain
to be later selected as best view. One example where the
mission objectives are heavily taken into account is [6].
From the probabilistic grid, a mesh is created as a tool to
find void regions. Unknown cells are set at the center of
ellipsoids, that expand while maintaining a minimum fitting
quality. The ellipsoids are then combined with frontiers and
scored according to neighboring voids. The heuristic function
maximizes the information gain taking into account the
priority each region has for the mission. Knowledge about the
area critical for obstacle avoidance has the highest priority,
followed by the regions affected by the robot’s tools.

Another structure used for 3D space is the octree. One
of its defining characteristics is its multi-resolution quality.
In [5] the list of frontier cells is compressed as clusters
with an union-finding algorithm. The unknown spaces are
handled as macro regions through ellipsoid expansion. Fi-
nally the clusters are combined with the ellipsoids to score
frontiers according to unknown region dimension. Another
paper using the octree as its underlaying structure is [10].
However, the configuration space is searched by means of a
Rapidly Exploring Random Tree, grown iteratively through
safe configurations in the direction of the frontier. In [11] the
information of the known space is stored in a map structure
similar to an elevation map, although for other purposes the
associated point cloud is stored in different data structures.
The search for areas with greater information gain is done
through sample generation, to address the issue of search
space explosion in 3D. From a sample of known points of
the environment, other points are generated and added to the
pool. The model dynamics of the expansion of the molecules
of a perfect gas is used to generate these points. Then, change
rate between particle expansions is evaluated to find frontiers
in regions.

III. DATA STRUCTURES FOR 3D SPACE
REPRESENTATION

In this paper, data structures readily available as off the
shelf libraries have been considered and evaluated. The
amount of data translated into point clouds from most
sensors is extremely high. Thus, it is crucial to select data
structures that more than just compress data but also arrange
information in a useful and efficient manner.

One of the first approaches used for world representation
is the regular grid. The world is discretized into spaces of
the same dimension. This approach is very simple and can
be applied without a dedicated library. The random access
has a complexity of O(1). Any kind of information can

be stored per cell, although with more information comes
greater memory usage.

In order to make search more efficient, trees (with all their
multitude of implementations and variations) are another
option. As it has been mentioned above, an approach that
lends itself particularly well to 3D space is the octree. Two
notable implementations of this structure are available: the
octomap library [12] and the pcl library. The latter offers
several structures and this paper is focused on OctreePoint-
CloudOccupancy [13]. Both offer random access with O(1)
complexity and multi resolution queries. However, they differ
in important details. The pcl library has a great focus on
the compression needed for streaming, while the octomap
library targets navigation and exploration. In the pcl library
new measurements are added by summing points, whereas
the octomap library integrates them in a probabilistic manner.
The concept of unknown scpace is also slightly different in
each implementation. In the pcl library it is simply either
occupied or free. In the octomap library only location with
information is created thus encoding implicitly unknown
space. Both pcl and octomap libraries concern themselves
with efficiency: the former focuses on read/write efficiency,
and for this reason goes so far as to include a double
buffered version of the structure. In the latter, the focus
lies on memory efficiency with (almost) lossless compression
regarding occupancy. For this reason, each node stores only
the occupancy probability and one child pointer - forfeiting
voxel size, coordinates and the full children array.

Another approach is to create meshes from the point cloud.
A popular algorithm is the Delaunay triangulation. Both
pcl and CGAL [14] libraries provide this implementation.
Finally, it is worth mentioning the approach of working with
samples. Although not readily provided by a library, the
search space is greatly reduced.

IV. ALGORITHMS IMPLEMENTED

To assess the impact of search space explosion while
searching for frontier cells, a framework was created to run
all the different combinations between data structures and
search space under the same exact conditions. The diagonal
directions were disregarded as all the frontier regions were
identified without them.

Each data structure needs to provide a function that
returns its neighbors and a set of functions to implement
iteration. Namely initialization, iteration and end condition.
These will be called from the same exact implementation of
Algorithm 1. The algorithm searches for frontier cells from
the initial iteration condition until the end condition. The
evaluation made for each cell selects locations that meet the
following requirements: it must be in known space, it must
be unoccupied and it must have at least one neighbor that
is unexplored. Again, the process of finding the neighbors
is specific to each data structure. The dimension flexibility
is given by the bounding box set at the beginning of the
iteration and by adjusting the number of directions a neighbor
should be created in. In all cases, the neighbors are in
adjacent cells.

The algorithms have been implemented in C++ using the
Robot Operating System (ROS) [15] as middleware. The
open source implementation is freely available in the form of
a self-contained Robot Operating System (ROS) unit tests.
It was released under the MIT-license and can be obtained
from https://github.com/margaridaCF/dataStructureAnalysis.
More data structures can be integrated in a straightforward
way, the only requirement is to provide the four varying
functions: obtain the neighbors, iteration initialization, end
condition and next cell.

Algorithm 1 Generic procedure to find frontier cells. The
aspects that change between the data structures are finding
the neighbors of a cell, initialization of iteration, iteration
and end condition for iterator. For each cell, first it is
determined if the cell is explored and in free space. When
these conditions are met, its neighbors are evaluated. If there
is at least one neighbor that is in unknown space, the cell
will be classified as a frontier.
Input: dimensions, variation spec
Output: frontier cells

1: cell = variation spec.initIteration(min, max)
2: while cell != variation spec.endIteration() do
3: if isExplored(cell)&& !isOccupied(cell) then
4: frontier = false
5: neighbors =

variation spec.getNeighbors(dimensions)
6: for all neighbors : n do
7: if !isExplored(n) then
8: frontier = isExplored(n) ‖ frontier
9: end if

10: end for
11: if frontier then
12: frontier cells.add(cell)
13: end if
14: end if
15: cell = variation spec.getNextCell()
16: end while
17: return frontier cells

A. Regular Grid

The regular grid makes a discretization of the continuous
space into cells that always have the same dimensions.
This classical approach is frequently still used due to its
simplicity.

The full iteration of such a grid will always require a
number of iterations given by multiplying the length, width
and height of the 3D space considered. This implementation
is based on a simple regular increment of the coordinates.
The neighbors are always at the same distance and their
computation algorithm is shown in Algorithm 2.

B. Sparse Grid

The sparse grid extends the concept of the regular grid by
grouping same value regions. Its tree-like approach divides
the space in different sizes, creating a high resolution cell

Algorithm 2 Regular grid neighbor calculation. The di-
mensions of the search space will determine if neighbors
above and below the cell will be add to the output list. The
calculation of the distance to the neighbor varies accordingly
to the data structure. Here it is always the same as it refers
to a regular grid. In a sparse grid, the size of the current
voxel takes the place of the grid resolution.
Input: current, dimensions
Output: neighbors

1: if dimensions == 2D then
2: directions = {up, down, left, right}
3: else if dimensions == 3D then
4: directions = {up, down, left, right, up, down}
5: end if
6: for all directions : d do
7: neighbors.add (current + (d × grid resolution))
8: end for
9: return neighbors

only to accommodate known points extracted from the point
cloud. In this particular implementation, information is added
not only for detected obstacle location but also to the free
space that can be extrapolated from them. By transversing
the grid passing only through a known leafs, all the cells
unexplored will be skipped. This is quite useful since by
definition, any unknown cell can never be a frontier cell.

The state of each location is stored in log-odds notation
to enable probabilistic fusion of each new point cloud. The
compression is nearly lossless, and there is only a trimming
of the maximum and minimum values. Additionally, macro
regions with the same state will be analyzed only once. This
will also reduce the amount of cells that need to be examined
to find frontiers, as the maximum size of each cell is always
lower than the sensor limit. It is the regular grid equivalent
of analyzing several cells at the same time.

The algorithm to advance to the next leaf location is de-
tailed in [12]. To calculate the neighbors, a similar algorithm
to Algorithm 2 is applied, being the main difference to take
into account that the coordinates of each cell refer to the
center of the location. In this work, the library under analysis
is the Octomap library.

V. SIMULATION RESULTS

A. Simulation Environment

Five datasets were used to run the tests under simulation.
They were all generated using ROS nodes on a Gazebo
simulator. The sensor used emulates a VLP-16 LIDAR: it is
omnidirectional, dividing the 360 degrees in 1500 samples
and stacking it 16 times. The sensor was mounted on the
front of a model of a quadrotor (see Fig. 2) while transversing
the scenarios.

The five scenarios shown in Fig. 3 have been considered.
Three of them are the same as the ones used in [16]: an
enclosed space with only one opening (room), a circular
corridor with only one opening to the inner area and a

(in m) Room Corridor Z 2 pillars 4 pillars Pillars
Width 24 24 22 77.8 180.4 13

Length 8 14 13.8 77.2 90 10

TABLE I
DIMENSIONS OF THE SCENARIOS USED FOR THE SIMULATIONS IN

METERS.

Fig. 2. The UAS model used in simulation with its VLP-16 LIDAR in
front.

Z shaped corridor with openings at both ends. In these
scenarios the UAS fully explores the enclosed area, never
crossing an opening. Each of the openings is 0.8 meters
long. The dimensions of the simulated worlds are detailed
in Table V-A. For a scale closer to the targeted application,
there is a scenario that emulates the lower part of an offshore
petro-station. In this scenario, the ground is simulating the
sea level and the floor of the station is above the UAS -
too far to be sensed. From this scenario two datasets were
extracted, one where the UAS inspects two pillars and the
second one were the UAS inspects 3 pillars. The comparison
of two information states in the same scenario will bring
insight into the effect of unknown space in the analysis of
the world.

B. Results analysis

In all the scenarios, both in 2D and 3D, the frontier regions
are roughly the same. No region goes undetected in any case.
This result is illustrated in Fig. 4.

The same regions are detected, however the number of
cells needed to represent them is smaller. This difference
tends to be small using a LIDAR as the edge of the sensor
is often times irregular due to the increased angular interval
between rays. However, when in large scenarios (as 2 pillars
or 3 pillars), it starts to gain more and more relevance.
Also, the geometrical disposition of the voxels and how
neighbors are computed explains this result. In both grids,
the direction in which to test is applied to a reference point

(a) (b)

(c) (d)

(e)

Fig. 3. The different used scenarios (a) Room. (b) Circular corridor. (c)
Z corridor. (d) Offshore petro-oil structure, two pillars sensed (e) Same
structure one additional pillar sensed.

of the voxel. When a larger explored voxel is adjacent to
the same unknown voxel, its whole volume is considered
a frontier. However, in a regular grid the added volume is
always the size of the grid resolution. Computed results are
shown in Fig. II.

For each scenario four combinations are run: regular grid
in 2D, regular grid in 3D, sparse grid in 2D and sparse grid
in 3D. Only the portion of the world above the ground was
considered, more accurately between zero and one meter
altitude. This interval was chosen for study to make the
comparisons with the 2D space within the same magnitudes.
By comparing the execution time of each run depicted in

Fig. 5, it is clear that the sparse grid needs less time to find
the frontier cells.

The number of iterations needed to process the whole
structure is always lower in a sparse grid. More specifically,
the number of iterations is one order of magnitude higher
for regular grids in the 2D case and two orders of magnitude
higher in the 3D case, as it can be seen in Fig. 6. The linear
growth in a logarithmic scale shows the exponential progres-
sion of the iterations amount. The granularity afforded by the
hierarchical nature of the structure certainly predisposes this
progression since the worst case scenario of the sparse grid
is a regular grid. However the disparity of the results can not
be explained only by its hierarchical nature.

Another factor to be taken into account is the amount of
unknown cells. As it can be seen in Fig. 7, the unknown
space is what composes the vast majority of the surveyed
area at that moment, opening the possibility of restricting
the analyzed cells to the known cells.

The size of the space represented affects the number of
iterations and therefore the execution time. The results of
the scenarios with two and four pillars reflect it. Here the
world is exactly the same - only the amount of information
changes. However, in the scenarios Room, Corridor and Z,
the increase in space does not correlate to the iterations
amount or execution time. As the world configuration in each
scenario changes drastically, the distribution of the sizes of
the voxels generation for its representation changes with it.

VI. EXPERIMENTAL RESULTS

The algorithms have been applied to a dataset captured in
a single flight by a real UAS, although in a more confined
space.

A. Platform description

The platform used for data acquisition was the quadcopter
shown in Fig. 8. It was equipped with two RGB-D cameras
Asus Xtion Pro Live, one facing forwards and another facing
backwards. The images captured by the camera were then
combined and analyzed to generate the point cloud. This data
was recorded in an indoor testbed with dimensions 15x15x5
meters at the Center for Advanced Aerospace Technologies
(CATEC) located in Seville (Spain). Figure 9 shows the point
cloud captured in the testbed.

B. Results analysis

The dataset captured in a real scenario was analyzed using
the same source code (both 2D and 3D in each data struc-
ture). Again only the portion of the world above the ground
between zero and one meter altitude was considered. The
results are consistent with the ones observed with datasets
captured in simulation. Concerning execution time, the octree
keeps preforming significantly better as it can be seen in
Fig. 10. To analyze efficiency from a platform independent
point of view, the number of cells was evaluated. In Fig. 11
again it can be seen the high proportion of unknown cells
which corroborates the explanation of the efficiency gain by
the amount of skipped cells.

(a) (b)

Fig. 4. The frontier cells found in the two pillar scenario using the sparse grid data structure. (a) Shows the results using the regular grid. (b) Shows the
results using the sparse grid.

TABLE II
FRONTIER REPRESENTATION FOR SIMULATION DATASET. THE UNITS OF SPACE ARE M2 AND M3 FOR TWO AND THREE DIMENSIONS RESPECTIVELY.

2D 3D
Regular Sparse Difference Regular Sparse Difference

Room Frontier cells 236.0 221.0 15.0 50,903.0 47,460.0 3,443.0
Space 9.4 9.7 -0.2 407.1 407.0 0.1

Corridor Frontier cells 137.0 110.0 27.0 5,729.0 1,951.0 3,778.0
Space 5.5 5.8 -0.4 45.8 22.8 23.1

Z Frontier cells 67.0 61.0 6.0 24,210.0 20,873.0 3,337.0
Space 2.7 2.9 -0.2 193.7 185.1 8.5

2 pillars Frontier cells 9,000.0 6,809.0 2,191.0 845,091.0 790,015.0 55,076.0
Space 360.0 386.2 -26.2 6,718.9 7,028.2 -309.3

3 pillars Frontier cells 28,627.0 21,724.0 6,903.0 1,273,737.0 1,156,968.0 116,769.0
Space 1,145.0 1,165.6 -20.7 10,067.7 11,047.3 -979.6

Another interesting result refers to the frontier space and
the amount of cells needed to represent it. In Table III,
although the frontier space represented by the octree deviates
by around 1.3 (square and cubic meters respectively), the
number of cells that represent it is reduced. It is hypothesized
that this is not a variation that will greatly impact the further
processing of the frontier cells for selecting a goal, but it is
a reduction nonetheless.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, it has been analyzed the impact of the under-
lying data structure on processing the world representation
to find frontier cells. In the analyzed octree implementation
(octomap), some characteristics emerge as beneficial for

TABLE III
FRONTIER REPRESENTATION FOR THE EXPERIMENTAL DATASET. THE

UNITS OF SPACE ARE M2 AND M3 FOR TWO AND THREE DIMENSIONS

RESPECTIVELY.

2D 3D
Regular Sparse Change Regular Sparse Change

Cells 1341 1067 274 10394 8652 1742
Space 13.4 12.0 1.4 10.4 11.7 -1.3

efficiency. The baseline used was a regular grid with the same
resolution as the octree. The number of iterations needed
to find frontier cells was less in all cases by, at least, one
order of magnitude. Grouping regions with the same status
and skipping the unknown cells explain these results. The

Fig. 5. Analysis of the influence of the search space explosion on the
execution time. Each scenario appears first as 2D and then as 3D, using a
logarithmic scale for both axis. The units of space are M2 and M3 for two
and three dimensions respectively.

Fig. 6. A comparison of the iterations amount needed to transverse the
world representation for each of the data structures, both in two dimensions
and three dimensions using a logarithmic scale for the space axis. The units
of space are M2 and M3 for two and three dimensions respectively.

Fig. 7. The amount of space between unknown space during exploration
is very large, in any scenario, in any dimension. This graph is using a
logarithmic scale for the space axis. The units of space are M2 and M3

for two and three dimensions respectively.

Fig. 8. UAS platform used for data acquisition.

Fig. 9. Point cloud captured in an indoor testbed with the UAS shown in
Fig. 8 at the Center for Advanced Aerospace Technologies (CATEC) located
in Seville (Spain).

number of frontier cells is smaller for the sparse grid in all
of the datasets, while covering a similar amount of area.
This indicates that these cells better summarize the frontier
regions, providing some degree of grouping. Although it will
be beneficial for any cell processing, it is not a big enough
difference as to allow to concluded it will create a sizable
impact.

Three different future directions of research are of interest.
On the one hand, it would be of great interest to integrate
more data structures and to add more implementations of the
octree such as the pcl cloud. On the other hand it would be
valuable to compare entirely different data structures. One
type of data structure of particular interest is a triangle mesh
extracted with Delaunay triangulation. Again several imple-
mentations exist (CGAL, pcl), comparing them would bring
a greater insight into their application. Another research di-
rection is to evaluate the performance of the search algorithm
throughout a mission. Such survey would permit a thorough
comparison between increasing amounts of information in
the same scenario, while using each different data structure.
Finally, applying these results to UAS exploring very large
areas in the real world.

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics, ser. Intelli-
gent robotics and autonomous agents. Cambridge (Mass.) (London):

Fig. 10. Comparison of execution time between data structures and
dimensions for experimental dataset. In the graph a logarithmic scale is
used for the time axis.

Fig. 11. Relation between total amount of cells, the cells iterated through
with the sparse data structure and the amount of frontier cells found. The
amount of unknown cells can be extrapolated as the blue area, since the
values are not stacked. In the graph a logarithmic scale is used for the
vertical axis.

The MIT Press, 2005.
[2] B. Yamauchi, “A frontier-based approach for autonomous

exploration,” in Proceedings 1997 IEEE International Symposium
on Computational Intelligence in Robotics and Automation
CIRA’97. ’Towards New Computational Principles for Robotics
and Automation’. IEEE Comput. Soc. Press, 1997, pp. 146–151.
[Online]. Available: http://ieeexplore.ieee.org/document/613851/

[3] F. Fraundorfer, L. Heng, D. Honegger, G. H. Lee, L. Meier, P. Tan-
skanen, and M. Pollefeys, “Vision-based autonomous mapping and
exploration using a quadrotor MAV,” IEEE International Conference
on Intelligent Robots and Systems, pp. 4557–4564, 2012.

[4] L. Romero, E. Morales, and E. Sucar, “A Robust Exploration
and Navigation Approach for Indoor Mobile Robots Merging
Local and Global Strategies,” Advances in Artificial Intelligence:
International Joint Conference 7th Ibero-American Conference on
AI 15th Brazilian Symposium on AI IBERAMIA-SBIA 2000 Atibaia,
SP, Brazil, November 19–22, 2000 Proceedings, pp. 389–398, 2000.
[Online]. Available: http://dx.doi.org/10.1007/3-540-44399-1 40

[5] C. Dornhege and A. Kleiner, “A frontier-void-based approach for au-
tonomous exploration in 3d,” in 2011 IEEE International Symposium
on Safety, Security, and Rescue Robotics. IEEE, nov 2011, pp. 351–
356. [Online]. Available: http://ieeexplore.ieee.org/document/6106778/

[6] G. Paul, S. Webb, D. Liu, and G. Dissanayake, “Autonomous
robot manipulator-based exploration and mapping system
for bridge maintenance,” Robotics and Autonomous Systems,
vol. 59, no. 7-8, pp. 543–554, 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.robot.2011.04.001

[7] C. Potthast and G. S. Sukhatme, “A probabilistic framework
for next best view estimation in a cluttered environment,”
Journal of Visual Communication and Image Representation,
vol. 25, no. 1, pp. 148–164, 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.jvcir.2013.07.006

[8] W. Burgard, M. Moors, C. Stachniss, and F. E. Schneider, “Co-
ordinated multi-robot exploration,” IEEE Transactions on Robotics,
vol. 21, no. 3, pp. 376–386, 2005.

[9] H. Choset and K. Nagatani, “Topological simultaneous localization
and mapping (SLAM): Toward exact localization without explicit
localization,” IEEE Transactions on Robotics and Automation, vol. 17,
no. 2, pp. 125–137, 2001.

[10] L. Freda, G. Oriolo, and F. Vecchioli, “Sensor-based exploration for
general robotic systems,” 2008 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS, pp. 2157–2164, 2008.

[11] S. Shen, N. Michael, and V. Kumar, “Autonomous multi-floor indoor
navigation with a computationally constrained MAV,” Proceedings -
IEEE International Conference on Robotics and Automation, pp. 20–
25, 2011.

[12] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189–206,
2013.

[13] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in
IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, May 9-13 2011.

[14] S. Hornus, O. Devillers, and C. Jamin, “dD triangulations,” in
CGAL User and Reference Manual, 4.9 ed. CGAL Editorial
Board, 2016. [Online]. Available: http://doc.cgal.org/4.9/Manual/
packages.html#PkgTriangulationsSummary

[15] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[16] S. Shen, N. Michael, and V. Kumar, “Stochastic differential equation-
based exploration algorithm for autonomous indoor 3D exploration
with a micro-aerial vehicle,” The International Journal of Robotics
Research, vol. 31, no. 12, pp. 1431–1444, oct 2012. [Online].
Available: http://ijr.sagepub.com/cgi/doi/10.1177/0278364912461676

