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Summary

In a conventional antilock brake system (ABS), the wheel slip will oscillate
around a ”critical slip” within some given thresholds. This oscillation will
have as side effects a noticeable vibration for the driver and limitations in
ABS performance. Thus, the actual friction force between tyre and road
will oscillate around a ”maximum” point. The level of complexity present
in current production ABS systems has serious limitations for further devel-
opment and analysis.

This thesis looks at the analysis and design of an ABS controller using a
continuously adjustable electromechanical actuator where the ABS aims to
control the slip of the wheel to arbitrary setpoints provided by a higher level
control system such as the electronic stability program (ESP). Thus, maxi-
mum friction force can be obtained together with a vibration free braking.

This thesis contributes to stability and robustness analysis of a nonlinear
ABS controller with respect to uncertainty in the road/tyre friction using
Lyapunov theory, frequency analysis and experiments with a test vehicle. A
communication delay between the ABS controller and the electromechanical
actuator together with the actuator dynamics introduce phase losses and the
effect of these performance limitations are also analysed.

This thesis contributes to model-based nonlinear wheel slip controller
design, as an explicit gain scheduled LQR design method was used for con-
troller design.

Full-scale results are presented for a Mercedes car (E220) equipped with
a brake-by-wire system and electromechanical actuators for various test sce-
narios, which show that high performance and robustness are achieved. The
test scenarios consist of straight-line braking on different road surfaces (ice,
snow, dry asphalt, wet asphalt and inhomogeneous asphalt/plastic coated
surface) and a single experiment for braking in a turn on dry asphalt.

The main results of this dissertation have been published in international
journals, at international conferences and as a book chapter.
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Abbrevations

ABC Active body control
ABS Antilock brake system
ACC Adaptive cruise control
BAS Brake assist system
BbW Brake by wire
BBWM Brake by wire manager
CA Collision avoidance
CRC Cyclic redundancy check
DbW Drive by wire
EBD Electronic brakeforce distribution
ECU Electronic control unit
EHB Electrohydraulic brakes
EKF Extended Kalman filter
EMB Electromechanical brakes
EMS Electromechanical steering
ESP Electronic stability program
ETC Electronic traction control
HCU Hydraulic control unit
ISO International Organization for Standardization
LPV Linear parameter-varying
OEM Automotive original equipment
LQR Linear quadratic regulation
LQRC LQR with constraints
PM Power manager
SAE Society of Automotive Engineers
SbW Steer by wire
TCS Traction control system
TDMA Time division multiple access
TTP Time-triggered protocol
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Chapter 1

Introduction

”Braking is to be done as hard and late as possible to ensure that
your ABS kicks in, giving a nice, relaxing foot massage as the
brake pedal pulsates. For those of you without ABS, it’s a chance
to stretch your legs.” Unknown

The motivation for an anti-lock braking system (ABS) is that it can
provide improvements in the performance of the vehicle under braking com-
pared to a conventional brake system (SAE 1992). Performance improve-
ment is typically sought in the areas of stability, steerability and stopping
distance. An ABS controls the slip of each wheel to prevent it from locking
such that a high friction is achieved and steerability is maintained. ABS
controllers are characterized by robust adaptive behaviour with respect to
highly uncertain tyre characteristics and fast changing road surface proper-
ties (SAE 1992; Burckhardt 1993).

This chapter gives an overview of ABS (history and its function), fol-
lowed by a literature review on ABS controllers. To prepare the reader
for the research presented in this thesis, information on x-by-wire and elec-
tromechanical brakes is then provided. This chapter ends with a summary
of the contributions found in this thesis, together with the layout of this
thesis.

1.1 An anti-lock braking system overview

The current hydraulic ABS systems were conceived from systems developed
for trains in the early 1900’s. Next, anti-lock brakes were developed to assist
aircrafts stop straight and quickly on slippery runways. In 1947, the first
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use of anti-lock brakes on aeroplanes was on B-47 bombers to avoid tire
blowout on dry concrete and spin-outs on icy runways. The first automotive
use of ABS was in 1954 on a limited number of Lincolns which were fitted
with an ABS from a French aircraft. In the late 60’s, Ford, Chrysler, and
Cadillac offered ABS on very few models. These very first systems used
analog computers and vacuum-actuated modulators. Since the vacuum-
actuated modulators cycled so slowly, the vehicle’s actual stopping distance
increased. Legal concerns then literally put the development on hold in the
US, while the European companies took the lead in the next 10-20 years. In
the late 70’s, Mercedes and BMW introduced electronically-controlled ABS
systems. By 1985, Mercedes, BMW and Audi had introduced Bosch ABS
systems and Ford introduced its first Teves system. By the late-80’s, ABS
systems were offered on many high-priced luxury and sports cars. Today,
braking systems on most passenger cars and many light-duty vehicles have
become complex, computer-controlled systems. Since the mid-80’s, vehicle
manufacturers have introduced dozens of anti-lock braking systems. These
systems differ in their hardware configurations as well as in their control
strategy (SAE 1992; Burckhardt 1993).

Any production ABS incorporates a number of subsystems and in most
ABS systems there will be a slip controller subsystem, the objective of which
is to avoid locking the wheels under a braking manoeuvre, either by ensuring
that the slip stays within a specified range or at a given setpoint. Note
that not all ABS systems estimate and control the wheel slip explicitly, but
work on speed and acceleration instead. Among these subsystems, the logic
responsible for coordinating the four wheel slip controllers is of particular
importance. The wheel slip controllers for each wheel are (as safety devices)
only active in critical situations. Thus, each controller is switched off and
the brake is set to manual operation when the wheel is no longer in danger
of being locked. On the other hand, the slip controller has to be switched
on early enough to prevent the wheel from locking. Thus, the corresponding
switching logic is crucial for the functionality of the ABS.

The basic control-philosophy (Burckhardt 1993; Hattwig 1993; Maisch,
Mergenthaler, and Sigi 1993; Maier and Müller 1995; Wellstead and Pettit
1997) for conventional ABS systems, is a combination of

• slip control and

• wheel acceleration control.

Wheel acceleration control uses the measured wheel angular velocities
to control indirectly the slip by regulating the acceleration/decelration of
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the wheels. The actuator used in conventional ABS systems is a hydraulic
solenoid valve which has three brake pressure modes:

• increase

• hold

• reduce

The controller is switched on when the deceleration of the wheel drops
below a specified value for a given period of time. As long as the ABS is
active, the switching between the different actuator modes (increase, hold
or reduce) is controlled either using several slip and acceleration thresholds
or by defining a switching surface using a weighted sum of slip and accel-
eration. By appropriately selecting these thresholds, the slip will oscillate
around the “critical slip”. Thus, the friction force between the tyres and the
road surface will be close to its maximum value and the braking distance
is minimized. This kind of algorithm will have vibrations as a side effect
which are noticeable while braking (Burckhardt 1993).

Slip control works satisfactorily for non-decreasing tyre force character-
istics while wheel acceleration control tends to work better for tyre charac-
teristics which have a pronounced maximum. This is due to the fact that
a larger wheel acceleration/deceleration can be obtained in the pronounced
maximum case. ABS controllers have been shown to be highly adaptive
since they can tolerate a considerable amount of uncertainty in the tyre
force characteristics and the friction coefficient.

Conventional ABS systems have some limitations in control and per-
formance. One of the most significant disadvantages of these systems is
their disability in slip control and tracking of a specified desired slip in an
acceptable range.

Today’s production ABS is a rule-based control system that has exhaus-
tive tables for different braking scenarios. The controllers are tuned in a
trial and error manner using simulations and exhaustive field testing. The
level of complexity of these systems is a serious limitation for the analysis
and further development of the current production ABS systems.

1.2 Literature review

Different control methods have been tested for their performance in ABS.
The model-based approach in (Drakunov, Özgüner, Dix, and Ashrafi 1995)
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applies a search for the optimum brake torque via sliding modes. This ap-
proach requires the tyre force, hence, a sliding observer is used to estimate
it. The approach is tested in a simplified simulation environment. Sliding
mode control has been tested in a hardware in the loop simulator (Kawabe,
Nakazawa, Notsu, and Watanabe 1997) and also in a vehicle. A derivative
part depending on the rotational acceleration is introduced in order to re-
duce the chattering of the sliding controller. The sliding controller proposed
by (Choi and Cho 1998) is mainly used to show the advantage of a PWM
controlled actuator. (Wu and Shih 2001) design an ABS controller (with-
out slip-feedback) which integrates sliding-mode control with PWM. Sliding
mode control is also considered in (Schinkel and Hunt 2002).

Another theoretical approach is presented by (Freeman 1995). Freeman
designs an adaptive Lyapunov-based nonlinear wheel slip controller. This
controller has been extended in (Yu 1997) by introducing speed dependence
of the Lyapunov function and also including a model of the hydraulic cir-
cuit dynamics. Neither of these two latter approaches have been tested in
simulation or in a real vehicle. Another Lyapunov based nonlinear adaptive
tyre slip controller is presented in (Lüdemann 2002) using Sontag’s formula
(Sontag 1989; Krstić, Kanellakopoulos, and Kokotović 1995). No actuator
dynamics have been included in this analysis.

Feedback linearization to design a slip controller is suggested by (Liu
and Sun 1995) where gain scheduling is used to handle the variation of the
tyre friction curve with respect to speed.

A maximum tyre/road friction approach using optimal control theory is
proposed in (Tsiotras and Canudas de Wit 2000) based on a static friction
model.

An adaptive emergency braking controller designed to achieve near-
maximum braking effort is suggested in (Yi, Alvarez, Horowitz, and Canudas
de Wit 2000).

(Wellstead and Pettit 1997) formulate a conventional ABS controller as
a piecewise linear controller including analysis of the switching cycles. Inves-
tigations on a variable desired slip can be found in (Fajdiga and Janic̆ijevic̆
1992). The desired slip is varied according to the side slip angle.

(Taheri and Law 1991) design a simple PD wheel slip controller by the
Ziegler-Nichols rule, focusing on the desired slip value. The desired slip is
estimated by evaluating the switching of a conventional ABS. Additionally,
a modification of the desired slip according to the steering angle is also
proposed.

A robust PID controller based on loop-shaping and a nonlinear PID,
where the nonlinear function gives a low/high gain for large/small errors
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respectively, are proposed in (Jiang 2000) together with simulation results
for a heavy vehicle. Other PID-type approaches to wheel slip control are
considered in (Jun 1998; Wang, Schmitt-Hartmann, Schinkel, and Hunt
2001; Solyom and Rantzer 2002).

Conventional ABS control is compared against PID, sliding and fuzzy
controllers in (Jun 1998). The PID algorithm adapts very slowly on different
road surfaces. A combination of the model-based approaches should give
good performance; but this has not been tested.

1.3 X-by-Wire

There is an increasing demand on automotive original equipment manufac-
turers (OEM) to increase vehicle safety and performance, while simultane-
ously reducing manufacturing costs and maximizing efficiencies in the design
process (Leen and Heffernan 2002). The introduction of x-by-wire (XBW)
systems into the automotive environment is gaining rapid momentum, and
XBW examines the global movement toward replacing hydraulics and me-
chanical systems with electronics for safety-critical applications. The ”x” in
”x-by-wire” represents the basis of any safety-related application, such as
steering, braking, power train, suspension, throttle control or multi-airbag
systems. These applications aim to increase overall vehicle safety and per-
formance by liberating the driver from routine tasks and assisting the driver
to find solutions in critical situations.

Integrating by-wire systems will create both functional and infrastruc-
ture improvements. Functional improvements include (Delphi 2002):

• Improved ride and handling - By-wire computer control of chassis dy-
namics allows steering, braking, and suspension to work together.

• Enhanced stability control - Sensors and controllers work together to
detect then correct increased yaw movements that could result in spin-
outs or rollovers.

• Safety-enhancing systems - By-wire technology provides the commu-
nication link necessary to enable safety systems like lane keeping and
collision avoidance.

Through modular design and the elimination of hardware, x-by-wire of-
fers several infrastructure improvements (Delphi 2002):

• Increased modularity - Fully functional by-wire modules reduce OEM
assembly time and cost.
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• Improved driver interface - The elimination of mechanical connections
to the steering column gives OEMs more flexibility in designing the
driver interface with regard to location, type, feel, and performance.

• Enhanced passive safety - An x-by-wire cockpit can simplify and im-
prove occupant restraint management.

• Added flexibility - Vehicle designers will have more flexibility in the
placement of hardware under the hood and in the interior to support
alternative powertrains, enhance styling and improve interior function-
ality.

• Lead-time reduction - OEMs will be able to use a laptop computer
to perform soft tuning capabilities instead of manually adjusting me-
chanical components.

The following paragraph has been extracted from (Leen and Heffernan
2002). In the past few years there has been a tendency in vehicle construc-
tion to increase the safety of vehicles by introducing intelligent assistance
systems (e.g. ABS, Brake-Assistant (BA), Electronic Stability Program
(ESP), etc.) that help the driver to cope with critical driving situations.
Typical for these functions is the active control of the driving dynamics by
distributed assistant systems, which therefore need a communication net-
work. The electronic components which control these functions are safety-
critical. However, the assistance functions deliver only an add-on service in
accordance to a fail-safe strategy for the electronic components. If there is
any doubt about the correct behavior of the assistance system, it will be shut
down. For by-wire systems without a mechanical backup, a new dimension
of safety requirements for automotive electronics is reached. After a fault,
the system has to be fail-operational until a safe state (e.g. vehicle stand
still) is reached.

Figure 1.1 shows how dynamic driving-control systems have been steadily
adopted since the 1920’s.

1.3.1 Electromechanical brakes

Brake-by-wire means that there is no hydraulic or mechanical connection be-
tween the brake pedal and the brake actuators. The driver’s brake command
results in an electrical signal that is communicated via micro-controllers to
the actuator. Such technologies require new types of brake actuators such as
electromechanical, (Hedenetz and Belschner 1998; Schwarz 1999; Isermann,
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Figure 1.1: Past and projected progress in dynamic driving control systems.

Schwarz, and Stölzl 2002), or electro-hydraulic brakes. A main feature of
electromechanical and electro-hydraulic brakes compared to conventional
brakes with solenoid valves is that they allow accurate continuous adjust-
ment of the brake force.

Electromechanical Braking systems (EMB), also referred to as brake-
by-wire, takes the place of conventional hydraulic braking systems with
a completely ‘dry’ electrical component system by replacing conventional
actuators with electric motor-driven units. EMB is designed to improve
connectivity with other vehicle systems, thus enabling simpler integration
of higher level functions such as traction control (ETS), acceleration skid
control (ASR), ESP and BA. This integration may vary from embedding
the function within the EMB system, as in ABS, to interfacing to these
additional systems using communication links.

This move to electronic control helps to eliminate many of the manufac-
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turing, maintenance, and environmental concerns associated with hydraulic
systems. The potential benefits of the EMB systems include:

• Assistance functions (ABS, BA, ESP,...) which could be realized by
software and sensors, and without additional mechanical or hydraulic
components.

• Benefit due to electrical interfaces instead of hydraulic interfaces, which
allow easier adapting of assistance systems.

• A reduction in system weight resulting in improved vehicle perfor-
mance and economy.

• Simpler maintenance as maintenance requirements are reduced.

• Ecological as there is a reduction in pollutant sources reduction through
the elimination of corrosive and toxic hydraulic fluids.

• Comfort as pedal ergonomics are adaptable.

• Nearly rest torque-free.

• No mechanical links between the brake components and the engine
compartment, improving passive safety.

• No perceptible noise emission when braking.

• Reduced costs for assembly during line production due to simpler and
faster assembly of the system into the host vehicle.

• Intelligent error response

• The supervisory monitoring system will not interfere with the pedal
movement (no pulsating effect felt).

• Implementation of features such as ‘hill hold’.

Another advantage is the elimination of the large vacuum booster found
in conventional systems which helps simplify the production of right and
left-hand drive vehicle variants.

To satisfy the fail-operational requirement, an additional redundancy in
the control components, sensors, software, power supply and the communi-
cation system has to be included. Nevertheless, there are still good reasons
(as listed above) to introduce by-wire functions for brake systems.
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As mentioned earlier, production ABS uses the wheel acceleration to
control the slip to maximize the friction force. In the next generation of
brake-by-wire systems where EMB’s are used, it may be beneficial to in-
troduce a shift from wheel acceleration/deceleration control to slip setpoint
control. The slip setpoint is supposed to be provided by a higher level con-
trol system (e.g. ESP) which can be used to stabilize the lateral dynamics
of the vehicle while braking. In this way, the control objective is shifted to
maintain a specified slip for each of the vehicle’s wheels. This makes wheel
slip control an interesting alternative to conventional ABS systems, where
the control logic usually does not include an explicit wheel slip controller
(SAE 1992; Maier and Müller 1995; Wellstead and Pettit 1997). The target
slip may also be based on automatic monitoring of the road conditions, e.g.
(Gustafsson 1997).

1.3.2 The H2C project

Heterogenous Hybrid Control (H2C) is an European Commission ESPRIT
LTR-project which was started in late 1998 consisting of participants from
DaimlerChrysler (Germany), Glasgow University (Scotland), Lund Univer-
sity (Sweden) and SINTEF (Norway). One major research part of the
project was to study wheel slip control for an ABS system, where Daim-
lerChrysler provided a vehicle (a Mercedes E220) fitted with EMB. The
following paragraph describes briefly the methods used in designing wheel
slip controllers by the project participants in the H2C project.

The electro-mechanical wheel brake by Continental Teves (Schwarz 1999;
Lüdemann 2002) is a disk brake working on the floating caliper-principle.
(Lüdemann 2002) formulates two possible hybrid ABS controllers: a Lyapunov-
based nonlinear PI-type controller and a nonlinear adaptive slip control us-
ing Sontag’s formula (Sontag 1998; Krstić, Kanellakopoulos, and Kokotović
1995) which both have been tested. (Schinkel and Hunt 2002) formulate
an ABS control using a sliding mode approach. A linearization of a non-
linear model is used in (Wang, Schmitt-Hartmann, Schinkel, and Hunt 2001),
where a SSP(simultaneous stabilisation problem) approach is used to design
an ABS controller. In (Solyom and Rantzer 2002), a model-based design
method for gain scheduled robust nonlinear PI(D) controllers is described
and tested. It should be noted that the controller performance by the differ-
ent controller design methods implemented and tested in the H2C project,
were shown to converge by the end of the project (Lüdemann 2002), but are
not conclusive. This is due to the fact that there are no scenarios containing
complete test data for well-tuned controllers.
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There are several more producers of electromechanical brake actuators
from companies such as Siemens, Delphi, Lucas, Bosch, Honda. Due to
the industrial property rights and very strict proprietary policies within
the automotive industry, very little has been published around automotive
EMB. There is no literature describing tests and performance results of EMB
beside those that have been carried out through the H2C project.

1.3.3 Requirements for brake-by-wire systems

There are several requirements for brake-by-wire systems, which are listed
below (the terms Safety, Reliability, Maintainability and Availability are
used in accordance with the definition of (Laprie 1995)). First, some com-
mon requirements for automotive by-wire systems (Hedenetz and Belschner
1998):

• Safety - after one arbitrary fault, the system must be available in a
satisfying manner e.g., the brakes have to work with an adequate brake
force.

• Reliability - the reliability of a by-wire system must be at least as high
as a comparable mechanical system.

• Availability - the availability must be at least as high as present sys-
tems.

• Maintainability - the maintainability intervals must be at least as long
as present systems.

• Lifetime - the lifetime must be at least as long as present systems.
The Society of Automotive Engineers (SAE) classified in-vehicle com-
munication systems into three categories, class A-C (SAE 1993). For
safety-related communication systems, class C is required.

• Costs - must be not more than to those of conventional systems.

• Compartment - must be small enough for easy integration of the com-
ponents.

• Legal aspects - must be fulfilled (Council 1971) (EU has set tolerance
guidelines for brake systems. When the braking performance falls
within these tolerance levels, the system is considered safe).

Then, the special requirements for brake-by-wire systems:
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• Actuators - the brake actuator must be free of braking torque in case
of power loss.

• Sensors - triple redundancy shall be used for the pedal sensors to get
one valid pedal measurement by the loss of one sensor.

• Power supply - two independent power supplies must be used.

• Communication - the communication system must be fail-operational
after one fault.

• Software - the software must be certified (eg. ISO).

To reach these requirements, new technologies had to be developed for
the actuators (Schwarz 1999; Lüdemann 2002), communication (FlexRay
2002; Hedenetz and Belschner 1998; Kopetz and Grünsteidl 1994) and elec-
tronic components (Flemming 2001; Leen and Heffernan 2002).

1.4 Contributions

The introduction of advanced functionality such as ESP, drive-by-wire and
more sophisticated actuators and sensors offers both new opportunities and
requirements for a higher performance in ABS brakes. The main motivation
for this research has been to analyze and design an ABS controller on an
automotive vehicle fitted with a new electromechanical actuator, rather than
a hydraulic actuator, which allows continuous adjustment of the clamping
force. The main contributions of this thesis can be summarized as:

• Model-based nonlinear wheel slip controller design.

• Lyapunov stability and robustness analysis.

• Full-scale verification tests.

1.4.1 Model-based nonlinear wheel slip controller design

The wheel slip dynamics are highly nonlinear. Despite this, the wheel slip
controller design used in this research work is based on an explicit linear
quadratic regulation (LQR) design method developed recently, which takes
into account the input and state constraints (Johansen, Petersen, and Slup-
phaug 2000a; Johansen, Petersen, and Slupphaug 2002). The control design
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relies on local linearization and gain scheduling. My contribution to the de-
sign method is mostly on the implementation and the verification of the de-
sign method. Two modifications were developed and tested which improved
the initial transient response: controller initialization and off-equilibrium
design. This constrained LQR will hereafter be referred to as LQRC. The
full paper (Johansen, Petersen, and Slupphaug 2002), that describes the
controller design method LQRC, is included in Appendix A. In addition,
a MATLAB toolbox was developed for the LQRC controller design method
(Johansen and Petersen 2001).

Proceeding results were reported in (Branicky, Johansen, Petersen, and
Frazzoli 2000; Johansen, Kalkkuhl, Lüdemann, and Petersen 2001).

1.4.2 Lyapunov stability and robustness analysis

As the control design relies on local linearization and gain scheduling, the ef-
fects of this simplification are analyzed with a somewhat idealized Lyapunov-
based nonlinear stability and robustness analysis, taking into account un-
certain tyre friction nonlinearities. The Lyapunov function is derived using
the Riccati equation solution. Robust stability is shown for a wide range of
slip, tyre friction and expected speed values (Petersen, Johansen, Kalkkuhl,
and Lüdemann 2001; Petersen, Johansen, Kalkkuhl, and Lüdemann 2002).

In order to also investigate the effects of sampling, communication delays,
actuator dynamics and the fundamental limitations in performance, this
analysis is complemented by a classical frequency analysis in (Johansen, Pe-
tersen, Kalkkuhl, and Lüdemann 2003). The model used in the three previ-
ous references has been extended to include actuator dynamics in (Petersen,
Johansen, Kalkkuhl, and Lüdemann 2003). Here, a parameter-dependent
Lyapunov function for the nominal closed loop was found by solving an
linear matrix inequality (LMI) problem and this function was used to inves-
tigate the robustness with respect to uncertainty in the road/tyre friction
characteristic. Lyapunov stability and robustness analysis are treated in
Chapter 4.

1.4.3 Full-scale verification tests

This research work contains detailed experimental evaluation using a test
vehicle, a Mercedes E220, provided by DaimlerChrysler. The test results
included in this thesis are from a series of successful experiments carried
out for a straight-line braking manoeuvre on different road surfaces (ice,
snow, dry asphalt, wet asphalt and inhomogeneous asphalt/plastic coated
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surface) and braking in a turn on dry asphalt. The results have in part been
published in (Petersen, Johansen, Kalkkuhl, and Lüdemann 2001; Petersen,
Johansen, Kalkkuhl, and Lüdemann 2002; Johansen, Petersen, Kalkkuhl,
and Lüdemann 2003; Petersen, Johansen, Kalkkuhl, and Lüdemann 2003)
and are analyzed in Chapter 6.

1.4.4 Scope and organization of H2C project

The LQRC controller design method was chosen by the H2C project as the
method seemed promising with respect to handling input and state con-
straints. Half-way through the project, the test vehicle was fitted with a
new and faster electromechanical brake-actuator. As a consequence of this
upgrade, the need for a design method handling constraints became less
important.

The H2C project was organized such that the test vehicle was provided
by DaimlerChrysler with their software and hardware implementations. An
important issue to mention is that the extended Kalman-filter was provided
by DaimlerChrysler. Time was spent on software programming for basic
support function like controller logging and making the application software
flexible to allow toggling of active controller and setting of parameters on-
line without requiring a recompilation of the run-time software code. The
main software provided by the other project participants was their respective
wheel slip controller.

DaimlerChrysler also provided a vehicle simulator and a tyre friction
model. The simulator was used extensively for thorough testing of the wheel
slip controller before being implemented into the test vehicle.

1.5 Outline

Chapter 2 gives an overview of the vehicle with its sensors and computer
system. In addition, to provide an insight into the fault tolerance
and safety of the ABS used, descriptions of the TTP communication
and the brake-by-wire-/power-manager are given. A detailed descrip-
tion of the state-of-the-art electromechanical brake actuator and its
discretized model are also included.

Chapter 3 presents the wheel slip dynamics and the quarter car model.
Friction curves are presented showing the variation of tyre/road fric-
tion as a function of wheel slip for various road conditions. This
chapter also gives an introduction to friction modelling together with
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estimation of friction curves based on experimental data. Finally, dy-
namics caused by the vehicle pitching is discussed.

Chapter 4 describes why gain scheduled control is suitable for ABS control
and presents a linearization of wheel slip dynamics and its properties.
Gain scheduled LQ designs with Lyapunov analysis for three cases are
provided: (i) slip dynamics without integral action, (ii) slip dynam-
ics with integral action, (iii) slip dynamics with integral action and
actuator dynamics.

Chapter 5 explains the implementation, redesign and tuning of the wheel
slip controller. An overview of the controller structure, the ABS su-
pervisory logic and the controller states is given. An introduction is
then given to the controller design method, LQRC, and its constraint
specification. A further analysis of the effects of choice of slip setpoint,
sampling, communication delays, actuator dynamics and performance
limitations is provided by a classical frequency analysis. Two redesigns
that improved the initial transient response (controller initialization
and off-equilibrium design) are described. The implementation of anti-
windup and bumpless transfer due to gain switching are described in
detail.

Chapter 6 describes and discusses in detail all test scenarios and test re-
sults that have been conducted. Straight-line braking manoeuvres are
shown for surfaces like ice, snow, dry asphalt, wet asphalt and on
an inhomogeneous asphalt/plastic coated surface. Experiments where
braking was carried out while turning on dry asphalt and the verifica-
tion of improved initial transient responses are also shown.

Chapter 7 provides discussion and conclusions of this research.

Appendix A is a reprint of (Johansen, Petersen, and Slupphaug 2002).

The notation is consistent throughout the thesis.



Chapter 2

Test Vehicle

This chapter briefly states the computer system used in the vehicle and a
concise functional overview of relevant sensors. An extensive description of
the EMB, its dynamics and limitations are provided. Further, a brief insight
into the TTP communication, the brake-by-wire manager (BBWM) and the
power manager/supply unit (PM) are also provided as to explain the safety
aspects and why there are inherent physical limitations imposed on the ABS
controller bandwidth.

The experimental vehicle is a Mercedes E220 equipped with four elec-
tromechanical disk brake actuators supplied by Continental Teves and a
brake-by-wire system. Figure 2.1 shows a photo of the test vehicle.

2.1 Computer system and limitations

Figure 2.2 shows the hardware architecture of the vehicle. It consists of four
servo controllers for the brakes, a monitoring unit, a BBWM and a PM.
These systems communicate via a TTP (time-triggered protocol) bus and
the main computer system (for BBWM) consisted of a Motorola 68060 CPU
with a floating-point coprocessor. Three major system limitations are listed
below having a direct impact on the ABS controller:

i. Limited available processing capacity by the BBWM-CPU for con-
troller processing. This limitation is mainly due to the extended
Kalman filter, which required most of the CPU’s processing capac-
ity.

ii. Limited available memory for applications running on BBWM. This
has a directly limitation on how large the ABS controller software can
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Figure 2.1: The experimental vehicle

be.

iii. Phase losses are introduced by the TTP communication delay between
the BBWM and the electronic control unit (ECU). This imposes fun-
damental performance limitations.

2.2 Vehicle sensors

The vehicle is equipped with the following sensors:

• Four wheel speed sensors.

• A sensor for the steering wheel angle.

• Sensors for the position of the brake pedal and the force applied to
the brake pedal.

• Two accelerometers for longitudinal and lateral acceleration respec-
tively.

• A yaw rate sensor.
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Figure 2.2: Diagram of test vehicle with brake-by-wire

• Four Hall sensors for measuring the clamping forces at each brake.

To determine the driver’s intent, the information about the angle of
the steering wheel is needed, which is typically delivered from a variable-
photosensitivity wheel that interrupts a light beam.

Several sensors are used to track the actual vehicle response to the
driver’s inputs. Vehicle speed can be estimated from the anti-lock brake
wheel-speed sensors. The on-board computer makes an estimate of the co-
efficient of friction between the tires and the road surface using the estimated
vehicle acceleration (from the engine-management system) and the actual
lateral acceleration. This estimated coefficient of friction is factored into the
driver’s inputs and vehicle speed to calculate a nominal sideslip and yaw rate
for the vehicle. During this process, special circumstances like inclinations,
road crowns, and split-friction-coefficient surfaces are taken into account.

The vehicle was scraped when the H2C projected ended and therefore
a detailed description of the type of electronics used in the vehicle cannot
be made. The following sensor information is from (Flemming 2001) and
describes the ABS related sensors functionalities and the inherent physical
limitations a wheel-speed sensor suffer from.

2.2.1 Wheel-speed sensor

It is from the wheel-speed sensor signals that the ECU derives the wheel’s
rotation rates. The operating concept is a inductive wheel-speed sensor
system.
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The inductive wheel-speed sensor’s stator pole with its coil winding is in-
stalled directly above a reluctor ring (pulse rotor) attached to the wheel hub.
This stator pole is linked to a permanent magnet projecting a magnetic field
toward and into the reluctor ring. The continuously alternating sequence of
teeth (96 in total) and gaps that accompanies the wheel’s rotation induces
corresponding fluctuations in the magnetic field through the stator pole.
These pulse-like variations in the magnetic force field also affect the coil by
inducing an alternating current suitable for monitoring at the ends of its
windings. The frequency of this alternating current is proportional to the
wheel speed.

Various stator-pole pin configurations and installation options are avail-
able to adapt the system to the different conditions encountered with various
wheels, but regardless of the version, precise alignment between stator pole
and reluctor ring is vital. The amplitude of the voltage induced in the wind-
ings of the inductive wheel speed sensor is proportional to wheel speed. As
this implies, the induced voltage is zero when the wheel is stationary. The
minimum detectable rotation rate is defined by such factors as tooth geom-
etry, gap, voltage rise rate and the ECU’s sensitivity to incoming signals.
The corresponding wheel speed coincides with the minimum switch-off speed
available for the ABS application.

In some experiments (see Figures 6.3, 6.4, 6.8, 6.19, 6.20, 6.22, 6.23)
at low wheel speeds it can be seen that the wheel slip or the wheel speed
has unexpected spikes. This may be due to the fact that there might not
be sufficient signals generated within the sampling time to ensure a reliable
wheel speed estimate or the generated signal is too weak. To ensure a
interference-free signal detection, the gap separating the wheel speed sensor
and the reluctor ring is only approximately 1mm, thus, the installation
tolerances are narrow. The wheel-speed sensor is also installed on a stable
mounting to prevent mechanic oscillation patterns in the vicinity of the
brakes from distorting the sensor’s signals. In some experiments (see Figures
6.19 and 6.15) the wheel speed estimate is observed containing repeating
noisy spikes and this occurred even before braking was commenced. Finally,
the wheel speed sensor also receives a coating of grease prior to installation
to protect it from the dirt and water spray common around the wheels.

2.3 Electromechanical brake actuator

The electromechanical actuator is a disk brake working on the caliper-
principle. The actuator’s housing is connected firmly to the vehicle‘s steering
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knuckle. Both brake pads are fixed to the fist with one degree of freedom
towards the active line of the clamping force. Figure 2.3 shows a photo of
the EMB and its mounting in the vehicle.

Figure 2.3: Photo of the electromechanical brake

Figure 2.4 shows a sectional drawing of the brake. The electromechan-
ical converter is a brushless DC motor. At the pad-sided end, the rotor
gear forms the sun wheel of the planetary gear. The planet wheels of the
planetary gear are in mesh with the internal-geared wheel, bolted in the
brake cabinet and which power the planet carrier. A planetary roller gear
transforms the rotary motion into a translatory motion. The planetary
gear’s spindle is hollow and contains a force measurement device as well
as a pressure pin for the decoupling of rotating movements acting on the
spindle. When activating the brake, the drive end brake-pad will be moved
through the pad support, whereas the pressure pin and the force sensor
will be shifted towards the brake disk, caused by the spindle‘s motion. The
above description of the EMB is extracted from (Lüdemann 2002).

2.3.1 EMB model

The model of the electromechanical brake consists of a model of an elec-
tric motor and a gearbox that transforms the rotational movement into a
translatory movement. A nonlinear characteristic for the conversion of the
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Figure 2.4: Cross-section diagram of electromechanical brake

movement into a force as well as a nonlinear friction model is taken into
account. Figure 2.5 shows the structure of the physical model of the brake
where the symbols have the following meaning:
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Air Gap : Air gap between brake disk and brake pads
dges : Overall viscous friction
fi(I, ω) : Feedback of the motor on the current
fx(xS) : Transfer function between spindle position and clamping force
fω(ω, Te) : Transfer function between angle of rotation and friction torque
F : Clamping force
I : Motor current
J : Overall inertia
Te : Available torque
Tf : Friction torque
TL : Available load torque TL = Te + Tf

Tm : Electric torque
Tel : Electric time constant of the motor
xS : Spindle position
νges : Transmission factor
ϕ : Rotation angle
Ψm : Magnetic flux
ω : Angular velocity

The electromechanical brake is servo controlled by a cascade PID-controller,
which consists of a current controller, an angular velocity controller and a
force controller as shown in Figure 2.6. The index m denotes the mea-
sured values of the clamping force Fm, ω denotes the angular velocity and
I the current. Index b indicates the reference signal. From the brake pedal
measurements (brake-wish) the brake-by-wire system computes a desired
clamping force (Fd) for each brake actuator. After Fd has passed through
an anti-windup routine, the slip controller output Fb is passed to the EMB
servo controller. Thus, the control output Fb cannot become larger than the
desired clamping force Fd. Fb is the reference clamping force signal provided
to the brake servo controllers of each wheel.

The EMB model is from (Schwarz 1999; Lüdemann 2002).
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2.3.2 Actuator dynamics

The electromechanical actuator has its own internal dynamics as seen in
Section 2.3.1 and a discretized transfer function is described by

h2(z
−1) =

0.1572z−1 − 0.0254z−2

1 − 1.5222z−1 + 0.6549z−2
(2.1)

An approximation of the second order transfer function (2.1) to a first or-
der discrete-time linear transfer function with sufficient accuracy for control
design gives:

h1(z
−1) =

bactz
−1

1 − aactz−1
(2.2)

Its corresponding first order discrete-time linear state space model (with
sampling interval Ts = 7ms) is

Tb(t + 1) = aactTb(t) + bactT̃b(t) (2.3)

with T̃b being the commanded brake torque to the actuator, aact = 0.6
and bact = 0.4 which makes it equivalent to alow-pass filter. The transfer
function has a phase of −18.6 degrees at f = 3Hz and −61.7 degrees at
f = 11.8Hz, cf. Figure 2.7. Sinusoidal experimental results (Lüdemann
2002) show that the EMB actuator has a phase of approximately −20 degrees
at f = 3Hz and −60 degrees at f = 10Hz.

Figure 2.8 shows step responses of the actual EMB actuator and its two
models, a first order (2.2) and a nonlinear (from Figure 2.5). The step
responses of the first order and the non-linear models are similar (cf. Figure
2.8), but the nonlinear model is better. The nonlinear brake model is only
used for simulation. A corresponding continuous first order transfer function
for equation (2.2) is

h1(s) =
a

s + a
(2.4)

where the parameter a = 72 rad/s is the bandwidth of the actuator.
There are limitations on the clamping force that can be applied to the

brake pads by the actuator during braking. The (small) minimum force is
to ensure that the brake pads are positioned close to the brake disk with no
air-gap. The maximum force is what the actuator is capable of. Maximum
braking force with the EMB 4.0 actuator is 30 kN . The control input is the
clamping force Fb that is related to the brake torque as Tb = kbFb, where the
constant kb depends on the friction between the brake pads and the brake
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disc. This leads to the actuator constraint (see Section 5.5.3 for further
implementation details):

Tmax
b = 0.1056m · 30kN = 3017Nm (2.5)

There is also a rate limit at how fast the torque can be changed by the
actuator:

Ṫmax
b = 250kNm/s (2.6)

2.4 TTP Communication

Designed for realtime distributed systems that are hard and fault tolerant,
the time-triggered protocol ensures that there is no single point of failure
(Kopetz and Grünsteidl 1994). The protocol has been proposed for sys-
tems that replace mechanical and hydraulic braking and steering subsys-
tems. TTP is an offshoot of the European Union’s Brite-Euram X-by-wire
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Figure 2.8: Verification of the brake models

project. In contrast to an event triggered system, a TTP system is built up
by defining first the static message schedule (Hedenetz and Belschner 1998).
Figure 2.9 shows the communication matrix of the brake-by-wire network in
the test vehicle. The lower part of Figure 2.9 shows the static synchronous
TDMA (time division multiple access) schedule and its constraint where
each subsystem has to send exactly once in a TDMA cycle. The messages
shown with ‘I’ are called I-Frames and are used for synchronization of lost
members. I-Frames do not transmit information for the application layer,
therefore they are not shown in the upper part of the matrix where the
receivers of the transmitted messages are located.

All communication between the BBWM, the PM and the ECU’s is based
on the fault tolerant TTP bus. The BBWM and the PM send their messages
in vice versa time slots. In this way short burst errors can be recovered. A
BBWM slot has a length of about 0.88msec.New set points for the brake
force can be sent every 7msec. The brake control ECU’s send their status
and the current brake force. These messages are not so time critical as
the transmission of the brake force set points. The brake ECU’s send their
messages only once in a cluster cycle, which is 16 slots. In the available
slots, the brake ECU’s send I-Frames for the network management.
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Brake1 X X X X X X X

Brake2 X X X X X X X

Brake3 X X X X X X X

Brake4 X X X X X X X

PM1 X X X X X X X X

PM2 X X X X X X X X

BBWM1 X X X X X X X

BBWM2 X X X X X X X

Brake1 I M

Brake2 M I

Brake3 I M

Brake4 M I

PM1 M M

PM2 M M

BBWM1 M M

BBWM2 M M

Slot 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M Tx Message I Tx I-Frame X Rx Message

Transmit

Receive

TDMA cycle

Cluster cycle

Figure 2.9: Communication Matrix of the Brake-by-wire

2.5 Brake-By-Wire-Manager and Power Manager

The BBWM functionality is to read the values from the brake pedal sensors,
the revolution counters of the wheels, the yaw-sensor, the acceleration sen-
sors and to calculate from all these values the brake force (set points) for the
four brake actuators. The BBWM can manage higher assistance functions
like ABS, traction and driving dynamic control.

The ECU assumes all the system’s electrical, electronic and closed-loop
control functions. These include

• Power supply for all the system sensors

• Registration of operating conditions

• Data conversion (input/output drivers, A/D conversion)

• Data conditioning (calculation of manipulated variables using stored
program maps)

• Data transmission (amplification and relay of signals to the system
actuators)
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• CAN network linkage to other ECU’s.

The PM controls the battery charger, proceeds active power management
and monitors the status of the power supply. If the generator or one of the
redundant power circuits should fail or the charge of the batteries is getting
low, the PM generates a warning signal. Each of the four brake actuators
have one brake ECU to control the electric motor of the brake actuator.

Figure 2.10 shows the schedule, which is periodically executed in the
BBWM:

i. Pedal Signal Measurement - of the pedal signals from the three pedal
sensors.

ii. Pedal Signal Plausibility Checks - from the three pedal signals, one
valid value is selected. This task is executed three times to detect
faults.

iii. Voter - a task votes over the result of the three plausibility check tasks.

iv. Brake Force Control - the brake forces for the four actuators are cal-
culated. This task is also executed three times.

v. Voter - a task votes over the result of the three brake force control
tasks.

vi. TTP Communication - the brake forces are send to the brakes via the
TTP communication network.

vii. Diagnose - a diagnostic task.

viii. Diagnose Output - the diagnose values are transmitted to an external
diagnosis device.

The Pedal Signal Plausibility Checks and the Brake Force Control are
both executed three times (due to being safety-related tasks) to discover
possible faults. These two tasks are safety-related since they handle and
manipulate data variables, while the other tasks i.e. Pedal Signal Measure-
ment, TTP-Communication, Diagnose and Diagnose Output, only handle
messages and are protected through cyclic redundancy checks (CRC).

This section is based on (Hedenetz and Belschner 1998).
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Pedal Signal Measurement

Pedal Signal Plausibility Checks

Voter

Brake Force Control

Voter

TTP Communication

Diagnose

Diagnose Output

Timeslot 1 2 3 4 5 6 7 8

Figure 2.10: Local Task Schedule of the BBWM
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Chapter 3

Wheel slip dynamics

This chapter will first discuss the slip dynamics which is used in the following
chapter for controller design. In Section 3.1, a mathematical model of the
wheel slip dynamics is reviewed, see also (Burckhardt 1993; Freeman 1995;
Drakunov, Özgüner, Dix, and Ashrafi 1995). Second part of this chapter will
look into friction models. The actual friction model used in this research
was provided by DaimlerChrysler and due to its confidentiality, no descrip-
tion can be provided. Therefore, a section is provided as an introduction to
friction modelling followed by a section on estimation of friction curves to
be used on experimental data later in this thesis, where a friction curve is
produced from each experiment. Finally, suspension dynamics are consid-
ered as it might affect the controller performance since it is not included in
the controller design.

3.1 Wheel slip dynamics

The problem of wheel slip control is best explained by looking at a quarter
car model as shown in Figure 3.1. The model consists of a single wheel
attached to a mass m. As the wheel rotates, driven by the inertia of the
mass m in the direction of the velocity v, a tyre reaction force Fx is generated
by the friction between the tyre surface and the road surface. The tyre
reaction force will generate a torque that results in a rolling motion of the
wheel causing an angular velocity ω. A brake torque applied to the wheel will
act against the spinning of the wheel causing a negative angular acceleration.
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w
v

F m gz= ·

F -m vx= ·

Tb

•

Figure 3.1: Quarter car forces and torques.

The equations of motion of the quarter car are

mv̇ = −Fx (3.1)

Jω̇ = r Fx − Tb sign(ω) (3.2)

where
m mass of the quarter vehicle
v longitudinal speed at which the vehicle travels
ω angular speed of the wheel
Fz vertical force
Fx tyre friction force
Tb brake torque
r wheel radius
J wheel inertia

The tyre friction force Fx is given by

Fx = Fzµ(λ, µH , α) (3.3)

where the friction coefficient µ is a nonlinear function of

λ longitudinal tyre slip
µH maximum friction coefficient between tyre and road
α slip angle of the wheel

The longitudinal slip is defined by

λ =
v − ωr

v
(3.4)
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Surface µH

Asphalt and concrete (dry) 0.8-0.9
Concrete (wet) 0.8
Asphalt (wet) 0.5-0.6
Earth road (dry) 0.7
Earth road (wet) 0.5-0.6
Gravel 0.6
Snow (hard packed) 0.3
Ice 0.1

Table 3.1: Tyre/road friction peak

and describes the normalized difference between the vehicle speed v and the
speed of the wheel perimeter ωr. The slip value of λ = 0 characterizes the
free motion of the wheel where no friction force Fx is exerted. If the slip
attains the value λ = 1, then the wheel is locked (ω = 0).

The friction coefficient µ can span over a very wide range, but is generally
a differentiable function with respect to all arguments and has the properties
µ(0, µH , α) = 0 and µ(λ, µH , α) > 0 for λ > 0. Its typical qualitative
dependence on longitudinal slip λ is shown in Figure 3.2. The upper part
shows how the friction coefficient µ increases with slip λ up to a value λ0,
where it attains its maximum value µH . For higher slip values, the friction
coefficient will decrease to a minimum µG where the wheel is locked and only
the sliding friction will act on the wheel. The dependence of friction on the
road condition is shown in the two figures in the middle of Figure 3.2. For
wet or icy roads, the maximum friction µH is small and the right part of the
curve is flatter. The tyre friction curve will also depend on the brand of the
tyre, as illustrated in the lower part of Figure 3.2. In particular, for winter
tyres, the curve will cease to have a pronounced peak. Typical friction peak
values (Burckhardt 1993; Gustafsson 1997; Hunter 1998; Canudas de Wit,
Horowitz, and P.Tsiotras 1999) for different surface conditions are given in
Table 3.1.

If the motion of the wheel is extended to two dimensions, then the lateral
slip of the tyre must also be considered. The slip angle α is the angle between
the wheel bearing and the velocity vector of the vehicle, shown in Figure 3.4.
In this case (Burckhardt 1993), the longitudinal slip

λx =
vx − ωr

v
(3.5)
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and the lateral slip

λy =
ωr sin α

v
= (1 − λx) sin α (3.6)

are distinguished as well as the longitudinal and lateral friction coefficients µx

and µy. vx is the wheel longitudinal speed in the wheel’s longitudinal direc-
tion.

The upper part of Figure 3.3 shows the dependence of the friction coeffi-
cient µx on the side slip angle α. The lateral friction is dramatically reduced
as the longitudinal slip increases. The lateral friction µy depends greatly on
the side slip angle α and is shown in the lower part of Figure 3.3. The
longitudinal force gets smaller as side slip angle is increased. This physical
phenomenon is the main motivation for ABS brakes, since avoiding high
longitudinal slip values will maintain high steerability and lateral stability
of the vehicle during braking. Achieving this by manual control is difficult
because the slip dynamics are fast and open loop unstable when operating
at wheel slip values to the right of any peak of the friction curve. Observe
that a reasonable tradeoff between high longitudinal friction µx and lateral
friction µy is achieved under all road conditions for longitudinal slip λx close
to its peak value on the longitudinal slip curve. Hereafter, for simplification
purposes unless otherwise stated, the side slip angle will be considered to be
zero with µx = µ and vx = v.

Using (3.1)-(3.4), for v > 0 and ω ≥ 0, the wheel slip dynamics is
obtained by calculating the time derivative of (3.4) with respect to time

λ̇ =
d

dt

(

1 − ωr

v

)

= − ω̇r

v
+

ωr

v
︸︷︷︸

1−λ

· v̇
v

= −1

v

(
1

m
(1 − λ) +

r2

J

)

Fzµ(λ, µH , α) +
1

v

r

J
Tb (3.7)

and

v̇ = − 1

m
Fzµ(λ, µH , α) (3.8)

Notice that when v → 0, the open loop slip dynamics (from Tb to λ) becomes
infinitely fast with infinite high-frequency gain. Hence, the slip controller
should be switched off for small v. The following result shows that the
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interval [0, 1] is a positively invariant set for the wheel slip λ under the
condition that v > 0 and Tb ≥ 0 (i.e. there is braking and no traction):

Proposition 3.1 Consider the system (3.7)-(3.8) with Tb(t) ≥ 0 for all
t ≥ 0. If v(0) > 0 and λ(0) ∈ [0, 1], then λ(t) ∈ [0, 1] and v̇(t) ≤ 0 for all
t ≥ 0 where v(t) > 0.

Proof 3.1 Note that λ(t) is a continuous trajectory since v(t) > 0. Hence,
the possible escape points are λ = 0 and λ = 1. Consider first λ = 0. Since
µ(0, µH , α) = 0, it follows from (3.7) that λ̇ = r

vJ Tb ≥ 0 due to Tb ≥ 0.
Hence, λ(0) ≥ 0 implies λ(t) ≥ 0 for all t ≥ 0. Consider next λ = 1. Then,
ω = 0 and from (3.2) it follows that ω̇ ≥ 0 due to the discontinuity sign(ω)
in (3.2). From (3.4), we conclude that λ̇ = −rω̇/v ≤ 0, which implies
λ(t) ≤ 1 for all t ≥ 0. Finally, note that v̇ ≤ 0 from (3.1) because Fx ≥ 0
for λ ∈ [0, 1].

�

3.2 Friction modelling

The qualitative dependence of the tyre reaction forces on slip, type of tyre
and road condition was explained in the previous section. Here, a back-
ground to tyre friction modelling will be given.

Several tyre friction models describing the nonlinear behaviour are re-
ported in the literature. There are static models as well as dynamic models,
models which are constructed based on heuristical data as well as others
which have been derived from physical behaviour. The most reputed tyre
model is by (Bakker, Nyborg, and Pacejka 1987), and by (Pacejka and Sharp
1991), also known as ”magic formula” and it is derived heuristically from
experimental data. It provides the tyre/road coefficient of friction µ as a
function of the slip λ by using static maps. The ”magic formula” has been
shown to suitably match experimental data and is on the form:

Fx(λx) = D sin(C arctan(Bλx − E(Bλx − arctan(Bλx))))

The parameters, B − E, characterises the model and can be identified by
comparing experimental data as shown in (Bakker, Nyborg, and Pacejka
1987). The model can also be used for modelling two other characteristics,
the lateral force and the aligning torque. Effects due to either ply-steer or
conicity effects are also taken into account (Pacejka and Sharp 1991).
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Surface conditions C1 C2 C3

Asphalt, dry 1.2801 23.99 0.52
Asphalt, wet 0.857 33.822 0.347
Concrete, dry 1.1973 25.168 0.5373
Cobblestones, dry 1.3713 6.4565 0.6691
Cobblestones, wet 0.4004 33.7080 0.1204
Snow 0.1946 94.129 0.0646
Ice 0.05 306.39 0

Table 3.2: Friction parameters

The expression in (Burckhardt 1993) is derived with similar methodology
where µ is expressed as a function of the wheel slip, λ, and the vehicle
velocity, v. The vertical force on the tyre is assumed constant which gives

µx(λ, v) =
[

C1

(

1 − e−C2λ
)

− C3λ
]

e−C4λv (3.9)

where the parameters are specified for different road surfaces, see Table 3.2
(Kiencke and Nielsen 2000). The parameters in (3.9) denote the following:

C1 - maximum value of friction curve
C2 - friction curve shape
C3 - friction curve difference between the maximum value

and the value at λ = 1
C4 - wetness characteristic value and is in the range 0.02 − 0.04s/m.

(Daiß and Kiencke 1996) has simplified (Burckhardt 1993)’s model to
make it linear in the parameters (a and b) with the model

µ(λ) =
kλ

aλ2 + bλ + 1

where k is the initial slope value (at λ = 0).

The dynamical tyre friction models can be formulated as a lumped or
distributed models, where a lumped friction model (Canudas de Wit, Olsson,
Åström, and Lischinsky 1995) assumes punctual tyre/road friction contact
and a distributed model (Canudas de Wit, Horowitz, and P.Tsiotras 1999)
assumes the existence of an area of contact between tyre/road. The lumped
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model is written on the form

g(vr) = µC + (µS − µC) e−|vr/vs|
1/2

ż = vr −
σ0 |vr|
g(vr)

z

Fx = (σ0z + σ1ż + σ2vr)Fz

where
Fx - the friction force
Fz - normal force
σ0 - rubber longitudinal lumped stiffness
σ1 - rubber longitudinal lumped damping
σ2 - viscous relative damping
µC - normalized Coulomb friction
µS - normalized static friction, µC ≤ µS ∈ [0, 1]
vS - Stribeck relative velocity
vr - relative velocity = (rω − v)
z - internal friction state

Apart from the nonlinear behaviour of the slip, the tyre friction depends
on other uncertainties like road condition, tyre pressure, brand of tyre, tem-
perature etc.

3.2.1 Estimation of friction curves

Fzf Fzr

MaX

Mg h

lrlf

Figure 3.5: Axle torque balance.

As the previous section has described some friction modelling strategies
and properties, it is of interest to be able to estimate a model of the surface
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conditions for different test scenarios based on the available experimental
data.

Straight-line braking

The friction coefficient is defined as the ratio (3.3),

µ =
Fx

Fz
(3.10)

In order to estimate the friction coefficient µ, the values of Fx and Fz

are needed. This can be carried out using the method described in (Kiencke
and Nielsen 2000). Equation (3.2) gives the longitudinal friction force Fx,
which gives the friction value µ:

µ =
Jω̇ + Tb

Fzr
(3.11)

The friction value can be found by using a torque balancing about the
wheel axis (single wheel model). In order to find an expression for Fz, a few
assumptions can be made. The coupling between roll and pitch is neglected,
thus the dependencies of the quarter vehicle forces on the longitudinal and
lateral accelerations can be determined separately. By disregarding suspen-
sion dynamics, the quarter vehicle forces are identical to the wheel vertical
forces Fz.

The force due to longitudinal deceleration (Max) at the center of gravity
(CoG), see Figure 3.5, causes a pitch torque which reduces the rear axle load
and increases the front axle load. Constructing the torque balance at the
rear axis contact point gives the front vertical force

lFzf = lrMg − hMax

⇓

Fzf =
M(lrg − hax)

l
(3.12)

where M is vehicle mass at CoG, ax is the longitudinal acceleration of CoG,
h is the height of CoG and l = lf + lr . This gives the vertical force for a
single front wheel to be (Fz(f=front/r=rear,l=left/r=right))

Fzfl = Fzfr =
M(lrg − hax)

2l
(3.13)
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with the corresponding friction coefficient

µf =
(Jω̇ + Tb) 2l

M(lrg − hax)r
(3.14)

Similarly, balancing the torque at the front axis contact point gives the
vertical force (ground contact force) for a single rear wheel

Fzrl = Fzrr =
M(lfg + hax)

2l
(3.15)

with the corresponding friction coefficient

µr =
(Jω̇ + Tb) 2l

M(lfg + hax)r
(3.16)

The same technique is applied to find the vertical force due to roll torques
(assuming that the front and rear axles are decoupled). This gives the wheel
force, FZ , for the four wheel forces:

Fzfl =
M(lrg − hax)

l

(
1

2
− hay

bfg

)

(3.17)

Fzfr =
M(lrg − hax)

l

(
1

2
+

hay

bfg

)

(3.18)

Fzrl =
M(lfg + hax)

l

(
1

2
− hay

brg

)

(3.19)

Fzrr =
M(lfg + hax)

l

(
1

2
+

hay

brg

)

(3.20)

where ay (leftwards positive) is the lateral acceleration of CoG and bf and
br are the distances between wheels on the front and rear axles respectively.

Measurements needed for estimation of friction curve

A friction curve can then be plotted for each wheel from experiments, where
stationary wheel load is achieved, by post-calculating experimental data.
This will yield friction curves (Section 6) which resemble what is shown in
Section 3.1.

To obtain the friction value from equations (3.14,3.16,3.17-3.20), the
wheel angular acceleration (ω̇), the brake torque (Tb), the longitudinal de-
celeration (ax), lateral acceleration (ay) and the position of the center of
gravity are required. The brake torque, Tb, is derived from the measured
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clamping force.The wheel angular acceleration is calculated from the differ-
ences between two consecutive samples of the wheel angular speed:

ω̇(n) =
ω(n) − ω(n − 1)

Ts
(3.21)

3.3 Suspension dynamics

A suspension system can be best studied as a dynamic system by looking
at the basic properties of the suspensions properties, i.e. the motions of
the body and the axles. Due to the suspension dynamics, there may be
resonance frequencies which will cause oscillations in the suspension system.
Therefore, a wheel slip control design should, if possible, be tuned to avoid
exciting the suspension system.

The inputs to the suspension system are the road displacement and the
vertical force on the body, while the output is the vertical motion of the body
when a quarter car model is considered, as shown in Figure 3.6, where the
suspension can be seen to have stiffness and damping properties. The tyre
is also represented with spring/damper, although the amount contributed
by the viscoelastic damping can be neglected.
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Figure 3.6: Quarter car model of suspension.

In Figure 3.6, x1 is the vehicle body displacement, x2 is the wheel dis-
placement and hroad is the road profile (Gillespie 1992). Fz is the vertical
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mw = 55kg Wheel/suspension mass
mq = 395kg 1/4 of vehicle body mass (excluding wheels)
ks = 24kN/m Suspension spring stiffness
kw = 200kN/m Tyre stiffness
ds = 1350Ns/m Suspension damping constant
dw = 120Ns/m Tyre damping constant

Table 3.3: Suspension parameters

force on suspension as described in Section 3.1: Fz vertical force from tyre
to road surface, which includes a vertical force component acting on the
vehicle body due to the pitch moment when the vehicle is braking. Other
parameters, typical values for a sporty sedan family car, are given in Table
3.3 (Mastinu 1988; Dixon 1996; Kiencke and Nielsen 2000).

The torque balance between the pitch torque around the centre of gravity
gives (roll dynamics together with the constant gravity force are neglected):

h (Fxf + Fxr) = lfFzf − lrFzr (3.22)

For illustration purposes let lf = lr, then (3.22) can be rewritten as

F body
z =

h

lf
Fx (3.23)

where Fx = Fxf + Fxr, F body
z = Fzf − Fzr and h is the height of CoG. The

horizontal distances from COG to the front and rear wheel axels are lf and
lr respectively. This notation is also explained and used in Section 3.2.1 (see
Figure 3.5).

Using Newton’s Second Law, the vertical dynamics for a quarter vehicle
can be written as follows:

mqẍ1 = F body
z − ds(ẋ1 − ẋ2) − ks(x1 − x2) (3.24)

mwẍ2 = ds(ẋ1 − ẋ2) + ks(x1 − x2) + dw(ḣroad − ẋ2) + kw(hroad − x2)

(3.25)

Since the motion equations (3.24) and (3.25) represent a linear system,
frequency domain analysis can be used by taking the Laplace transform of
the above equations (all initial conditions are set to zero):

(mqs
2 + dss + ks)X1(s) − (dss + ks)X2(s) = F body

z (s) (3.26)
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−(dss + ks)X1(s) + (mws2 + (ds + dw)s + (ks + kw))X2(s) =

(dws + kw)Hroad(s) (3.27)

which can be written on the form

A(s)

[
X1(s)
X2(s)

]

=

[

F body
z (s)

(dws + kw) Hroad(s)

]

(3.28)

where

A(s) =

[
mqs

2 + dss + ks − (dss + ks)
− (dss + ks) mws2 + (ds + dw)s + (ks + kw)

]

(3.29)

Undamped resonance frequencies found by solving det(A(jω)) = 0 with
ds = dw = 0:

mqmwω4 − (mq (ks + kw) + ksmw) ω2 + kskw = 0 (3.30)

Equation (3.30) gives the undamped resonance frequencies fund
1 = 0.6Hz

and fund
2 = 10.2Hz. The fund

1 resonance is largely due to the movement of
the vehicle body and the fund

2 resonance comprises mostly the movement of
the wheel cf. Figure 3.7.

An analysis of a forced quarter vehicle model with damping and a har-
monic input, is done by rewriting (3.28):

[
X1(s)
X2(s)

]

= A−1(s)

[

F body
z (s)

(dws + kw) Hroad(s)

]

(3.31)

A−1(s) =
1

∆(s)

[
mws2 + (ds + dw)s + (ks + kw) dss + ks

dss + ks mqs
2 + dss + ks

]

(3.32)
where (∆(s) = det A(s))

∆(s) = mqmws4 + [mq (ds + dw) + dsmw] s3

+ [mq (ks + kw) + dsdw + ksmw] s2

+[dskw + ksdw]s + kskw (3.33)

Further, (3.31) can then be rewritten as
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[
X1(s)
X2(s)

]

=
1

∆(s)
A1(s)

[

F body
z (s)

Hroad(s)

]

(3.34)

where elements of the A1(s) matrix are:

a1,1(s) = mws2 + (ds + dw)s + (ks + kw) (3.35)

a1,2(s) = dsdws2 + (dskw + dwks) s + kskw (3.36)

a2,1(s) = dss + ks (3.37)

a2,2(s) = mqdws3 + (mqkw + dsdw)s2 + (dskw + dwks) s + kskw (3.38)

Using (3.34), the transfer function for the vertical body acceleration

Ẍ1(s) with input F body
z (s) becomes:

Ẍ1(s)

F body
z (s)

=
s2X1(s)

F body
z (s)

(3.39)

⇓

G1(s) =
Ẍ1(s)

F body
z (s)

=
mws4 + (ds + dw)s3 + (ks + kw)s2

∆(s)
(3.40)

Similar, the transfer function for the vertical wheel acceleration Ẍ2(s)

with input F body
z (s):

G2(s) =
Ẍ2(s)

F body
z (s)

=
dss

3 + kss
2

∆(s)
(3.41)

Figure 3.7 shows the frequency responses for the vehicle body (3.40) and
the wheel (3.41). The vehicle body has a resonance frequency at f c

1 ≈ 1.3Hz
and the wheel has a resonance frequency at fw

2 ≈ 10.1Hz.

Another way to view the dynamics is to consider the distance x1−x2, as
the deformation x2 − hroad is negligible. For the situation where the vehicle
under excitation by Hroad(s), with F body

z (s) = 0, the transfer function for
the chassis displacement becomes

X1(s)

Hroad(s)
=

dsdws2 + (dskw + dwks) s + kskw

∆(s)
(3.42)

and the transfer function for the vertical wheel displacement:
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Figure 3.7: Frequency responses, G1(s) and G2(s), with Fz as input.

X2(s)

Hroad(s)
=

mqdws3 + (mqkw + dsdw)s2 + (dskw + dwks) s + kskw

∆(s)
(3.43)

The transfer function for the distance X1(s) − X2(s) where the vehicle

is under excitation by the Hroad(s) (and with F body
z (s) = 0), is:

G3(s) =
X2(s) − X1(s)

Hroad(s)
=

mqdws3 + mqkws2

∆(s)
(3.44)

Figure (3.8) shows the frequency response for (3.44), the vertical differ-
ence between the chassis and the undercarriage contact points with road as
input. The resonance frequencies are f

xdiff

1 ≈ 1.3Hz and f
xdiff

2 ≈ 9.6Hz.
Similar methods and results are shown in (Gillespie 1992; Kiencke and
Nielsen 2000).

As shown above, the suspension dynamics has consequences for the wheel
slip control design. Figure 3.9 shows how the suspension dynamics interacts
with the ABS system through the loop in which the friction force applied
by the ABS controller causes a pitching moment, which again will affect the
vertical force and back on the friction force. As a result of this suspension
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Figure 3.8: Frequency response, G3(s), with road position as input.

analysis, the tuning of the wheel slip controller should take into account the
suspension dynamics and avoid the suspension resonance at fw

2 ≈ 10.1Hz.
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Chapter 4

Gain scheduled wheel slip
control

The wheel slip control problem is essentially to regulate the value of the lon-
gitudinal slip λ to a given setpoint λ∗, which is either constant or commanded
from a higher-level control system such as ESP. The controller must be ro-
bust with respect to uncertainties in the tyre characteristic and the brake
pads/discs, the variations in the road surface conditions, the load on the
vehicle, etc. Integral action or adaptation must be incorporated to remove
steady-state error due to model inaccuracies, in particular the unknown
road/tyre friction coefficient µH .

This chapter explains the linearized slip dynamics and the wheel slip
control design and analysis for i) system with just slip dynamics and no
integral action ii) with integral action and iii) with actuator dynamics.

4.1 Motivation for gain scheduling

The dynamics of the wheel and car body are given by (3.7) and (3.8) re-
spectively. Due to large differences in inertia, the wheel dynamics and car
body dynamics will evolve on significantly different time scales. The speed
v will change much more slowly than the wheel slip λ, and v is therefore
a natural candidate for gain scheduling. Thus, for the control design, only
(3.7) is considered and v is regarded as a slow time-varying parameter. A
gain scheduled control design requires a set of nominal linearized models for
design.

Model-based nonlinear wheel slip control design shown in (Lüdemann
2002) depends strongly on knowing the friction coefficient and the friction



48 Gain scheduled wheel slip control

curve. The aim is to obtain (a robust) control design method which achieves
robustness by avoiding using the uncertain friction model in the design.

4.2 Linearized slip dynamics

Let (λ̂, T̂b) be an equilibrium point for (3.7) defined by the nominal values
α̂, F̂z and µ̂H

T̂b =

(
J

mr
(1 − λ̂) + r

)

F̂zµ(λ̂, µ̂H , α̂) (4.1)

The speed-dependent nominal linearized slip dynamics are given by

λ̇ =
α1

v
(λ − λ̂) +

β1

v
(Tb − T̂b) + h.o.t. (4.2)

where α1 and β1 are linearization constants given by

α1 = − F̂z

(
1

m
(1 − λ̂) +

r2

J

)
∂µ

∂λ
(λ̂, µ̂H , α̂) + F̂z

1

m
µ(λ̂, µ̂H , α̂) (4.3)

β1 =
r

J
(4.4)

and ”h.o.t” denotes ”higher-order terms”. Notice that for nominal wheel
slip values λ̂ to the right of any peak of the friction curve, α1 > 0, such
that the open-loop dynamics becomes open-loop unstable. For nominal slip
values λ̂ sufficiently to the left of any peak, α1 < 0, and the dynamics are
open-loop stable. Assuming arbitrary values of α, Fz and µH , the wheel slip
dynamics (3.7) can be written in the form

ẋ2 =
φ(x2)

v
+

β1

v
(Tb − T ∗

b ) (4.5)

where x2 = λ−λ∗ and λ∗ is the desired slip (setpoint). Furthermore, define

φ(x2) = −
(

1

m
(1 − λ∗ − x2) +

r2

J

)

Fzµ(x2 + λ∗, µH , α) +
r

J
T ∗

b (4.6)

and

T ∗
b =

(
J

mr
(1 − λ∗) + r

)

Fzµ(λ∗, µH , α) (4.7)

It can be seen that (4.5) has an equilibrium point given by x2 = 0, Tb = T ∗
b

since φ(0) = 0, and the linearized slip model (4.2) with a perturbation term
is written as follows

ẋ2 =
α1

v
x2 +

β1

v
(Tb − T ∗

b ) +
εµ(x2)

v
(4.8)
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where εµ(x2) = φ(x2) − α1x2. Eq. (4.8) will be used later on for control
design and analysis.

4.3 Wheel slip control design and analysis

4.3.1 Without integral action

For simplicity, a design without integral action is studied first and where
the infinite-horizon quadratic cost function is defined as:

J(x(t), u[t,∞)) =

∫ ∞

t
(x2(τ)Q(v) + u2(τ)R)dτ (4.9)

with R > 0 and Q(v) ≥ 0 for all v > 0. Assuming v is constant (due
to the separation of time-scales) and neglecting the nonlinearity εµ(x), the
optimal control law (Anderson and Moore 1989) is uniquely given by the
gain scheduled state feedback

û = −R−1 β1

v
P (v)x = K(v)x, where K(v) = −R−1 β1

v
P (v) (4.10)

The algebraic Riccati equation is

2P (v)α1

v
−
(

P (v)β1

v

)2

R−1 + Q(v) = 0 (4.11)

with the positive solution

P (v) =
α1 +

(
α2

1 + β2
1R−1Q(v)

)1/2

β2
1R−1

v = P
′

(v)v (4.12)

Due to actuator constraints, the saturated control is defined as

u =







Tmax
b − T ∗

b , û > Tmax
b − T ∗

b

Tmin
b − T ∗

b , û < Tmin
b − T ∗

b

û, otherwise
(4.13)

for some Tmax
b > Tmin

b ≥ 0. Furthermore, the error (note that both u and û
depend on v and x) is defined as

εs(x, v) = β1(u − û) (4.14)

With the definition ε(x, v) = εs(x, v) + εµ(x), the closed loop dynamics can
be written as

ẋ =

(
α1

v
+

β1K(v)

v

)

x +
ε(x, v)

v
(4.15)

It is easy to see that ε(0, v) = 0 for all v > 0.
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Proposition 4.1 Consider the system (3.7) with controller (4.13), where

R > 0 and the smooth function Q satisfies Q(v) ≥ 0 and dQ(v)
dv ≥ 0 for all

v > 0. Suppose for some δ ∈ (0, 1)

xε(x, v) ≤ (1 − δ)
Q(v)

2P ′(v)
x2 (4.16)

for all v > 0 and x ∈ [−λ∗, 1− λ∗]. Then, for all v(0) > 0 and λ(0) ∈ [0, 1],
the equilibrium x = 0 is uniformly exponentially stable.

Proof 4.1 Let a Lyapunov function candidate be defined as

V (x) = x2P (v) (4.17)

Along trajectories of (4.15), one has

V̇ =
d

dt
V (x) = x2

(
dP (v)

dv

dv

dt

)

+ 2ẋxP (v) (4.18)

Substituting for (4.8), (4.10) and (4.11) in (4.18) gives

V̇ = x2

(

P
′

(v) + v
dP

′
(v)

dv

)

v̇ + 2ε(x, v)P
′

(v)x − x2Q(v) (4.19)

Note that P
′

(v) ≥ 0 and dP
′
(v)

dv ≥ 0 for all v > 0. It follows from Proposition
3.1 that

V̇ ≤ 2ε(x, v)P
′

(v)x − x2Q(v) ≤ −δQ(v)x2 (4.20)

and the equilibrium is uniformly exponentially stable by Corollary 3.4, in
(Khalil 1996), since V (x) and the right hand side in (4.20) are upper and
lower bounded by a positive definite quadratic functions in x̃ for all v ≥ vmin.
The region of attraction follows from Proposition 3.1 since [0, 1] is positively
invariant for λ.

�

Essentially, (4.16) requires that the error weight Q(v) must be chosen
sufficiently large, which means that the gain K(v) must be sufficiently large
in order to stabilize the system. Note that the system is open loop unstable
when operating in a region where the friction curve has negative slope ∂µ

∂λ
(in this case α1 > 0). The controller is gain scheduled since K depends on

v. From a practical point of view, it makes sense to choose dQ(v)
dv > 0 since

this leads to dK(v)
dv > 0. Hence, the gain is reduced as v → 0 and one avoids
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instability due to unmodelled dynamics that typically become dominant as
v → 0.

The above analysis shows that the heuristics of local linearization and
gain scheduling do not lead to instability when Q(v) is chosen sufficiently
large. Unfortunately, it is not possible to implement this controller without
significant loss of performance since the steady state brake torque T ∗

b is
unknown; recall that Tb = T ∗

b + u and T ∗
b depends on µH which is highly

uncertain and time-varying. Hence, all practical wheel slip controllers need
some form of integral action or adaptation. Thus, the design and analysis
is extended with integral action without further discussion.

4.3.2 With integral action

Let the system dynamics (4.8) be augmented with a slip error integrator
ẋ1 = λ − λ∗ = x2 such that

(
ẋ1

ẋ2

)

= A(v)

(
x1

x2

)

+ B(v) (u − T ∗
b ) + W (v)εµ(x2) (4.21)

where

A(v) =

(
0 1
0 α1

v

)

, B(v) =

(
0
β1

v

)

, W (v) =

(
0
1
v

)

(4.22)

The steady-state brake torque T ∗
b depends on road and tyre properties

such as µH and must therefore be assumed unknown. Hence, the control
input is defined as u = Tb, and the equilibrium point is

x∗ =

(
x∗

1

0

)

, u∗ = T ∗
b (4.23)

where the value x∗
1 depends on the controller due to the integral action. This

leads to

ẋ = A(v) (x − x∗) + B(v) (u − u∗) + W (v)εµ(x2) (4.24)

Next, the quadratic cost function for the purpose of local LQ design
based on the nominal part of (4.24), is defined as follows:

J(x(t), u[t,∞)) =

∫ ∞

t
((x(τ) − x∗)T Q(v) (x(τ) − x∗)

+ (u(τ) − u∗)T R (u(τ) − u∗))dτ (4.25)
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Assuming constant v, the optimal control law (Anderson and Moore
1989) is given by

u = K(v)x (4.26)

where the gain matrix is K(v) = −R−1BT (v)P (v). The unknowns x∗ and
u∗ are neglected, which will be accounted for due to the integral action.
The symmetric matrix P (v) > 0 is defined by the solution to the associated
algebraic Riccati equation:

P (v)A(v) + AT (v)P (v) − 2P (v)B(v)R−1BT (v)P (v) = −Q(v) (4.27)

The elements of the matrix equation (4.27) are
(

β1

v

)2 P 2
1,2(v)

R
= Q1,1(v) (4.28)

P1,1(v) + P1,2(v)

(

α1

v
−
(

β1

v

)2 P2,2(v)

R

)

= 0 (4.29)

2P1,2(v) + P2,2(v)

(

2α1

v
−
(

β1

v

)2 P2,2(v)

R

)

= −Q2,2(v) (4.30)

This gives the following solution with P (v) > 0:

P1,1(v) =

(

α2
1 + β2

1R−1

(

Q2,2(v) +
2(Q1,1(v)R)1/2

β1
v

))1/2

(Q1,1(v)R)−1/2 β1

(4.31)

P1,2(v) =
v

β1
(Q1,1(v)R)1/2 (4.32)

P2,2(v) =

α1 +

(

α2
1 + β2

1R−1

(

Q2,2(v) +
2(Q1,1(v)R)1/2

β1
v

))1/2

β2
1R−1

v (4.33)

and the gains

K1(v) = −
(
Q1,1(v)R−1

)1/2
(4.34)

K2(v) = −
α1 +

(

α2
1 + β2

1R−1

(

Q2,2(v) +
2(Q1,1(v)R)1/2

β1
v

))1/2

β1
(4.35)

Setting x∗
1 = T ∗

b /K1(v) gives the closed loop error dynamics

˙̃x = (A(v) + B(v)K(v)) x̃ + W (v)εµ(x2) (4.36)

with the controller error x̃ = x − x∗.
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Proposition 4.2 Consider the system (3.7) with controller defined by (4.26)
and (4.34)-(4.35). Assume R > 0 and the smooth matrix-valued function

Q satisfies Q1,2(v) = Q2,1(v) = 0, Q1,1(v) > 0, Q2,2(v) > 0,
dQ1,1(v)

dv ≥ 0,
dQ2,2(v)

dv ≥ 0 for all v ≥ vmin > 0. Moreover, suppose Tb(t) ≥ 0 for all t ≥ 0
and

D(v) = P
′

1,1(v)P
′

2,2(v) − P
′

1,2(v)P
′

2,1(v) > 0 (4.37)

Q1,1(v)(1 − δ) >
P2,1(v)C

v
(4.38)

Q2,2(v)x̃2
2(1 − δ) >

(

2

v
εµ(x̃2)P2,2(v)x̃2 +

P2,1(v)ε2
µ(x̃2)

vC

)

(4.39)

are satisfied for all v ≥ vmin > 0, x̃2 ∈ [−λ∗, 1 − λ∗] and some C > 0 and
δ ∈ (0, 1). Then, the equilibrium x̃ = 0 is uniformly exponentially stable.

Proof 4.2 Let a Lyapunov function candidate be

V (x̃) = x̃T P (v)x̃ (4.40)

Its time-derivative along trajectories of (4.36)

V̇ =
d

dt
V (x̃(t)) = x̃T

(
dP (v)

dv
v̇

)

x̃ + ˙̃xT Px̃ + x̃T P ˙̃x (4.41)

is found by substituting for (4.24), (4.26) and (4.27) in (4.41):

V̇ = x̃T dP (v)

dv
v̇x̃ + εµ(x̃2)(W

T (v)P (v)x̃ + x̃T P (v)W (v))− x̃T Q(v)x̃ (4.42)

From Proposition 3.1, it is clear that v̇ ≤ 0 since Tb ≥ 0. Thus, the non-

positivity of x̃T
(

dP (v)
dv v̇

)

x̃ requires P ′(v) = dP (v)
dv > 0 for all v > 0. For

P
′

(v) to be positive definite, it is sufficient that P
′

1,1(v) > 0 since D(v) > 0.

Note that since Q1,1(v), Q2,2(v), β1 > 0, it follows immediately that P
′

1,1(v) >
0. Then, (4.42) becomes:

V̇ ≤ εµ(x̃2)(W
T P (v)x̃ + x̃T P (v)W (v)) − x̃T Q(v)x̃

= −Q1,1(v)x̃2
1 − Q2,2(v)x̃2

2 +
2

v
εµ(x̃2)(P2,2(v)x̃2 + P2,1(v)x̃1) (4.43)

To obtain all x̃1-terms in (4.43) in a quadratic form, Young’s inequality
2ab ≤ a2/C + Cb2 is applied. Hence,

V̇ ≤ −Q1,1(v)x̃2
1 +

P2,1(v)

v
x̃2

1C − Q2,2(v)x̃2
2

+
2

v
εµ(x̃2)P2,2(v)x̃2 +

P2,1(v)

v

ε2µ(x̃2)

C
(4.44)
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Due to (4.38) and (4.39) it follows that

V̇ ≤ −δQ1,1(v)x̃2
1 − δQ2,2(v)x̃2

2 (4.45)

and one concludes that the equilibrium is uniformly exponentially stable by
Corollary 3.4, in (Khalil 1996), since V (x̃) and the right hand side in (4.38)
are upper and lower bounded by a positive definite quadratic functions in x̃
for all v ≥ vmin.

�

Inequality (4.38) states that the error weight Q1,1(v) must be sufficiently
large, leading to a sufficiently large controller gain. In this inequality, P2,1(v)
depends on Q1,1(v), but it is evident that P2,1(v) increases with

√
Q1,1(v)

such that (4.38) will indeed hold for a sufficiently large Q1,1(v), except when
v → 0.

Inequality (4.39) states that the error weight Q2,2(v) must also be suf-
ficiently large, leading to a sufficiently high gain to stabilize the system.
Note that P2,2(v) increases with

√
Q2,2(v) such that this is also possible,

except for v → 0. In (4.39), Q2,2(v) |x̃2| is essentially chosen to dominate
the perturbation ε(x̃2). Inequality (4.39) must be checked with respect to
the perturbations εµ that are generated by all possible friction curves µ(·)
to ensure robust stability.

Inequality (4.37) can be seen to be non-restrictive since it will always be
satisfied for α1 close to zero, see Appendix B. This corresponds to gener-
ating the nominal model by linearizing near the peak of the friction curve.
Experience shows that high performance is indeed achieved this way. For
α1 = 0, no information on the friction curves is actually utilized in the
control design.

The constant C > 0 should be chosen to minimize conservativeness.
However, the choice Q1,2(v) = Q2,1(v) = 0 and taking P (v) from the solu-
tions of the Riccati equation are possibly conservative.

The controller gain K(v) depends on the speed (gain scheduling). From a

practical point of view, a useful gain schedule is achieved by letting
dQ1,1(v)

dv >

0 and
dQ2,2(v)

dv > 0, as this reduces the gain as v → 0. As mentioned earlier,
this is necessary to avoid instability due to the unmodelled dynamics since
these tend to dominate as v → 0.

An important aspect is the initialization of the integrator state x1. Note
that x1 is a controller state that can be initialized arbitrarily, while x∗

1 is
unknown since it depends on the road/tyre friction coefficient µH . Hence, an
intelligent initialization of x1(0) based on any a priori information on µH and
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possibly on the known x̃2(0), may significantly improve the transient per-
formance after the controller is activated (Johansen, Kalkkuhl, Lüdemann,
and Petersen 2001).

An idealized design example

Consider a design example with the following parameters m = 450 kg, Fz =
4414 N , r = 0.32 m, J = 1.0 kg m2 and the friction model in the third
part of Figure 3.2. Assuming λ∗ = 0.14 and the nominal friction parameters
µ∗

H = 0.8 and α∗ = 0, this give α1 = 10.2 and β1 = 0.32. Choose R = 1 and
Q(v) = Q̃v3/2 with Q̃1,1 = 6 · 109 and Q̃2,2 = 40 · 106. Note the scaling due
to the different magnitudes of Tb and λ. The choice for Q(v) leads to a gain
schedule with reduced gain as v → 0, which is useful to avoid instability due
to unmodelled dynamics as v → 0.

Figures 4.1 and 4.2 show that the robust stability requirement (4.39) is
satisfied for all x̃2 ∈ [−λ∗, 1−λ∗] for all the friction curves in the third figure
of Figure 3.2. Although curves are shown only for v = 1 m/s and v = 32
m/s, (4.37) has been verified to be fulfilled for intermediate values of v. The
control design also satisfies the stability requirements (4.38) and (4.37), and
gives robust uniform exponential stability of the equilibrium.

4.3.3 With actuator dynamics

Next, a gain scheduled LQ approach is described for a wheel slip control de-
sign where the actuator dynamics are taken into account, the integral action
is included and the rate of the clamping force is used as the control input.
The latter is introduced partly to simplify the handling of rate constraints in
the implementation and partly to get velocity-based gain scheduled control,
the benefits of which are reported in (Kaminer, Pascoal, Khargonekar, and
Coleman 1995; Leith and Leithead 1996). The dynamics of the augmented
system are given by the following equations

ẋ1 = x2 (4.46)

ẋ2 =
α1

v
x2 +

β1

v
(x3 − T ∗

b ) +
1

v
εµ(x2) (4.47)

ẋ3 = −a(x3 − T ∗
b ) + a(x4 − T ∗

b ) (4.48)

ẋ4 = u (4.49)

The state x1 is the integrated slip error (giving integral action), x2 is the slip
error, x3 is the clamping torque produced by the actuator, x4 is the clamping
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torque commanded to the actuator and u is the commanded rate of change
of the clamping torque. The parameter a = 72 rad/s is the bandwidth of
the actuator, see Section 2.3.2. With

A(v) =







0 1 0 0

0 α1
v

β1

v 0
0 0 −a a
0 0 0 0







B =







0
0
0
1







, W (v) =







0
1
v
0
0







the system can be written as the following linear parameter-varying (LPV)
system with a perturbation:

ẋ = A(v)(x − x0) + Bu + W (v)εµ(x2) (4.50)

where x0 = (0, 0, T ∗
b , T ∗

b ). Assuming a fixed v, the gain scheduled LQ con-
troller (Anderson and Moore 1989) is given in the form

u = −K(v)x (4.51)

where the matrix K(v) is computed by solving the following standard linear
quadratic optimal control problem

J(u, x(t), v) =

∫ ∞

t

(
xT (τ)Q(v)x(τ) + Ru2(τ)

)
dτ (4.52)

Note that x is known while x0 is unknown as T ∗
b depends on the tyre

parameters, vertical load, wheel slip angle, road friction, etc.

An idealized design example

The design parameters given in Section 4.3.2 are used with the following
modifications. For the control design, Q̃1,1 = 8 · 106 and all other elements
of Q̃ in Q(v) = Q̃v3/2 are set to zero. The choice for Q(v) leads to a
gain schedule with reduced gain as v → 0, see Figure 4.3 (for presentation
purposes K1 has been reduced by a factor of 10 and K3 and K4 have been
increased by a factor of 1000).
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Stability and robustness

The control design presented above is based on gain scheduling and lin-
earized nominal models such that stability must be investigated separately.
Moreover, there are numerous uncertain model parameters, the most impor-
tant being the friction coefficient µH , which calls for a robustness analysis.
A Lyapunov approach is taken based on the closed loop error dynamics

ẋ = (A(v) − B(v)K(v)) x − A(v)x0 + W (v)εµ(x2) (4.53)

The equilibrium point x∗ = (x∗
1, x

∗
2, x

∗
3, x

∗
4) for the closed loop system (4.53)

is now defined by

x∗
1 = −K3(v) + K4(v)

K1(v)
T ∗

b (4.54)

x∗
2 = 0, x∗

3 = T ∗
b , x∗

4 = T ∗
b (4.55)

Observe that x∗
2 = 0 because x2 = λ − λ∗. Defining the error variable

x̃ = x − x∗, the closed loop system can be written in the following form

˙̃x = (A(v) − B(v)K(v))x̃ + W (v)εµ(x̃2) (4.56)

Note that εµ(0) = 0, i.e. it is a vanishing perturbation. In order to analyze
the stability and robustness of the closed loop with respect to the uncer-
tain road/tyre friction characteristics, a Lyapunov function is sought for the
closed loop system (4.56). The approach is first to seek a Lyapunov func-
tion that proves uniform exponential stability of origin of the nominal LPV
closed loop system

˙̃x = A0(v)x̃ (4.57)

with A0(v) = A(v) − B(v)K(v). The next step is to study if the stability
margin provided by this Lyapunov function is sufficient to show robustness
with respect to a large class of unknown tyre/road friction characteristics
influencing the vanishing perturbation εµ. Standard methods for LPV sys-
tems will be utilized, namely a parameter-dependent quadratic Lyapunov-
candidate, and the problems will be formulated in terms of LMIs. Let the
Lyapunov function candidate be

V (x̃) = x̃T P (v)x̃ (4.58)

where P (v) > 0 is symmetric and specified below. The following result
shows conditions for uniform exponential stability of the nominal closed
loop dynamics.
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Proposition 4.3 Assume there exist a constant γ > 0 and a smooth func-
tion P (v) that satisfies for all vmax ≥ v ≥ vmin > 0

P (v) > 0 (4.59)

dP

dv
(v) ≥ 0 (4.60)

P (v)A0(v) + AT
0 (v)P (v) + γP (v) ≤ 0 (4.61)

Then, the origin is a uniformly exponentially stable equilibrium for all trajec-
tories of the nominal closed loop system (4.57) that satisfies −λ∗ ≤ x2(0) ≤
1 − λ∗, x3(t) ≥ 0, x4(t) ≥ 0 and vmax ≥ v(t) ≥ vmin for all t ≥ 0.

Proof 4.3 V is a suitable Lyapunov function candidate since (4.59) ensures
that it is positive definite with upper and lower bounds. Along trajectories
of the nominal closed loop (4.57), the time-derivative of V is

V̇ = x̃T (P (v)A0(v) + A0(v)T P (v))x̃ + x̃T dP (v)

dv
x̃v̇ (4.62)

It is known from Proposition 3.1 that v̇ ≤ 0 during braking such that
(4.60) ensures that the last term in (4.62) is not positive. Hence, (4.61)
implies that

V̇ ≤ −γx̃T P (v)x̃ = −γV (4.63)

It is then a standard result (Khalil 1996) that the origin is uniformly expo-
nentially stable, i.e. x̃(t) tends to zero exponentially with rate bounded by
γ/2.

�

In order to transform these conditions to standard LMI conditions, in-
troduce a smooth parameterization of P (v) similar to (Gahinet, Apkarian,
and Chilali 1996) and discretize a suitable interval for the parameter v:

P (v) = P0 + P1v
1/2 + P2v + P3v

3/2 (4.64)

with symmetric 4 × 4 matrices P0, P1, P2 and P3. The terms depending
on v are motivated by the explicit expressions for P (v) in Section 4.3.2.
Of course, in this case, a more complex parameterization may lead to a
less conservative Lyapunov function so that it may prove a larger stability
margin. Conditions (4.59) - (4.60) are now given by

P (v) = P0 + P1v
1/2 + P2v + P3v

3/2 > 0 (4.65)

dP

dv
(v) =

P1

2v1/2
+ P2 +

3

2
P3v

1/2 ≥ 0 (4.66)

P (v)A0(v) + AT
0 (v)P (v) + γP (v) ≤ 0 (4.67)
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Inequalities (4.65), (4.66) and (4.67) now define a standard LMI prob-
lem (Boyd, Balakrishnan, Feron, and Ghaoui 1993) with the objective of
maximizing the scalar variable γ > 0, where the LMI conditions are im-
posed at a finite number of values v. A gridding approach is chosen be-
cause the parameterization of P (v) is not convex. 12 values in the interval
0.75m/s ≤ v ≤ 33m/s have been chosen. This leads to a solution of the
LMI conditions (4.65) - (4.67) with γ = 26.9. It follows that the given de-
sign makes the equilibrium point x̃ = 0 locally exponentially stable when
the setpoint is chosen λ∗ = 0.14, even in the presence of uncertainty in the
friction curve. The amount of uncertainty may, however, restrict the region
of attraction.

Given the γ > 0 and matrices P0, P1, P2, P3 that solve the above men-
tioned LMI-problem, the Lyapunov function candidate may be examined
to show that it proves a stability margin to account for the uncertainty in
εµ. Along the trajectories of the perturbed closed loop (4.56), the time-
derivative of the Lyapunov function V for the nominal closed loop satisfies

V̇ ≤ −γx̃T P (v)x̃ + 2x̃T P (v)W (v)εµ(x̃2) (4.68)

In Figure 4.4, three figures are shown for V̇ ; for v = 0.75, 8.5 and 24 m/s
respectively. In the top figure, the side slip angle is α = 15 degrees and
zero in the other two figures. In each figure, three curves are shown for
µH(= 0.1, 0.5, 0.9). x̃1, x̃3 and x̃4 are set to their respective equilibrium
values. Figure 4.4 shows that the robust stability requirement (4.68) is
satisfied for all x̃2 ∈ [−λ∗, 1 − λ∗] for the selected friction curves. Although
curves are shown only for v = 0.75, 8.5 and 24 m/s, it has been verified
that (4.68) is fulfilled for intermediate values of v, λ and α. Unfortunately,
this approach does not allow a rigorous conclusion, except local stability,
since the Lyapunov-function candidate at hand appears to be conservative
when x̃1, x̃3 and x̃4 are taken sufficient far from their equilibrium values.
However, the analysis indicates the following observations that agree well
with the experience from simulations and experiments:

• The robustness margins are most difficult to fulfill at low speeds (less
than say 5 m/s), high µH and high α. This is as expected, since the
uncertainty scales with 1/v and at high µH and α, the slip dynamics
have the highest degree of open loop instability.

• Largest robustness margins are achieved by placing the setpoint to the
right of the friction curve peak. On the other hand, maximum friction
is achieved at the peak value and maximum steerability suggests that
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the slip is as low as possible. In general, the slip value where the peak
value is attained, is reduced as µH is reduced. Therefore, a reasonable
compromise is to let the setpoint be close to the peak value and depend
on an estimate of µH .

• A higher robustness margin and stronger theoretical robustness results
could be achieved by choosing larger values in the Q(v)-matrix, such
that the feedback gain is increased. However, due to other unmodelled
phenomena such as tyre dynamics, computer system communication
delay and suspension dynamics, this is not possible in a practical de-
sign.

4.4 Discussion

In this chapter, three theoretical results on wheel slip control design and
analysis are presented. A design analysis for a first order system containing
only wheel slip dynamics is shown. But, this controller design is cannot be
implemented without a significant loss of performance since the steady-state
brake torque is unknown. By incorporating integral action, steady-state er-
rors due to model inaccuracies can be handled, it is shown to give uniform
exponential stability. The actuator constraints are not considered in order
to present the stability results in a comprehensible way as the problem oth-
erwise becomes too complex to analyze. To extend the model even further
to achieve the best possible approximation to the test vehicle, actuator dy-
namics and an integrator on the control input are included. Stability and
robustness for variations in λ, µH , v and α are shown. But, for x̃1, x̃3 and
x̃4 taken sufficient far from their equilibria the analysis is non-conclusive.

None of the controller designs and analysis shown in this chapter are
in discrete time and they don’t incorporate saturation control. Still, they
provide a starting point for the practical design and implementation using
the LQRC method, as described in Chapter 5.
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Figure 4.1: Illustration of the robust stability requirement, i.e. the left and
right hand sides of equation (4.39) for v = 1m/s. The bottom plot shows
an expanded view.
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Figure 4.2: Illustration of the robust stability requirement, i.e. the left and
right hand sides of equation (4.39) for v = 32 m/s.

0 5 10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

K
1
/10

K
2

K
3
*1000

K
4
*1000

Speed v[m/s] 

Figure 4.3: Gain K(v), as a function of v.



4.4 Discussion 63

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−15

−10

−5

0

µ
H
=0.1

µ
H
=0.5

µ
H
=0.9

λ

dV/dt, v=0.75m/s and α=15o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−9

−8

−7

−6

−5

−4

−3

−2

−1

0
x 10

4

µ
H
=0.1

µ
H
=0.5

µ
H
=0.9

λ

dV/dt, v=8.5m/s and α=0o

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

5

µ
H
=0.1

µ
H
=0.5

µ
H
=0.9

λ

dV/dt, v=24m/s and α=0o
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Chapter 5

Implementation, redesign
and tuning

An insight into the controller structure and states, and the ABS supervi-
sory logic is given first to show the framework under which the controller was
implemented. A brief description of the controller design method, LQRC,
and how the system is specified for LQRC design are then given. The dis-
crete time wheel slip control design and tuning shown in this chapter for
implementation use the control design parameters from the control design
and analysis developed in Chapter 4 in addition to the actuator constraints.
Note that the stability analysis developed in Chapter 4 is based on a gain
scheduled LQG design to simplify the analysis and to obtain comprehensible
results. However, experiments showed that the actuator rate constraints did
not have a significant impact on the experimental results. Then an analysis
and a discussion are given on the choice of slip setpoint as the commu-
nications delay and actuator dynamics impose limitations. Two methods
improving the initial transient response, controller initialization and off-
equilibrium scheduling on slip are then described. Towards the end of this
chapter, a description of the implementation of an anti-windup mechanism
is provided.

5.1 Controller structure

The overall structure of the controller that has been implemented in the
vehicle is shown in Figure 5.1. It consists of the slip controller (LQRC),
the extended Kalman filter (EKF) and the vehicle equipped with electrome-
chanical brakes operating on unknown road surfaces. The shaded boxes
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represent the controller and related elements implemented in software. The
non-shaded boxes represents the physical system. The online estimated vari-
ables from the EKF (based on a nonlinear vehicle model) are:

• Tyre/road slip (λ)

• Vehicle velocity (v)

• Maxium friction coefficient (µH - not used for the LQRC design)

The measurements fed to the EKF are the four wheel speeds, the steer-
ing wheel angle, the longitudinal and lateral accelerations. In general, it can
be said that the estimation error by the EKF leads to a loss in controller
performance. For controller design, these variables are assumed as measure-
ments and therefore, the dynamics of the estimator is not included in the
design.

The brake-by-wire software is written in C and provides an interface for
the wheel slip controller. The interface gives access to the sensor signals
and reads the command signals for the brakes provided by the wheel slip
controller. The wheel slip controller runs at a sampling period (Ts) of 7msec
and with a delay of two time steps between the processing of a new control
signal and until the sensor output has been received, see Figure 2.9 and 5.5.

Gain
 Schedule

LQRC Actuator
Car

Dynamics

Extended
Kalman

Filter

Slip

TorqueTorque
Cmd.

Speed over ground

Figure 5.1: Wheel slip control - block diagram.

5.2 ABS supervisory logic

As a safety device, the ABS will only be activated when the driver commands
a brake force resulting in higher slips than the setpoint of the controller, typ-
ical in critical or emergency situations. The maximal applied brake force is
limited to the driver’s commanded brake force. For safety reasons, the slip
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controller is only allowed to lower the brake force in order to prevent the
wheel from locking. When the commanded brake force by the driver is low-
ered (by the brake pedal), the brake force should be decreased accordingly.

Figure 5.2 shows the on/off switching of the overall controller. An oper-
ation state f is achieved only when the controller is switched on manually
(S), the gear g is set to forward (not reverse) and the reference speed vr of
the vehicle is higher than the minimum speed. Notice that the controller is
switched off when the velocity drops below a minimum speed (vmin = 1m/s).

PSfrag replacements

on off

f = 1 f = 0

init

(vr < vmin) ∨ S ∨ g

(vr ≥ vmin) ∧ S ∧ g

(vr ≥ vmin) ∧ S ∧ g (vr < vmin) ∨ S ∨ g

Figure 5.2: On/Off automaton

5.3 Controller states

Figure 5.3 shows the mode-switching automaton with three states. The
controller remains in manual mode when f is off. The automaton enters the
automatic state when f is on and the driver requests a brake force Fd that
is higher than minimal brake force Fmin, i.e. braking. If the brake pedal is
released and f is off, the controller state is switched to manual state. If the
brake pedal is not released and f is off, the controller state is switches to
bumpless transfer. Normally, when ABS is activated, the brake demanded
by the driver is higher than the brake torque applied by the controller.
Therefore, to avoid a jerky transfer from the automatic state to the manual
state with full brake force applied, a bumpless transfer is implemented. In
the bumpless transfer state, the gradient of the brake force is limited until
the output of the rate limiter has reached the desired clamping force Fd and
thereby switched back to manual.
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PSfrag replacements
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f
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f f
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Figure 5.3: Mode change automaton

5.4 LQR with input and state constraints

5.4.1 Overview

The wheel slip controller design used in this research work is based on an
explicit LQR design method (see Appendix A or (Johansen, Petersen, and
Slupphaug 2002) and (Johansen, Petersen, and Slupphaug 2000a)) devel-
oped recently, which takes into account the input and state constraints,
see also (Bemporad, Morari, Dua, and Pistikopoulos 2000) and (Tøndel,
Johansen, and Bemporad 2003a) for related approaches.

This approach takes advantage of the piecewise linear (PWL) structure
of the constrained LQR. For problems of sufficiently small dimensions, a
combinatorial explosion is avoided and the PWL structure can be exploited
both for design, analysis and in order to avoid the real-time optimization
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by explicitly implementing the PWL feedback controller. Hence, the main
feature of this design method is that it allows computationally efficient im-
plementation of constrained LQR, without relying on real-time optimization
for problems of sufficiently small dimensions. Thus, it is a method suited
for small embedded real-time applications with inherent constraints and
sampling-rates in the range of microseconds to milliseconds, where conven-
tional constrained optimal control implementations are not suited due to
computational limitations or software complexity.

The software developed contains functions for controller design, analysis
and implementation (including automatic generation of ANSI C code) using
MATLAB. Several parameterized implementation strategies are available,
allowing the code to be optimized to meet real-time target or simulator
limitations in terms of processing capacity and computer memory as well as
off-line processing time.

5.4.2 Brief introduction to LQRC design theory

The following describes briefly the constrained LQR method, for general
linear systems subject to linear input and state constraints and a quadratic
cost function. Consider the discrete-time linear time-invariant system

x(t + 1) = Ax(t) + Bu(t) (5.1)

where x ∈ Rn, and u ∈ Rr. The objective of the LQRC feedback controller
is to minimize the infinite-horizon quadratic cost

J(u(t), u(t + 1), u(t + 2), ...; x(t)) =
∞∑

τ=t

(
xT (τ)Qx(τ) + uT (τ)Ru(τ)

)
(5.2)

subject to the linear constraints

Gx(τ + 1) ≤ g (5.3)

Hu(τ) ≤ h (5.4)

for all τ ≥ t, where R > 0, Q ≥ 0, G ∈ Rq×n, and H ∈ Rp×r. It is assumed
that g, h > 0 to ensure that the equilibrium point (x = 0) is an interior
point in the admissible region.

In order to reduce the computational complexity associated with the
solution to the general problem stated above, the following additional as-
sumptions are introduced:
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• The infinite-horizon cost function (5.2) is approximated by the follow-
ing finite-horizon cost function

J̃(u(t), u(t + 1), u(t + 2), ...; x(t)) = xT (t + N)Px(t + N)+
t+N−1∑

τ=t

(
xT (τ)Qx(τ) + uT (τ)Ru(τ)

)
(5.5)

where N ≥ 1 is the prediction horizon and P is the solution to the alge-
braic Riccati equation (Anderson and Moore 1989) of the associated uncon-
strained LQR problem.

• The active constraint set is allowed to change only small number of
times on the horizon N . In other words, the active constraint set can
be different at the beginning and at the end of the horizon.

The Hamilton-Jacobi-Bellman equation of dynamic programming opti-
mally balances the instantaneous cost with the cost-to-go, where V (x) is the
optimal cost-to-go (from state x to origin):

V (x(t)) = min
Gx(τ+1)≤g,Hu(τ)≤h

τ∈{t,t+1,t+2,...,t+N−1}

(

V (x(t + N)) +
t+N−1∑

τ=t

lQR(x(τ), u(τ))

)

(5.6)

Reformulate (5.6) by replacing the inequality constraints by a set of
equality constraint sets which constitutes all possible active constraint sets
C (where C is an index set enumerating all (sub-)optimal combinations of
active constraints), which gives:

V (x(t)) = min
k∈C,Gx∗

k
(τ+1)≤g,Hu∗

k
(τ)≤h

τ∈{t,t+1,t+2,...,t+N−1}
(

min
Hku=Gkx+hk

(

V (x(t + N)) +

t+N−1∑

τ=t

lQR(x(τ), u(τ))

))

(5.7)

where x∗
k and u∗

k are the solutions of the inner optimization. The outer
optimization is either executed online or pre-computed offline and the inner
optimization is pre-computed offline.
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5.4.3 Structure of the LQRC solution

The PWL control structure resulting from the LQRC specification and de-
sign may be summarized by the block diagram in Figure 5.4. There is a
bank of affine state feedbacks of the form

u∗
k(t) = Kk,2x(t) + Kg

k,1g + Kh
k,1h (5.8)

where each affine state feedback is designed with the objective of minimizing
the LQ cost function subject to the state and input trajectories moving on a
specific active constraint set. In other words, each affine feedback controller
will force selected state and input constraints to be active on the horizon
and use the additional available degrees of freedoms (if any) to minimize
the LQ objective or the constraint violations if this cannot be avoided. The
affine state feedbacks are designed off-line. So the real-time computations
amount to selecting which affine state feedback to apply at a given state
x(t) and constraint limits g and h, and computing the control input using
the associated pre-computed gain matrices Kg

k,1, K
h
k,1 and Kk,2. The control

structure in Figure 5.4 corresponds to a switching controller since it switches
between a number of affine feedbacks.

Feedback
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Feedback
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N (t)

u∗(t) x(t)
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Figure 5.4: PWL constrained LQR control structure.
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5.4.4 State space partitioning

As described above, the LQRC controller is a PWL function of the state x
and constraint limits g and h. For any combination of active constraints it is
straight forward to compute its constituent affine state feedback parameters
and their associated cost functions. In order to fully explore and exploit
the PWL structure, a characterization of the activity regions where each
affine function is optimal (and feasible) is required. Note that due to the
combinatorial nature of the problem, computation of such characterizations
is computationally prohibitive for problems of a higher dimension.

The partitioning algorithm will first determine all candidate hyperplanes
the partition may consist of. Then, a user-specified region of attention
will be split recursively by considering optimality of the set of affine state
feedbacks within each region of the partition. The algorithm will terminate
when the number of candidate optimal affine state feedbacks within each
region are less than a user-specified number, or when it is not possible to
split any further. Note that in the latter case, the algorithm may fail to find
the user-specified number of candidate affine state feedbacks within each
region.

5.4.5 Computational strategies

In order to compute a control input u for a given state x and constraint
limits g and h, the following two tasks must be accomplished:

i. Determine which affine state feedback is optimal.

ii. Compute the control input according to the affine state feedback law

While the second task is simple to implement, the first task is consider-
ably more complex and can be implemented in several ways:

• If no state-space partitioning exists, the costs associated with each of
the affine state feedbacks must be compared at each sample. This may
be done in a sequential fashion by computing the cost associated with
each of them. However, in most cases one can rely on a branch-and-
bound approach that takes advantage of the structural relationship
between the active constraint sets associated with each affine state
feedback in order to reduce the computational complexity consider-
ably.
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• If a state-space partitioning exists, it can be utilized to speed up the
computations since the number of candidate optimal affine state feed-
backs within a given polyhedral region is typically small. Determining
which polyhedral region the state belongs to is essentially to keep ac-
count of the side of the constituent hyperplanes of the partition the
given state is.

More efficient methods for state space partitioning has recently been
developed (Tøndel, Johansen, and Bemporad 2003a; Bemporad, Morari,
Dua, and Pistikopoulos 2000) as well as data structures supporting efficient
evaluation of PWL control laws (Tøndel, Johansen, and Bemporad 2003b).

5.5 ABS specifications for LQRC design

This section describes in detail how the LQRC wheel slip controller was
specified, designed and implemented.

5.5.1 Gain scheduling control

The controller is a gain scheduled constrained LQR on the form:

u(t) = uLQRC(ie(t), λ̂(t) − λ∗, Tb(t), T̃b(t), v̂(t), λ̂(t)) (5.9)

where v̂(t) and λ̂(t) are estimates for speed-over-ground and wheel slip re-
spectively (both from the extended Kalman-filter). The last two variables
are used as gain scheduling parameters. The design method is an explicit
constrained LQR that gives an explicit piecewise linear controller that in-
corporates constraints. Thus, if no constraints are active, the controller is
of the form

u(t) = K(v̂(t))x(t) (5.10)

with state x(t) = (ie(t), λ̂(t) − λ∗, Tb(t), T̃b(t)).

Gain scheduling is implemented by switching gain matrices, where the
gain matrices (5.8) are computed for a finite number of operating points for
v:

v = 0.75 − 32m/s, 12 velocities, logarithmically spaced (5.11)

This leads to an implemented controller of the form

u(t) = Ki(v̂(t))x(t) (5.12)
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where the index i(v̂(t)) is selected based on v̂. As switching might lead to
undesired transients in the controller (partially due to the equilibrium point
x∗

1 depends on the elements of the gain matrix Ki), bumpless transfer is
implemented to avoid this undesired effect (see Section 5.8). The selected
number of operating points and switching do not lead to significant loss of
performance compared to continuous gain schedule (verified through simu-
lation).

For the controller design, the nominal model parameters used are taken
from Section 5.6 together with the performance specification and constraint
parameters taken from the following two sections.

5.5.2 System and cost function specifications

A 4th order discrete-time LPV state space model form, based on the 4th
order continuous-time model given in Section 4.3.3, is written as:

x(t + 1) = Φ(v, λ)x(t) + Γu(t) (5.13)

where x1 is the integrated slip error, x2 = λ − λ∗ is the slip error, x3

is the brake torque produced by the actuator and x4 is the brake torque
commanded to the actuator. All states are available for feedback for the
slip dynamic model: v̂(t) and λ̂(t) are estimated online, Tb(t) is measured
and ie(t) and Tb are states of the controller. The speed and slip dependent
model matrices are given by

Φ(v, λ) =







1 Ts 0 0
0 a1(v, λ) b1(v, λ) 0
0 0 aact bact

0 0 0 1







, Γ =







0
0
0
1







(5.14)

with the following discretization (Åström and Wittenmark 1997)

a1(v, λ) = eTsα1/v, b1(v, λ) = β1(a1(v, λ) − 1)/α1 (5.15)

where Ts is the sampling time (7ms), α1 and β1 are parameters calculated
using equations (4.3) and (4.4) respectively. The parameters aact and bact

(with values 0.6 and 0.4 respectively) are from the first order discrete-time
linear model of the actuator dynamics, see Section 2.3.2.

The corresponding cost function parameters for the LQRC design (in-
cluding actuator dynamics in the model and scaled with respect to Tb and
λ):
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R = 1, Q(v) = Q̃v3/2 (5.16)

with Q̃1,1 = 8·106 and all other elements of Q̃ equal to zero. This corresponds
to the design studied in Section 4.3.3. The simulator was extensively used
for tuning and as a verification check of the wheel slip controller before it
was decided to be implemented into the test vehicle.

Note that including the actuator model allows the weight on the con-
trol error to be increased (with respect to the other elements in Q̃) which
effectively increases the gain and the performance without introducing os-
cillations in the closed loop.

5.5.3 Constraint specifications

The controller design uses only input constraints where the actuator rate
constraint leads to the following input constraint (soft):

−Ṫmax
b Ts ≤ uLQRC(t) ≤ Ṫmax

b Ts (5.17)

The maximum brake torque applied to the rear wheel is half of the max-
imum front wheel brake torque (5.6). This is essential for the stability of
the vehicle. Otherwise the vehicle might start to rotate because the rear
wheels would lose their lateral traction. The LQRC control design incor-
porates the saturation of the maximum brake rate change, Ṫmax

b , whereas
the saturated brake torques T min

b and Tmax
b , are limits handled by a simple

software function (limiter) independent of the LQRC.

5.5.4 Constraint handling

The PWL structure of the controller consists of three regions as shown in
(5.17), the lower/upper constrained regions and an unconstrained region.
The prediction horizon was set to N = 1 and it is assumed to be sufficient
as there are only input constraints. With N = 1, the resulting four wheel
slip controllers occupied in total 1.7msec of the available 7msec (sampling
time) which gave the individual wheel slip controller processing time of 425
microseconds. This time-limitation for controller processing is mainly due
to the extended Kalman filter, which required most of the CPU’s processing
capacity, and other supervisory tasks. A more efficient method to improve
the online controller processing is suggested in (Tøndel, Johansen, and Be-
mporad 2003b).
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5.6 Frequency response analysis

For unstable operating points (with setpoint λ∗ to the right of the friction
curve peak), it is well known that a minimum gain is necessary to stabilize
the open-loop unstable dynamics. Since the communications delay and ac-
tuator dynamics impose fundamental limitations on the maximum gain, it
is of interest to investigate if all operating points, i.e. all values of λ∗ for all
possible friction curves, can be stabilized with acceptable performance. This
analysis is carried out most conveniently using a classical frequency analysis
based on a linearized model (see Section 5.5) or the equivalent block dia-
gram for the linearized dynamics shown in Figure 5.5 where K(v) is designed
using LQRC.

Controller software TTP Mechanical system

VD

V
z?1

z?1

z?1

z?1

KÝvÞ
u 1

1?z?1

bactz
?1

1?aactz
?1

b1z
?1

1?a1z
?1

Tsz
?1

1?z?1

T* b Tb

Figure 5.5: Block diagram including actuator dynamics and communication
delays.

Assume for a moment the setpoint λ∗(= 0.14) corresponds to a slip
value near the peak of the friction curve. The family of frequency responses
(from slip setpoint to slip, computed based on the block diagram in Figure
5.5) corresponding to values of v between 0.75m/s and 32m/s are given in
Figure 5.6. It can be observed that the bandwidth (−3 dB frequency) is
between 44 rad/s and 73 rad/s (depending on v). It can also be observed
that the suspension resonance found in Section 3.3 is slightly larger than
the bandwidth of the controller and the controller bandwidth cannot be
increased any further without encountering interaction with the suspension
system. If the setpoint is moved sufficiently far to the right of the peak of
the friction curve, the closed loop becomes unstable since the gain is not
sufficiently large to stabilize the open-loop unstable system. On the other
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Bode Diagram (λ*=0.14)
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Figure 5.6: Transfer function from reference to output, when the setpoint is
near the peak of the friction curve.

hand, if the setpoint is moved slightly to the left of the peak (say λ∗ = 0.1)
of the friction curve, the family of frequency responses changes to Figure
5.7. It is observed that the bandwidth decreases significantly, especially for
small v, indicating a loss of performance. If the setpoint is moved even
further left of the peak, a further loss of performance is experienced. Thus,
high performance is achieved only if the setpoint is chosen near the peak
of the friction curve. At low friction, the peak is less pronounced and the
performance and the robustness are not expected to be very sensitive to
the choice of setpoint. At high friction, however, the peak is significant
and loss of stability will occur if the setpoint is chosen too high, and loss
of performance may occur if the setpoint is chosen too low. It must be
stressed that this analysis is based on a linearized model and is therefore
not valid for transients that are far from the equilibrium. However, it still
correctly points out fundamental limitations in performance and robustness,
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Bode Diagram (λ*=0.1)
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Figure 5.7: Transfer function from reference to output, when the setpoint is
slightly to the left of the peak of the friction curve.

and suggests useful guidelines for selecting the slip setpoint λ∗, consistent
with underestimation results in (Yi, Alvarez, and Horowitz 2002).

5.7 Improvement of initial transient response

As a result of a slow initial transient response which was discovered in an
experiment on a high friction surface (see Section 6.4), two methods have
been developed to improve the initial transient response. The first redesign
approach focuses on the initial state of the controller. The second approach
is based on the concept of off-equilibrium linearization and design in gain
scheduled control.
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5.7.1 Controller initialization

In the first method, the initial value of the integrator x1(0) is set to a
value corresponding to a nominal steady-state value of the clamping torque
Tb which typically is experienced on a given surface. This gives, for the
nominal state (with x2 = 0 and x3 = x4 = T ∗

b ), a steady-state consideration
leads to

uLQRC = K(v̂)x = 0 (5.18)

⇓
x1(0) = −T ∗

b (k3 + k4)/k1 (5.19)

Because the load is unevenly distributed during braking, it is a need to
differentiate between initialization of front wheels and rear wheels. For the
front wheels

x1(0) = −
√

2T ∗
b (k3 + k4)/k1 (5.20)

and for the rear wheels

x1(0) =
−1√

2
T ∗

b (k3 + k4)/k1 (5.21)

Other controller initialization methods are reported in (Kalkkuhl, Jo-
hansen, and Lüdemann 2002; Lüdemann 2002) using a multiple model adap-
tive control approach with an estimator resetting rule or by using a µH -
estimator such as (Gustafsson 1997; Canudas de Wit, Horowitz, and P.Tsiotras
1999) for initialization.

5.7.2 Off-equilibrium scheduling on slip

A second redesign method to improve the initial transient response when
braking on high µH , off-equilibrium linearization (Johansen, Hunt, Gawthrop,
and H.Fritz 1998) with respect to the slip has been applied. The gain ma-
trices (5.8) are computed for a finite number of operating points for both
v (5.11) and λ = 0.09, 0.14. In particular, the controller is modified during
transients at low wheel slip values such that slip setpoint is reached more
rapidly. Thus, the controller switches to new gain matrices when the wheel
slip is lower than a given threshold, 0.6λ∗. The switching is implemented
similar to that for bumpless transfer, described in Section 5.8, in order to
avoid undesired transients. However, the nominal λ̂ is now on the steep part
on the left side of the friction curve peak and, therefore, leads to a higher
gain near equilibria. Consequently, the transients are speeded up and the
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overall performance is improved as shown in the experiment described in
Section 6.10. It is remarked that this method has the advantage that it does
not require an estimate of the equilibrium torque T ∗

b (or µH). Note that the
operating point λ = 0.09 and the wheel slip threshold 0.6λ∗ were selected
by trial and error using the vehicle simulator.

5.8 Bumpless transfer due to controller switching
(gain scheduling)

The gain scheduling implemented includes bumpless transfer which is achieved
by resetting the integrator, x1, at the switching instants, thereby obtaining
a control signal without any discontinuities. At the switching instant, the
commanded clamping torque signal (T̃b, the integral value of the control in-
put signal u) to the actuator must be constant. This is obtained with the
control input signal u set to zero (recall that u is the change in commanded
brake torque, so this essentially requires no jump in the brake torque).

0 = uLQRC(x1(t), x2(t), x3(t), x4(t), v̂(t), λ̂(t)) = K(v, λ)x (5.22)

⇓
xnew

1 (t) = − (k2x2(t) + k3x3(t) + k4x4(t)) /k1 (5.23)

Bumpless transfer becomes more important the lower the µH is; e.g. on
snow or ice, as the effect of the wheel inertia is more influential.

5.9 Anti-windup

The aim of an anti-windup compensation is to modify the dynamics of the
control loop when the control signals saturate. Thus, a good transient be-
haviour is attained after de-saturation, while avoiding limit cycle oscillations
and repeated saturations. The technique used here for model-based anti-
windup reset is a standard dead-beat anti-windup mechanism (Åström and
Wittenmark 1997), where the internal controller states are consistent with
the saturated control input u(t) and the saturated brake torque Tb(t). Since
there are both a rate and a saturation limit for the brake torque, one way to
incorporate this saturation is through the control input u. The anti-windup
for integral of the slip error, x1:

xnew
1 (t) = x

′

1(t) +
(

Tb(t) − T
′

b(t) + uLQRC(t) − uLQ(t)
)

/k1 (5.24)
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where uLQRC(t) is the rate control input computed by the LQRC, uLQ(t) is
the corresponding unconstrained control and

x
′

1(t) = λ(t) − λ(t − 1) (5.25)

T
′

b(t) = Tb(t − 1) + uLQRC(t) (5.26)

Tb(t) = Tmax
b ≥ T

′

b(t) ≥ Tmin
b (5.27)

For the case where no saturation occurs, it can be seen that the nominal
dynamics is unchanged as x1 = x

′

1 due to Tb = T
′

b and uLQ = uLQRC . It
should be noticed that this mechanism is also used in the case of controller
initialization (see Section 5.7.1).
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Chapter 6

Experimental Results

This section gives a description of the experimental results obtained with the
controller described in Section 5. Procedures for testing of an ABS system’s
braking performance in a motor vehicle can be found in publications such
as International Organization for Standardization (ISO) (ISO 1991; ISO
1995; ISO 1996; ISO 1999) and in publications of the Society of Automotive
Engineers (SAE) (SAE 1973). Since this project was aimed at developing
an ABS controller for a prototype electro-mechanical wheel brake and not
for a production vehicle, a reduced and simplified test procedure was chosen.

The following subsections describe a series of successful experiments car-
ried out for straight-line braking manoeuvre on different road surfaces (ice,
snow, dry asphalt, wet asphalt and inhomogeneous asphalt/plastic coated
surface) and a single experiment carried out for braking in a turn on dry
asphalt.

6.1 Experimental scenarios

Table 6.1 gives an overview of the experiments and their order of appearance
in this chapter with surface condition, controller configuration and steering
action for the respective experiment.

For the experiments when braking on ice and snow, the vehicle was
equipped with winter tyres, Conti TS790 215/55R16. All other experiments
were carried out using summer tyres, ContiEcoContact CP 215/55R16. Both
tyre types are produced by Continental.
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Test Surface condition λ∗, Slip Comments
no. setpoint

1 Wet inhomogeneous 0.09 Straight
2 Dry asphalt 0.09 Straight
3 Wet asphalt 0.09 Straight
4 Snow 0.07 Straight
5 Ice 0.05 Straight
6 Dry asphalt 0.14 Turning
7 Dry asphalt 0.11 Straight, Controller initialization
8 Dry asphalt 0.11 Straight, Off-equilibrium design

Table 6.1: Experimental tests of EMB ABS

6.2 Presentation of experimental results

The following performance criteria are included in the evaluation:

• slip performance w.r.t. slip setpoint (peak, variability, stead-state er-
ror)

• lateral stability of vehicle (wheel lock avoided, lateral acceleration)

• deceleration of vehicle

To evaluate the controller performance, mainly the slip behaviour and
clamping force are used. From the experimental vehicle, during the experi-
ments, the following information was logged for each sample:

• The vehicle speed over ground estimated by the extended Kalman filter
(EKF) and measured by an optical correlation sensor.

• The wheel speed for each wheel.

• The estimated wheel slip value for each wheel estimated by the ex-
tended Kalman filter.

• Clamping force, desired and measured values.

• Weather condition on the braking surface.

• Slip setpoint.

• Lateral and longitudinal acceleration.
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Other sensor data like the steering wheel angle and the brake pedal
position were also logged, but are omitted for presentation purposes.

For each experiment, there are four plots for each wheel and one plot for
the vehicle.

i. The first plot shows the wheel slip λ (solid line) and the setpoint slip
λ∗ (dashed line).

ii. The second plot shows the measured clamping force by the electrome-
chanical actuator (solid line) and the desired clamping force from the
driver (dashed line).

iii. The third plot shows the measured wheel speed (solid line) and the
measured vehicle speed (dashed line).

iv. The fourth plot shows the friction curve calculated (see Section 3.2.1)
based on the wheel experimental data for the wheel.

v. The fifth plot shows the longitudinal (solid line) and lateral (dashed
line) acceleration of the vehicle.

All plots (except the friction curve plot) are plotted with the time on
the x-axis and for vehicle speed v ≥ 1m/s. If the wheel speed v < 1m/s,
then the controller is switched off. In the friction curve plot (iv), µ versus
λ is plotted, and the figure is therefore limited to the slip values that are
experienced by the wheel during a braking manoeuvre. The analysis of the
friction curve plot is done with reference to (Burckhardt 1993; Canudas de
Wit, Horowitz, and P.Tsiotras 1999; Gustafsson 1997; Hunter 1998) and
Section 3.2.1.

6.3 Wet inhomogeneous surface

Figures 6.1 and 6.2 show braking without any steering manoeuvres on a
wet asphalt partially covered with a plastic coating. The initial speed is
v(0) = 22 m/s and the slip setpoint is λ∗ = 0.09.

6.3.1 Slip

Observe that there is significant variability in the slip for t ≤ 6s, whereas
for t > 6s, the regulation is satisfactory. The variability is expected to
be mainly due to the inhomogeneous road surface that provides external
disturbances to the system. The peak slip value λ ≈ 0.45 for t = 3.7s.
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6.3.2 Lateral stability

The lateral acceleration shown in Figure 6.2 is negligible.

6.3.3 Deceleration of vehicle

A deceleration of 3m/s2 is reached very quickly and maintained during brak-
ing.

6.3.4 Friction estimate

The friction curve plot in Figure 6.1 shows a friction peak value µH ≈ 0.5 for
λ = 0.07− 0.1. Its shape, limited to a maximum slip of λ < 0.45, resembles
the friction curve for µH = 0.5 shown in Figure 3.2.

6.3.5 Controller performance

The transient performance is fast and the overall controller performance is
satisfactory considering the road surface.

6.4 Dry asphalt

Figures 6.3-6.5 show experimental results with braking on dry asphalt. The
initial speed is v(0) = 21 m/s, the slip setpoint is λ∗ = 0.09.

6.4.1 Slip

As the speed approaches zero, some variability in the slip emerges. The
clamping force does not oscillate, this is probably due to the sensor noise
that is known to increase as the speed approaches zero (see Section 3.1). The
slip is too low and the resulting friction force is too low in the intervals 0.2 ≤
t ≤ 0.7 and 0.2 ≤ t ≤ 0.4 for the front and rear wheels respectively, leading to
an unnecessarily large braking distance. This is due to the significant model
inaccuracy in the low-slip region due to the friction curve being linearized in
the control design, cf. Figure 3.2. The peak slip value (front wheel) λ ≈ 0.2
for t = 2.5s.

6.4.2 Lateral stability

The lateral acceleration shown in Figure 6.5 is negligible.
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6.4.3 Deceleration of vehicle

Figure 6.5 shows that a high deceleration value, ax = 9−10m/s2, is reached
and maintained for t > 0.6s, approximately 0.4s after braking commences.

6.4.4 Friction estimate

The friction curve plots for both the front and the rear wheels are shown
in Figures 6.3 and 6.4, respectively. The figures resemble the dry asphalt
friction plot in Figure 3.2 for µH ≈ 0.9. The friction peak occurs for λ =
0.05− 0.2 and with a value of µ = 0.9. The friction curves’s complete shape
cannot be produced as slip λ < 0.2, but they indicate that the brake force
used corresponds to braking on dry asphalt.

6.4.5 Controller performance

It is important to note that the regulation is highly accurate and satisfactory.
Observe that the transient performance is not as fast as experienced in
Section 6.4 mainly because the steady-state value of the clamping force
is further away from its initial state. Consequently, the initial transient
response is not satisfactory as the clamping force does not increase fast
enough. A redesign of the slip controller is necessary and two approaches
were presented in Sections 5.7.1 and 5.7.2, and their experimental results
are presented in Sections 6.9 and 6.10.

6.5 Wet asphalt

Figures 6.6-6.7 show experimental results with braking on wet asphalt. The
initial speed is v(0) = 23 m/s and the slip setpoint is λ∗ = 0.09.

6.5.1 Slip

Significantly less variability in the slip is observed than for the wet inho-
mogeneous case (see Section 6.3). The peak slip value λ ≈ 0.4 for t = 3.1s
except when the velocity becomes very small. The initial slip variability is
mainly due to an inhomogeneous road surface that provides external distur-
bances to the system.

6.5.2 Lateral stability

The lateral acceleration shown in Figure 6.7 is negligible.
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6.5.3 Deceleration of vehicle

Figure 6.7 shows that deceleration stays between 2 − 4m/s2 and reaches
4m/s2 approximately 0.25s after braking commences.

6.5.4 Friction estimate

The friction curve plots for the front wheel is shown in Figure 6.6. It is
similar to the friction curve found for the wet, inhomogeneous surface in
Figure 6.1. The friction peak occurs for λ = 0.05 − 0.1 and with a value of
µH ≈ 0.5. Its shape resembles the wet, asphalt friction curve seen in Figure
3.2 for µH = 0.5 and thus, the brake force used in this case corresponds to
braking on wet asphalt.

6.5.5 Controller performance

Observe that the transient performance is again much better than on dry
asphalt (see Section 6.4), mainly because the steady-state value of the clamp-
ing force is closer to its initial state. Overall, the controller performs satis-
factorily.

6.6 Snow

Figures 6.8-6.10 show a straight-line braking manoeuvre on a road covered
with 3 cm of fresh snow. The vehicle speed is v = 22m/s when braking
is commenced and without any steering manoeuvres. The slip set point is
λ∗ = 0.07.

6.6.1 Slip

The rear wheel slip, Figure 6.9, is slightly more oscillatory than the front
wheel slip in Figure 6.8. The slip peak (rear) is approximately 0.25 and
occurs at low speed (three places) for 5.8s < t < 7.2s. The front slip peak
is 0.6, but happens at low speed (< 2.5m/s) for t = 7.2s.

6.6.2 Lateral stability

The lateral acceleration and velocity shown in Figure 6.10 are negligible.
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6.6.3 Deceleration of vehicle

A deceleration of 3m/s2 is reached and maintained 0.3s after braking com-
mences.

6.6.4 Friction estimate

The maximum friction coefficient is µH ≈ 0.3 cf. Figure 6.8. A slightly
higher friction value is obtained for the rear wheel than for the front wheel.
Both wheels achieve maximum friction at λ ≈ 0.05 − 0.10.

6.6.5 Controller performance

The transient performance is satisfactory and the regulation is excellent.

6.7 Ice

Figures 6.11-6.13 show a straight-line braking manoeuvre on an icy road.
The vehicle speed is v(0) = 16m/s when braking commences. The slip set
point is λ∗ = 0.05.

6.7.1 Slip

The front wheel slip peak, λ = 0.3, is at t = 8.3s and for the rear wheel,
λ = 0.45, at t = 9.2s. This occurs at low velocity, where the slip dynamics
are more sensitive.

6.7.2 Lateral stability

In Figure 6.13, ay changes suddenly by 2m/s2 at around t = 4s , from
−1m/s2 to 1m/s2. The lateral acceleration ay = 2m/s2 is maintained for
2s.

6.7.3 Deceleration of vehicle

A deceleration of 2 − 3m/s2 is reached and maintained 0.5s after braking
commences.



100 Experimental Results

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t, [s]

Slip (λ,  λ*=0.05)

0 2 4 6 8
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

t, [s]

Clamping Force: ABS(u, solid), Driver(F
b
, dashed)

0 2 4 6 8
0

2

4

6

8

10

12

14

16

t, [s]

Speed: Wheel (ωr, solid) & Vehicle (v, dashed)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ

Friction Curve µ (filtered, solid)

Figure 6.11: Ice, front left wheel



6.7 Ice 101

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t, [s]

Slip (λ,  λ*=0.05)

0 2 4 6 8
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

t, [s]

Clamping Force: ABS(u, solid), Driver(F
b
, dashed)

0 2 4 6 8
0

2

4

6

8

10

12

14

16

t, [s]

Speed: Wheel (ωr, solid) & Vehicle (v, dashed)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ

Friction Curve µ (filtered, solid)

Figure 6.12: Ice, rear right wheel



102 Experimental Results

0 2 4 6 8
−6

−5

−4

−3

−2

−1

0

1

2

t, [s]

Acceleration: a
x
(solid), a

y
(dashed), [m/s2]

Figure 6.13: Ice, car



6.8 Turning on dry asphalt 103

6.7.4 Friction estimate

The maximum friction coefficient is approximately µH ≈ 0.15−0.20. This is
seen in the friction curve plots 6.11 and 6.12, with a slightly higher friction
value obtained for the rear wheel. Both wheels reach maximum friction at
λ ≈ 0.02.

6.7.5 Controller performance

Braking on ice gives similar performance to that of braking on snow. At such
low friction levels for both the wheel slip and the clamping force, the control
system becomes very sensitive specially to disturbances due to an inhomo-
geneous road surface which is more likely to happen on ice. This can be seen
as slip disturbances or with a split friction surface, a side acceleration of the
vehicle. At such low wheel slip and clamping force levels, the control system
is also sensitive towards disturbances in sensor noise, actuator inaccuracies,
nonlinearities due to internal friction and other phenomena. The transient
performance is satisfactory and the regulation is excellent.

6.8 Turning on dry asphalt

Figures 6.14-6.18 show a braking manoeuvre in a turn where the vehicle is
driven clockwise in a circle with a radius of approximately 15m. The initial
speed v(0) = 15m/s and the initial lateral acceleration ay ≈ 8m/s2.In the
speed figures for Figure 6.14-6.17, it can be seen that the estimation by the
extended Kalman-filter of the vehicle speed is either 0.5m/s higher or lower
compared to the wheel perimeter speed, when the vehicle is not braking.
This is due to the fact that the outer wheels rotate faster than the inner
wheels.

6.8.1 Slip

The outer front left wheel is locked for 2.05s < t < 2.2s, see Figure 6.14. A
similar situation occurs for the outer rear left wheel, but the slip peak reaches
0.8. The slip for the inner wheels λ < 0.25 throughout the manoeuvre.

6.8.2 Lateral stability

Figure 6.18 shows that the lateral acceleration decreases steadily during
the braking manoeuvre, while the oscillations in ax and also in ay, indicate
pitching and rolling movements of the vehicle. The approximately constant
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lateral acceleration confirms together with the slip that the vehicle is steer-
able during the manoeuvre. The lateral acceleration ay decreases steadily
until it reaches zero at t = 1.9s and remains at zero until the vehicle comes
to a standstill at approximately t ≈ 2.5s.

6.8.3 Deceleration of vehicle

Figure 6.18 shows the vehicle reaching a deceleration of 8 − 10m/s2 and is
maintained 0.5s after braking commences.

6.8.4 Friction estimate

The friction curve plots for the two front and the two rear wheels are shown
in Figures 6.14-6.17, respectively. The theory for calculating the friction
curve (see Section 3.2.1) for braking while turning requires that the vehicle
side slip angle, the wheel turn angle and the vehicle yaw rate are known. As
the vehicle side slip angle is not known, only the longitudinal friction can be
calculated and the friction curve is therefore only an approximation. The
friction peak, µH = 0.9, occurs for λ = 0.05 − 0.2.

6.8.5 Controller performance

The controller transient response is very slow as the clamping force does
not increase fast enough (for all the wheels). Consequently, the slip is too
low and the resulting friction force is too low for the whole braking period
leading to an unnecessarily large braking distance. This is principally due
to the significant model inaccuracy occurring for side slips where α > 0 and
small λ. Notice that the linearization underlying the control design is done
with the side slip α = 0, cf. Figure 3.2.

6.9 Dry asphalt, controller initialization

This first redesign idea is based on the fact that the initial state of the
controller will play an important role in the initial transient, see Section
5.7.1. For the dry asphalt experiment shown in Figures 6.19-6.21, the slip
setpoint is λ∗ = 0.11 and the initial speed is v(0) = 30m/s.

6.9.1 Slip

The front wheel slip peak, λ = 0.7, is at t = 1.2s when the wheel slip
controller is activated. For the rear wheel, the slip peak value λ ≈ 0.2
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occurs at low velocity, where the slip dynamics are more sensitive.

6.9.2 Lateral stability

The lateral acceleration shown in Figure 6.21 is negligible.

6.9.3 Deceleration of vehicle

Deceleration is between 8− 10m/s2, see Figure 6.21, and is maintained 0.5s
after braking commences.

6.9.4 Friction estimate

The friction curve plots for both the front and the rear wheels are shown
in Figures 6.19 and 6.20, respectively. The figures’s shape resemble the dry
asphalt friction plot in Figure 3.2 for µH ≈ 0.9. The friction peak occurs
for λ = 0.1 and with a value of µ ≈ 1.2.

6.9.5 Controller performance

When the wheel slip controller is activated, the initial state of the integrator
x1(0) is set to a value that corresponds to the nominal steady-state clamping
torque typically experienced on dry asphalt. Notice that the initial transient
is significantly improved, but with an overshoot that might be eliminated
by more accurate initialization (along the ideas in (Kalkkuhl, Johansen,
Lüdemann, and Queda 2001; Kalkkuhl, Johansen, and Lüdemann 2002)).
Note that since the experiment was conducted on dry asphalt with a high
slip setpoint, the rear wheel brake torques saturate throughout the braking
period without achieving the specified slip setpoint. Thus, the performance
of the controller for the rear wheel cannot be evaluated.

6.10 Dry asphalt, off-equilibrium design

The second redesign idea is based on the concept of off-equilibrium lineariza-
tion and design in gain scheduled control (see Section 5.7.2).

Figures 6.22-6.24 show experimental results with braking on dry asphalt
with a modified controller to improve the initial response. The initial speed
is v(0) = 30m/s and the slip setpoint is λ∗ = 0.11.
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Figure 6.23: Off-equilibrium design, rear right wheel
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6.10.1 Slip

The front wheel slip peak, λ = 0.65, is at t = 0.7s. For the rear wheel, the
slip peak value λ ≈ 0.35 occurs at low velocity, where the slip dynamics are
more sensitive.

6.10.2 Lateral stability

The lateral acceleration shown in Figure 6.24 is negligible.

6.10.3 Deceleration of vehicle

Deceleration reaches 8 − 10m/s2 0.3s after braking commences, see Figure
6.24, and this is then maintained.

6.10.4 Friction estimate

The friction curve plots for the front and the rear wheels are shown respec-
tively in Figures 6.22 and 6.23. The figures resemble the dry asphalt friction
plot in Figure 3.2 for µH ≈ 0.9. The friction peak occurs for λ = 0.1 and
with a value of µ = 0.95.

6.10.5 Controller performance

As a result of the modification of the controller during transients at low
wheel slip values, it appears that the setpoint is reached more rapidly. The
controller switches to new gain matrices when the wheel slip λ is lower than a
given threshold, namely 0.6λ∗. Since the nominal λ̂ is now on the steep part
on the left side of the friction curve peak, this leads to a higher gain than
near equilibria. As a result, the transients are speeded up and the overall
performance is improved. Again, there is some initial overshoot, which could
be reduced by fine-tuning the switching thresholds and the off-equilibrium
control design.

It should be noticed that the driver eases the brake pedal at t = 0.9s.
This affects only the performance of the rear wheel, see Figure 6.23.

6.11 Experimental problems

Rear wheel hardware problems occurred in experiments 1 and 3 (Sections
6.3 and 6.5), and no log-data was produced. Thus, for the experiments
no.1 and 3, there are no figures showing the performance of the rear wheel
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controllers. In general, the performances achieved for the rear wheel slip
controllers were better than those achieved for the front.

In experiment no.6 (Section 6.8) the speed figure for the front right wheel
(see Figure 6.15), has a wheel speed noise (spikes) equivalent to 6% of the
vehicle speed for t < 0.6s.

In experiment no.7 (Section 6.9), the friction curve plots shown in Figures
6.19 and 6.20, indicate an error in the logged values (or in the model) as
the estimated friction curves have a positive offset of ≈ 0.3 versus the values
experienced on other dry asphalt tests.



Chapter 7

Conclusions

In this thesis, several topics within control design and robustness, and stabil-
ity analysis of a model-based wheel slip controller, together with a detailed
experimental evaluation using a test vehicle have been addressed. The over-
all goal has been to investigate robustness through analysis and experiments
using a recently developed controller design theory - explicit sub-optimal lin-
ear quadratic regulation with state and input constraints. Using Lyapunov
theory, frequency analysis and experimental verifications, performance and
robustness of a gain scheduled nonlinear wheel slip controller for a vehicle
equipped with electromechanical brakes has been studied.

Despite the fact that the wheel slip dynamics are highly nonlinear, the
control design relies on local linearization and gain scheduling. A control
system containing just the slip dynamics is shown to be uniformly expo-
nentially stable with a large region of attraction using Lyapunov theory.
Since this controller cannot be implemented without significant loss of per-
formance due to the dependency of the knowledge of the friction coefficient,
a second control system including integral action (to eliminate steady-state
friction uncertainties) is shown to be locally uniformly exponentially stable
using Lyapunov theory and robust to the uncertain road/tyre friction. A
third control system is then studied, also including an actuator model. A
parameter-dependent Lyapunov function for the nominal linear parameter
varying closed loop system is found by solving a linear matrix inequality
(LMI) problem. This function is investigated for robustness with respect
to uncertainty in the road/tyre friction characteristic. Unfortunately, the
LMI approach does not allow a rigorous conclusion, except local stability,
since the Lyapunov-function candidate at hand appears to be conservative.
However, the analysis indicates that the observations agree well with the



120 Conclusions

experience from simulations and experiments.
The fundamental limitations of performance are the TTP communication

delay, the actuator dynamics (both which introduce phase losses) and the
choice of open loop unstable slip setpoints. These limitations are analyzed
using classical frequency analysis based on a linearized model. It is shown
that high performance is obtained if the slip setpoint is chosen near the
friction peak. For high friction, loss of stability will occur if slip setpoint is
chosen too high or loss of performance if the slip setpoint is chosen too low.
The communication delay will be reduced in the future as future systems
may be using FlexRay, a communication protocol with a higher sampling
rate than the TTP used in the test vehicle in this project. It should also be
noted that the extended Kalman filter introduces estimator errors that may
strongly influence the performance.

The experiments using a test vehicle show an accurate regulation of the
wheel slip is feasible for a range of desired setpoints under a wide range
of road conditions. A test scenario where braking in a turn is performed
yields unsatisfactory performance as the model is linearized for straight-line
braking. Although the design and experiments have been carried out for a
vehicle with drive-by-wire system, the main ideas are believed to be suitable
for conventional hydraulic and electro-hydraulic brakes actuators, and their
sensory systems. Slip peaking, which occurs in production cars equipped
with conventional ABS systems, reduces the driving comfort significantly.
The model-based approach presented in this thesis, is more comfortable,
yields better performance and does not rely on strong knowledge of the
tyre/road friction curve. Moreover, a highly beneficial feature of this model-
based design approach is the modest time taken to design and tune the wheel
slip controller. The approach is also modular as the wheel slip controller can
be combined with different estimation algorithms, actuators and supervisory
control systems. Nevertheless, do note that conventional ABS systems are
very robust.

Results from (Lüdemann 2002) for the controller designs used in the H2C
project show that the controller performances converge. This again indicates
that the LQRC control design used in this thesis yields similar performance
as the PI controller used by (Lüdemann 2002; Solyom and Rantzer 2002;
Wang, Schmitt-Hartmann, Schinkel, and Hunt 2001).

The experimental results and the respective test scenarios presented in
this thesis were not duplicated so as to analyze repeatability, due to limited
access to the test vehicle, as the LQRC wheel slip controller therefore could
not be optimally tuned. But, there are no foreseen problems causing non-
repeatability.
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As there is room for further improvements and extensions of the wheel
slip control approach, a summary for future works is given in the following
section.

7.1 Future works

The issues of interest listed for future works below contain both theoretical
and practical aspects. The model used in this thesis for controller design is
implemented and tested in a test vehicle. Since the H2C project was aimed
at developing an ABS controller for a prototype electro-mechanical wheel
brake, a reduced and simplified test procedure was chosen as the controllers
were not intended for production vehicles. To fully validate the proposed
controllers, a more extended test program is needed, with both sufficient
access to the test vehicle and more test scenarios as specified in some ISO
and SAE documents (see Chapter 6). A list of topics for further research is
listed below.

i. The control design presented in this thesis is only focused on longi-
tudinal slip. It is the belief of the author that the slip control design
can easily be extended for control problems such as lateral (side-slip)
and yaw control cases, e.g. ESP. A similar problem that should be
addressed is split-friction-coefficient surfaces.

ii. Unmodelled dynamics such as pitching and suspension should be taken
more directly into account in the control design to improve the con-
troller performance. Further, unmodelled dynamics such as brake in-
teraction through the chassis should also be considered.

iii. An analytical analysis of a gain scheduled LQ using Lyapunov/LMI
for the slip model including the actuator dynamics should be sought,
although this has been tried unsuccessfully by the author due to the
complex solution.

iv. Performance improvements expected when braking in a turn, with
gain scheduling applied on side-slip α. Further, gain scheduling on the
friction coefficient (µH) between tyre and road should yield significant
reductions in the slip and clamping force transients on inhomogeneous
surfaces.

v. To improve the initial controller performance for high friction surfaces
(i.e. dry asphalt), a more accurate initialization strategy similar to
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what was done in (Kalkkuhl, Johansen, Lüdemann, and Queda 2001;
Kalkkuhl, Johansen, and Lüdemann 2002; Lüdemann 2002) should be
implemented.

vi. There is room for improved performance with tuning, especially for
the off-equilibrium design.

vii. With faster CPU (BBWM) and more memory, a more refined gain
scheduling should be possible.
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Kalkkuhl, J., T. A. Johansen, J. Lüdemann, and A. Queda (2001). Non-
linear adaptive backstepping with estimator resetting using multiple



BIBLIOGRAPHY 127

observers. In Proc. of the Hybrid Systems, Computation and Control,
Rome, pp. 319–332.

Kaminer, I., A. M. Pascoal, P. P. Khargonekar, and E. E. Coleman (1995).
A velocity algorithm for the implementation of gain-scheduled con-
trollers. Automatica 31, 1185–1191.

Kawabe, T., M. Nakazawa, I. Notsu, and Y. Watanabe (1997). A sliding
mode controller for wheel slip ratio control system. Vehicle system
dynamic (27), 393–408.

Khalil, H. K. (1996). Nonlinear Systems. Prentice Hall.

Kiencke, U. and L. Nielsen (2000). Automotive Control Systems. Springer-
Verlag.

Kopetz, H. and G. Grünsteidl (1994). TTP - A protocol for fault-tolerant
real-time systems. IEEE Computer (27(1)), 14–23.

Korf, R. E. (1990). Real-time heuristic search. Artificial Intelligence, 189–
211.
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Appendix A

Explicit Sub-optimal Linear
Quadratic Regulation with
State and Input Constraints

This appendix is a reprint of the paper (Johansen, Petersen, and Slupphaug
2002).

A.1 Introduction

Consider the linear time-invariant system

x(t + 1) = Ax(t) + Bu(t) (A.1)

where x ∈ Rn, and u ∈ Rr. The constrained LQ feedback controller mini-
mizes the infinite horizon quadratic cost

J(u(t), u(t + 1), ...; x(t)) =

∞∑

τ=t

lQR(x(τ), u(τ)) (A.2)

lQR(x, u) = xT Qx + uT Ru (A.3)

subject to the linear constraints

Gx(τ + 1) ≤ g (A.4)

Hu(τ) ≤ h (A.5)

for all τ ≥ t, where R > 0, Q ≥ 0, G ∈ Rq×n, and H ∈ Rp×r. It is assumed
that g > 0 and h > 0 (where the inequalities are elementwise since g and h
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are vectors) to ensure that the origin is an interior point in the admissible
region. The optimal cost function is defined as

V (x(t)) = min
u(t),u(t+1),...

J(u(t), u(t + 1), ...; x(t)) (A.6)

where the minimization is subject to the dynamics of the system (A.1), and
the constraints (A.4)-(A.5) are imposed at every time instant τ ∈ {t, t +
1, t + 2, ...} on the trajectory. The cost of moving from the state x(t) to
the origin in an optimal manner is given by V (x(t)). Consider the following
Hamilton-Jacobi-Bellman (HJB) equation

0 = min
u(τ)∈Rr,Gx(τ+1)≤g,Hu(τ)≤h

τ∈{t,t+1,t+2,...,t+N−1}

(

V (x(t + N)) − V (x(t))

+
t+N−1∑

τ=t

lQR(x(τ), u(τ))
)

(A.7)

where N ≥ 1 is some horizon, and V (0) = 0. This equation character-
izes the optimal cost function and optimal control action for the problem
when N is so large that there are no active or violated constraints beyond
this horizon, since the unconstrained LQ solution is optimal beyond the
horizon, (Sznaier and Damborg 1987; Chmielewski and Manousiouthakis
1996). Under the assumptions of feasibility, non-explicit optimal solutions
to the HJB (A.7) can be computed using real-time quadratic program-
ming, where a finite-dimensional optimization problem is achieved since
V (x(t + N)) = xT (t + N)Px(t + N), where P is the solution to the al-
gebraic Riccati equation associated with the unconstrained LQR. This is
an optimal approach, in contrast to common suboptimal (approximate) ap-
proaches used in model predictive control with a finite horizon cost function
approximation or a finite input move horizon, e.g. (Rawlings and Muske
1993). In any case, the real-time quadratic programming imposes severe
limitations on the achievable sample rate that may discourage the use of
this approach in many applications.

Recently, (Bemporad, Morari, Dua, and Pistikopoulos 2000) (see also
(Bemporad, Morari, Dua, and Pistikopoulos 2002) for further details) de-
rived an optimal explicit solution to the constrained LQR problem, in the
sense that no real-time quadratic program needs to be solved. The explicit
controller is computed offline using multi-parametric quadratic program-
ming. The constrained LQR problem is viewed as a quadratic program
parameterized by the state x, and the multi-parametric quadratic program-
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ming approach essentially finds an explicit solution for all x within an arbi-
trary subset of the state space. The resulting optimal controller was proved
to be a continuous piecewise linear function defined on a polyhedral parti-
tioning of the state-space. Recently, a computationally more efficient ap-
proach to multi-parametric programming is proposed in (Tøndel, Johansen,
and Bemporad 2001). Related characterizations of the piecewise linear na-
ture of constrained LQ control are derived for some cases in (Seron, Dona,
and Goodwin 2000), and other efficient but non-explicit variants of con-
strained LQR were suggested in (Chisci 1999; Sznaier and Damborg 1990;
Wredenhagen and Belanger 1994).

In this paper (see also (Johansen, Petersen, and Slupphaug 2000a)) we
also seek an explicit solution to this problem in order to reduce the demand
for real-time computations. However, in order to address the restrictions
imposed by real-time applications on both computer memory and processing
capacity, a (possibly) suboptimal strategy is developed. Hence, we introduce
a mechanism to trade performance for computational advantages. The main
differences compared to (Bemporad, Morari, Dua, and Pistikopoulos 2002)
are:

• Here we consider a suboptimal strategy where an approximation to
the optimal cost function is utilized and we impose restrictions on the
allowed switching between the active constraint sets during the predic-
tion horizon. As a limiting case, the presented approach is equivalent
to the optimal explicit LQR of (Bemporad, Morari, Dua, and Pis-
tikopoulos 2002).

• Due to the sub-optimality of the controller, its performance is not
known a priori, so one may rely on computational analysis tools which
can be used to compute upper and lower bounds on suboptimal per-
formance as well as assess stability.

• The solution strategies are different; the present approach is not based
on multi-parametric quadratic programming. Both strategies leads
to a piecewise linear (PWL) controller. While the exact approach
leads to a continuous PWL function on a polyhedral partitioning, the
suboptimal approach will not do so in all cases.

• The present approach explicitly addresses the possibility of infeasi-
bility in the design by minimizing the constraint violation, while in
the approach of (Bemporad, Morari, Dua, and Pistikopoulos 2002) a
method based on slack variables is used (Zheng and Morari 1995).
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• The present design approach includes practical modifications to relax
high gain feedback at the boundary of the state constraints due to the
choice of a short horizon.

This paper is organized as follows: In section A.2 it is shown that the HJB
equation can be decomposed into two nested parts by considering the finite
number of combinations of active constraint sets. It is shown in section
A.3 that the solution of the innermost part of the HJB equation is an affine
state feedback, when the active constraint set is given. The outer part of the
HJB equation, addressed in section A.4, is to determine which constraints
should be active at any current state x(t). Some aspects of sub-optimality,
computational complexity and real-time implementation are discussed in
section A.5.

A.2 Controller decomposition

The main idea is to introduce active constraint set sequences as a formalism
to decompose the HJB equation. This decomposition is discussed in this
section.

A.2.1 Active constraint set sequences

A single inequality constraint dT
i z ≥ ei is said to be an active constraint

if dT
i z = ei, where di is a vector, ei is a scalar and the vector z is the de-

sign variable. Let DT = (d1, d2, ..., dm) and eT = (e1, e2, ..., en). An active
constraint set associated with some set of inequality constraints Dz ≤ e is
the set of indices to those constraints that are active. At each sample one
may impose a number of equality constraints (selected from the inequality
constraints (A.4) and (A.5)) on the states and inputs that, except for degen-
erate cases, is less than or equal to the number of inputs r. This selection
of constraints is the active constraint set associated with that sample. A
sequence of active constraint sets imposed at each sample on the horizon
finite N is called an active constraint set sequence.

A naive solution strategy to the optimal explicit LQR problem is sim-
ply to evaluate all feasible active constraint set sequences on a sufficiently
large horizon N . This naive solution strategy to the optimal explicit LQR
will indeed have offline computational disadvantages compared to the multi-
parametric quadratic programming approach of (Bemporad, Morari, Dua,
and Pistikopoulos 2002) since the number of candidate active constraint set
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sequences increases very rapidly with the horizon N and the number of in-
puts r and states n. However, it has the advantage that it can be easily
modified to determine suboptimal explicit LQR solutions with reduced of-
fline and real-time computational demands. The main idea in the present
work is to use a smaller horizon N than optimal, and in addition to reduce
the flexibility in the active constraint set sequence by allowing changes in the
active constraint set to be made only at a limited number of predetermined
samples.

Suppose the set of indices α is associated with the active input con-
straints in (A.5) at some sample, and the set of indices β is associated
with the active state constraints (A.4) at the same sample. Then (α, β) is
an active constraint set. Next, suppose we define allowed switching times
as follows: 0 = N1 < N2 < · · · < NS < N . For example, if S = 3,
N1 = 0, N2 = 3 and N3 = 7 there will be 3 subintervals {t, t + 1, t +
2}, {t + 3, t + 4, t + 5, t + 6}, and {t + 7, t + 8, t + 9} with associated
fixed active constraint sets (α1, β1), (α2, β2), (α3, β3), respectively. In gen-
eral, these active constraint sets lead to an active constraint set sequence
((α1, β1), (α2, β2), ..., (αNS

, βNS
)) that together with (N1, N2, ..., NS) and N

define the active constraint set imposed at each sample on the horizon. This
means that the constraints indexed by each active constraint set are im-
posed on the associated interval, leading to the following set of equality
constraints:

Hα1u(t) = hα1

Hα1u(t + 1) = hα1

...
HαNS

u(t + N − 1) = hαNS







(A.8)

and

Gβ1

(

Ax(t) + CN Ẽ1ũ(t)
)

= gβ1

Gβ1

(

A2x(t) + CN Ẽ2ũ(t)
)

= gβ1

...

GβNS

(

ANx(t) + CN ẼN ũ(t)
)

= gβNS







(A.9)

We have introduced the matrix Cτ = (Aτ−1B|Aτ−2B| · · · |B), the rN × rN -
matrix Ẽτ defined by

Ẽτ =

(
0 0

Irτ×rτ 0

)

(A.10)
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and applied the well known formula x(t + τ) = Aτx(t) + CN Ẽτ ũ(t) where
ũ(t) = (uT (t), uT (t + 1), · · · , uT (t + N − 1))T . Removing from (A.8)
and (A.9) equations that are a priori known to be infeasible and duplicated
equations, (A.8) and (A.9) may be stacked into the following set of equations

Lkũ(t) = Mkx(t) + M g
k g + Mh

k h (A.11)

where k is an index in the index set C = {0, 1, 2, ..., NK −1} enumerating the
finite set of all active constraint set sequences generated by the constraints
(A.5), (A.4) and the division into subintervals. For later use, let k0 ∈ C be
the index to the active constraint set sequence with no active constraints,
and define the r × rN matrix Eτ = (0r×r, ..., 0r×r, Ir×r, 0r×r, ...0r×r) where
the Ir×r is at the τ -th r × r block.

A.2.2 Decomposition of the HJB equation

In this section we consider the minimization problem on the RHS of (A.7)
with the stated constraints, which is a strictly convex problem whose solution
is characterized by the Karush-Kuhn-Tucker conditions. However, since
these conditions involve inequalities, the Karush-Kuhn-Tucker conditions
provide an implicit solution that does not lead to an explicit state-feedback
implementation of the controller. This motivates a simple decomposition of
the minimization in (A.7) into two nested parts where one part only involves
equality constraints and the other part is a discrete optimization problem
over all allowed active constraint set sequences. The part that involves
equality constraints can then be solved explicitly offline, while the discrete
optimization problem can also be solved offline or reduced to a simpler
problem and then solved in real-time in a efficient manner. The following
result is then evident from (Chmielewski and Manousiouthakis 1996):

Theorem 1 (Nested HJB equation) Assume the minimum in the HJB equa-
tion (A.7) exists. With N sufficiently large and no restrictions on the active
constraint set sequences allowed switching times (S = N), the HJB equation
(A.7) is equivalent to

0 = min
k∈C

(

min
ũ(t)∈RrN

Lkũ=Mkx(t)+Mg
k g+Mh

k h

(

V (x(t + N)) − V (x(t))

+
N−1∑

τ=0

lQR(x(t + τ), Eτ+1ũ(t))
))

(A.12)
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where the outer minimization is subject to the constraints

HEτ ũ
∗
k(x(t)) ≤ h (A.13)

G(Aτx(t) + CN Ẽτ ũ
∗
k(x(t))) ≤ g (A.14)

for all 1 ≤ τ ≤ N and ũ∗
k(x(t)) is the ũ(t) solving the innermost optimization

problem in (A.12). �

Determining the optimal cost function V is in general a difficult prob-
lem, so similar to (Bemporad, Morari, Dua, and Pistikopoulos 2002; Rantzer
and Johansson 2000) we utilize a lower bound V as a suboptimal approx-
imation in the control design. Any loss of performance resulting from this
approximation as well as sub-optimality due to restrictions on the allowed
active constraint set switching times may be analyzed using the tools given
in (Johansson and Rantzer 1998; Rantzer and Johansson 2000).

Lemma 1 A lower bound on the optimal cost function is given by V (x) =
xT Px ≤ V (x) where the matrix P = P T is the positive definite solution
of the algebraic Riccati equation corresponding to the unconstrained LQR
problem:

AT PA − P − AT PB(BT PB + R)−1BT PA + Q = 0

Proof. The result follows immediately from the observation that con-
straining the input will never decrease the value of the optimal cost function
(Sznaier and Damborg 1990). �

Note that V (x) = V (x) for x in any compact set if N is sufficiently large
(Chmielewski and Manousiouthakis 1996). For a given active constraint set
sequence (with index k ∈ C) this leads to the problem

ũ∗
k(x(t)) = arg min

ũ(t)∈RrN

Lkũ(t)=Mkx(t)+Mg
k g+Mh

k h

I(ũ(t), x(t)) (A.15)

where

I(ũ(t), x(t)) = V (x(t + N)) − V (x(t))

+
N−1∑

τ=0

lQR(x(t + τ), Eτ+1ũ(t)) (A.16)

and the outer finite discrete optimization problem of (A.12) is restated as

k∗(x) = arg min
k∈C

ϕk(x) (A.17)

ϕk(x) = I(ũ∗
k(x), x) (A.18)
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where for all 1 ≤ τ ≤ N the minimization is subject to

HEτ ũ
∗
k(x) ≤ h (A.19)

G(Aτx + CN Ẽτ ũ
∗
k(x)) ≤ g (A.20)

The problem (A.17)-(A.20) is feasible if and only if x ∈ XF , where

XF =
⋃

k∈C

XF
k (A.21)

XF
k = {x ∈ Rn | HEτ ũ

∗
k(x) ≤ h,

G(Aτx + CN ẼT
τ ũ∗

k(x)) ≤ g, for 1 ≤ τ ≤ N
}

(A.22)

For x ∈ XF , the suboptimal constrained LQR is given by u∗(x) = E1ũ
∗
k∗(x)(x).

If x 6∈ XF , we relax the problem by allowing minimum violation of some of
the constraints according to some priority. Constraints that may be relaxed
are called ”soft” constraints (with indices in the constraint sets αs and βs),
as opposed to ”hard” constraints (with indices in the constraint sets αh and
βh), which can not be relaxed under any circumstances. Hence, for x 6∈ XF ,
we minimize the criterion

νk(x) =

N∑

τ=1

ωT
1,βs

max(0, Gβs(A
τx + CN Ẽτ ũ

∗
k(x)) − gβs)

+
N∑

τ=1

ωT
2,αs

max(0, HαsEτ ũ
∗
k(x) − hαs) (A.23)

with respect to k ∈ C, subject to ”hard” constraints for 1 ≤ τ ≤ N

Gβh

(

Aτx + CN Ẽτ ũ
∗
k(x)

)

≤ gβh
(A.24)

Hαh
Eτ ũ

∗
k(x) ≤ hαh

(A.25)

The positive vectors ω1,αs and ω2,βs are weights that capture some priori-
tization among the soft constraints. The problem (A.23)-(A.25) is feasible
when x ∈ XR, where

XR =
⋃

k∈C

XR
k (A.26)

XR
k =

{
x ∈ Rn − XF | such that (A.24) − (A.25) holds

}
(A.27)

If x 6∈ XF ∪ XR, i.e. no active constraint set sequence in C gives a control
input that is feasible with respect to the hard (non-relaxable) constraints



A.3 Computing gain matrices 139

on the horizon, the controller fails. Let the solution to (A.23)-(A.25) be
denoted k∗(x) and the associated control input ũ∗

k∗(x)(x). Furthermore, let

X = XF ∪ XR and define for x ∈ X the control input of the suboptimal
constrained LQR:

u∗(x) = E1ũ
∗
k∗(x)(x) (A.28)

The resulting PWL control structure may be summarized as follows. There
is a number of affine feedbacks where each affine feedback is designed with
the objective of minimizing the LQ cost function subject to the state and
input trajectories moving on a specific active constraint set sequence. The
affine state feedbacks are designed offline by solving (A.15) as described
in section A.3, so the real-time computations amount to selecting which
affine state feedback to apply at a given state x(t). This amounts to solving
(A.17)-(A.20) (or (A.23)-(A.25) in case of infeasibility), which is addressed
in section A.4.

A.3 Computing gain matrices

In this section, the solution to the optimization problem (A.15) is presented
for a fixed active constraint set sequence. The expression (A.16) for I can
be formulated as follows:

I(ũ, x) = xT S1x + 2xT S2ũ + ũT S3ũ (A.29)

where

S1 = Q + AT QA + (A2)T QA2 + ... + (AN−1)T QAN−1

+(AN )T PAN − P

S2 = AT QCN Ẽ1 + ... + (AN−1)T QCN ẼN−1

+(AN )T PCN

S3 = R̃ + ẼT
1 CT

NQCN Ẽ1 + ... + ẼT
N−1C

T
NQCN ẼN−1

+CT
NPCN

and the block diagonal rN×rN -matrix R̃ is defined by R̃ = diag (R, R, ..., R).

Theorem 2 (Gain matrices) Consider a fixed active constraint set sequence
with index k ∈ C. For any x ∈ XF , the solution to the constrained quadratic
optimization problem (A.15) is given by the affine state feedback

ũ∗
k(x) =

{
Kk,2x, if k = k0

Kg
k,1g + Kh

k,1h + Kk,2x, if k 6= k0
(A.30)
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where Kk,2 = −S−1
3 ST

2 for k = k0, and for k 6= k0

Kg
k,1 = S−1

3 LT
k

(
LkS

−1
3 LT

k

)−1
Mg

k

Kh
k,1 = S−1

3 LT
k

(
LkS

−1
3 LT

k

)−1
Mh

k

Kk,2 = −S−1
3

((

I − LT
k

(
LkS

−1
3 LT

k

)−1
LkS

−1
3

)

ST
2

−LT
k

(
LkS

−1
3 LT

k

)−1
Mk

)

Proof. Note that (A.15) is strictly convex since R > 0, and it suffices
to consider only first order optimality conditions, which is straightforward
(Johansen, Petersen, and Slupphaug 2000b). �

Observe that in the case of no active constraints, (A.30) takes the form
of the well known unconstrained LQR solution, u(x) = −(BT (Q + P )B +
R)−1BT (Q + P )Ax. The affine state feedback (A.30) is parameterized such
that individual constraints can be deactivated and the constraint limits may
be changed on-line without changing the gain matrices.

Example 1: Double integrator with input and state constraints.
Consider a double integrator with the discretized model

A =

(
1 Ts

0 1

)

, B =

(
T 2

s

Ts

)

(A.31)

using a sampling-interval Ts = 0.05. The control objective is defined by
the cost function lQR(x, u) = x2

1 + u2 and the constraints −0.5 ≤ x2 ≤ 0.5
and −1 ≤ u ≤ 1. Figure A.1 shows a simulation when the initial state
is x(0) = (−2, 0)T . Observe that initially the input constraint u = 1 is
active. After t ≈ 0.5, the state constraint x2 ≤ 0.5 is active, until t ≈ 2.85
when the controller switches strategy once more, since it appears to be
no longer optimal to stay on the constraint x2 = 0.5. After this point
the unconstrained LQ controller is used and the state is controlled to the
origin. The switching strategy chosen by the controller is intuitive if x1 is
interpreted as position, x2 as speed and u as acceleration: In order to reduce
the position error the speed is first increased at a maximum rate (given
by the input constraint). When the maximum speed allowed is reached,
this speed is kept until the position error becomes so small that the speed
must be reduced to stabilize the position at the setpoint. In this example
we have chosen the smallest possible horizon, namely N = S = 1 since
this is advantageous for computational reasons. The region of feasibility
is seen to be XF = {x ∈ R2 | |x2| ≤ 0.55} since the input constraints
restricts x2 to be changed by at most 0.05 units within one sample. Hence,



A.3 Computing gain matrices 141

the admissible region |x2| ≤ 0.5 can be reached in one sample from XF .
In order to efficiently handle cases when |x2| > 0.55, we define the input
constraints as hard (non-relaxable) constraints, and the state constraints
as soft (relaxable) constraints. Furthermore, we define all the elements of
the weight vector ω1,βs to be equal to one. Since the hard constraints are
associated with the input only, XR = R2. The piecewise linear feedback
control law is shown in Figure A.2. �
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Figure A.1: Constrained control of a double integrator from initial state
x(0) = (−2, 0)T .

Effectively, the active state constraints x2 = ±0.5 are enforced by a
sliding-mode like strategy in the example above. This is mainly due to
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Figure A.2: PWL constrained LQ feedback controller for the double inte-
grator (left) and with boundary layer around active state constraints (right).

the choice of a very small N , and will lead to poor robustness (Johansen,
Petersen, and Slupphaug 2000b). However, the problem can be resolved
by modifying the state constraints (A.9) such that they do not require the
active state constraints to be fulfilled in a dead-beat manner (at the first
possible sample), but rather attract the state asymptotically towards the
active constraints. This is achieved by replacing every instant of the active
state constraint equation Gβx(t + τ) = gβ by its asymptotic version

Dβ,τGβx(t + τ) + ... + Dβ,1x(t + 1) + Dβ,0Gβx(t) = gβ

(A.32)

where Dβ,i are diagonal matrices defined by pole placement such that Gβx(t) →
gβ at a desired rate. In order take full advantage of this modification, it is
convenient to introduce another modification, namely an ε-boundary layer
near each active state constraint, similar to what is common in sliding mode
control (Slotine 1984). Within this boundary layer, the controller is only
allowed to switch to feedbacks that either makes the associated state con-
straints asymptotically active, or makes the state move away from the state
constraint in the direction of the admissible region of the state space. For-
mally, this is achieved by adding the following constraint to the optimization
problem (A.17)-(A.20)

Gβ(x)(A
τx(t) + CN Ẽτ ũ

∗
k(x(t))) ≤ Gβ(x)x(t) (A.33)

if βk ⊂ β(x(t)) for 1 ≤ τ ≤ N . β(x) denotes the set of ε-active state
constraints at x, i.e. β(x) = {l ∈ {1, 2, ..., q} | |(Gl1, ..., Gln)x − gl| ≤ εl},
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where εl > 0 defines the boundary layer. Eq. (A.33) excludes non-attractive
feedbacks that tend to move the state towards violation of active state con-
straints.

Double integrator example, cont’d. In order to reduce the gain
near the active state constraints, a boundary layer of ε1 = ε2 = ±0.15
is defined around the constraints x2 = 0.5 and x2 = −0.5. Hence, when
0.65 ≥ x2 ≥ 0.35, the control strategy is allowed to switch and the controller
takes the objective of attracting the state towards the surface x2 = 0.5 while
minimizing the LQ objective. The speed of the motion towards the surface
x2 = 0.5 is defined by D1 = 1/0.9 and D2 = 1. Comparing the piecewise
linear controller surface of the modified controller (right part of Figure A.2)
with the original controller (left part of Figure A.2), it is seen that the gain
has indeed been reduced in an ε-boundary layer near the active constraints
x2 = ±0.5. �

A.4 State space partitioning

The purpose of this section is to discuss how to solve the outer optimization
problem (A.17)-(A.20), and in particular to derive an algorithm for com-
puting a state space partitioning that can be used to decide which active
constraint set sequence is optimal at a given state. The discrete minimiza-
tions in (A.17) and (A.23) can either be avoided completely in the real-time
computations if the set of candidate optima is reduced to single elements
within subsets of the state space, or at least reduced to a small subset of
C within subsets of the state space. This can be exploited in the real-time
implementation to reduce the processing capacity and memory requirements
and also for computational analysis as considered in section A.5.

A.4.1 Activity region

The activity region Xk ⊂ X is defined as the subset of the state space where
the active constraint set sequence with index k is active, i.e. Xk = {x ∈
X | k = k∗(x)}. Together with the affine functions (A.30), the activity
regions Xk, k ∈ C completely describes the PWL structure of the controller.

Double integrator example, activity regions. For the double inte-
grator example, there are five constituent affine feedbacks with correspond-
ing activity regions. Region/Feedback 0: unconstrained case (k = 0), Re-
gion/Feedback 1: input constraint u = −1 active (k = 1), Region/Feedback
2: input constraint u = 1 active (k = 2), Region/Feedback 3: state con-
straint x2 = −0.5 active (k = 3), Region/Feedback 4: state constraint
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x2 = 0.5 active (k = 4). The activity regions for the suboptimal constrained
LQ controller with boundary layer are shown in Figure A.3. We observe
that in this case the regions can be characterized as unions of polyhedra. �
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Figure A.3: Activity regions for the five constituent affine feedbacks in the
constrained LQR for the double integrator with boundary layers.

In order to explicitly characterize the activity regions, it is natural to
treat the feasible and relaxed feasible regions XF and XR separately, since
the choice of optimal active constraint set sequence is based on different
criteria in these cases. Thus, we define the activity regions contained in XF

as follows:

Xf
k = {x ∈ XF

k | k is optimal w.r.t. (A.17) − (A.20) and (A.33)}
(A.34)

For x ∈ XR, the controller objective changes to minimize the constraint
violation and we define

Xr
k =

{
x ∈ XR

k | k is optimal w.r.t. (A.23) − (A.25)
}

(A.35)

Hence, the activity region Xk where the feedback with index k is active is
now Xk = Xf

k ∪ Xr
k . A slightly more explicit characterization of Xf

k than
(A.34) is

Xf
k =

{
x ∈ XF

k | ϕk(x) ≤ ϕj(x), j ∈ F(x) ∩ A(x)
}

(A.36)
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where F(x) = {k ∈ C | (x) ∈ XF
k } is a set containing the active constraint set

sequences that are feasible at x, and A(x) ⊂ C is a set containing the indices
to the active constraint set sequences that are attractive or not currently
active at x, cf. (A.33):

A(x) =
{

k ∈ C | Gβ(x)(A
τx + CN Ẽτ ũ

∗
k(x)) ≤ Gβ(x)x

or βk 6⊂ β(x)} (A.37)

Furthermore, it follows that

XF =
⋃

k∈C

Xf
k =

⋃

k∈C

XF
k (A.38)

Likewise, a slightly more explicit characterization of Xr
k than (A.35) is given

by

Xr
k =

{
x ∈ XR

k | νk(x) ≤ νj(x), for all j ∈ R(x)
}

(A.39)

where R(x) = {k ∈ C | x ∈ XR
k } is defined as the set of active constraint

set sequences that are feasible with respect to the non-relaxable constraints,
but not feasible with respect to the relaxable constraints at x. We also have

XR =
⋃

k∈C

Xr
k =

⋃

k∈C

XR
k (A.40)

which is the set of states where there exists an active constraint set sequence
that is feasible and optimal with respect to the non-relaxable constraints but
not with respect to the relaxable constraints.

A.4.2 Outer Approximations to the Activity Regions

Since XF
k and XR

k are polyhedral, it is clear that XF , XR and X = XF ∪XR

are unions of polyhedra. However, because the optimality conditions in
(A.36) are characterized by quadratic functions, the set Xk ⊂ X may not be
characterized only by the hyper-planes defined by feasibility, but possibly
also by other hyper-planes or (convex or non-convex) quadratic surfaces due
to the optimality conditions. Thus, Xk may in general not be a union of
polyhedra and therefore difficult to characterize exactly in a more explicit
manner than (A.36) and (A.39). Still, several explicit outer approximations
of Xk can be computed in terms of sets that contain Xk. Here we develop
an outer approximation Xk ⊃ Xk where Xk is a union of polyhedra. As
the basic polyhedral building blocks in this characterization we consider the
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hyperplane partition PHP
X = {XHP

l | l ∈ {1, 2, ..., NP }} generated by all the
hyper-planes involved in the characterization of XF

k , XR
k and XA

k , for k ∈ C:

HEτKk,2x = h − HEτ (K
g
k,1g + Kh

1,kh)

(A.41)

G(Aτ + CN ẼτKk,2)x = g − GCN Ẽτ (K
g
k,1g + Kh

k,1h)

(A.42)

G(Aτ + CN ẼτK2,k − I)x = GCN Ẽτ (K
h
1,kh + Kg

1,kg)

(A.43)

for 1 ≤ τ ≤ N , with obvious interpretation when h or g are zero-dimensional.
Let (A.41)-(A.43) be written in compact notation Y x = y. The set of half-
spaces Y+

i = {x ∈ Rn | Yix ≥ yi} and Y−
i = {z ∈ Rn | Yix < yi} now

defines the hyperplane partition PHP
X of X as the set of all possible non-

empty intersections of half-spaces: XHP
l = Y∗

1 ∩ ...∩Y∗
Nz

where ∗ symbolizes
any combinations of +/−. Note that this hyperplane partition will contain
unnecessarily many elements in many cases and is introduced here in order
to develop a theoretical understanding.

Lemma 2 The hyperplane partition PHP
X has the following properties:

i. Each constituent region of the partition is uniquely associated with
either the feasible region XF or the relaxed feasible region XR, i.e.
XHP

l ∩ XF = ∅ and XHP
l ∩ XR = XHP

l , or vice versa XHP
l ∩ XF =

XHP
l and XHP

l ∩ XR = ∅, for all l = 1, 2, ...., NP .

ii. For all l ∈ {1, 2, ..., Np} and x ∈ XHP
l the sets F(x), R(x), A(x) and

β(x) are invariant such that each of them contain the same elements
for all x ∈ XHP

l .

Proof. Follows from the fact that the hyperplane partition PHP
X of X

is generated by all hyper-planes involved in the characterizations of F(x),
R(x), A(x) and β(x). �

From the first part of Lemma 2 it is evident that each XHP
l ∈ PHP

X is
fully contained in either XR or XF . Thus, we define disjoint index sets

LF =
{
l ∈ {1, 2, ..., NP } | XHP

l ∩ XF 6= ∅
}

(A.44)

LR =
{
l ∈ {1, 2, ..., NP } | XHP

l ∩ XR 6= ∅
}

(A.45)

Assume l ∈ LF , i.e. XHP
l ⊂ XF . One may now define a set Ff

l {k ∈
C | XHP

l ∩ XF
k 6= ∅} of feasible active constraint set sequences in the region
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XHP
l . Hence, for any x ∈ XF there exists a unique l(x) ∈ LF such that

x ∈ XF
l(x) and at least one of the feasible active constraint set sequences in

Ff
l is optimal for all x ∈ XHP

l . We continue by characterizing the subset

of Ff
l that is optimal for some x ∈ X F

l , aiming towards a definition of

X
f
k ⊃ Xf

k .

Lemma 3 Let l ∈ LF and j, k ∈ Ff
l be arbitrary. Suppose the active con-

straint set sequences ((αk
1 , β

k
1 ), (αk

2 , β
k
2 ),..., (αk

NS
, βk

NS
)) and ((αj

1, β
j
1),

(αj
2, β

j
2), ..., (α

j
NS

, βj
NS

)) are different. If αk
i ⊂ αj

i and βk
i ⊂ βj

i , for all
i = 1, 2, ..., NS, then the active constraint set sequence with index j is sub-
optimal for all x ∈ XHP

l .

Proof. Because the active constraint set sequence with index k is a sub-
set of the active constraint set sequence with index j and both are feasible,
it follows immediately that ϕk(x) ≤ ϕj(x) for all x ∈ XHP

l since adding a
constraint to some constraint set sequence will not reduce the cost. �

Lemma 4 Let l ∈ LF and k ∈ Ff
l be arbitrary, and define

γjk = max
x∈XHP

l

(ϕk(x) − ϕj(x)) (A.46)

κjk = min
x∈XHP

l

(ϕk(x) − ϕj(x)) (A.47)

If γjk ≤ 0 for all j ∈ Ff
l , then the active constraint set sequence with index

k is optimal for all x ∈ XHP
l . If κjk ≥ 0 for all j ∈ Ff

l , then the active
constraint set sequence with index k is suboptimal for all x ∈ XHP

l .

Proof. Since γjk ≤ 0 it follows that for all x ∈ XHP
l and j ∈ Ff

l ,

ϕk(x) ≤ ϕj(x). Note that due to Lemma 2, F f
l = F(x) for all x ∈ XHP

l ,

and the first part follows because F f
l contains all feasible active constraint

set sequences in C. The second part of the lemma is analogous. �

Both (A.46) and (A.47) are quadratic programs, for a fixed l ∈ LF and

fixed active constraint set sequences k, j ∈ F f
l , since XHP

l is polyhedral
and ϕk and ϕj are quadratic. Using the optimality characterizations in
Lemmas 3 and 4, one will typically be able to exclude a large set of candidate
active constraint set sequences from the set of feasible active constraint set
sequences Ff

l in the region XHP
l . We define Of

l ⊂ FF
l as the indices of
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those active constraint set sequences that are consistent with the optimality
conditions in Lemmas 3 and 4 in XHP

l :

Of
l =

{

k ∈ Ff
l | k is optimal w.r.t. (A.17)-(A.20), (A.33)

for some x ∈ XHP
l

}
(A.48)

We define the outer approximation to the activity region Xf
k as follows:

X
f
k =

⋃

l∈LF

XHP
l (A.49)

Next, assume l ∈ LR, i.e. XHP
l ⊂ XR. One may now define a set F r

l = {k ∈
C | XHP

l ∩XR
k 6= ∅} of relaxed feasible active constraint set sequences in the

region XHP
l . Unlike the characterization of Xf

k , we now have the following
result:

Lemma 5 For all k ∈ C, the set Xr
k is a union of polyhedra.

Proof. Let k ∈ C be arbitrary. The region of relaxed feasibility XR
k is

polyhedral, cf. (A.27). Since the function νk(x)−νj(x) is piecewise linear in
x, the sets {x ∈ Rn | νk(x) ≤ νj(x)} that appear in the optimality condition
in (A.39) are characterized using hyper-planes. Since all geometric objects
characterizing Xr

k are hyper-planes, it is a union of polyhedral sets. �

According to Lemma 5 it is possible to obtain an exact and explicit
characterization of Xr

k . However, for computational reasons it may be con-
venient with an outer approximation X

r
k ⊃ Xr

k in some cases. The following
optimality lemma is useful in that respect:

Lemma 6 Let l ∈ LR and k ∈ Fr
l be arbitrary, and define

ρjk = max
x∈XHP

l

(νk(x) − νj(x)) (A.50)

σjk = min
(x)∈XHP

l

(νk(x) − νj(x)) (A.51)

If ρjk ≤ 0 for all j ∈ F r
l , then the active constraint set sequence with index

k is optimal for all x ∈ XHP
l . If σjk ≥ 0 for all j ∈ FR

l , then the active
constraint set sequence with index k is suboptimal for all x ∈ XHP

l .

Proof. Analogous to Lemma 4. �
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Note that (A.50) and (A.51) are piecewise linear programs. Using the
optimality characterizations in Lemma 6, one will typically be able to ex-
clude a large set of candidate active constraint set sequences from the set
of feasible active constraint set sequences F r

l in the region XHP
l . We define

Or
l ⊂ FR

l as the indices of those active constraint set sequences that are
consistent with the optimality conditions of Lemma 6 in XHP

l :

Or
l = {k ∈ Fr

l | k is optimal w.r.t. (A.23)-(A.25)

for some x ∈ XHP
l

}
(A.52)

Finally, we define the outer approximation to the activity region Xr
k as

follows:

X
r
k =

⋃

l∈LR

XHP
l (A.53)

We are now in position to define Xk = X
f
k ∪ X

r
k and

Fl =

{

Ff
l , l ∈ LF

Fr
l , l ∈ LR , Ol =

{

Of
l , l ∈ LF

Or
l , l ∈ LR (A.54)

A.4.3 Partitioning Algorithm

Algorithm 1

i. Let E := ∅, and U := {X}.

ii. If U = ∅, the partition generated by this algorithm is P = E and the
algorithm terminates.

iii. Let X0 ∈ U be arbitrary.

iv. Let O0 contain the candidate optimal active constraint set sequences
in X0, computed according to Lemmas 3-6.

v. If O0 contains a sufficiently small number of elements, add X0 to the
set of explored subsets E and remove X0 from the set of unexplored
subsets U . Go to step 2.

vi. Select a hyperplane Yix = yi from Y x = y and split X0 into non-
empty X+

0 = X0 ∩ Y+
i and X−

0 = X0 ∩ Y−
i . If this is not possible for

any hyperplane from Y x = y, add X0 to the set of explored subsets E
and remove X0 from the set of unexplored subsets U . Go to step 2.
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vii. Add X+
0 and X−

0 to U and remove X0 from U . Go to step 2.

The set E contains the set of explored subsets of X, while the set U contains
the set of explored subsets of X. The algorithm will explore the candidate
optimal active constraint sets associated with each element of E sequen-
tially. The regions of X will be split using the hyper-planes from Y x = y
and explored individually until either a sufficiently small number of can-
didate optimal active constraint set remains in each region, or the region
can not be split any further using hyper-planes from Y x = y. In order to
reduce the computational complexity of Algorithm 1 one should implement
heuristics in step 6 in order to select a ”promising” hyperplane for splitting
the region X0 such that unnecessary splitting is avoided. Note that the par-
tition PX generated by Algorithm 1 may be unnecessarily fine since at each
step it is not known a priori if one can reduce the number of elements in
O0 by further partitioning of X0. Hence, after the algorithm terminates, the
number of constituent polyhedra in the partition of X can often be reduced
considerably by aggregating pairs of neighboring polyhedra whenever their
union remains polyhedral, see also (Bemporad, Fukuda, and Torrisi 2001).
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Figure A.4: Partition for the constrained LQR for the double integrator
with boundary layers.

Double integrator example, cont’d. The partition computed using
Algorithm 1 with a successive aggregation of neighboring regions is shown
in Figure A.4. We observe that the number of regions is 11, which is the
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smallest possible number of polyhedral regions capable of characterizing the
activity sets for this problem. Also, we observe that within each region,
there is a single candidate optimal active constraint set sequence. Hence,
the PWL feedback law is explicitly characterized by this partition. Feedback
0 (unconstrained case) is associated with R1, R3 and R4 in this partition.
Feedback 1 (u = −1) is associated with R5 and R11. Feedback 2 (u = 1) is
associated with R7 and R10. Feedback 3 (x2 = −0.5) is associated with R2
and R6, while feedback 4 (x2 = 0.5) is associated with R8 and R9. �

A.5 Optimality, complexity and real-time imple-
mentation

A.5.1 Upper and lower bounds on cost function

Define the closed loop performance of the suboptimal constrained LQR as
follows:

V̂ (x(0)) =

∞∑

t=0

(
xT (t)Qx(t) + (u∗(t))T Ru∗(t)

)
(A.55)

For example 1, upper and lower bound on cost V (x(0)) are illustrated in
Figure A.5. These bounds are computed by solving LMIs with a continuous
piecewise quadratic parameterization of the functions as described in (Jo-
hansson and Rantzer 1998; Rantzer and Johansson 2000), see (Johansen,
Petersen, and Slupphaug 2000b) for details. Note that a continuous-time
approximation is utilized due to restrictions in the available software im-
plementation (Hedlund and Johansson 1999), and that the bounds have no
direct meaning for x 6∈ XF , except that the upper bound defines a Lyapunov
function (under a detectability assumption).

A.5.2 Complexity reduction by sub-optimality

It was claimed initially that we expect that the restrictions introduced on
the allowed active constraint set sequence switching times will reduce the
computational complexity of the controller, i.e. lead to a partition of the
state space with less regions. We illustrate this by an example.

Example 2, Double integrator (Bemporad, Morari, Dua, and
Pistikopoulos 2002). Consider the double integrator

A =

(
1 Ts

0 1

)

, B =

(
T 2

s

Ts

)

(A.56)
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Figure A.5: Upper and lower bounds on the cost for the constrained LQR
for the double integrator with boundary layers.

with sampling-interval Ts = 0.05. The control objective is defined by the
cost function lQR(x, u) = x2

1 + 0.1u2 and the constraints −1 ≤ u ≤ 1. We
consider two cases

i. N = 8, with no restrictions on the number of active constraint set
switches on the horizon, same as (Bemporad, Morari, Dua, and Pis-
tikopoulos 2002).

ii. N = 8, S = 2, N2 = 3, i.e. only one active constraint set switch
allowed on the horizon

The second case leads to the following nine candidate active constraint
set sequences that enumerates the set C:

First 3 samples Last 5 samples

u = Kx u = Kx
u = Kx u = −1
u = Kx u = 1
u = −1 u = Kx
u = −1 u = −1
u = −1 u = 1
u = 1 u = Kx
u = 1 u = −1
u = 1 u = 1
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The suboptimal strategy gives a reduction from 93 to 33 regions, which
allows a significant reduction of the real-time processing and memory re-
quirements. From Figure A.6 we observe that the differences in the closed
loop trajectories for x(0) = (−3, 3)T are not very significant. �
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4

x
1

x 2

optimal trajectory

suboptimal trajectory

Figure A.6: Example of trajectories with and without active constraint set
change restrictions.

A.5.3 Real-time Implementation

The suboptimal constrained LQR is a PWL function of the state. However,
efficient evaluation of this PWL function in the real-time control system
requires that one is able to efficiently compute in real time which affine
feedback to associate with each vector x. The affine state feedbacks are
computed offline and stored in real-time computer memory. Whether it is
desirable to also compute offline an explicit characterization of the subsets
of X where each affine feedback is active depends on several factors: Ac-
ceptable offline processing time, available real-time computer memory and
real-time computer processing capacity. There exist at least two real-time
implementation strategies that can be employed in order to address the
above mentioned tradeoffs:

i. The discrete optimization problems (A.17)-(A.20) and (A.23)-(A.25)
are solved in real time. Discrete search techniques such as branch-and-
bound and A∗ can be applied for this purpose (Korf 1990).

ii. A partitioning of X such that within each constituent region of the
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Figure A.7: Double integrator with input constraints and N = 8. Top:
Simple partition where the maximum number of candidate state feedbacks
in each region is 3. Bottom: Simple partition where the maximum number
of candidate state feedbacks in each region is 5.

partition there are at most a given small number of affine feedbacks
that may be optimal. A search among the small number of remaining
candidates (if more than one) is then carried out in real time.

Example 2, continued. By early termination of the partitioning algo-
rithm one can achieve for example the partitions shown in Figure A.7. In
the first case there are 9 regions, each with a list of up to 3 affine feedbacks
that are optimal at various states within each region, see Table A.1. In the
second case there are 3 regions, with a list of up to 5 affine feedbacks that
are optimal at various states in each region, see also Table A.1. Hence, one
can reduce the complexity of the partition by comparing the values of a user-
specified number of quadratic functions and linear constraints in real time.



A.5 Optimality, complexity and real-time implementation 155

In a sense, one has a method for partially solving the real-time quadratic
program offline. �

Region Candidate optimal feedbacks

9 regions R1 {1}
R2 {3, 6, 9}
R3 {2, 5, 8}
R4 {7, 8, 9}
R5 {9}
R6 {2, 8, 9}
R7 {4, 5, 6}
R8 {3, 5, 6}
R9 {5}

3 regions R1 {1, 4, 5, 7, 9}
R2 {3, 5, 6, 9}
R3 {2, 5, 8, 9}

Table A.1: List of candidate optimal feedbacks for the simplified partitions
of example 2.

Example 3, laboratory model helicopter. A laboratory model he-
licopter (Quanser 3-DOF Helicopter) with two DC-motor driven rotors is
sampled with T = 0.01s, and the following state-space representation is
obtained

A =











1 0 0.01 0 0 0
0 1 0 0.01 0 0
0 0 1 0 0 0
0 0 0 1 0 0

0.01 0 0 0 1 0
0 0.01 0 0 0 1











, B =











0 0
0.0001 −0.0001
0.0019 0.0019
0.0132 −0.0132

0 0
0 0











The states of the system are x1 - elevation, x2 - pitch angle, x3 - elevation
rate, x4 - pitch angle rate, x5 - integral of elevation error, and x6 - integral
of pitch angle error. The inputs are u1 and u2, the front and rear rotor
voltages. Assume the system is to be regulated to some setpoint with the
following constraints on the inputs, pitch and elevation rates −1 ≤ u1 ≤ 3,
−1 ≤ u2 ≤ 3, −0.25 ≤ x3 ≤ 0.25, and −0.6 ≤ x4 ≤ 0.6. The LQ cost
function is given by Q = diag(100, 20, 40, 8, 1, 0.5) and R = diag(1, 1). With
N = 1 this leads to 33 active constraint sets. Comparing their quadratic
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cost function and evaluating the linear constraints requires in the worst case
320 microseconds on a 450 MHz Pentium II with our implementation. If
necessary, this can be reduced by state space partitioning using Algorithm
1. The experimental results in Figure A.8 compares the performance along
the elevation axis with unconstrained LQR. �

Another experimental case study utilizing this approach in an automo-
tive application is reported in (Petersen, Johansen, Kalkkuhl, and Lüdemann
2001). Due to the exponential growth of the number of candidate active
constraint set sequences as the number of states, horizon and constraints
increases, the approach is restricted to problems of low and moderate com-
plexity. As the problem complexity increases, the use of prior knowledge and
simulation are the keys to restricting the number of candidate active con-
straint set sequences and the (offline and online) computational complexity.

A.6 Conclusions

A suboptimal strategy for explicit offline design of LQ controllers subject to
state and input constraints is derived. It is demonstrated that allowing sub-
optimality in terms of restrictions on the number of allowed active constraint
set changes on the horizon leads to significant reduction in the complexity of
the state space partitioning. The method gives the user flexibility to address
the tradeoff between real-time computer memory and processing capacity.
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Figure A.8: Experimental results with 3-DOF laboratory model helicopter.
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Appendix B

Details of Proof

In this section it is proven that (4.37) implies D(v) > 0 for all v > 0.

Ṗ1,1(v) =
∂P1,1(v)

∂v
v̇ =

(

α2
1 + β2

1R−1

(

Q2,2(v) +
2(Q1,1(v)/R−1)

1/2

β1
v

))1/2
d
dvQ1,1(v)

2β1 (Q1,1(v)R−1)1/2
v̇

+

(
Q1,1(v)R−1

)1/2
β1

(

d
dvQ2,2(v) +

2(Q1,1(v)/R−1)
1/2

β1
+

d
dv

Q1,1(v)

β1(Q1,1(v)R−1)1/2 v

)

2

(

α2
1 + β2

1R−1

(

Q2,2(v) +
2(Q1,1(v)/R−1)1/2

β1
v

))1/2
v̇

(B.1)

Ṗ1,2(v) = Ṗ2,1(v) =
∂P1,2(v)

∂v
v̇ =

((
Q1,1(v)/R−1

)1/2

β1
+

d
dvQ1,1(v)

2β1 (Q1,1(v)R−1)1/2
v

)

v̇ (B.2)

Ṗ2,2(v) =

α1 +

(

α2
1 + β2

1R−1

(

Q2,2(v) +
2(Q1,1(v)/R−1)

1/2

β1
v

))1/2

β2
1R−1

v̇

+

(

d
dvQ2,2(v) +

2(Q1,1(v)/R−1)
1/2

β1
+

d
dv

Q1,1(v)

β1(Q1,1(v)R−1)1/2 v

)

v

2

(

α2
1 + β2

1R−1

(

Q2,2(v) +
2(Q1,1(v)/R−1)1/2

β1
v

))1/2
v̇ (B.3)



160 Details of Proof

Now

D(v) =

(

α2
1 + β2

1R−1

(

Q2,2(v) +
2(Q1,1(v)/R−1)

1/2

β1
v

))1/2
d
dvQ1,1(v)α1

2β1 (Q1,1(v)R−1)1/2 β2
1R−1

+

(

α2
1 + β2

1R−1

(

Q2,2(v) +
2(Q1,1(v)/R−1)

1/2

β1
v

))

d
dvQ1,1(v)

2β1 (Q1,1(v)R−1)1/2 β2
1R−1

+

d
dvQ1,1(v)

(

d
dvQ2,2(v) +

2(Q1,1(v)/R−1)
1/2

β1
+

d
dv

Q1,1(v)

β1(Q1,1(v)R−1)1/2 v

)

v

4β1 (Q1,1(v)R−1)1/2

+

(
Q1,1(v)R−1

)1/2
β1

(

d
dvQ2,2(v) +

2(Q1,1(v)/R−1)
1/2

β1
+

d
dv

Q1,1(v)

β1(Q1,1(v)R−1)1/2 v

)

2

(

α2
1 + β2

1R−1

(

Q2,2(v) +
2(Q1,1(v)/R−1)1/2

β1
v

))1/2

α1

β2
1R−1

+

(
Q1,1(v)R−1

)1/2
β1

(

d
dvQ2,2(v) +

2(Q1,1(v)/R−1)
1/2

β1
+

d
dv

Q1,1(v)

β1(Q1,1(v)R−1)1/2 v

)

2β2
1R−1

+

(
Q1,1(v)R−1

)1/2
β1

(

d
dvQ2,2(v) +

2(Q1,1(v)/R−1)
1/2

β1
+

d
dv

Q1,1(v)

β1(Q1,1(v)R−1)1/2 v

)2

4

(

α2
1 + β2

1R−1

(

Q2,2(v) +
2(Q1,1(v)/R−1)1/2

β1
v

)) v

−
((

Q1,1(v)/R−1
)1/2

β1
+

d
dvQ1,1(v)

2β1 (Q1,1(v)R−1)1/2
v

)2

Define the following positive variables:

A = α2
1 + D

(

Q2,2(v) +
2C

D
v

)

= α2
1 + DQ2,2(v) + 2Cv

B =
d

dv
Q2,2(v) +

2C

D
+

d
dvQ1,1(v)

C
v

C =
(
Q1,1(v)R−1

)1/2
β1

D = β2
1R−1
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The above expression can then be rewritten to

D(v) =
A1/2 d

dvQ1,1(v)α1

2CD
+

A d
dvQ1,1(v)

2CD
+

d
dvQ1,1(v)Bv

4C

+
α1BC

2A1/2D
+

CB

2D
+

CB2

4A
v −

(

C

D
+

d
dvQ1,1(v)

2C
v

)2

(B.4)

In (B.4) there are two possible negative factors involved: α1 and the last
quadratic term with a negative sign (−P

′

1,2(v)P
′

2,1(v)). To cancel P
′

1,2(v)P
′

2,1(v),
parts from the 3rd and 5th term in (B.4) are used which gives

d
dvQ1,1(v)Bv

4C
+

CB

2D
−
(

C

D
+

d
dvQ1,1(v)

2C
v

)2

=
d
dvQ2,2(v) d

dvQ1,1(v)

4C
v

+
d

dv
Q2,2(v)

The following inequality thus ensures D(v) > 0:

D(v) =
A1/2 d

dvQ1,1(v)α1

2CD
+

A d
dvQ1,1(v)

2CD
+

d
dvQ2,2(v) d

dvQ1,1(v)

4C
v

+
α1BC

2A1/2D
+

d

dv
Q2,2(v) +

CB2

4A
> 0 (B.5)

where only α1 may have a negative value.
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