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Abstract

A nonlinear observer for estimation of the longitudinal velocity, lateral velocity, and yaw rate of a vehicle, designed for the purpose of
vehicle side-slip estimation, is modified and extended in order to work for different road surface conditions. The observer relies on a road-
tire friction model and is therefore sensitive to changes in the adhesion characteristics of the road surface. The friction model is parametrized
with a single friction parameter, and an update law is designed. The adaptive observer is proven to be uniformly globally asymptotically
stable and uniformly locally exponentially stable under a persistency-of-excitation condition and a set of technical assumptions, using
results related to Matrosov’s theorem. The observer is tested on recorded data from two test vehicles and shows good results on a range
of road surfaces.
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1 Introduction

A current focus of the automotive industry is the develop-
ment of active safety systems, which assist the driver in or-
der to avoid dangerous situations and accidents. As such
systems become more advanced, they depend to an increas-
ing extent on accurate information about the state of the
vehicle and its surroundings. Much of this information can
be obtained by direct measurement, but the appropriate sen-
sors may be unreliable, inaccurate, or prohibitively expen-
sive. Observers are therefore used to provide accurate and
reliable estimates of important states.

Observers that estimate vehicle velocity usually rely on road-
tire friction models, which model the friction forces between
the tires of the vehicle and the road surface. Road-tire friction
characteristics depend on the type of road surface driven on
and the tires of the vehicle. Vehicle velocity observers must
be capable of handling driving on such diverse surfaces as
dry asphalt and wet ice, and knowledge about the current
road surface conditions is therefore essential.

Several different methods for obtaining information about
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road surface conditions have previously been studied. In
Ono et al. (2003), a least-squares method is used on mea-
surements of wheel angular velocity to estimate the slope
of the friction force versus the tire slip. An observer for lat-
eral velocity in Fukada (1999) includes a filtering scheme
for estimating the maximum road-tire friction coefficient,
based primarily on using the lateral acceleration measure-
ment during times when this provides a good measurement
of the coefficient. A similar approach is taken in Hac and
Simpson (2000). In Gustafsson (1997), a Kalman filter is
used to classify road surface conditions, by inspecting the
ratio between slip values of the driven wheels and the nor-
malized friction force, obtained using wheel angular veloci-
ties and engine torque. In Ray (1997), an extended Kalman
filter (EKF) is combined with statistical methods in order
to estimate the maximum road-tire friction coefficient, us-
ing measurements of the yaw and roll rates, wheel angu-
lar velocities, and longitudinal and lateral accelerations, as
well as knowledge of the steering angle and total brake line
pressure. Other examples of EKFs are presented in Suissa,
Zomotor, and Böttiger (1994) and Best, Gordon, and Dixon
(2000). In Nishira, Kawabe, and Shin (1999), wheel angular
velocity, longitudinal tire slip, and wheel torque is used to
generate an estimate of the wheel angular velocity and for
adaptation of a friction parameter. Wheel angular velocity
and torque is used in Canudas-de-Wit, Petersen, and Shiri-
aev (2003) for estimation of the longitudinal velocity and
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wheel angular velocity, and adaptation of a friction param-
eter. In both Nishira et al. (1999) and Canudas-de-Wit et al.
(2003), convergence of the adapted friction parameters un-
der conditions of nonzero longitudinal tire slip is studied.

In addition to accuracy and reliablity, production cost is an
important matter in vehicle serial production. To reduce cost,
observer designs should be computationally efficient and be
based cheap sensor configurations. In Imsland et al. (2006a),
a nonlinear observer for vehicle velocity is presented with
stability guarantees. The observer is computationally effi-
cient and is based on measurements commonly available in
modern cars. A significant weakness of the observer is that
it relies on a friction model that must be tuned to the current
road surface conditions. In Grip et al. (2006), the authors
addressed this issue for a reduced-order observer for lateral
velocity by presenting a method for adaptation of the fric-
tion model to different road surface conditions. In the cur-
rent paper, an improved version of this adaptive observer is
presented, and in Section 5, it is extended to include lon-
gitudinal velocity and yaw rate. The observer retains the
advantage of being less computationally expensive than an
EKF. The ultimate goal of the observer design is accurate
estimation of vehicle side-slip.

The stability analysis presented in this paper relies crucially
on the concept of persistency of excitation (PE), originally
introduced by Åström and Bohlin (1965). This concept has
been developed in various directions to deal with situations
where the regressors are dependent not only on external,
time-varying signals, but on the states of the system, which
is the case for the system considered in this paper. One ap-
proach to dealing with state-dependent regressors is to con-
sider a PE condition along the trajectories of the states. The
drawback of this approach is that in general, the trajectories
of the states must be known in advance. Another approach is
to consider the states a parameter and to evaluate a PE condi-
tion over all values of this parameter. This idea is combined
with a generalization of Matrosov’s theorem in Lorı́a, Pante-
ley, Popović, and Teel (2005), the results of which are used
in this paper. Although the specific trajectories of the states
need not be known, the PE conditions resulting from this ap-
proach are in general difficult to verify. In the present case,
we nevertheless offer a natural and intuitively reasonable in-
terpretation of the PE condition, which is directly related to
driving patterns and supported by experimental results.

Systems similar to the one considered in this paper have pre-
viously been investigated under PE conditions (Ortega and
Fradkov, 1993; Zhang, Ioannou, and Chien, 1996; Panteley,
Lorı́a, and Teel, 2001). Another example of observer design
with analysis similar to what is presented here can be found
in Lorı́a and de León Morales (2003).

1.1 Notation

Conventional notation is used for denoting estimated vari-
ables and error variables, meaning that for some variable z,
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Fig. 1. Schematic overview of vehicle

ẑ denotes its estimate and z̃= z− ẑ. When considering error
dynamics, a function depending on an estimated variable ẑ
may be written as a function of the error variable z̃ and t, by
noting that ẑ= z− z̃ and considering z a time-varying signal.
For a vector z, z{i, j} denotes the vector obtained by stacking

elements i and j of z. The norm operator ‖·‖ denotes the
Euclidian norm. The closed ball with center 0 and radius r
is denoted B(r) = {z | ‖z‖ ≤ r}. The minimum eigenvalue
of a matrix A is denoted λmin(A). The positive real numbers
are denoted R>0.

2 Vehicle Model and Preliminaries

The vehicle is illustrated in Figure 1. Of primary interest
is the side-slip angle β , which is the angle between the
longitudinal direction of the vehicle and the direction of
travel at the center of gravity (CG). To obtain the side-slip
angle, we shall estimate the longitudinal velocity vx and the
lateral velocity vy at the CG, from which β =−arctan(vy/vx)
can be calculated.

The vehicle is assumed to be moving on a flat, horizontal
surface. In general, there are environmental forces, such as
wind forces and air resistance, acting on the vehicle. In our
model, these are disregarded; we assume that only road-tire
friction forces act on the vehicle.

2.1 Friction Modeling

Several semi-empirical models for road-tire friction exist,
the most well-known of which is the Magic Formula (Pace-
jka, 2006). This paper is not based on a particular friction
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model; instead, it is assumed that the friction model adheres
to certain assumptions, which will be formally stated later.
Thus, the design is not bound to a particular friction model,
but instead allows for a range of friction models to be used.

Road-tire friction forces are usually calculated based on the
normal force between a tire and the road, and tire slip values.
The tire slip values are measures of the relative difference
between the vehicle velocity and the circumferential velocity
of the tire in its longitudinal and lateral directions. Exact
definitions of tire slips vary, but one possible definition, used
for the experimental results in this paper, is

λx,i =
ωiRdyn−‖vi‖cosαi

‖vi‖
, λy,i = sinαi,

where λx,i and λy,i are the longitudinal and lateral slips of
wheel numer i; Rdyn is the dynamic radius of the tire;ωi is the
angular velocity of the wheel; vi is the velocity vector of the
vehicle above the wheel center; and αi is the angle between
the longitudinal direction of the wheel and the vector vi (see
illustration of front-left wheel in Figure 1).

It is common to define the friction coefficient µ = F/Fz,
where F is the magnitude of the road-tire friction force and
Fz is the magnitude of the vertical normal force. Everything
else being the same, µ is in general lower on more slip-
pery surfaces. The value µ is, however, not constant for a
particular surface. The road surface conditions are therefore
more suitably described by the maximum road-tire friction
coefficient, which is the maximum value of µ for a partic-
ular surface. Throughout this paper, µH is used to denote
some parameter used in the friction model to characterize
the road-tire friction properties, usually the maximum road-
tire friction coefficient.

In the following, we denote by d a vector containing all
time-varying signals used in the friction model, except the
lateral velocity vy and the coefficient µH . The contents of
d may be different depending on the friction model used,
but we assume availability of certain measurements to be
included in d:

• the longitudinal acceleration (ax)
• the lateral acceleration (ay)
• the yaw rate (r)
• the wheel angular velocities (ωi, i= 1, . . . ,4)
• the steering wheel angle (δ )

The individual wheel angles δi are calculated from the steer-
ing wheel angle. Because estimation of the longitudinal
velocity vx is not considered until Section 5, it is at this
point assumed available as a measurement and included in
d. We denote the friction forces by vector-valued functions
Fi(d,vy,µH).

2.2 Vehicle Model

The vehicle is modeled as a rigid body and is studied in a
body-fixed coordinate system with the origin located at the
CG. The friction forces Fi(d,vy,µH) are calculated in wheel-
fixed coordinate systems, rotated by angles δi with respect to
the body-fixed one. The resultant force acting on the vehicle
in the lateral direction is denoted

fy(d,vy,µH) :=
4

∑
i=1

[0 1]R(δi)Fi(d,vy,µH),

where R(δi) are rotational matrices between the wheel-fixed
coordinate systems and the body-fixed one. Using Newton’s
second law, we may write may = fy(d,vy,µH), where ay is
the lateral acceleration andm is the mass. The resulting equa-
tion of motion in the lateral direction is (see, e.g., Kiencke
and Nielsen, 2000)

v̇y = ay− rvx. (1)

3 Adaptive Observer

In Imsland et al. (2006a), the lateral velocity part of the
observer includes a stabilizing injection term, which relies
on the friction model. The friction model is assumed to be
tuned to the current road surface conditions. This assumption
is now removed, and a method is developed for adaptation
of the friction model to different road surface conditions.

3.1 Friction Model Parametrization

It is necessary to identify one or more parameters that char-
acterize different road surface conditions and tire properties,
and which are suitable for adaptation. One possibility is to
use µH for adaptation, as is done in Grip et al. (2006). In this
paper, a closely related parameter, which is easier to deal
with and results in slightly better performance, is chosen.
We define this parameter by writing

fy(d,vy,µH) = θ f ∗y (d,vy), (2)

where θ is the parameter to be adapted. The function f ∗y is
defined as

f ∗y (d,vy) :=
1

µ∗
H

4

∑
i=1

[0 1]R(δi)Fi(d,vy,µ∗
H),

where µ∗
H is some fixed nominal value of µH .

Assumption 1 The friction parameter θ is constant and
strictly positive, with known upper and lower bounds, such
that θ̇ = 0 and 0< θmin ≤ θ ≤ θmax.

Compared to using µH for adaptation, choosing θ as de-
scribed above offers certain benefits, because the param-
eter enters linearly into (2). The drawback of the chosen
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(b) Longitudinal slip set to
0.05

Fig. 2. Friction curves for different friction parameters (dashed)
and µH (solid)

parametrization is that Assumption 1 is less realistic, since
θ cannot be expected to be completely time-invariant even
if the road surface conditions remain unchanged. In order
to compare the two parameters µH and θ , Figure 2 shows
the magnitude of the calculated friction force in the lateral
direction of a single wheel, normalized by division with the
normal force Fz. The solid curves are generated using dif-
ferent values of µH in the friction model, while the dashed
curves are generated by using a nominal coefficient µ∗

H = 0.6
and varying θ . 1

The difference seen in Figure 2 may result in rapid variations
in the friction parameter when the driving pattern is highly
varied. This is illustrated in Figure 3, where θ is plotted
for simulated maneuvers with increasingly rapid variations
on a high-friction (µH = 1.0) and a low-friction (µH = 0.3)
surface. Assumption 1 must be seen as a necessary design
assumption, which is known to be an imprecise description
of the true physical system. While a varied driving pattern
causes variation in θ , it also results in greater robustness of
the observer to be presented, as will be shown in Section 4.
Moreover, experimental results indicate that the observer is
indeed robust with respect to the error made in making this
assumption.

Using a single parameter to describe different road sur-
faces is a simplification of the true physical system. Such
a parametrization cannot, for example, describe situations
where the surface is different below each wheel. For the pur-
pose of lateral velocity estimation it is, however, enough to
identify the effect of surface changes on the resultant lateral
force, without regard to how this manifests itself physically.
While the parametrization can be made richer, for example
by using one parameter per wheel, separate ones for the lat-
eral resultant force and yaw moment, or by expressing the
friction model in terms of several basis functions, the added
complexity of such designs does not seem warranted in light
of the good results obtained using a single parameter.

1 The comparison in Figure 2 is for a single wheel. In most
practical situations, the friction forces for each wheel are different,
and some of the difference in parametrization will average out in
the resultant force.
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Fig. 3. Friction parameter for maneuver on high-friction (solid)
and low-friction (dashed) surface

3.2 Observer and Stability Results

Before proposing an observer and presenting stability re-
sults, some extra assumptions are needed. We define the
vector x := [vy,θ ]T of states to be estimated.

Assumption 2 There exist compact sets Dd ⊂R
m and Dvy ⊂

R such that

• (d,vy) ∈ Dd×Dvy;
• d and vy are uniformly continuous in t on R; and
• Fi(d,vy,µ∗

H) and [∂Fi/∂vy](d,vy,µ∗
H) are continuous on

Dd×R×{µ∗
H}.

Assumption 3 There exists a known function ξ : Dd×R
2→

R such that ξ (d, x̂) and [∂ξ/∂ x̂](d, x̂) are continuous on
Dd×R

2 and

f ∗y (d,vy)− f
∗
y (d, v̂y) = ξ (d, x̂)(vy− v̂y). (3)

Remark 1 According to the mean value theorem, there al-
ways exists a value such that (3) holds if ξ (d, x̂) is given
that value. In general it is, however, not possible to obtain
this exact value without knowing vy. Fortunately, it is easy
to obtain a sufficiently good approximation of the value, as
will be discussed in Section 6. 2

For presentation of the error dynamics, define the function

ãy(t, x̃) := ay−
1

m
θ̂ f ∗y (d, v̂y),

which represents the difference between the actual lateral ac-
celeration and an estimate obtained using the friction model.

The notation f̂ ∗y = f ∗y (d, v̂y), ξ = ξ (d, x̂), and ãy = ãy(t, x̃)
is used for the sake of brevity.

The following observer is proposed:

˙̂vy = ay− rvx+KvyΛξ
(

may− θ̂ f̂ ∗y
)

, (4a)

˙̂θ = ΓKvyΛ f̂
∗
y

(

may− θ̂ f̂ ∗y
)

, (4b)

where Kvy and Γ are positive gains and Λ = Λ(d, x̂) refers

to some choice function Λ : Dd×R
2→ [Λmin,Λmax]⊂ R>0,

defined such that Λ(d, x̂) and [∂Λ/∂ x̂](d, x̂) are continuous
on Dd ×R

2. This function is used to scale the observer
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equations for numerical reasons, and its exact shape is not
important for the stability analysis. Subtracting (4a) from
(1) we obtain the following error dynamics:

˙̃vy = −KvymΛξ ãy, (5a)

˙̃θ = −ΓKvymΛ f̂ ∗y ãy. (5b)

Assumptions 1–3 imply that the right-hand side of (5) is
continuous in t and locally Lipschitz continuous in x̃, uni-
formly in t.

Lemma 1 If Assumptions 1–3 hold, then the origin of the
error dynamics (5) is uniformly globally stable (UGS). 2

PROOF We define a Lyapunov function candidate (LFC)

V (x̃) :=
1

2m2

(

θΓṽ2y+ θ̃ 2
)

,

which is positive definite and radially unbounded. Its time
derivative along the trajectories of (5) is

V̇ (t, x̃) = −
1

m
ΓKvyΛãy

(

θξ ṽy+ f̂
∗
y θ̃

)

.

We may write

mãy = θ
(

f ∗y (d,vy)− f̂
∗
y

)

+ f̂ ∗y θ̃ = θξ ṽy+ f̂
∗
y θ̃ .

Using this for substitution yields

V̇ (t, x̃) = −ΓKvyΛã
2
y ≤−ΓKvyΛminã

2
y .

It follows that the origin of (5) is UGS (see, e.g., Lorı́a et al.,
2005, Def. 1). ¥

Building on Lemma 1, uniform global asymptotic stability
(UGAS) of the origin of the error dynamics (5) is proven
in the following theorem, subject to an excitation condition
that will be extensively discussed. We define the functions

ηvy(t, ṽy) :=







1
m

θ
f ∗y (d,vy)− f

∗
y (d,v̂y)

ṽy
, ṽy 6= 0;

1
m

θ
∂ f ∗y
∂vy

(d,vy), ṽy = 0,
(6)

ηθ (t, ṽy) :=
1

m
f ∗y (d, v̂y). (7)

Using these functions, we may write

ãy = ηvy(t, ṽy)ṽy+ηθ (t, ṽy)θ̃ . (8)

Hence, ηvy(t, ṽy) and ηθ (t, ṽy) are measures of the influence

of ṽy and θ̃ on ãy.

Theorem 1 (UGAS of lateral velocity observer) Suppose
that for each ṽy ∈ R, there exist T > 0 and ε > 0 such that

for all t ∈ R,

∫ t+T

t
η2vy(τ, ṽy)dτ

∫ t+T

t
η2θ (τ, ṽy)dτ

−

(

∫ t+T

t
ηvy(τ, ṽy)ηθ (τ, ṽy)dτ

)2

> ε. (9)

If Assumptions 1–3 hold, then the origin of the error dynam-
ics (5) is UGAS. 2

Remark 2 The condition expressed by (9) concerns the
relationship between the two signals ηvy(·, ṽy) and ηθ (·, ṽy).
To see this, it is useful to note that according to the
Cauchy-Schwartz inequality, the left-hand side is always
non-negative, and it is positive if and only if the continuous
signals ηvy(·, ṽy) and ηθ (·, ṽy) are linearly independent on
[t, t+T ] (see, e.g., Young, 1988, Th. 1.9). Loosely speaking,
the condition can be fulfilled by guaranteeing that the sig-
nals vary in a sufficiently independent manner within such
time windows. In practical terms, this amounts to requiring
that the driving pattern is somewhat varied, not consisting
of indefinitely long periods of driving along a straight path
or in a circle at constant speed. This is discussed in detail
in Section 7. 2

PROOF (THEOREM 1) From Lemma 1, we know that the
origin of the error dynamics is UGS. We may therefore use
Lorı́a et al. (2005, Th. 4). The function ãy is locally Lips-
chitz continuous in x̃, uniformly in t. Hence, for each ∆ > 0,
there exists a µ > 0 such that for all (t, x̃) ∈ R× B(∆),
max

{

|V (x̃)|, |ãy|
}

≤ µ . We define Y : R2×R → R as

Y (z,ψ) := −ΓKvyΛminψ
2.

We have that V̇ (t, x̃) ≤ Y (x̃, ãy), Y (z,ψ) ≤ 0, and Y (z,ψ) =
0 =⇒ ψ = 0.

We may write

∫ t+T

t
ã2y(τ, x̃)dτ = x̃TW (t, ṽy)x̃,

where

W (t, ṽy) =

∫ t+T

t

[

η2vy(τ, ṽy) ηvy(τ, ṽy)ηθ (τ, ṽy)

ηvy(τ, ṽy)ηθ (τ, ṽy) η2θ (τ, ṽy)

]

dτ.

Note that for each ṽy, ηvy(τ, ṽy) and ηθ (τ, ṽy) are bounded.
The second-order principal minor (or determinant) of
W (t, ṽy) is

∫ t+T

t
η2vy(τ, ṽy)dτ

∫ t+T

t
η2θ (τ, ṽy)dτ

−

(

∫ t+T

t
ηvy(τ, ṽy)ηθ (τ, ṽy)dτ

)2

.
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From (9), this expression evaluates to some value greater
than ε . The first-order principal minor of W (t, ṽy) is
∫ t+T
t η2vy(τ, ṽy)dτ , which is obviously non-negative. It is

also nonzero because the determinant would otherwise be
zero. Hence, W (t, ṽy) is positive definite with a uniformly
lower bounded determinant and upper bounded eigenval-
ues, which means that λmin(W (t, ṽy)) > ε ′ > 0 for some ε ′.

Therefore, for all t ∈ R,
∫ t+T
t ã2y(τ, x̃)dτ ≥ ε ′‖x̃‖2. Bound-

edness of the integrand for each x̃ in turn implies that for
each x̃ 6= 0, there exist ε∗ > 0 and T > 0 such that for all
t ∈ R,

∫ t+T
t |ãy(τ, x̃)|dτ ≥ ε∗. This means that ãy is uni-

formly δ -persistently exciting (Uδ -PE) with respect to x̃ by
Lorı́a et al. (2005, Lemma 1), and it is also zero for x̃= 0.

The right-hand sides of (5a) and (5b) consist of ãy multi-
plied by factors that are locally Lipschitz continuous in x̃,
uniformly in t, and therefore bounded for (t, x̃) ∈ R×B(∆).
Hence, there exists a constant K1(∆) such that for all (t, x̃)∈
R×B(∆), ‖g(t, x̃)‖ ≤ K1(∆)|ãy|, where g(t, x̃) denotes the
right-hand side of (5). ¥

The observer (4) allows the estimated friction parameter θ̂
to take on any value, but from physical considerations, we
know that θ is confined to a small region, as reflected by
Assumption 1. We may use this extra knowledge by imple-
menting a parameter projection (see, e.g., Ioannou and Sun,
1996), while preserving the stability properties of the er-
ror dynamics. Doing so, we may ensure that for all t ≥ t0,
θmin−θε ≤ θ̂ ≤ θmax+θε (where θε > 0 is some arbitrarily
small constant), as long as θ̂ is within those bounds at t = t0.

4 Robustness

Equilibrium points with the UGAS property are locally input-
to-state stable and therefore robust to small perturbations,
as mentioned in Lorı́a et al. (2005). By using a different
LFC, which includes a term similar to one of the auxiliary
functions used in the proof of Lorı́a et al. (2005, Th. 4), we
obtain a stronger local stability result. The approach is simi-
lar to the proof of Lorı́a, Panteley, Popović, and Teel (2006,
Propositions 3 and 4), where uniform local exponential sta-
bility (ULES) is proven for a particular class of systems.

Theorem 2 (ULES of lateral velocity observer) Suppose
that Assumptions 1–3 and the condition expressed by (9)
hold. Then the origin of the error dynamics (5) is ULES. 2

PROOF We define the LFC

VPE(t, x̃) :=V (x̃)− γ
∫ ∞

t
et−τ ã2y(τ, x̃)dτ,

where γ > 0 is a constant. In the remainder of the proof, it is
assumed that (t, x̃) ∈ [t,∞)×B(∆) for some arbitrary ∆ > 0.
Because ãy is locally Lipschitz continuous in x̃, uniformly
in t, and zero for x̃= 0, there exists a K2(∆) such that |ãy| ≤

K2(∆)‖x̃‖. We therefore have

VPE(t, x̃) ≥
1

2m2

(

Γθ ṽ2y+ θ̃ 2
)

− γK22 (∆)‖x̃‖2
∫ ∞

t
et−τ dτ

≥

(

1

2m2
min{1,θΓ}− γK22 (∆)

)

‖x̃‖2.

Choosing γ < min{1,θΓ}/(2m2K22 (∆)) ensures that VPE is
positive definite and bounded:

(

1

2m2
min{1,θΓ}− γK22 (∆)

)

‖x̃‖2

≤VPE(t, x̃) ≤
1

2m2
max{1,θΓ}‖x̃‖2. (10)

For the time derivative along the trajectories of (5), we have

V̇PE(t, x̃) ≤−
(

ΓKvyΛmin− γ
)

ã2y− γ
∫ ∞

t
et−τ ã2y(τ, x̃)dτ

−2γ
∫ ∞

t
et−τ ãy(τ, x̃)[∂ ãy/∂ x̃](τ, x̃)dτ g(t, x̃),

where g(t, x̃) denotes the right-hand side of (5). The
continuity properties of the friction model imply that
‖[∂ ãy/∂ x̃](d, x̃)‖ ≤ K3(∆). It can be shown that the left-
hand side of (9) is continuous in ṽy, uniformly in t, which
means that [−∆,∆] is covered by open neighborhoods
around each ṽy for which (9) holds with the same T and ε .
This cover has finite subcover, and hence we may choose
T∆ > 0 and ε∆ > 0 such that (9) holds uniformly for all
(t, x̃) ∈ R×B(∆) with T = T∆ and ε = ε∆. DefiningW as in
the proof of theorem 1 and using the boundedness property
of the elements of W (t, ṽy) on R×B(∆), we may define ε ′∆
accordingly, such that

∫ t+T∆

t
ã2y(τ, x̃)dτ = x̃TW (t, ṽy)x̃≥ ε ′∆‖x̃‖

2.

From this, we may write

V̇PE(t, x̃) ≤− (ΓKvyΛmin− γ)ã2y− γε ′∆ e
−T∆ ‖x̃‖2

+2γK1(∆)K2(∆)K3(∆)‖x̃‖|ãy|.
(11)

Selecting

γ <
ΓKvyΛmin

1+K21 (∆)K22 (∆)K23 (∆)ε ′−1∆ eT∆

ensures that V̇PE is negative definite and bounded by

V̇PE(t, x̃) ≤−c
(

‖x̃‖2+ |ãy|
2
)

,

for some c> 0. This can be seen by writing (11) in quadratic,
symmetric matrix form and investigating the leading princi-
pal minors. According to Khalil (2002, Th. 4.10), the origin
of (5) is therefore ULES. ¥
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The combination of UGAS and ULES implies that the sys-
tem is uniformly exponentially stable within any compact
neighborhood of the origin, and hence it is unnecessary to
investigate the region of attraction in theorem 2. The proof
indicates that the stability margin depends on the amount of
excitation in the system.

5 Extension to Longitudinal Velocity and Yaw Rate

The adaptive observer design is now extended to include
estimation of longitudinal velocity and yaw rate. The vector
d is redefined to exclude the values vx and r, and these values
are instead used as explicit arguments to Fi. The vehicle
model for the longitudinal velocity and yaw rate can be
written as

v̇x = ax+ rvy,

ṙ =
1

J
fr(d,vx,vy,r).

The function fr represents the yaw moment, and we assume
that it can be expressed as fr(d,vx,vy,r) = θ f ∗r (t,vx,vy,r),

where f ∗r (t,vx,vy,r) :=(1/µ∗
H)∑4i=1 g

T

i R(δi)Fi(d,vx,vy,r,µ∗
H).

The vectors gi are geometry vectors defined for con-
venience (see Imsland et al., 2006a). We now write
f ∗y (d,vx,vy,r) = (1/µ∗

H)∑4i=1[0 1]R(δi)Fi(d,vx,vy,r,µ∗
H).

The vector x is defined as x := [vx,vy,r,θ ]T and Assump-
tions 2 and 3 now take the following form:

Assumption 2′ There exist compact sets Dd ⊂R
m, Dvx ⊂R,

Dvy ⊂ R and Dr ⊂ R such that

• (d,vx,vy,r) ∈ Dd×Dvx ×Dvy ×Dr;
• d, vx, vy, and r are uniformly continuous in t on R;
• Fi(d,vx,vy,r,µ∗

H) and their partial derivatives with respect

to vx, vy, and r are continuous on Dd×R
3×{µ∗

H}; and
• [∂Fi/∂vx](d,vx,vy,r,µ∗

H) and [∂Fi/∂ r](d,vx,vy,r,µ∗
H) are

uniformly bounded on Dd×R×Dvy ×R×{µ∗
H}.

Assumption 3′ There exist known functions ξ : Dd×R
4→

R and ζ : Dd × R
4 → R such that ξ (d, x̂), ζ (d, x̂),

[∂ξ/∂ x̂](d, x̂), and [∂ζ/∂ x̂](d, x̂) are continuous on Dd×R
4

and

f ∗y (d, v̂x,vy, r̂)− f
∗
y (d, v̂x, v̂y, r̂) = ξ (d, x̂)(vy− v̂y), (12)

f ∗r (d, v̂x,vy, r̂)− f
∗
r (d, v̂x, v̂y, r̂) = ζ (d, x̂)(vy− v̂y). (13)

We redefine ãy(t, x̃) := ay−(1/m)θ̂ f ∗y (d, v̂x, v̂y, r̂). The func-
tions ηvy and ηθ remain the same as before; that is, they
are functions of vx and r, and not of the estimates v̂x and
r̂. 2 The notation Λ = Λ(d, x̂), f̂ ∗y = f ∗y (d, v̂x, v̂y, r̂), f̂

∗
r =

f ∗r (d, v̂x, v̂y, r̂), ξ = ξ (d, x̂), ζ = ζ (d, x̂), and ãy = ãy(t, x̃) is
used for the sake of brevity.

2 Note that (8) does not hold with the new definition of ãy.

The following observer is proposed:

˙̂vx = ax+ rv̂y+
4

∑
i=1

Ki(t)(vx,i− v̂x) , (14a)

˙̂vy = ay− rv̂x+KvyΛξ
(

may− θ̂ f̂ ∗y
)

+
Γ2
Γ1

ζ (r− r̂) , (14b)

˙̂r =
1

J
θ̂ f̂ ∗r +Kr (r− r̂) , (14c)

˙̂θ = Γ1KvyΛ f̂
∗
y

(

may− θ̂ f̂ ∗y
)

+Γ2 f̂
∗
r (r− r̂) , (14d)

where Kr, Γ1, and Γ2 are positive gains. The values Ki(t)
are continuously chosen, time-varying gains, and vx,i are
longitudinal velocities calculated from the individual wheel
angular velocities and the yaw rate. For the stability proofs,

the weighted sum ∑4i=1Ki(t)vx,i/∑4i=1Ki(t) is assumed to be
an exact measurement of vx (see Imsland et al. (2006a) for a
detailed discussion of the longitudinal velocity estimation).

Theorem 3 (UGAS of full observer) Suppose that excita-
tion condition (9) holds. If Assumptions 1, 2′, and 3′ hold,
then there exist constants C1 > 0 and C2 > 0 such that if the
gains are chosen according to ∑4i=1Ki(t) >C1 and Kr >C2,
the origin of the error dynamics corresponding to the ob-
server (14) is UGAS. 2

PROOF (OUTLINE) We define the LFC

V (x̃) =
1

2
(Γ1θ ṽ

2
x+Γ1θ ṽ

2
y+Γ2Jr̃

2+ θ̃ 2).

Using the Assumptions, it can be shown that with the proper
selection of gains,

V̇ (t, x̃) ≤−c
(

ṽ2x+ r̃
2+ ã2y

)

,

where c is some positive constant. We define φ(t, x̃) := ay−

(1/m)θ̂ f ∗y (d,vx, v̂y,r). It can be shown that for (t, x̃) ∈ R×

B(∆), there exists a K(∆) such that defining Y : R4×R as

Y (z,ψ) := −c(‖z{1,3}‖
2+max{ψ2−K(∆)|ψ|‖z{1,3}‖,0})

yields V̇ (t, x̃)≤Y (x̃,φ(t, x̃)) andY (z,ψ) = 0 =⇒ z{1,3} = 0,
ψ = 0. The rest of the proof follows along the same lines as
the proof of theorem 1 with the Uδ -PE condition imposed
on the function φ instead of ãy. ¥

Theorem 4 (ULES of full observer) Suppose that As-
sumptions 1, 2′, and 3′ and the condition expressed by (9)
hold. Then there exist constants C1 > 0 and C2 > 0 such that
if the gains are chosen according to ∑4i=1Ki(t) > C1 and
Kr >C2, the origin of the error dynamics corresponding to
the observer (14) is ULES. 2

PROOF (OUTLINE) The proof follows along the same lines
as the proof of theorem 2, using the LFC

VPE(t, x̃) =V (x̃)− γ
∫ ∞

t
et−τ φ 2(τ, x̃)dτ,

where V and φ are defined in the proof of theorem 3. ¥
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6 Approximation of ξ and ζ

In Assumption 3′, it is assumed that we can obtain values
ξ (d, x̂) such that (12) holds exactly. The challenge is to find
the gradient of the line connecting the values f ∗y (d, v̂x,vy, r̂)
and f ∗y (d, v̂x, v̂y, r̂). In general, the exact values cannot be
found, because vy is unavailable, but the shape of this func-
tion makes the task of approximating the value appealing. In
Imsland et al. (2006a, Assumption 2), it is assumed that the
friction model fulfills the condition [∂ f ∗y /∂vy](d,vx,vy,r)≤

c < 0 within a region. For the purpose of estimating ξ , we
instead make the Assumption that for all (d,vx,vy,r)∈Dd×
R×R×R, [∂ f ∗y /∂vy](d,vy,vx,r)≤ 0. According to this, ξ is
always non-positive, and hence one possible approximation
is a negative constant. Although extremely crude, this ap-
proximation is surprisingly effective. It is also a safe choice,
because it limits any error by ensuring that the feedback
from ãy in the lateral velocity estimation never disappears. A
somewhat better solution is to use a truncated Taylor series
expansion around some nominal value v∗y or around the es-
timate v̂y. In the latter case, the ULES property of the origin
of the error dynamics is guaranteed to be preserved (even
without the above Assumption). Following some ideas of
Annaswamy, Skantze, and Loh (1998), we may use con-
siderations of convexity and concavity to identify situations
in which any error from the Taylor series expansion actu-
ally improves stability, and use this information to create
an estimation scheme based on a combination of the above
approaches. Experimental results indicate that errors in the
approximation have little effect on performance as long as
a permanently small ξ is avoided. This is largely because
any error in the approximation becomes a potential problem
only if there is variation in the lateral velocity, which also
when the robustness of the observer is greatest.

For approximating ζ , a Taylor series expansion around v̂y
is a good enough approximation, because the gain Kr can
be used to suppress the error. Moreover, the actual values
of ζ are small, so the term where this value enters in (14b),
although necessary for the technical proofs, has a negligable
impact on the estimates when the observer is properly tuned.

7 Excitation Condition

The excitation condition given by (9) is essential for the sta-
bility results presented in this paper, and despite its techni-
cal nature, it has an intuitively appealing interpretation. As
explained in Remark 2, it concerns the relationship between
two signals, ηvy(·, ṽy) and ηθ (·, ṽy). If ṽy is fixed at a specific
value, then, essentially, the remaining time-varying signals
affecting ηvy and ηθ should cause ηvy(t, ṽy) and ηθ (t, ṽy)
to vary independently within any time period of a certain
length.

The functions ηvy and ηθ depend nonlinearly on many differ-
ent time-varying signals, which cause them to behave differ-
ently. In particular, the inequality [∂ f ∗y /∂vy](d,vx,vy,r)≤ 0

implies that ηvy(t, ṽy) is non-positive at all times. By con-
trast, ηθ (t, ṽy) varies much in the same way as the lateral
acceleration, and is likely to frequently switch signs, at least
for moderate values of ṽy. Furthermore, we note that ηvy and

ηθ are essentially measures of the influence of ṽy and θ̃ on
ãy. The plots in Section 3.1 clearly indicate that the relation
between these varies along the slip curves.

This translates into a requirement that the driving pattern
should be somewhat varied; in particular, the condition will
be satisfied if there is variation in the lateral velocity and
acceleration. A certain amount of steering, acceleration, or
braking in order to cause variation in the lateral tire slips
is required. It is not necessary that this happen all the time,
but by choosing a large enough T , it must be possible to
guarantee some variation within any time interval of that
length.

The intuitive appeal of this condition is clear: it is impossi-
ble to tell anything about the road surface conditions based
on the lateral movement of the vehicle, unless there is ac-
tually some variation in that movement. With this condition
is mind, it is natural to distinguish between three general
driving patterns.

7.1 Varied Lateral Velocity

If there is variation in the lateral velocity, the excitation
condition will be fulfilled, and hence theorems 3 and 4 apply.
We may therefore expect convergence of all estimates.

7.2 Straight-Path Driving

If the vehicle is driven along a straight path for an indefinitely
long time, the excitation condition will not be fulfilled. We
state a separate result for this case:

Theorem 5 (Convergence during straight-path driving)
Suppose that Assumptions 1, 2′, and 3′ hold and that for
each ε1 > 0, there exists an ε2 > 0 such that |v̂y| > ε1,
r = 0, δ = 0 =⇒ | f ∗y (d, v̂x, v̂y,0)| > ε2. If for all t ≥ t0,

ay = 0, vy = 0, r = 0, δ = 0, and θ̂ ≥ θmin− θε > 0, then
limt→∞(ṽx, ṽy, r̃) = 0. 2

PROOF (OUTLINE) Using the Lyapunov function V from
theorem 3, Barbălat’s lemma (Barbălat, 1959) can be used to
conclude that limt→∞(ṽx, r̃, ãy) = 0. Using the extra condition
in theorem 5 and the continuity properties of f ∗y , it is easy
to show that this implies limt→∞ v̂y = 0. ¥

Remark 3 In practical terms, the extra condition in theo-
rem 5 means that if the steering wheel angle is zero and the
vehicle is not rotating, any nonzero lateral velocity will gen-
erate a nonzero lateral acceleration. This is reasonable from
a physical point of view and is likely to hold for most fric-

tion models. The condition that θ̂ ≥ θmin−θε is ensured by
parameter projection, as discussed in Section 3.2. 2
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7.3 Sustained Circle Maneuver

In a practical implementation, the estimates may begin to
drift during particularly long-lasting circle maneuvers with
little excitation. This type of situation can be detected, and a
proper response can be built in. When the goal is estimation
of vehicle side-slip, using an estimated friction parameter
that is too high is far better from a safety–point of view than
using one that is too low, as explained by Fukada (1999).

The response is therefore to let θ̂ be drawn toward a high
value.

8 Experimental Validation

In this Section, some results from practical testing of the ob-
server in one passenger car with front-wheel drive (Vehicle
A) and one larger vehicle with four wheel drive (Vehicle B),
are presented. For a detailed comparison between an EKF
and an observer implementation similar to the one presented
in this paper, see Imsland et al. (2007).

8.1 Implementation

A discrete version of the observer is implemented using the
forward Euler integration method with step size 0.01 s. The
gains Ki(t) for estimation of the longitudinal velocity are
updated at each time step. 3 The measurements of lateral ac-
celeration, yaw rate, steering wheel angle, and wheel angu-
lar velocities are provided by the vehicles’ electronic stabil-
ity program (ESP); the longitudinal acceleration is measured
with a separate inertial measurement unit (IMU); and, for the
purpose of observer validation, the longitudinal and lateral
velocities are measured using optical correlation sensors.
The nominal value of µH is set to µ∗

H = 1.0, and the friction
parameter bounds are chosen as θmin = 0.1 and θmax = 1.0.

8.1.1 Friction Model

The friction model used, which has not been modified for use
in the observer, is a proprietary one of similar complexity to
the Magic Formula. It has the desirable property that the slip
curves, plotted in Figure 2, flatten out rather than descend
for large slip values, which helps ensure that the inequality
[∂ f ∗y /∂vy](d,vx,vy,r) ≤ 0 from Section 6 always holds for
the model. This is desirable even if this inequality can be
broken in the real system for brief periods of time, resulting
in a limited model error. With the exception of wheel radius,
the friction model is tuned with identical tire parameters for
both vehicles, even though the actual tires used are different.
The accelerations ax and ay are used in order to estimate the
load distribution, and thereby the vertical normal force Fz
for each wheel.

3 For a description of how these are chosen, see Imsland, Jo-
hansen, Fossen, Kalkkuhl, and Suissa (2006b).

A relatively simple method based loosely on the discus-
sion in Section 6 is chosen for approximation of ξ . If
|ay| < |θ̂ f̂ ∗y |, then ξ = [∂ f̂ ∗y /∂ v̂y]. If |ay| > |θ̂ f̂ ∗y |, then

ξ = min{[∂ f̂ ∗y /∂ v̂y],−5| f̂
∗
y |}. The scaling Λ(t, x̂) is set to

‖[ξ , f̂ ∗y ]‖
−1, saturated at Λmin = 10−6 and Λmax = 106.

8.1.2 Monitoring of Excitation Condition

As discussed in Section 7.3, it is sensible to let the friction
parameter be drawn toward a high value whenever there is
insufficient excitation for estimation of the friction parame-
ter. To approximately monitor the excitation condition, we

look at variation in the value [∂ f̂ ∗y /∂ v̂y]/‖[[∂ f̂
∗
y /∂ v̂y], f̂

∗
y ]‖.

The value is subtracted from a low-pass filtered version of
the same value, produced using a filter described by the
transfer function 1/(s+ 1). This difference is squared and
low-pass filtered using the transfer function 1/(5s+ 1). If
the output is less than 0.002, the friction coefficient is drawn
exponentially toward the value 1, with time constant 0.1.

8.1.3 Accelerometer Signal Processing

Slow drift and bias in the lateral acceleration measurement
influence the value ãy in the observer error dynamics and has
an adverse effect on performance. Because it is the dynamic
behavior of ãy that is useful for adaptation of the friction
parameter, ãy is high-pass filtered in the parameter update
law, using the transfer function s/(s+0.25).

8.2 Experimental Results, Vehicle A

The observer for Vehicle A is implemented using the gains
Kvy = 1/m, Kr = 40, Γ1 = 4, and Γ2 = 0.1/J. Results from
the first test with Vehicle A are shown in Figure 4. The
vehicle is driven on snow, mostly along a straight path with
a few sharp turns. The adapted friction parameter varies
largely in stages, changing quickly during turns and little
between turns.

The second test represents a difficult circle maneuver on
asphalt, and the results can be seen in Figure 5. Throughout
the first half of the test, the modification for handling low
excitation is active, and hence the friction parameter remains
constant. It then starts varying, but remains high.

8.3 Experimental Results, Vehicle B

The four-wheel drive complicates estimation of the longitu-
dinal velocity for Vehicle B. For simplicity, the longitudinal
velocity measurement provided by the optical correlation
sensor is therefore used in the tests presented here. The ob-
server is implemented with the gains Kvy = 1/m, Kr = 40,
Γ1 = 5, and Γ2 = 1/J. The first test is a slalom-like maneu-
ver on a low-friction winter surface, with the results shown
in Figure 6. For about 20 s, the vehicle is accelerated from
about 1 m/s to approximately 21 m/s. Throughout the rest
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Fig. 4. Results for Vehicle A on snow

of the test, it mostly decelerates, to about 12 m/s at the end
of the test. For the first part of the test, the low-excitation
modification is active, but when the vehicle starts turning,
the friction parameter starts quickly changing.

The final test is a slalom-like maneuver on asphalt, with the
results shown in Figure 7. The longitudinal velocity varies
relatively slowly in the range 21–30 m/s during the test.
For this test, the initial value of the friction parameter is set
much too low, at 0.1, which causes an initial inaccuracy.

The estimated friction parameter varies much more for Ve-
hicle B than for Vehicle A. This indicates that the parameters
used in the friction model are a better match for the tires on
Vehicle A. The good results for Vehicle B also indicate that
the observer is robust with respect to errors in the tuning of
the friction model.

9 Concluding Remarks

In this paper, the results from Imsland et al. (2006a) are ex-
tended to create a nonlinear vehicle velocity observer with
adaptation to different road surface conditions, and the sta-
bility properties of this observer are analyzed. Experimental
results confirm that the method has merit and can function
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Fig. 5. Results for Vehicle A on asphalt
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Fig. 6. Results for Vehicle B on low-friction winter surface

in real, non-ideal circumstances. The results also support the
excitation condition found in the theoretical analysis and the
practical interpretation of it.

10



Time (s)

L
at
er
al
v
el
o
ci
ty
(m

/
s)

0 5 10 15 20 25 30 35 40
−2

−1

0

1

2

(a) Real (dashed) and estimated lateral velocity

Time (s)

F
ri
ct
io
n
p
ar
am
et
er

0 5 10 15 20 25 30 35 40
0

0.5

1

(b) Estimated friction parameter

Fig. 7. Results for Vehicle B on asphalt

The model used in this paper does not include the effect of
any nonzero road bank angle, which will induce additional
lateral forces on the vehicle and therefore have an adverse
effect on estimation. Discussion around this topic, as well
as a practical implementation for handling this issue and
experimental results can be found in Imsland et al. (2007).
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