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Abstract

We consider a class of systems influenced by perturbations that are nonlinearly parameterized by unknown constant parameters, and
develop a method for estimating the unknown parameters within an arbitrarily large parameter space. The method applies to systems
where the states are available for measurement, and perturbations with the property that an exponentially stable estimate of the unknown
parameters can be obtained if the whole perturbation is known. The main contribution is to introduce a conceptually simple, modular
design that gives freedom to the designer in accomplishing the main task, which is to construct an update law to asymptotically invert
a nonlinear equation. Compensation for the perturbations in the system equations is considered for a class of systems with uniformly
globally bounded solutions and for which the origin is uniformly globally asymptotically stable when no perturbations are present. We
also consider the case when the parameters can only be estimated when the controlled state is bounded away from the origin, and show
that we may still be able to achieve convergence of the controlled state. We illustrate the method through examples, and apply it to the
problem of downhole pressure estimation during oil well drilling.
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1 Introduction

An important issue in model-based control is the handling
of unknown perturbations to system equations. Such pertur-
bations can be the result of external disturbances or internal
plant changes, such as a configuration change, system fault,
or changes in physical plant characteristics. Frequently, the
perturbations can be characterized in terms of a vector of
unknown, constant parameters.

Adaptive control techniques counteract such perturbations
by using estimates of the unknown parameters that are up-
dated online. When the perturbations are linear in the un-
known parameters, adaptive control design is often straight-
forward, and techniques for handling such cases are well-
developed (see, e.g., Krstić, Kanellakopoulos, and Koko-
tović, 1995; Ioannou and Sun, 1996). In the nonlinear case
the range of available design techniques is more limited.
One approach is to use a gradient algorithm, as in linearly
parameterized systems, which may yield poor results or in-
stability for nonlinear parameterizations. Another common
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strategy is implementing an extended Kalman filter (EKF)
for estimation of the unknown parameters. Although this of-
ten yields good results, analysis of the stability properties of
an EKF is difficult (see Reif, Günther, Yaz, and Unbehauen,
1999). Introducing extra parameters to obtain a linear ex-
pression is sometimes possible, but doing so may increase
complexity and affect performance by reducing the conver-
gence rate of the parameter estimates or introducing stricter
persistency-of-excitation conditions.

Some techniques that do not resort to approximations are
found in literature. In Fomin, Fradkov, and Yakubovich
(1981); Ortega (1996), stability and convergence of the
controlled state is proven for a gradient-type approach for
nonlinear parameterizations with a convexity property. An-
naswamy, Skantze, and Loh (1998) exploit the convexity or
concavity of some parameterizations by introducing a tun-
ing function and adaptation based on a min-max optimiza-
tion strategy, achieving arbitrarily accurate tracking of the
controlled states. This approach is extended to more gen-
eral nonlinear parameterizations in Loh, Annaswamy, and
Skantze (1999), and parameter convergence is studied in
Cao, Annaswamy, and Kojić (2003). Other results, such as
Bošković (1995, 1998); Zhang, Ge, Hang, and Chai (2000),
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focus on first-order systems with certain fractional parame-
terizations, proving convergence of the controlled state, but
without studying convergence of the parameter estimates.
In Qu (2003), an estimation-based approach is introduced
for a class of higher-order systems with a matrix fractional
parameterization. Here, an auxiliary estimate of the full per-
turbation is used in the estimation of the unknown parame-
ters. The method achieves global boundedness and ultimate
boundedness to within a desired precision. In Qu, Hull, and
Wang (2006), an approach for more general nonlinear pa-
rameterizations is presented, where the parameter estimate
used in the control law is biased by an appropriately chosen
vector function. Conditions are given for convergence of
the controlled state and the parameter estimates.

Another way of dealing with undesired perturbations is
found in Chakrabortty and Arcak (2009), where a high-gain
approach is used to estimate the whole perturbation. By in-
creasing the gain, the estimate is made to converge arbitrar-
ily fast, and the performance of the unperturbed system can
therefore be recovered. The approach considered in this pa-
per has similarities to Chakrabortty and Arcak (2009), but it
also exploits available structural information by estimating
an unknown parameter vector in addition to the full pertur-
bation. The parameter estimate is produced by a parameter
estimation module that is designed as if the perturbation
were known. In the actual implementation, however, the
estimate of the perturbation is used. This idea is similar to
the ideas in Tyukin (2003), where adaptive update laws of
a certain structure, called virtual algorithms, are designed
as if time derivatives of the measurements were available,
before being transformed into realizable form without ex-
plicit differentiation of the measurements. This idea is used
in Tyukin, Prokhorov, and van Leeuwen (2007) to design a
family of adaptation laws for monotonically parameterized
perturbations in the first derivatives.

The main contribution of this article is an approach to non-
linear parameter estimation with a clear modular structure.
The design is split into a perturbation estimator and a pa-
rameter estimator constructed by the designer to asymptot-
ically invert a nonlinear equation. The modular structure is
conceptually simple, and it isolates the task of inverting the
nonlinear equation, giving the designer freedom in how to
best accomplish this task. We provide constructive guide-
lines through a series of propositions, and obtain explicit
Lyapunov functions to prove exponential convergence of the
parameter estimates. The method is often particularly ef-
fective with respect to providing fast parameter estimates,
which may be useful not only for direct compensation, but as
part of other control schemes where fast parameter estimates
are required, for example traditional adaptive approaches
combined with parameter resetting (see, e.g., Bakkeheim,
Johansen, Smogeli, and Sørensen, 2008).

1.1 Notation and Definitions

We use conventional notation to denote estimates and error
variables. For a vector z, ẑ represents its estimate and z̃= z− ẑ

is an error variable. We denote by zi the i’th element of z,
when this is clear from the context. The norm operator ‖ ·‖
denotes the Euclidean norm for vectors and the induced Eu-
clidian norm for matrices. For a symmetric, positive-definite

matrix P and a vector z, we write ‖z‖P = (zTPz)1/2. The
maximum and minimum eigenvalues of a symmetric matrix
A are denoted λmax(A) and λmin(A). The open and closed
balls around the origin with radius ε are denoted B(ε) and
B(ε), respectively. We denote by R≥0 and R>0 the non-
negative and the positive real numbers. For a set E ⊂R

n, we
write (E−E) := {z1−z2 ∈R

n | z1,z2 ∈ E}. Throughout this
paper, when considering systems of the form ż= F(t,z), we
implicitly assume that F : R≥0×R

n →R
n is piecewise con-

tinuous in t and locally Lipschitz continuous in z, uniformly
in t, on R≥0×R

n. The solution of this system, initialized at
time t0 ≥ 0 with initial condition z(t0), is denoted z(t).

2 Problem Formulation

We consider systems that, by the appropriate state transfor-
mations and choice of control law, can be expressed in the
following form:

ẋ = f (t,x)+B(t,x)(g(t,x,θ)+ v(t,x)) , (1)

where x ∈ R
n is a measured state vector and θ ∈ R

p is
a vector of unknown, constant parameters. The functions
f : R≥0 ×R

n → R
n, B : R≥0 ×R

n → R
n×m and v : R≥0 ×

R
n → R

m can be evaluated from available measurements,
and g : R≥0×R

n×R
p → R

m is continuously differentiable
with respect to θ and can be evaluated if θ is known. In most
practical circumstances, it is known from physical consid-
erations that θ is restricted to some bounded set of values.
This is a significant advantage when it comes to satisfying
the assumptions made later in this paper. To simplify the
exposition, we therefore assume that the set of possible pa-
rameters is bounded. In designing update laws for parameter
estimates, we also assume that a parameter projection can be
implemented as described in Krstić et al. (1995), restricting
the parameter estimates to a compact, convex set Θ ⊂ R

p,
defined slightly larger than the set of possible parameter
values. The parameter projection is denoted Proj(·), and is
described in Appendix A. All functions on the right-hand
side of (1) are well-defined and bounded for each bounded
(t,x,θ) ∈ R≥0×R

n×Θ.

3 Parameter Estimation

In this section, we present a method for estimating the
unknown parameter vector θ when x(t) is bounded. Let
φ :=B(t,x)g(t,x,θ) represent the full unknown perturbation
in (1). The idea behind the estimation scheme is as follows:
we first design an update law that exponentially estimates
θ based on the quantity φ , as though φ were known. We
then produce an estimate of φ and implement the update law
based on this estimate instead of the real perturbation.
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3.1 Estimation of θ from φ

We denote by φ̂ the estimate of the perturbation φ . We shall
later explain how to construct this estimate; for now, we
concentrate on how to find θ in the hypothetical case of a
perfect perturbation estimate. For this to work, there needs
to exist an update law

˙̂θ = uθ (t,x, φ̂ , θ̂), (2)

which, if φ̂ = φ , would provide an unbiased asymptotic es-
timate of θ . This is the subject of the following assumption

on the dynamics of the error variable θ̃ := θ − θ̂ .

Assumption 1 For each compact set K ⊂ R
n, there exist a

continuously differentiable function Vu : R≥0× (Θ−Θ) →
R≥0; positive constants a1, a2 and a4; and a continuous
function a3 : R

n → R≥0 that is positive outside the origin,

such that for all (t,x,φ , θ̂) ∈ R≥0×K×R
n×Θ,

a1‖θ̃‖2 ≤Vu(t, θ̃) ≤ a2‖θ̃‖2, (3)

∂Vu
∂ t

(t, θ̃)− ∂Vu

∂ θ̃
(t, θ̃)uθ (t,x,φ , θ̂) ≤−a3(x)‖θ̃‖2, (4)

∥

∥

∥

∥

∂Vu

∂ θ̃
(t, θ̃)

∥

∥

∥

∥

≤ a4‖θ̃‖. (5)

Furthermore, the update law (2) ensures that if θ̂(t0) ∈ Θ,

then for all t ≥ t0, θ̂(t) ∈ Θ.

Satisfying Assumption 1 constitutes the greatest challenge
in applying the method in this paper, and this is therefore
discussed in detail in the next section.

3.2 Satisfying Assumption 1

Assumption 1 guarantees that the origin of the error dy-

namics ˙̃θ = −uθ (t,x,φ ,θ − θ̃), which occurs if φ̂ = φ , is
uniformly exponentially stable with (Θ−Θ) contained in
the region of attraction. Essentially this amounts to asymp-
totically solving the inversion problem of finding θ given
φ = B(t,x)g(t,x,θ). In the following, we shall discuss some
possibilities for how to satisfy Assumption 1. As a useful
reference, we point to Nicosia, Tornambé, and Valigi (1994),
which deals with the use of state observers for inversion of
nonlinear maps.

The most obvious way to satisfy Assumption 1 is to invert

the equality φ = B(t,x)g(t,x,θ) algebraically, and to let θ̂
be attracted to this solution.

Proposition 1 Suppose that for all (t,x) ∈ R≥0 × R
n,

we can find a unique solution for θ from the equation
φ = B(t,x)g(t,x,θ). Then Assumption 1 is satisfied with the

update law uθ (t,x, φ̂ , θ̂) = Proj(Γ(θ ∗(t,x, φ̂)− θ̂)), where
θ ∗(t,x, φ̂) denotes the solution of the inversion problem

found from φ̂ , and Γ is a symmetric positive-definite gain
matrix. 2

PROOF The proof follows trivially from using the Lyapunov

function Vu(t, θ̃) = 1
2 θ̃TΓ−1θ̃ when φ̂ = φ . �

Example 1 Consider the perturbation B(t,x)g(t,x,θ) =
h((2+ sin(t))θ), where h is some explicitly invertible, non-
linear mapping. For each t ∈R≥0, we can solve the inversion

problem and find θ ∗(t,x, φ̂) = h−1(φ̂)/(2+ sin(t)). 2

Often it is only possible to invert the equation part of the
time. In this case, Assumption 1 may still be satisfied if so-
lutions are available with a certain regularity. The following
proposition deals with this case. The proofs of the remaining
propositions in this section are found in Appendix B.

Proposition 2 Suppose that there exist a known, piece-
wise continuous function l : R≥0 × R

n → [0, 1], and
that for all (t,x) ∈ R≥0 × R

n, l(t,x) > 0 implies that
we can find a unique solution for θ from the equa-
tion φ = B(t,x)g(t,x,θ). Suppose furthermore that there
exist T > 0 and ε > 0 such that for all t ∈ R≥0,
∫ t+T
t l(τ,x(τ)) dτ ≥ ε . Then Assumption 1 is satisfied with

the update law uθ (t,x, φ̂ , θ̂) = Proj(l(t,x)Γ(θ ∗(t,x, φ̂)− θ̂)),
where θ ∗(t,x, φ̂) denotes the solution of the inversion prob-

lem found from φ̂ whenever l(t,x) > 0, and Γ is a symmetric
positive-definite gain matrix. 2

Example 2 Consider the perturbation B(t,x)g(t,x,θ) =
h(sin(t)θ), where h is some explicitly invertible, nonlin-
ear mapping. The inversion problem is poorly conditioned
when sin(t) is close to zero, and unsolvable for sin(t) = 0.
Proposition 2 nevertheless applies by letting, for exam-
ple, l(t,x) = 0 when |sin(t)| < ε and l(t,x) = 1 when
|sin(t)| ≥ ε , where 0 < ε < 1. 2

When it is not possible or desirable to solve the inversion
problem explicitly, it is often possible to implement the up-
date function as a numerical search for the solutions.

Proposition 3 Suppose that there exist a symmetric
positive-definite matrix P and a function M : R≥0 ×R

n ×
Θ → R

p×n such that for all (t,x) ∈ R≥0×R
n, and for all

pairs θ1,θ2 ∈ Θ,

M(t,x,θ1)B(t,x)
∂g

∂θ
(t,x,θ2)

+
∂g

∂θ

T

(t,x,θ2)B
T(t,x)MT(t,x,θ1) ≥ 2P. (6)

Then Assumption 1 is satisfied with the update law

uθ (t,x, φ̂ , θ̂) = Proj(ΓM(t,x, θ̂)(φ̂ − B(t,x)g(t,x, θ̂))),
where Γ is a symmetric positive-definite gain matrix. 2

Example 3 Consider the perturbation B(t,x)g(t,x,θ) =

g(θ)= [θ1, θ 2
1 +θ2]

T. SelectingM(t,x, θ̂)=M= diag(KM,1)

yields M[∂g/∂θ ](θ) + [∂g/∂θ ]T(θ)MT = 2
[

KM θ1
θ1 1

]

. Us-

ing the fact that θ1 is bounded within Θ, it is easily
confirmed that if KM is chosen sufficiently large, then
M[∂g/∂θ ](θ) + [∂g/∂θ ]T(θ)MT ≥ 2P, where P is sym-
metric positive-definite. 2
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Proposition 3 applies to certain monotonic perturbations for
which a solution can be found arbitrarily fast by increasing
the gain Γ. In many cases, this is not possible, because the
inversion problem is singular the whole time or part of the
time. The following proposition applies to cases where a
solution is only available by using data over longer periods of
time, by incorporating a persistency-of-excitation condition.

Proposition 4 Suppose that there exist a piecewise contin-
uous function S : R≥0 ×R

n → S+(p), where S+(p) is the
cone of p× p symmetric positive-semidefinite matrices, and
a function M : R≥0 ×R

n × Θ → R
p×n, both bounded for

bounded x, such that for all (t,x) ∈ R≥0×R
n and for all

pairs θ1,θ2 ∈ Θ,

M(t,x,θ1)B(t,x)
∂g

∂θ
(t,x,θ2)

+
∂g

∂θ

T

(t,x,θ2)B
T(t,x)MT(t,x,θ1) ≥ 2S(t,x). (7)

Suppose furthermore that there exist numbers T > 0 and

ε > 0 such that for all t ∈ R≥0,
∫ t+T
t S(τ,x(τ)) dτ ≥ εI,

and that for all (t,x, θ̂)∈R≥0×R
n×Θ, ‖B(t,x)(g(t,x,θ)−

g(t,x, θ̂))‖ ≤ Lg(θ̃
TS(t,x)θ̃)1/2, for some Lg > 0. Then As-

sumption 1 is satisfied with the update law uθ (t,x, φ̂ , θ̂) =

Proj(ΓM(t,x, θ̂)(φ̂ −B(t,x)g(t,x, θ̂))), where Γ is a symmet-
ric positive-definite gain matrix. 2

Example 4 Consider the perturbation from Example 3
multiplied by sin(t); that is, B(t,x)g(t,x,θ) = g(t,θ) =
sin(t)[θ1, θ 2

1 +θ2]
T. Using the same argument as in Exam-

ple 3, we may chooseM(t,x, θ̂) =M(t) = sin(t)diag(KM,1)
to satisfy (7). We then have S(t,x) = S(t) = sin2(t)P, where
P is the positive-definite matrix from Example 3. For any

T > 0,
∫ t+T
t Psin2(τ) dτ ≥ εI for some ε > 0, which means

that the integral condition in Proposition 4 is satisfied. Fi-

nally, we have ‖g(t,θ)−g(t, θ̂)‖ ≤ Lg(θ̃
TS(t)θ̃)1/2, where

Lg = max(t,θ)∈R≥0×Θ ‖[∂g/∂θ ](t,θ)‖/λmin(P)1/2. Hence,

Proposition 4 applies. 2

Remark 1 When looking for the function M, a good start-

ing point is M(t,x, θ̂) = [∂g/∂θ ]T(t,x, θ̂)BT(t,x). This
choice makes the parameter update law into a gradient
search in the direction of steepest descent for the function

‖B(t,x)(g(t,x,θ)− g(t,x, θ̂))‖2, scaled by the gain Γ. In-
deed, this choice of M often works even if it fails to satisfy
either of Propositions 3 and 4. In the special case where
the perturbation is linear in the unknown parameters, this
choice of M always satisfies (7), and the remaining condi-
tions in Proposition 4 coincide with standard persistency-
of-excitation conditions for parameter identification in lin-
ear adaptive theory (see, e.g., Marino and Tomei, 1995,
Ch. 5). Future research will include investigation of more
systematic ways of finding the function M for nonlinear
parameterizations. 2

We end this section with an example illustrating that the

above approaches may be combined.

Example 5 Consider the perturbation B(t,x)g(t,x,θ) =

[θ
1/3
1 , sin(θ1a(t))θ2]

T with θ known to be bounded and θ1
known to be bounded away from zero, and where a(t) is
some persistently exciting signal with a bounded deriva-
tive. Clearly, we can find θ1 by inversion, simply taking

θ ∗
1 (φ̂) = φ̂ 3

1 . Hence, θ1 is handled according to Proposi-
tion 1. When θ1 is known, we can find θ2 by numerical
search according to Proposition 4. We therefore implement
the second part of the update law according to Proposi-

tion 4, substituting θ1 with φ̂ 3, resulting in uθ (t,x, φ̂ , θ̂) =

Proj(Γ[φ̂ 3
1 − θ̂1, sin(φ̂

3
1 a(t))(φ̂2− sin(φ̂ 3

1 a(t))θ̂2)]
T). 2

3.3 Estimator

We now introduce the full estimator:

ż = −Kφ

(

f (t,x)+B(t,x)v(t,x)+ φ̂
)

−B(t,x)
∂g

∂θ
(t,x, θ̂)uθ (t,x, φ̂ , θ̂), (8a)

φ̂ = z+Kφx+B(t,x)g(t,x, θ̂), (8b)

˙̂θ = uθ (t,x, φ̂ , θ̂), (8c)

where Kφ is a symmetric positive-definite gain matrix. The
full estimator consists of two parts: an estimator for φ , de-
scribed by (8a), (8b), and the update law from Section 3.1.
To study the properties of the estimator, we consider the dy-
namics of the errors φ̃ and θ̃ . Taking the time derivative of

φ̃ = φ − φ̂ , we may write

˙̃φ = Kφ

(

f (t,x)+B(t,x)v(t,x)+ φ̂
)

+B(t,x)
∂g

∂θ
(t,x, θ̂)uθ (t,x, φ̂ , θ̂)−Kφ ẋ

−B(t,x)
∂g

∂θ
(t,x, θ̂)uθ (t,x, φ̂ , θ̂)+d(t,x, θ̃),

(9)

where

d(t,x, θ̃) :=
∂

∂ t

(

B(t,x)(g(t,x,θ)−g(t,x, θ̂))
)

+
∂

∂x

(

B(t,x)(g(t,x,θ)−g(t,x, θ̂))
)

ẋ.

(10)

The function d(t,x, θ̃) can be seen as the time derivative of

B(t,x)(g(t,x,θ)−g(t,x, θ̂)) when θ̂ is kept constant. Using
the expression ẋ− f (t,x)−B(t,x)v(t,x) = φ , we may rewrite
the above expression and write the error dynamics of the
estimator as

˙̃φ = −Kφ φ̃ +d(t,x, θ̃), (11a)

˙̃θ = −uθ (t,x,φ , θ̂)

+
(

uθ (t,x,φ , θ̂)−uθ (t,x, φ̂ , θ̂)
)

. (11b)
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For convenience, we define the error variable ξ := [φ̃T, θ̃T]T

and the set Ξ := R
n× (Θ−Θ).

Assumption 2 For all (t,x, θ̃) ∈ R≥0×R
n× (Θ−Θ), the

function d(t,x, θ̃) is well-defined; for each compact set K ⊂
R
n, there exist continuous functions L1(x) > 0 and L2(x) > 0

such that for all (t,x, θ̃)∈R≥0×K×(Θ−Θ), ‖d(t,x, θ̃)‖≤
L1(x)‖θ̃‖; and for all (t,x,φ , φ̂ , θ̂) ∈ R≥0×K×R

n×R
n×

Θ, ‖uθ (t,x,φ , θ̂)−uθ (t,x, φ̂ , θ̂)‖ ≤ L2(x)‖φ̃‖.
Remark 2 When checking the condition ‖u(t,x,φ , θ̂) −
u(t,x, φ̂ , θ̂)‖ ≤ L2(x)‖φ̃‖, the projection in the update law
can be disregarded, because the property is retained under
projection (see Appendix A.1). 2

The Lipschitz-type conditions in Assumption 2 may appear
difficult to satisfy. Note, however, that θ̃ ∈ (Θ−Θ), which
means that we are dealing with a local Lipschitz condition
for d. For uθ , we need to satisfy a global condition in the

sense that φ and φ̂ are not presumed bounded. Indeed, such a
condition may often fail to hold, as demonstrated by Exam-

ple 5, where the term φ̂ 3
1 is used. In most cases, however, the

perturbation φ depends on physical quantities with known
bounds, and from these a bound on φ can often be found. It

is then possible to modify uθ to include a saturation of φ̂ ,
thereby reducing the requirement to a local condition that is
much more easily satisfied. With the inclusion of a satura-
tion, Example 5 does satisfy Assumption 2. If a particular
update law is modified by including a saturation, it does not
affect the validity of Assumption 1, since the saturation has

no effect when φ̂ = φ .

Theorem 1 Suppose that Assumptions 1 and 2 hold with
a3(x) ≥ a∗3 > 0 and that for all t ∈ R≥0, ‖x(t)‖ is uniformly
bounded. Then there exists kφ > 0 such that if Kφ is cho-
sen such that λmin(Kφ ) > kφ , then the origin of (11) is uni-
formly exponentially stable with Ξ contained in the region
of attraction. 2

PROOF By Assumption 1, θ̂(t0) ∈ Θ implies that for all

t ≥ t0, θ̂(t) ∈ Θ. Hence θ̃ ∈ (Θ−Θ), which means that if
ξ (t0) ∈ Ξ, then for all t ∈ R≥0, ξ (t) ∈ Ξ. By assumption,
x(t) ∈ K, where K ⊂ R

n is a compact set. We can therefore
make use of Assumptions 1 and 2 for this particular K.
Boundedness of x ensures that φ is well-defined for all times.
We define the Lyapunov function candidate (LFC)Vp(t,ξ ) =

Vu(t, θ̃)+ 1
2 φ̃Tφ̃ and investigate its time derivative on the set

Ξ along the trajectories of (11):

V̇p(t,ξ ) =
∂Vu
∂ t

(t, θ̃)− ∂Vu

∂ θ̃
(t, θ̃)uθ (t,x,φ , θ̂)

+
∂Vu

∂ θ̃
(t, θ̃)

(

uθ (t,x,φ , θ̂)−uθ (t,x, φ̂ , θ̂)
)

−φ̃TKφ φ̃ + φ̃Td(t,x, θ̃)).

(12)

From the inequalities in Assumptions 1 and 2,

V̇p(t,ξ )≤−a3(x)‖θ̃‖2−λmin(Kφ )‖φ̃‖2+‖φ̃‖‖d(t,x, θ̃)‖

+

∥

∥

∥

∥

∂Vu

∂ θ̃
(t, θ̃)

∥

∥

∥

∥

‖uθ (t,x,φ , θ̂)−uθ (t,x, φ̂ , θ̂)‖. (13)

This expression can be rewritten as V̇p(t,ξ ) ≤ −ζ TQ(x)ζ ,

where ζ = [‖φ̃‖, ‖θ̃‖]T and

Q(x) =

[

λmin(Kφ ) − 1
2 (a4L2(x)+L1(x))

− 1
2 (a4L2(x)+L1(x)) a3(x)

]

. (14)

To check for positive-definiteness of Q(x), we note that
its first-order leading principal minor is λmin(Kφ ) > 0. The
second-order leading principal minor is a3(x)λmin(Kφ )−
1
4 (a4L2(x) + L1(x))

2, which is positive if λmin(Kφ ) >

kφ := (a4L
∗
2 + L∗1)

2/(4a∗3), where L∗1 and L∗2 are bounds
on L1(x) and L2(x) on K. Hence, we have on Ξ that

V̇p(t,ξ (t)) ≤ −λmin(Q(x))‖ξ (t)‖2. Moreover, we have

that Vp(t,ξ ) ≤ max{a2, 12}‖ξ‖2. From the preceding two

expressions, we have that V̇p(t,ξ (t)) ≤ −2λVp(t,ξ (t)),
where λ := minx∈K λmin(Q(x))/max{2a2,1} By the com-
parison lemma (Khalil, 2002, Lemma 3.4), we there-
fore have Vp(t,ξ (t)) ≤ Vp(t0,ξ (t0))exp(−2λ (t − t0)),
This leads to ‖ξ (t)‖ ≤ ke‖ξ (t0)‖exp(−λ (t − t0)), where

ke = (max{a2, 12}/min{a1, 12})1/2. �

Remark 3 We assume in Theorem 1 that the state x is uni-
formly bounded. In pure estimation problems, where no con-
trol is implemented based on the parameter estimates, this is
usually a reasonable assumption, because the states involved
are typically derived from bounded physical quantities. 2

4 Closed-Loop Compensation

We now consider how the parameter estimates can be used
to compensate for the perturbation in (1). Suppose that the
control inputs available in the original system can be chosen
to yield a system on the following form:

ẋ = f (t,x)+B(t,x)
(

g(t,x,θ)−g(t,x, θ̂)
)

. (15)

Here, v(t,x) in (1) has been substituted with −g(t,x, θ̂).

Assumption 3 The function f (t,x) is continuously differ-
entiable on R≥0 ×R

n; the origin of the nominal system
ẋ = f (t,x) is uniformly globally asymptotically stable

(UGAS); for any trajectory θ̂(t) ∈ Θ, the solutions x(t) of
the perturbed system (15) are uniformly globally bounded
(UGB); and for each compact set K ⊂ R

n there exists a

class K function γ such that for all (t,x, θ̂)∈R≥0×K×Θ,

‖B(t,x)(g(t,x,θ)−g(t,x, θ̂))‖ ≤ γ(‖θ̃‖).

In Assumption 3, we assume that f (t,x) is a stabilizing func-
tion that ensures UGB irrespective of the parameter estimate.

In this case, the only control needed is a term −g(t,x, θ̂) to
cancel the perturbation. Essentially, the assumption means
that a parameter error confined to (Θ−Θ) cannot make the
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states of the system arbitrarily large compared to their ini-
tial values. In many cases, additional control may be nec-
essary to shape f (t,x) to satisfy Assumption 3. The UGB

condition is most easily satisfied if the asymptotic growth
rate of f (t,x) with respect to x is greater than the asymptotic

growth rate of the error term B(t,x)(g(t,x,θ)− g(t,x, θ̂)).
In some cases, this requirement may be automatically sat-
isfied; in other cases, the requirement may be satisfied by
introducing control in the form of nonlinear damping with a
sufficiently high growth rate. This is similar to the technique
used in adaptive backstepping (Krstić et al., 1995). We also
refer to Panteley and Lorı́a (2001) for an extensive discus-
sion on how to ensure UGB. Note that controllability of the
system depends on the properties of B(t,x).

Theorem 2 Suppose that Assumptions 1–3 hold such that
a3(x) ≥ a∗3 > 0. Then for each compact neighborhood K′ ⊂
R
2n of the origin, there exist kφ > 0 such that if Kφ is chosen

such that λmin(Kφ ) > kφ , then the origin of (15), (11) is
uniformly asymptotically stable with K′×(Θ−Θ) contained
in the region of attraction. 2

PROOF This proof is based on the proof of Panteley and
Lorı́a (2001, Lemma 2). The UGAS property of the unper-
turbed system, together with the fact that f (t,x) is locally
Lipschitz continuous in x, uniformly in t and continuously
differentiable on R≥0×R

n, implies by Panteley and Lorı́a
(2001, Prop. 1) the existence of a Lyapunov functionVx(t,x);
class K∞ functions α1 and α2; and a class K function α4

such that for all (t,x) ∈ R≥0×R
n,

α1(‖x‖) ≤Vx(t,x) ≤ α2(‖x‖), (16)

∂Vx
∂ t

(t,x)+
∂Vx
∂x

(t,x) f (t,x) ≤−Vx(t,x), (17)
∥

∥

∥

∥

∂Vx
∂x

(t,x)

∥

∥

∥

∥

≤ α4(‖x‖). (18)

Let R > 0 be chosen large enough that Ω := {(x,ξ ) |
‖(x,ξ )‖ ≤ R} ⊃ K′ × (Θ − Θ). If (x(t0),ξ (t0)) ∈ Ω, this
implies that ‖x(t0)‖ ≤ R, and from the UGB property from
Assumption 3, we therefore know that for all t ≥ t0, x(t)
belongs to a compact set K. Let therefore λmin(Kφ ) be
chosen large enough to ensure exponential stability of the
estimator according to Theorem 1. By the exponential sta-
bility property of (11), we know that if (x(t0),ξ (t0)) ∈ Ω
and ξ (t0) ∈ Ξ, then ‖ξ (t)‖ ≤ ke‖ξ (t0)‖exp(−λ (t − t0)).
By the UGB property of (15), we know that for each
0 < r ≤ R, there exists a cx(r) > 0 such that if ‖x(t0)‖ ≤ r,
then for all t ∈ R≥0, ‖x(t)‖ ≤ cx(r). This implies that if
‖(x(t0),ξ (t0))‖≤ r and ξ (t0)∈Ξ, then ‖(x(t),ξ (t))‖≤ c(r),

where c(r) := (c2x(r)+(ker)
2)1/2.

Define vx(t) = Vx(t,x(t)). We then have v̇x(t) ≤ −vx(t) +
α4(c(r))β (r, t− t0), where β (r, t− t0) := γ(kerexp(−λ (t−
t0))) is a class K L function by Khalil (2002, Lemma 4.2).
Let τ0 ≥ t0. Multiplying by exp(t − τ0) on both sides and

rearranging, we have for all t ≥ τ0,
d
dt (vx(t)exp(t− τ0)) ≤

α4(c(r))β (r, t − t0)exp(t − τ0). Integrating from τ0 to t

on both sides and multiplying by exp(−(t − τ0)), we

have vx(t) ≤ vx(τ0)exp(−(t− τ0))+ α4(c(r))
∫ t

τ0
exp(−(t−

s))β (r,s− t0)ds, which means that replacing τ0 with t0
in the above expression yields, for all t ≥ t0, vx(t) ≤
vx(t0)exp(−(t− t0))+α4(c(r))β (r,0)

∫ t
t0
exp(−(t− s))ds≤

vx(t0) + α4(c(r))β (r,0)(1 − exp(−(t − t0))) ≤ γ ′(r),
where γ ′(r) := α2(r) + α4(c(r))β (r,0). Hence, ‖x(t)‖ ≤
α−1
1 (γ ′(r)), and α−1

1 ◦ γ ′ is a class K∞ function by
Khalil (2002, Lemma 4.2). Furthermore, we have, for
‖(x(t0),ξ (t0))‖ ≤ r and ξ (t0) ∈ Ξ, ‖(x(t),ξ (t))‖ ≤ γ ′′(r),
where γ ′′(r) := ((α−1

1 (γ ′(r)))2 + (ker)
2)1/2 is a class

K∞ function. Let c ≤ R be sufficiently small such
that ‖ξ‖ ≤ c =⇒ ξ ∈ Ξ. By the above, we have
that for all ‖(x(t0),ξ (t0))‖ ≤ r < c and for all t ≥ t0,
‖(x(t),ξ (t))‖ ≤ γ ′′(r), which means that the origin of (15),
(11) is uniformly stable.

For some ε1 > 0, define T1 large enough that that

α4(c(r))β (r,T1) ≤ 1
2ε1. Substituting τ0 = t0 + T1 into the

earlier bound on vx(t), we obtain that ∀t ≥ t0 +T1,

vx(t) ≤ vx(t0 +T1)e
−(t−t0−T1)

+α4(c(r))
∫ t

t0+T1

β (r,s− t0)e
−(t−s) ds

≤ γ ′(r)e−(t−t0−T1) +
ε1
2

.

(19)

Now let T2≥T1 be chosen large enough that γ ′(r)exp(−(T2−
T1)) ≤ 1

2ε1. Then we have for all t ≥ t0 + T2, vx(t) ≤
γ ′(r)exp(−(T2−T1))+ 1

2ε1 ≤ ε1. Hence, for all t ≥ t0 +T2,

‖x(t)‖≤α−1
1 (ε1). Define ε such that ε1 = α1(ε/

√
2) and let

T ≥ T2 be large enough that kerexp(−λT ) ≤ ε/
√
2. Then

∀t ≥ t0 + T , ‖(x(t),ξ (t))‖ ≤ ( 12ε2 + 1
2ε2)1/2 = ε . Since ε

can be chosen arbitrarily small, and the above holds for all
initial conditions such that (x(t0),ξ (t0)) ∈ Ω and ξ (t0) ∈ Ξ,
it follows that the whole system (15), (11), is uniformly
asymptotically stable with K′ × (Θ−Θ) contained in the
region of attraction. �

Remark 4 Theorems 1 and 2 are intended to show that
particular stability properties are guaranteed by choosing the
gain Kφ sufficiently high; they are not intended as a practical
guide to tuning the estimator gains. Attempting to find a
numerical value for kφ , the lower bound on the eigenvalues
of Kφ , is likely to be complicated and of little practical use,
owing to the conservative nature of Lyapunov-type analysis.
In practical implementations, the gains are normally found
through a tuning procedure involving simulations or tests
with the actual system. 2

4.1 Vanishing Excitation at x = 0

So far we have only considered perturbations that are persis-
tently exciting in the sense that θ can always be estimated
from φ with exponential convergence rate. This strict re-
quirement excludes a class of perturbations where we have
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persistent excitations as long as the controlled state x is
bounded away from the origin, but where the excitation is
lost at the origin. Most importantly, this includes all pertur-
bations that vanish for x = 0. As an example, consider the

system ẋ = −x+ arctan(θx)− arctan(θ̂x). In the following
theorem, we show that under certain conditions, convergence
of the controlled state to the origin is guaranteed, even when
excitation is lost at the origin.

Theorem 3 Suppose that Assumptions 1–3 hold such that
(L1(x)+L2(x))

2 ≤ ρa3(x) for some number ρ > 0, locally
around the origin. Then for each compact neighborhood
K′ ⊂ R

2n of the origin, there exists kφ > 0 such that if Kφ is
chosen such that λmin(Kφ ) > kφ and the trajectory of (15),
(11) originates in K′× (Θ−Θ), then limt→∞ x(t) = 0 and
ξ (t) is bounded. 2

PROOF We start by following the proof of Theorem 1,
to find that we have the requirement a3(x)λmin(Kφ ) >
1
4 (a4L2(x) + L1(x))

2. As before, the UGB condition in
Assumption 3 ensures that for trajectories originating in
K′× (Θ−Θ), the state x(t) remains in a compact set K. Be-
cause L1(x) and L2(x) are bounded on any compact set, and
due to the local condition around x= 0 in Theorem 3, the in-
equality can be satisfied outside the origin for λmin(Kφ ) > kφ ,

for some kφ > 0. This results in V̇p(t,ξ ) ≤ −ζ TQ(x)ζ ,

where ζ = [‖φ̃‖, ‖θ̃‖]T, and where Q(x) is positive-definite
for each x 6= 0, and positive-semidefinite for x = 0. Define
U(x) = λmin(Q(x))/max{2a2,1}, which is a continuous
positive-definite function (due to continuity of the eigen-
values and of a3(x), L1(x) and L2(x)). Following the same
argument as in the proof of Theorem 1, we can then write
‖ξ (t)‖ ≤ β (t) := ke‖ξ (t0)‖exp(−

∫ t
t0
U(x(τ))dτ). Hence, β

is a monotonically non-increasing function, which shows
that ξ (t) is bounded.

For the sake of establishing a contradiction, suppose that x(t)
does not converge to the origin. Then there exists a δ > 0
such that for all t ∈R≥0, there exist τ ≥ t such that ‖x(τ)‖≥
2δ . From Assumption 3, ‖B(t,x)(g(t,x,θ)− g(t,x, θ̂))‖ is
uniformly bounded when ‖x(t)‖ ∈ [δ ,2δ ], and the same
holds for ‖ f (t,x)‖, because f (t,x) is locally Lipschitz con-
tinuous in x, uniformly in t, and f (t,0) = 0. Hence, the right-
hand side of (15) is uniformly bounded for ‖x(t)‖ ∈ [δ ,2δ ],
and it follows that there exists T > 0 such that for each
t ∈ [τ −T, τ +T ], ‖x(t)‖ ≥ δ . On this interval there is a de-
crease in the bounding function β ; in particular β (τ +T )≤
β (τ −T )exp(−2λ̄T ), where λ̄ =minx∈K\B(δ )U(x) is a pos-
itive number. Moreover, for any integer n> 0, there exists a
t1 > t0 such that [t0, t1], contains at least n disjoint time in-
tervals of length 2T with ‖x(t)‖ ≥ δ . The UGAS property of

the unperturbed system ẋ = f (t,x) implies that if γ(‖θ̃‖) is
sufficiently small, then ‖x(t)‖ is globally ultimately bounded
by δ . Let therefore ε be chosen small enough that if for
all t ≥ t0, ‖ξ (t)‖ ≤ ε , then ‖x(t)‖ is globally ultimately
bounded by δ . Let n≥ 0 be an integer chosen large enough

that β (t0)exp(−2nλ̄T ) ≤ ε , and let t1 be large enough that
there are at least n disjoint intervals of length 2T in [t0, t1]

with ‖x(t)‖ ≥ δ . This implies that for all t ≥ t1, ‖ξ‖ ≤ ε .
This, in turn, implies by the ultimate boundedness property
that there exists a t2 ≥ t1 such that for all t ≥ t2, ‖x(t)‖ ≤ δ .
But this contradicts our assumption that there exist arbitrar-
ily large values τ such that ‖x(τ)‖ ≥ 2δ . Hence, x(t) does
converge to the origin. �

The functions L1(x) and L2(x) represent Lipschitz-like
bounds that are typically not explicitly derived in the design
process. The condition in Theorem 3 concerns the growth
rates of these functions as x → 0, which can often be de-
termined without developing explicit expressions for the
functions.

5 Simulation Example

In the next example, we demonstrate the method on a first-
order system with a highly nonlinear and time-varying per-
turbation.

Example 6 Consider the system

ẋ = −x+ esin(t)θ +u, (20)

where θ ∈ [θmin, θmax] = [−10,10]. Here f (t,x) = f (x) =
−x, B(t,x) = 1, and g(t,x,θ) = g(t,θ) = exp(sin(t)θ). We
wish to use u to cancel the perturbation, and we therefore

let u = −exp(sin(t)θ̂). The first step is to design an up-
date law to estimate θ from the full perturbation. We first
note that [∂g/∂θ ](t,θ) = sin(t)exp(sin(t)θ), and hence

(7) in Proposition 4 is satisfied by selecting M(t,x, θ̂) =
M(t) = sin(t) with S(t,x) = S(t) = sin2(t)exp(−θ ′), where
θ ′ := maxθ∈Θ |θ |. The remaining requirements in Propo-
sition 4 can be confirmed in the same way as in Ex-
ample 4. We now check that the conditions of Assump-
tion 2 hold. We have that d(t,x, θ̃) = (θexp(sin(t)θ) −
θ̂exp(sin(t)θ̂))cos(t). Using the mean value theorem, we

find that |d(t,x, θ̃)| ≤ (1+ θ ′)exp(θ ′)|θ̃ |. We also see that

|uθ (t,x,φ , θ̂) − u(t,x, φ̂ , θ̂)| = Γ|sin(t)φ̃ | ≤ Γ|φ̃ |. 1 Mov-
ing to Assumption 3, it is straightforward to see that the
nominal, unperturbed system ẋ = −x is UGAS and that the

perturbed system is UGB (because θ and θ̂ are restricted to
Θ). Finally, we use γ(s) = exp(θ ′)s to satisfy Assumption 3.
We implement the full estimator from (8). After canceling
terms, we obtain

ż = −Kφ (Kφ −1)x−Kφ z

− sin(t)esin(t)θ̂Proj(Γsin(t)(z+Kφx)), (21)

˙̂θ = Proj(Γsin(t)(z+Kφx)). (22)

We simulate the system, letting θ vary in steps between −2
and 4 to get an impression of the response. We use the es-
timator parameters Kφ = 10 and Γ = 3. The results can be

1 We recall from Remark 2 that we can disregard the projection
when checking this condition.

7



Time (s)

C
o
n
tr
o
ll
ed

va
ri
ab
le

x

0 5 10 15 20 25 30 35 40
−4

−2

0

2

4

6

8

(a) Controlled variable, nonlinear method (solid), and gradient
method (dotted)

Time (s)

P
ar
am

et
er

es
ti
m
at
es

0 5 10 15 20 25 30 35 40
−5

0

5

(b) Unknown parameter (dashed), estimate with nonlinear
method (solid), and estimate with gradient method (dotted)

Fig. 1. Simulation results for Example 6

seen in Figure 1, where we have also plotted the response

using a gradient algorithm ˙̂θ = Γsin(t)exp(sin(t)θ̂)x, with
gain Γ = 1. Noise has been added to the measurement of
the state x used in both algorithms. The noise is added with
sample time 0.001, and has variance 1. The parameter pro-
jection is not active at any point during the simulation. 2

6 Application: Downhole Pressure Estimation During
Oil Well Drilling

When extracting hydrocarbons from underground geologi-
cal formations it is usually necessary to create a well by
drilling a wellbore. During drilling a mud circulation sys-
tem is used to transport cuttings from the drilling out of
the wellbore. The mud is pumped downhole inside the drill
string and through the drill bit, and returns to the top through
the annulus containing the drill string. The downhole pres-
sure needs to be controlled within its margins: above the
reservoir pore pressure and wellbore collapse pressure, but
below the wellbore fracture pressure. In many cases, this
margin is quite wide and the pressure can be manually con-
trolled, but as oil and gas reserves begin to be depleted,
reservoirs with narrower margins are being drilled, demand-
ing automated pressure control (see, e.g., Nygaard and Næv-
dal, 2006; Nygaard, Imsland, and Johannessen, 2006). The
downhole pressure is usually measured, but with conven-
tional equipment this measurement has low bandwidth and
is unreliable. Good pressure control therefore demands pres-

sure estimation based on topside measurements.

6.1 Modeling

Complex models of the drilling process exist, for example
in the simulator Wemod, provided by IRIS (Lage, Frøyen,
Sævareid, and Fjelde, 2000). We shall use a low-complexity
model for the development of the pressure estimation al-
gorithm (see Stamnes, Zhou, Kaasa, and Aamo, 2008). We
assume that the drilling process is described by the follow-
ing dynamic model, derived from mass balances for the drill
string and annulus:

Vd

βd

ṗp = qp−qb, (23)

Va

βa

ṗc = −V̇a +qb +qr +qa−qc, (24)

where the states pp and pc are the pressures in the top of
the drill string (standpipe pressure) and the annulus (choke
pressure), both of which are measured. Furthermore, Vd and
Va denote the volumes of the drill string and the annulus;
and βd and βa are the drill string and annulus bulk moduli,
all known. The volume flows are the inflow to the drill string
(qp), flow from the back pressure (annulus) pump (qa), and
exit flow from the annulus through the choke (qc), all mea-
sured, as well as the flow through the drill bit (qb) and inflow
from the reservoir (qr), The flow qb is given by a steady-
state momentum balance for drill string and annulus (in a
slight simplification of the model in Stamnes et al. (2008)):

pp− pc = Fdq
2
b +Fa(qb +qr)

2− s(t). (25)

The friction parameter Fd in the drill string is assumed
known, as is the function s(t) = (ρd(t)−ρa(t))ghb(t), which
describes the difference in drill string and annulus downhole
static head. We shall estimate the two remaining parameters,
Fa and qr, which will allow us to calculate downhole pressure
pb using a steady-state momentum balance for the annulus:
pb = pc +Fa(qb +qr)

2 + ρa(t)ghb. We assume that the pa-

rameters to be estimated are constant, and that (qb+qr)
2 > α

for some α > 0, which implies that we have flow into the
annulus. In order to put the system in the form used in
this paper, we write x= [Vd/βd pp,Va/βapc]

T, θ = [qr,Fa]
T,

f (t,x) = [qp,(x2/Va−1)V̇a+qa−qc]
T, B(t,x) =

[−1 0
1 1

]

, and

g(t,x,θ) = [qb,qr]
T.

6.2 Estimator Design

As before, we start by designing an update law for estimating
Fa and qr as if φ1 = −qb and φ2 = qb + qr were known.
We see that we can use a simple inversion according to
Proposition 1 to create an update law for qr:

˙̂qr = Γ1(φ̂1 + φ̂2− q̂r), (26)
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where Γ1 > 0 is a scalar gain. (For simplicity, we omit the
projection in discussing this example.) For Fa, the approach
is slightly more complicated. According to (25), we may
define an estimated flow q̂b through the bit, by the equa-
tion pp− pc = Fd q̂

2
b + F̂a(q̂b + q̂r)

2 + s(t). Subtracting this

from (25) and rearranging yields the relation−Fd(q
2
b− q̂2b)−

F̂a
(

(qb +qr)
2− (q̂b + q̂r)

2
)

= F̃a(qb + qr)
2. Define the up-

date law

˙̂Fa = Γ2[−Fd(φ̂
2
1 − q̂2b)− F̂a(φ̂

2
2 − (q̂b + q̂r)

2)]. (27)

For φ̂ = φ , we then have ˙̃Fa = −Γ2F̃a(qb + qr)
2. It is then

straightforward to prove that Assumption 1 holds with

V (θ̃) = 1
2 θ̃TΓ−1θ̃ , where Γ is the gain matrix composed of

Γ1 and Γ2. Implementation of the update law requires cal-
culation of q̂b. We find q̂b by taking the positive root of the
second-order equation defining the estimated flow through
the bit, which we assume is always real. This solution is

in turn used to find the partial derivative [∂g/∂θ ](t,x, θ̂),
which is needed in the complete implementation of the
system. Due to the quadratic terms in φ1 and φ2 in the
update law for Fa, the Lipschitz condition on uθ does not
hold globally. This can easily be rectified by modifying the
update law with a saturation, as described in Remark 3.3.
This is mostly of technical interest, however, and we make
no such modification in the update law above.

6.3 Experimental Results

The estimator has been tested in simulation using the com-
plex model Wemod (Lage et al., 2000), yielding very accu-
rate results, and on real measured data from drilling at the
Grane field in the North Sea. The results for the real drilling
data can be seen in Figure 2. The tuning used is Γ1 = 0.005,
Γ2 = 2 and Kθ = 10I. It should be noted that, although it
is common to measure the flow qc, no such measurement
is available in the data set used, and qc is therefore esti-
mated from a choke model and the available choke opening.
Given the large uncertainties in this application, the down-
hole pressure estimate is considered good.

7 Concluding Remarks

We have introduced a method for estimating unknown pa-
rameters with a modular structure, where the main design
task is to design an update law to asymptotically invert a
nonlinear equation. The modular structure allows for some
simple extensions of the perturbation estimator. In Grip,
Saberi, and Johansen (2009), the perturbation estimator is
extended to facilitate observer design for the case of partial
state measurement, by using techniques from high-gain ob-
server theory. We note that for the results presented in this

article, we can write (8) in terms of a variable x̂ = −K−1
φ z

rather than z. It is easily seen that x̂ then represents an esti-
mate of the state x. It can furthermore be confirmed that in
the case of a linearly parameterized perturbation, the design
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Fig. 2. Results for drilling application using real drilling data

×10−3

is equivalent to a standard linear observer with adaptation,
if the update law is chosen as suggested in Remark 1.
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A Parameter Projection

Let the set of possible parameters be defined by Π :=
{θ̂ ∈ R

p | P(θ̂) ≤ 0}, where P : R
p → R is a smooth

convex function. Let Π0 denote the interior of Π, and
let Θ be defined by Θ := {θ̂ ∈ R

p | P(θ̂) ≤ ε}, where
ε is a small positive number, making Θ a slightly
larger superset of Π. Consider the update function

uθ (t,x, φ̂ , θ̂) = Proj(τ(t,x, φ̂ , θ̂)), where Proj(·) is the pro-
jection from Krstić et al. (1995, Appendix E). Proj is

defined as Proj(τ(t,x, φ̂ , θ̂)) = p(t,x, φ̂ , θ̂)τ(t,x, φ̂ , θ̂), with

p(t,x, φ̂ , θ̂) given by

• p(t,x, φ̂ , θ̂) = I if θ̂ ∈ Π0 or ∇θ̂ PTτ(t,x, φ̂ , θ̂) ≤ 0,

• p(t,x, φ̂ , θ̂) =
(

I− c(θ̂)Γ∇θ̂ P∇θ̂ PT/‖∇θ̂ P‖2Γ
)

if θ̂ ∈
Θ\Π0 and ∇θ̂ PTτ(t,x, φ̂ , θ̂) > 0,

9



where Γ is a symmetric positive-definite matrix correspond-
ing to the gain matrix in the update law; ∇θ̂ PT is the gradi-

ent ofP(θ̂)with respect to θ̂ ; and c(θ̂) =min{1,P(θ̂)/ε}.

A.1 Lipschitz Continuity

We wish to show that if for each compact set K ∈ R
n, τ has

the property that for all (t,x,φ , φ̂ , θ̂)∈R≥0×K×R
n×R

n×
Θ, ‖τ(t,x,φ , θ̂)− τ(t,x, φ̂ , θ̂)‖ ≤ L2(x)‖φ̃‖, then we also

have ‖uθ (t,x,φ , θ̂)− uθ (t,x, φ̂ , θ̂)‖ ≤ L′2(x)‖φ̃‖, for some
continuous function L′2(x) > 0. In the following, we shall
outline the proof of this assertion. To do this, we have to look
at two distinct cases: when the parameter projection is ei-

ther active or inactive for both uθ (t,x,φ , θ̂) and uθ (t,x, φ̂ , θ̂)
(Case I); and when the parameter projection is active for

one of uθ (t,x,φ , θ̂) or uθ (t,x, φ̂ , θ̂), but not the other (Case

II). In the following, we shall write uθ (φ) = uθ (t,x,φ , θ̂)

uθ (φ̂) = uθ (t,x, φ̂ , θ̂), and similarly for τ .

In Case I, p(t,x,φ , θ̂) = p(t,x, φ̂ , θ̂). The property there-

fore follows from uniform boundedness of ‖p(t,x,φ , θ̂)‖,
which is easily proven. Case II occurs if θ̂ ∈ Θ \Π0, and

∇θ̂ PTτ(φ) and ∇θ̂ PTτ(φ̂) do not have the same sign.

Without loss of generality, we assume that ∇θ̂ PTτ(φ) ≤ 0

and ∇θ̂ PTτ(φ̂) > 0. In this case, we have uθ (φ) −
uθ (φ̂) = τ(φ) − (I − c(θ̂)Γ∇θ̂ P∇θ̂ PT/‖∇θ̂ P‖2Γ)τ(φ̂).
Expanding this expression, we have, after some cal-

culation, ‖uθ (φ) − uθ (φ̂)‖2
Γ−1 = ‖τ(φ) − τ(φ̂)‖2

Γ−1 +

c(θ̂)/‖∇θ̂ P‖2Γ
[

c(θ̂)|∇θ̂ PTτ(φ̂)|2+2τ(φ̂)T∇θ̂ P∇θ̂ PT(τ(φ)−
τ(φ̂))

]

. We now make the observation that, because

∇θ̂ PTτ(φ) and ∇θ̂ PTτ(φ̂) do not have the same sign,

|∇θ̂ PTτ(φ̂)| ≤ |∇θ̂ PT(τ(φ) − τ(φ̂))|. Using this for

substitution where ∇θ̂ PTτ(φ̂) occurs alone, we obtain

that ‖uθ (φ)− uθ (φ̂)‖2
Γ−1 ≤ ‖τ(φ)− τ(φ̂)‖2

Γ−1 + (c2(θ̂) +

2c(θ̂))/‖∇θ̂ P‖2Γ‖∇θ̂ P‖2‖τ(φ)−τ(φ̂))‖2. Using the prop-
erty that λmin(P)‖ζ‖2 ≤ ‖ζ‖2P ≤ λmax(P)‖ζ‖2, we find that

‖uθ (φ)− uθ (φ̂)‖ ≤ α‖τ(φ)− τ(φ̂)‖ ≤ αL2(x)‖φ̃‖, where
α = [(λmax(Γ

−1)λmin(Γ)+3)/(λmin(Γ
−1)λmin(Γ))]1/2.

B Proofs of Propositions 2–4

PROOF (PROPOSITION 2) We use the LFC Vu(t, θ̃) =
1
2 θ̃T

(

Γ−1−µ
∫ ∞
t exp(t− τ)Il(τ,x(τ)) dτ

)

θ̃ , where µ > 0
is a constant yet to be specified. We first note that
1
2 θ̃T

(

Γ−1−µI
)

θ̃ ≤ Vu(t, θ̃) ≤ 1
2 θ̃TΓ−1θ̃ . Hence, Vu is

positive-definite provided µ < λmin(Γ
−1). With φ̂ = φ , we

get ˙̃θ = −Proj(l(t,x)Γθ̃). Using the property (Krstić et al.,

1995, Lemma E.1) that −θ̃TΓ−1Proj(τ) ≤ −θ̃TΓ−1τ , we
have

V̇u(t, θ̃) = −θ̃T

(

Γ−1−µ
∫ ∞

t
et−τ Il(τ,x(τ))dτ

)

·Proj(l(t,x)Γθ̃)+
1

2
µθ̃TIl(t,x)θ̃

− 1

2
µθ̃T

∫ ∞

t
et−τ Il(τ,x(τ))dτ θ̃

≤−(1− 1

2
µ)l(t,x)θ̃Tθ̃ − 1

2
µεe−T θ̃Tθ̃

+ µ‖θ̃‖
∥

∥

∥

∥

∫ ∞

t
et−τ Il(τ,x(τ))dτ

∥

∥

∥

∥

∥

∥Proj(l(t,x)Γθ̃)
∥

∥

≤−(1− 1

2
µ −µ

√
κ‖Γ‖)l(t,x)‖θ̃‖2− 1

2
µεe−T‖θ̃‖2,

(B.1)

where κ is the ratio of the largest and smallest eigenvalue of
Γ−1. Above, we have used the property (Krstić et al., 1995,
Lemma E.1) that Proj(τ)TΓ−1Proj(τ) ≤ τTΓ−1τ , which
implies that ‖Proj(τ)‖ ≤

√
κ‖τ‖. We have also used that

∫ ∞
t exp(t − τ)l(τ,x(τ))dτ ≥ ∫ t+T

t exp(t − τ)l(τ,x(τ))dτ ≥
exp(−T )

∫ t+T
t l(τ,x(τ))dτ ≥ exp(−T )ε . From the calcu-

lation above, we see that the time derivative is negative

definite provided µ < 1/( 12 +
√

κ‖Γ‖). �

PROOF (PROPOSITION 3) For the sake of brevity, we

write M = M(t,x, θ̂) and B = B(t,x). With φ̂ = φ , we get
˙̃θ = −Proj(ΓMB(g(t,x,θ)− g(t,x, θ̂))). We use the LFC

Vu(t, θ̃) = 1
2 θ̃TΓ−1θ̃ . Using the property (Krstić et al.,

1995, Lemma E.1) that −θ̃TΓ−1Proj(τ) ≤ −θ̃TΓ−1τ ,

we have V̇u(t, θ̃) ≤ − 1
2 θ̃TMB(g(t,x,θ) − g(t,x, θ̂)) −

1
2 (g(t,x,θ) − g(t,x, θ̂))TBTMTθ̃ . Since g(t,x,θ) is con-
tinuously differentiable with respect to θ , we may write,
according to Taylor’s theorem (see, e.g., Nocedal and

Wright, 1999, Theorem 11.1), g(t,x,θ) − g(t,x, θ̂) =
∫ 1
0 [∂g/∂θ ](t,x, θ̂ + pθ̃)θ̃ dp. Hence, we have V̇u(t, θ̃) ≤
− 1

2

∫ 1
0 θ̃T(MB[∂g/∂θ ](t,x, θ̂ + pθ̃) + [∂g/∂θ ]T(t,x, θ̂ +

pθ̃)BTMT)θ̃ dp ≤ −∫ 1
0 θ̃TPθ̃ dp = −θ̃TPθ̃ , which proves

that Assumption 1 holds. �

PROOF (PROPOSITION 4) We use the LFC Vu(t, θ̃) =
1
2 θ̃T

(

Γ−1−µ
∫ ∞
t exp(t− τ)S(τ,x(τ))dτ

)

θ̃ , where µ > 0
is a constant yet to be specified. First, we confirm that
the Lyapunov function Vu is positive-definite. We have
1
2 (λmin(Γ

−1) − µλ ′
S)‖θ̃‖2 ≤ Vu(t, θ̃) ≤ 1

2λmin(Γ
−1)‖θ̃‖2,

where λ ′
S = sup(t,x)∈R≥0×K λmax(S(t,x)). It follows from

this that Vu is positive-definite provided λmin(Γ
−1)−µλ ′

S >

0, which is guaranteed if µ < λmin(Γ
−1)/λ ′

S. When

we insert φ̂ = φ , we get the same error dynamics
as in the proof of Proposition 3. Following a calcu-
lation similar to the proof of Proposition 2, we get

V̇u(t, θ̃) ≤ −(1− 1
2µ)θ̃TS(t,x)θ̃ − 1

2µεexp(−T )‖θ̃‖2 +

µ
√

κMS‖Γ‖MMLg‖θ̃‖(θ̃TS(t,x)θ̃)1/2, where MS and MM

are bounds on ‖S(t,x)‖ and ‖M(t,x, θ̂)‖ respectively, and
κ is the ratio of the largest and the smallest eigenvalue
of Γ−1. We may write this as a quadratic expression

with respect to [(θ̃TS(t,x)θ̃)1/2, ‖θ̃‖]T. It is then eas-
ily confirmed that the expression is negative definite if
µ < 2/(1+κM2

S‖Γ‖2M2
ML

2
gε−1exp(T )). �
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