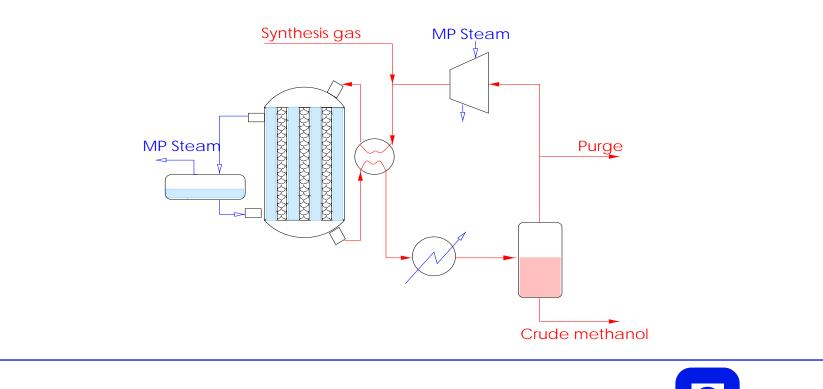
Modeling and optimization of a methanol synthesis loop with deactivating catalyst

Ingvild Løvik and Terje Hertzberg Department of Chemical Engineering Norwegian University of Science and Technology, Trondheim


> Magne Hillestad Statoil R&D Centre, Trondheim

PROCESS DESCRIPTION

Synthesis gas is converted to methanol over a Cu/Zu/Al $_2O_3$ catalyst:

 $\begin{array}{c} CO_2 + 3H_2 \Leftrightarrow CH_3OH + H_2O \\ CO + H_2O \Leftrightarrow CO_2 + H_2 \end{array}$

Typical operating conditions: 250° C, 80 bar

OPTIMIZATION PROBLEM

Maximize:

$$Profit = \int_{t_o}^{t_l} (F_{MeOH} \cdot P_{MeOH} + F_{Steam} \cdot P_{Steam}) dt$$

Subject to:

 $T_{reactor}^{max} \le 543K$ $513K \le T_c \le 533K$ $Q_{comp} \le 1.2 \cdot Q_{comp}^{ref}$ $2 \le R \le 5$

the process model

Prices (Metanex -98, Edgar and Himmelblau-89):

 $P_{MeOH} = 115$ USD/ton , $P_{Steam} = 11$ USD/ton

SOLUTION APPROACH

Control vector parameterization

- $\bullet T_{\rm C}$ and R discretized as piecewise constant profiles
 - easy to implement in real operation
- •8 intervals used
- the path constains was converted to end point constrains by integrating the constraint violation
- interior point constrains used to improve convergence

Implemented in gPROMS and gOPT

RESULTS Maximum reactor temperature - below 543 K: 1.0 0.8 0.6 0.7 0.2 0.0 ~50⁰ Time [days] ,000 500 0 540 540 530 530 17. mox 18. ₂50 \$₇₀ 510 Trimax / 50⁰ `\$₀₀ 0°00 22 500 100 100 51 500 100 100 151 Ó

CONCLUSIONS

- •The methanol synthesis reactor system was modeled and optimized
- Total profit can be increased by 3. 2+ 0.8*10⁶ USD or 0.8+0.2 percent if the process is operated optimal
- Important to consider the reactor system, not only the reactor (Løvik et. al. -98)
- •The method applies to all fixed-bed reactor systems

Future work:

- Implementing issues :
 - -update activity from process data
 - -repeated optimization