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Abstract

In this paper we propose surge and stall controllers for a
close coupled valve in a compression system. A Moore-
Greitzer model is presented for the compressor and the
valve. The valve modifies the characteristic of the com-
pressor and allows for stable operation beyond the original
surge line. The design tool used is backstepping. Un-
der the assumption of no disturbances, global uniform
asymptotic stability is proven using feedback from mass
flow. In the case of mass flow and pressure disturbances, a
damping term is included in the controller, and feedback
from mass flow and pressure is employed. Global uniform
boundedness is proven. The proposed controllers do not
rely on feedback from rotating stall amplitude.

1. Introduction

If the flow through a compressor is throttled to the surge-
line, the flow becomes unstable. This instability can take
the form of either rotating stall, surge or both. Surge is
an axisymmetric oscillation of the flow which reduces the
compressor efficiency, and can possibly damage the com-
pressor. Rotating stall is a circumferential variation of the
flow which results in a reduced pressure rise. A number
of approaches to control of surge and rotating stall have
been proposed. A review of the different approaches can
be found in [1].

The use of a close-coupled valve (hereafter named CCV)
for control of compressor surge was studied in [10]and [11].
Experimental results of compressor surge control using a
CCV was reported in [2]. In [11] this strategy was com-
pared, using linear theory, to a number of other possible
methods of actuation and sensing. The conclusion was
that the most promising methods of surge control is to
actuate the system with feedback from the mass flow mea-
surement to a CCV or an injector. Here we will study the
use of a CCV as a means of controlling both surge and
rotating stall. In order to include the CCV in a model of
the compression system, we use the modeling technique
of [9]. A three state Moore-Greitzer model including the
CCYV is presented.

Here we will use backstepping [5] to derive a control law
for a CCV which gives a GUAS equilibrium beyond the

original surge line. The controller will ensure avoidance
of rotating stall as well as surge. When no disturbances
is present, an upper bound on the positive slope of the
compressor characteristic is the only system parameter re-
quired for implementation.

As in [10], disturbances in the pressure rise will be con-
sidered and in addition we will also consider disturbances
in the plenum outflow. Under mild assumptions on the
disturbances, global uniform boundedness will be proven
in the presence of both pressure and mass flow distur-
bances.

Backstepping was used in [6] and [7] to design anti surge
and anti stall controllers when the throttle is the control
variable. In contrast to this, we use the pressure drop
across the CCV as the control variable. In [6] and [7] the
controller uses feedback from mass flow and pressure. As
will be shown, the application of the backstepping pro-
cedure to CCV control, in the case of no disturbances,
results in a control law which uses feedback from mass
flow only.

As opposed to throttle control, CCV control modifies
the compressor characteristic. This allows for, at the cost
of a pressure loss over the valve, recovery from rotating
stall beyond the surge line. Although the pressure rise
achieved in the compression system with a steady pressure
drop across the CCV is comparable with the pressure rise
achieved when the machine is in rotating stall, the CCV
approach is to prefer as blade vibration is avoided. This
is due to the fact that when the compressor is in rotating
stall, the stall cell(s) are rotating at a fraction of the ro-
tational speed of the rotor, and the blades are moving in
and out of the stalled flow [8].

2. Including a CCV

Greitzer model
A compressor in series with a CCV will be studied in the
following. With close-coupled is understood that the dis-
tance between the compressor outlet and the valve is so
small that no significant mass storage can take place [10].
The equivalent compressor characteristic is given as

\I’e((ﬁ) = \I’C(‘f)) - \I’v(ﬁb);

in the Moore-

(1)



where ¥.(¢) and ¥,(¢) are the compressor pressure rise
and valve pressure drop respectively and ¢ is the axial
mass flow coefficient. The CCV has a characteristic given
by

,(¢) = $¢ (2)

where v > 0 is proportional to the valve opening. We now
set out to repeat the modeling and Galerkin approxima-
tion of [9] with the equivalent characteristic ¥, replacing
U.. Equation (5) of [9] which gives the pressure rise across
the compressor is modified according to
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where p; and p. is the static pressure at the entrance and
exit of the compressor, p is the density, U is the wheel
speed at mean diameter, N is the number of compressor
stages, F'(¢) is the pressure rise coefficient in the blade
passage, a is the reciprocal time-lag parameter of the blade
passage, 6 is the angular coordinate around the wheel and
¢ is nondimensional time defined as £ = Ut/R where t is
the actual time and R is the mean wheel radius.

Using (3) as a starting point and following [9] the fol-
lowing model is found
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where 1, ¢ and J is the pressure rise coefficient, axial flow
coefficient and square of amplitude of angular disturbance

(rotating stall) of the axial flow coefficient respectively, B
is Greitzer’s B-parameter and

®(v) = V4 (7)

is the throttle characteristic. For a definition of the pa-
rameters in the model, see [9]. Differentiation denoted as
(") is wrt €. The cubic compressor characteristic

V(o) = ¢60+H<1+g<%— )—% (%— >3> , (8)

where the parameters ¢, > 0, H > 0 and W > 0 are
defined in [9] has been used. The nondimensionalization
employed causes the usual family of constant speed lines in
the compressor map to collapse into the single curve given
in equation (8). The surge line, which passes through the
local maxima of the constant speed lines, is reduced to the
local maximum point of ¥.(¢).

J =

The compressor is in equilibrium when d) = ¢ =J=0.
If J(0) = 0 then J = 0 and the equilibrium values ¢y and
1 are given by the intersection of ¥.(¢) and the throttle
characteristic. If J(0) > 0, and the throttle characteristic
crosses ¥, to the left of the local maximum, the compres-
sor may' enter rotating stall and the equilibrium values
¢o and 1 are given by the intersection of ¥.(¢) and the
stall characteristic ¥,s(¢) which is found by analyzing (6).
It is seen that J = 0 is satisfied for J = 0 or
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Inserting (9) in (5) and setting ¢ = 0 gives the expression

for ¥ 4(¢) :
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H H~?

Wes(9) = Wal0)+ W) i) & (10

where

W, (0) =¢60+H<1— s ()3 (- >3> (1)

is the stall characteristic found when the CCV is not
present. In figure 1 the various characteristics are shown.
As can be seen, the throttle line crosses ¥, in the un-
stable area, and the compressor would go into rotating
stall or surge. By introducing the CCV, the throttle line
crosses the equivalent characteristic ¥, in an area of neg-
ative slope. This new equilibrium is thus stable.

1.6 T T

14| ===

¥=0.75 ; ‘
0.5 ’

12

y (pressure rise)

-0.2

-0.4
-0.4 -0.2 0

0.6 0.8 1

0.2 0.4
¢ (mass flow)

Figure 1: Compressor, CCV and throttle characteristics. The throt-
tle gain is y7 = 0.61. The CCV-gain is 7 = 1.81. Other parameters
are taken from [9]

1 This depends on the numerical value of B. Small B gives rotat-
ing stall, and large B gives surge [9].



Notice that ignoring the terms including the CCV gain ~
in the above equations results in the model of [9]. Notice
also in that the CCV introduces additional damping in
the J-equation, see equation (6).

This motivates for designing the CCV-pressure drop
such that squared rotating stall amplitude J can be sta-
bilized at J = 0. It turns out by examining equation (6)
that the required pressure drop to render the bracketed
part negative, and thus ensure that J < 0, is given by

(12)

In calculating (12) it was assumed that ¢ > 0, which is not
restrictive as rotating stall only occurs for forward flow.

A controller that enables the compressor to operate on
both sides of the peak of the characteristic without going
into surge or rotating stall is now to be designed.

3. Change of coordinates
In order to simplify the analysis a change of coordinates
is performed [10] :
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Using (13) on the model (4)-(6) leads to the transformed
equations
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%. Obviously k3 >0, while k; < 0 if the equilibrium is
in the unstable region of the compressor map and k; >0
otherwise. The sign of k2 may vary.

4. Controller design using backstepping

Our aim will be to design a controller u = u(¢) such that
the compressor can be operated in the previous unstable
area of the compressor map without going into rotating
stall or surge oscillations. It will be a point to keep the

sensing requirements as low as possible, that is avoid sens-
ing of stall amplitude. The control variable is chosen as
the CCV pressure drop:

u=0,(¢). (19)
The backstepping methodology of [5] is now employed to
design a controller for (14)-(16).
Step 1. The two error variables z; and zy are defined as
z=vand 2 = $ —a. (20)
The control Lyapunov function (clf) for this step is chosen
as

Vi = 2B%.2} (21)

with time derivative

Vi =2 (—@(zl) + 29 + a) . (22)
The load is assumed passive, that is 1/3@(1/;) > 0 Vp. We
have

PB(h) >0 = —2P(21) <0 (23)

As it is desirable to avoid cancelation of useful nonlinear-
ities in (22), the stabilizing function « is not needed and
accordingly a = 0, which gives

Vl = —@(21)21 + 2129. (24)
Although a = 0 here, the notation of z; and z, is kept in
the interest of consistency with section 5.

Step 2. The derivative of z5 is

1 . 3H (¢ w2J
h=p (—zl-i—\Ifc(zg)—TJ(W —1> - 27 —u> . (25)

The clf for this step is

le 5 J

Vo=Vid oo+, (26)
and V2 is calculated as
) . . ¢ 2
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By choosing u according to

u = (c2 + 6)za, (28)

where ¢ > 0 and § > 0 are constants, V2 can be written

vé:i:(vg).

i=1 ¢

(29)



The four terms in (29) are

(VQ)1 — —2d(z), (30)
(V2)2 = 2(Wo(22) — e220), (31)
) 4t
(V2)4 = —[J [i] (33)

Due to the passivity of the throttle, (Vg) < 0. As shown
1
in [3], if ¢2 is chosen as

2

k3
cQ>am2a>——k1,

1k (34)

where a,, is the maximum positive slope of the compressor

characteristic, then (V2)2 < 0. Provided (12) is satisfied,

(V2)3 < 0. Finally, 6 can always be chosen so that

3H [ ¢ w2\ >
?(w 1)*@) >0,

detP:§—< 2 (35)
4
and consequently (V2)4 < 0. The matrix P(¢) has the

form

1 3H (¢ w2
1 T(W 1)+47

Choosing ¢ and § so that (34) and (35) are satisfied, Va
is upper bounded as

Vo < —U(21, 20, J), (36)

where U(z1, 22, J) is a radially unbounded pdf. Conse-
quently the origin of the system system is GUAS. By com-
bining eqs (19) and (28) the control law for the CCV-gain
is found:
¢+ o
(c2+6)

Notice that this control law requires sensing of mass flow
¢ only.

(37)

5. Disturbances

In a real compression system there will be disturbances.
In [10] the effect of pressure disturbances on the two state
Greitzer model [4] was studied. Here we will derive a
controller for the three state Moore-Greitzer model in the
presence of both time varying flow disturbances <i>d(t) and
pressure disturbances W,(¢). When regarding the Moore-
Greitzer model as a model of a jet engine, Wy(t) would
correspond to flow field disturbances caused e.g. by large
angle of attack, and ®4(t) to combustion induced fluc-
tuations in outlet pressure [1]. In the presence of these

disturbances the differential equations describing pressure
and mass flow can be written

o (8- 80) - da(t))

b= 1 (oridrran- (L 1) - )
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where u is defined according to (19). The disturbances
are assumed to be bounded, that is [|[®4]lco and [|¥y]|s
exists.

The backstepping procedure is now used to design a
controller that ensures boundedness of the states in the
presence of disturbances. To accomplish this, damping
terms are included in the controller.

Step 1. Asin the previous section, the two error variables
z1 and 2z are defined as

(38)

(40)

=t and 20 = — o (41)

The control Lyapunov function (clf) for this step is chosen
as

Vi = 2B%.2} (42)

with time derivative

Vi=2 (—‘i)(zl) + 20 — By(t) + a) . (43)
The load is again assumed passive, see equation (23). The
virtual control « is chosen as

o = —dlzl, (44)

where —dj z; is aAdamping term to be used to counteract
the disturbance ®4(¢). Vi can now be upper bounded
according to

a2,

Vi <-®
1 < (z1)21 + 2122 + 1d,

(45)

To obtain the bound in (45) Young’s inequality has been
used to obtain

_é 5, 1%all%
(I)d(t)21 S d121 + —F. (46)
4d,
Step 2. The LFK for this step is chosen as
l, J
VZ Vl + 522 + - (47)
The derivative of zs is
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Using (45) and (48), V5 can now be calculated and upper
bounded as

- i @4l 5 &N
Vo < =®(z1)z1 4+ —2 4 22 [Ve(0) + Tyu(t) —u
4d,
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Control law
To counteract the effect of the disturbances, another
damping factor d, must be included, and « is chosen as

2
u = (c2+08)z2 — k3 (@®+ 3az3) + do2o <1 + d—1>

4B?
N dy . N
p— 2 p— —_ p—
kad? — b+ 5 (~(21) +9). (50)
where ¢y satisfies
c2 > |k (51)

Notice that this control law requires knowledge of the
throttle characteristic, the coefficients in the compressor
characteristic and the B-parameter. In addition feedback
from pressure is needed. Inserting (50) in (49) gives the
bound

Vo < —(ca+k1)z3 —ks(zs +30°23) — B(21)z
: dy - &,
HaalllWilloo + 522l @dllo — 55d22

|®4ll%, 2 J
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¢ 214w
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Using Young’s inequality twice gives
. U2
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The final upper bound for V5 can now be written as
’ L& 2 L& 2
Vo < =U(z1, 22, ) + —1@all5 + —[Walll, (55)
K1 K2
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U(z1,22,J) = (e2+ kl)zg + ]Cg(Z;l + 3a2z§) + <i>(z1)z1
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is radially unbounded and positive definite, provided 6 is
chosen according to (35), ca is chosen according to (51),
and W, (¢) satisfies (12). This implies that V5 < 0 outside
a set Ry . According to [5] the fact that Va(z1, 22, J) and
U(z1,22,J) is positive definite and radially unbounded,
and Vs (21, 22, J) is smooth implies that there exists class-
K~ functions 1, B2 and 3 such that

Bi(lz]) < Va(z) < Ba(lz]) }
Bs(|z]) < U(2)

where z = (21 2 J)T. This implies that z(t) is globally
uniformly bounded and that z(¢) converges to the set

R= {z 2l < Bt o Byo 531<”‘I’d”3° " “‘I’d“30> } |

(58)

K1 K2

It should be noted here that once the bounds on the dis-
turbances ||®4||o and ||¥4]/os are known, the size of the
set R can be made arbitrary small by choosing the damp-
ing factors d; and dy sufficiently large.

Also note that if , as in [10], only pressure disturbances
$,4(t) are considered, the simple controller (28) is suffi-
cient, provided a damping term ds 25 is added to u.

6. Simulations

In this section some simulation results of the proposed
controllers are presented. In figure 2 the response of sys-
tem (4)-(6) with controller (28) is shown. The throttle
gain is set at yr = 0.61, resulting in an unstable equilib-
rium for the unactuated system. The B-parameter is set
to B = 0.5. This causes the compressor to go into rotating
stall, and J increases until J, is reached. At £ = 100 the
controller is switched on, and J decreases until J = 0 is
reached. The controller parameters were (c2 +6) = 1. As
can be seen in the lower right plot of figure 2, there is a
steady pressure drop across the CCV.

In figure 3, the B-parameter has been set at B = 1.9.
As can be seen, the compressor is undergoing severe
deep surge oscillations. At £ = 200 the controller (28)
is switched on, and the compressor is stabilized. The
throttle is unchanged, and the controller parameters were
(62 + 5) =0.75.

The effect of disturbances in mass flow and pressure is
shown in figure 4. The B-parameter is B = 0.5 and the
compressor stalls. The pressure disturbance and mass flow
disturbance are both white noise of amplitude 0.1. The
control law (50) with parameters (c; + 6) = 0.3, d; = 0.1
and d» = 0.05 is switched on at ¢ = 100, bringing the
compressor out of rotating stall, and damping the distur-
bances.
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Figure 3: Stabilization of surge

7. Conclusion

Controllers for a close-coupled valve in series with a com-
pressor has been presented. Compressor and valve is de-
scribed by a three state Moore-Greitzer model. The con-
trollers make it possible to operate the compressor beyond
the surge line. Without disturbances a GUAS equilibrium
point is ensured, and in the presence of mass flow and pres-
sure disturbances global uniform boundedness is proven.
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