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‘ Abstract \

In this paper we present the design of a modified Extended Kalman Filter
(EKF) for the Norwegian student satellite nCubell. The EKF determines the
attitude of the satellite from available measurements which are the position
of the Sun and the magnetic field of the Earth. By using the Newton-Euler
optimalization algorithm, the two measurements are combined to produce a
single measurement that exactly determines the estimation problem. Simu-
lations show that the modified filter not only maintain previous performance,
but improves it. The increased performance is the result of the determination
system now exploiting static observability instead of dynamic.

‘ Introduction \

The purpose of this paper is to further develop the Extended Kalman Filter
designed for the Norwegian cubesat satellite, nCubell. The filter is based on
observations of the Sun‘s position and the Earth's magnetic field. There ex-
1st numerous papers and articles on the problem of attitude determination of
spacecrafts, where the EKF is one among the many presented. Because of its
small size, the nCube satellite shown in Figure 1 has limited computational
power and as a result, previous versions of attitude determination schemes
have been proven too computational demanding. In order to overcome this
limitation, we propose in this paper to solve the problem using an optimiza-
tion algorithm to combine the two vector measurements into one quaternion
based attitude measurement.

Figure 1: The nCube satellite Photo:NTNU Info/Nina E. Tveter.

Satellite Model

When modeling the satellite, the following frames of reference will be used:
B ECI - Earth-centered inertial frame, .%;

B ECEF - Earth-centered Earth fixed frame, %¢

B Orbit-fixed reference frame, %,

B Body-fixed reference frame, %y

Kinematics

To ensure global solutions, we will describe the attitude kinematics in the
form of Kuler parameters. The parameters are defined from the angle-axis
parameters 0 and K and defines the rotation matrix

Re(n,€) = 1+ 2ne” +26*€, (1)

The satellites kinematic equations may now be expressed as
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where g = (1,€)", can be treated as a unit quaternion.

Dynamics

Derived from elementary ridgid-body mechanics, the satellite’s dynamic
equations of motion is given by

of = (1) (o) | of)+ 7] (4)

where * denotes the vector cross product operator, | is the satellite's inertia
given in the body frame .y, wibb 1s the angular velocity of the body frame
relative to the ECI frame .%;, T2 is the external torques acting on the satellite.
We assume that the only noticeably external torques are the actuator

torque, 'tg, and the gravety gradient torque ,Tg, defined as

(m®)*B(t) ()
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where mP is the magnetic moment exerted by the magnetic torques, BP(t)
is the geomagnetic field and ¢j is the direct cosine of the rotation matrix
where R = |¢; C; C3].

Discrete satellite model

In order to use the above presented nonlinear model in the EKFEF design, it

has to be linearized. By defining the state vector, X = [q a)gb} T, the satellite
model can be written in the state space form X = f(t,x, 72). Because there
are no control torque while attitude determination is performed, we only
linearize the model with respect to the state vector to obtain

)
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The linearized satellite model may now be expressed in a general discrete
form as

Xkt1 = DX+ ExWic (9)
where
Ex = EAt (10)
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and At 1s the step size and K is the step number.

Sensor Models

Light

The Sun sensor consists of six Light Dependent Resistors (LDR) placed on
each of the sides of the satellite, and measures the Suns position relative
to the satellites body frame. In order to use the measurement, knowledge
of the Suns position relative to the satellites orbital position is needed for
comparison. The Sun's position relative to the satellite may be given by

s =R (12)

where §0 is the Sun'‘s position when the Earth passes vernal equinox, R? is
the rotation matrix defined by the time-varying Sun orbit parameter, Ag, and
the elevation of the Sun, &s.

IGRF

The magnetic field over the Earth's surface is highly varying and a simplified
version is needed to be of practical use. The IGRF model is a series of
mathematical models of the Earth’s main field and its annual rate of change.
The vector B® given by the IGRF model is transformed into B° using the
following relations

B — R,(0)Ry(i)R,(Q — 0)B® (13)
RO — Rx(g)Rz(v 4 g)BOC (14)

where w, I, 0, and v are the satellites Keplerian elements. Discrete measure-
ments are produced by rotating the references s° and B° with the satellites
actual attitude and adding disturbances as

I T

where Vi 1s measurement noise.
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Attitude EKF

When employing unit quaternion in representing the attitude it is crucial
to maintain the constraint on the quaternion norm. For this, we will use
quaternion normalization _

Ok+1

— (16)
[| Ok,

Due to numerical round-offs, the introduction of (16) leads to difficulties in
maintaining a singular covariance matrix, Px. The solution is to reduce the
dimension of Pk by one, and is done by removing 11, denoted by the subscript
r, from the state vector. By using the unit quaternion property,

Ok+1 =

p'p=n°+e'e=1, (17)

an update for the complete quaternion may be achieved by the following
EKFE algorithm

Kr,k — ISr,kHEk[H r,ler,kH Ek =+ Rr]_l (18&)
Vi = yPn,k X Yy (18b)
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where Kg k and K¢k are submatrices of the Kalman gain matrix, Kk, R
and Qg are design matrices describing the expected covariance of the mea-
surement noise, Vg, and the process noise, Wg. The measurement matrix, Hy,
1s defined and approximated as

[2)* 0
= [2<§%D>< oii] (19)
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where YP is (15) with respect to predicted states.

Problems with the EKF

Several researchers have reported poor EKFE performance for system that
exploits dynamic observability. It is a significant factor in estimator design
when the necessary variations of the system is slow compared to the rate
at which new measurements are acquired, and it implies that long intervals
of subsequent measurements do not generate observability of the complete
state vector.

While the above presented attitude determination problem is overdeter-
mined, the two measurements are individually under determined. By us-
ing the approximated measurement matrix, (19), the above presented EKF
treats the two measurements separately, making the overall system dynam-
ically observable. Dynamic observability occurs when the system relies on
variations in the system states or time-varying measurement matrices to
achieve observability. It reduces the performance of the EKF in two ways.
First, the uncertainty of the state estimates due to linearization increases
the corruption of the covariance. Secondly, the accuracy of the covariance
matrix’'s ability to capture important information from past measurements
reduces. This information is crucial because combined with later measure-
ments it generates observability.

Modified Attitude EKF

The Gauss-Newton algorithm is a numerical optimization algorithm that
uses line search in minimizing the squared-error function

Q°=¢ &= (y>—My2)"(y°— MyR) (20)
where R0 0
=[O .

By applying the Gauss-Newton algorithm on the two vector measurements
we obtain a quaternion, Qgk, which is now used as measurement. The EKF‘s
measurement matrix are now reduced to a constant 3 x 6 matrix and the re-
sulting EKF*s calculation load is reduced by almost two thirds. The modified

EKEF is given by
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where

Hrk = [I3x3 Oax3] (23)

‘ EKEF Performance \

The attitude of the nCube is investigated by simulating the satellite as a
oravity-gradient stabilized satellite actuated by means of electromagnetic
torques. The satellite 1s simulated in continuous-time, while the attitude de-
termination is, as it would in real life, run in discrete-time. The distinction
is performed in order to make the simulations as close to real life as possi-
ble, and thus obtain a more actual performance analysis. The measurement
disturbance is assumed uncorrelated white Gaussian noise with magnitude
of 4.3312-107° for the magnetometer and 1.6374-107° for the sun sensor.
The process disturbance contains several different components, whit the re-
sulting disturbance modeled as 8.5-107° for &1, &, and & and 8.5-10712
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Figure 2: Euler angles and estimation errors
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Figure 3: Angular velocities and estimation errors




