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Abstract: In this paper a result on attitude tracking control of a micro satellite by integrator
backstepping based on quaternion feedback is presented, and the controller is shown
to render the system equilibrium point UGAS by application of the LaSalle-Yoshizawa
theorem. This is a part of a study of possible control methods for the spacecraft ESEO,
a spacecraft included in the SSETI project initiated by ESA. ESEO is actuated by four
reaction control thrusters and one reaction wheel, and simulation results based on data
from the satellite are presented.Copyright c© 2005 IFAC
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1. INTRODUCTION

1.1 Background

The European Space Agency (ESA) has initiated a
project named Student Space Exploration & Tech-
nology Initiative (SSETI), a project where students
from twelve European countries are collaborating in
building the European Student Earth Orbiter (ESEO).
Based on this project, we have started an investiga-
tion of possible control methods. ESEO is designed
to be60 × 60 × 80 cm3, and its weight should not
exceed 120 kg. For attitude and orbit control, the
ESEO will use one reaction wheel for control of the
pitch movement, four thrusters for attitude control
(ACS thrusters), one main orbit control thruster (OCS
thruster) for orbital maneuvers, and additional four
reaction control thrusters (RCS thrusters) used to cor-
rect orbital maneuvers since the OCS thrust vector
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might not go through the center of mass. The RCS
thrusters are also used as a redundancy for the ACS
thrusters. The ESEO will take pictures of both the
earth and the moon, in addition to performing sev-
eral attitude maneuvers to test and qualify the attitude
control and determination system. Several linear and
nonlinear attitude control approaches for the ESEO
has been proposed in (Antonsen, 2004) and (Topland
and Gravdahl, 2004). The next mission planned for
the SSETI project is the European Student Moon Or-
biter (ESMO), which is proposed to be built similar to
ESEO. For more information about the SSETI project,
see http://www.sseti.net.

1.2 Contribution

The possibility to perform attitude tracking by a satel-
lite serves important purposes for spacecraft missions.
For satellites with limited supply of electric power,
and especially those depending on electric propulsion
for attitude and orbit control, the possibility of track-
ing a sun-optimal trajectory can be vital for long-life



missions. Some satellites must have the possibility for
attitude tracking to be able to complete the objec-
tives of the mission, for instance satellites sent out
to take pictures or collect measurements from objects
far away, or maintain high precision pointing towards
object on the ground, as proposed in (Romano and
Agrawal, 2003). Also, increasing demands on the use
of satellites as communication nodes makes it nec-
essary for satellites to track other satellites passing
by, with a high degree of accuracy, with intention of
transmitting or receiving data.

In this article we propose a quaternion-based integra-
tor backstepping approach for tracking a desired rota-
tion path for the ESEO, with use of the ACS thrusters
and a reaction wheel. A somewhat similar approach
to attitude tracking by means of magnetorquers only
has been proposed in (Wanget al., 1998), where a
backstepper is used for attitude control in conjunction
with a sliding mode controller for tracking of the de-
sired angular velocity. Also, a similar controller has
been derived in (Wen and Kreutz-Delgado, 1991) as a
feedback linearizing controller with constant feedback
gains. Attitude tracking of rigid bodies without use
of angular velocity feedback has been proposed in
(Akella, 2001) and more generally in (Caccavale and
Villani, 1999). The concept of integrator backstepping
was according to (Fossen, 2002) introduced in the
late eighties. Quaternion feedback control based on
Lyapunov stability theory, the wider group in which
integrator backstepping adheres to, was proposed in
(Fjellstad, 1994) for regulation of underwater vehi-
cles, and its application to spacecraft rotation was
examined in (Joshiet al., 1995), and later in (Jensen
and Wisniewski, 2001).

The advantage of a four-parameter attitude represen-
tation such as quaternions as opposed to more con-
ventional three-parameter representations as the Euler
angle conventions, is the avoidance of singular points
in the representation, together with better numerical
properties (Egeland and Gravdahl, 2002). However,
the use of redundant parameters to avoid singularities
also includes a redundancy of the mathematical rep-
resentations for a given physical attitude. Therefore,
a given physical attitude for a rigid body will have
two mathematical representation, where one of these
includes a rotation of±2π about an axis. For equilib-
rium points, care must be taken to avoid that one of the
mathematical representations of a given attitude is left
unstable, causing an unwanted or less optimal rotation
of the satellite to the desired attitude.

The rest of the paper is organized as follows: Section
2 defines the different reference frames used and re-
views the mathematical models of rigid-body dynam-
ics and kinematics. The controller design is performed
in section 3, and simulation results of the ESEO with
the derived controller is presented in section 4. Con-
clusions and possibilities of future work comprises
section 5.

2. MODELING

2.1 Coordinate frames

The different reference frames used throughout the
paper are given as follows:

Earth-Centered Inertial (ECI) Reference Frame
This frame is denotedFi, and has its origin located
in the center of the earth. Itsz-axis is directed along
the rotation axis of the earth towards the celestial north
pole, thex-axis is directed towards the vernal equinox,
and finally the direction of they-axis completes a right
handed orthogonal frame.

Orbit Reference FrameThe orbit frame, denotedFo,
has its origin located in the mass center of the satellite.
Thez-axis is pointing towards the center of the earth,
and thex-axis is directed forward in the travelling
direction of the satellite, tangentially to the orbit.
Assuming a near circular orbit, the orbit frame rotate
relative to the ECI frame with an angular velocity of
approximately

ωo ≈
√

µg

r3
c

(1)

whereµg is the Earth’s gravitational coefficient and
rc is the distance from the frame origin to the center
of the earth. Satellite rotation about thex−, y− and
z−axis is named roll, pitch and yaw respectively,
which constitute the attitude of the satellite.

Body Reference FrameThis frame has, similar to the
orbit frame, its origin located in the satellite center
of mass, but its axes are locked to the satellite and
coincide with the principal axis of inertia. The frame
is denotedFb.

Desired Reference FrameThis is a rotating frame
that describe the desired rotation of the satellite, and
is denotedFd.

2.2 Kinematics

Rotation between the previously described reference
frames is done by rotation matrices, members of the
special orthogonal group of order three, i.e.

SO(3) = {R|R ∈ R3×3,RT R = I, detR = 1}
whereI is the3× 3 identity matrix. A rotation matrix
for a rotationθ about an arbitrary unit vectork can be
angle-axis parameterized as

Rk,θ = I + S(k) sin θ + S2(k) (1− cos θ) (2)

and rotation of a vectorr from framea to frameb is
written asrb = Rb

ar
a. In general, the rotation matrix

describing rotations from the orbit frame to the body
frame can be described by

Rb
o = (c1 c2 c3) (3)



where the elementsci are the directional cosines.
The time derivative of a matrixRb

a can according to
(Egeland and Gravdahl, 2002) be expressed as

Ṙb
a = S (ωa

ab)R
b
a = Rb

aS
(
ωb

ab

)
(4)

whereωb
ab is the angular velocity of frameb relative

to framea represented in frameb andS (·) is the cross
product operator given by

S (ω) = ω× =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 , ω =




ωx

ωy

ωz




Similar to (4), the time derivative of the directional
cosines in (3) can be expressed as

ċi = S (ci)ωb
ob

The rotation matrix in (2) can be expressed by an Euler
parameter representation given as

Rη,ε = I+2ηS(ε) + 2S2(ε) (5)

where

η =cos (θ/2) ∈ R (6)

ε =k sin (θ/2) ∈ R3 (7)

are the Euler parameters, which satisfies the constraint

η2 + εT ε = 1 (8)

A vector consisting of the Euler parameters

q =
[
η εT

]T

is in the following treated as a unit quaternion vector,
and referred to as a quaternion. The inverse rotation is
given by the complex conjugate ofq as

q̄ =
[
η −εT

]T

It should be noted that ifq represents a given attitude,
then−q represents the same attitude after a rotation
of ±2π about an arbitrary axis. Hence, even though
q 6= −q mathematically, they represent the same
physical attitude.

The kinematic differential equations can be found
from (4) together with (6)-(7) as

η̇ =− 1
2
εT ωb

ob (9)

ε̇ =
1
2

[ηI + S (ε)] ωb
ob (10)

The deviation between the current attitudeq = [η ε]T

and the desired attitudeqd = [ηd εd]
T is given by the

quaternion product (Egeland and Gravdahl, 2002) as[
η̃
ε̃

]
=

[
ηd

εd

]
⊗

[
η
−ε

]
(11)

=
[

ηdη + εT
d ε

ηdε− ηεd − S (εd) ε

]
(12)

and the error dynamics can according to (Fjellstad,
1994) be expressed as

˙̃η =− 1
2
ε̃T ω̃ (13)

˙̃ε =
1
2

[η̃I + S (ε̃)] ω̃ (14)

where

ω̃ = ωb
db = ωb

ib − ωb
id (15)

is the angular velocity error between the body refer-
ence frame and the desired reference frame.

2.3 Dynamics

With the assumptions of rigid body movement, the
dynamical model of a satellite can be found from
Euler’s moment equation as (Sidi, 1997)

Jω̇b
ib =− ωb

ib × (Jωb
ib) + τ b

d + τ b
a (16)

ωb
ob =ωb

ib + ωoc2 (17)

where J is the satellite inertia matrix,ωb
ib is the

angular velocity of the satellite body frame relative to
the inertial frame andωb

ob is the angular velocity of
the satellite body frame relative to the orbit frame, all
expressed in the body frame. The parameterτ b

d is the
total disturbance torque,τ b

a is the actuator torque, and
c2 is the directional cosine vector from (3). With (15)
the angular velocity error dynamics can be expressed
as

J ˙̃ω =Jω̇b
ib − Jω̇b

id

=− ωb
ib × (Jωb

ib) + τ b
d + τ b

a − Jω̇b
id (18)

2.4 Disturbance torques

The disturbance torques influencing on a satellite in
its orbit is caused by both internal and external effects.
Internal disturbances owes mostly to electromagnetic
torques and fuel sloshing. External disturbances are
dominated by the gravity gradient torque and aerody-
namic drag, but also solar radiation and wind, vari-
ations in the gravitational field and collisions with
meteoroids could be mentioned. These torques differ
very much in magnitude, but relative to the control
torques from the satellite they are small. In accordance
with the discussion performed in (Antonsen, 2004),
all disturbance torques are neglected in the following,
except for the gravity gradient torque, which can be
expressed as

τ b
g = 3ω2

0c3 × (Jc3) (19)

2.5 Actuator torque

2.5.1. Actuator dynamics The ESEO satellite will
be equipped with four reaction thrusters and one re-
action wheel mounted on they-axis of the satellite
body for attitude control, and the control torque from
these thrusters can according to (Antonsen, 2004) be
expressed as

τ b
a = τ b

t + τ b
w = Bau + Daωb

ib (20)



whereu is the vector of actuator torques given as

u =
[
F1 F2 F3 F4 ḣwy

]T

where Fi is the magnitude of thrust from thei’th
thruster andhwy is the angular momentum of the reac-
tion wheel. The actuator matrixBa contains elements
from the reaction wheel and thrusters torques, and the
disturbance matrixDa contains dynamic terms added
from the angular momentum in the reaction wheel. In
particular, we have

BT
a =

√
2

2




−rz rz −rx + ry

rz rz rx − ry

−rz −rz rx − ry

rz −rz −rx + ry

0
√

2 0




(21)

where rj , j = x, y, z are the components of the
common thruster distance from the satellite center of
mass, due to the symmetric placement of the thrusters,
and

Da =




0 0 −hwy

0 0 0
hwy 0 0




The matrixBa in (21) is rectangular, due to the fact
that the number of actuators exceeds the degrees of
freedom in the control problem. To find the desired ac-
tuator input level, the Moore-Penrose pseudoinverse,
as found in (Strang, 1988), is applicable. Hence, equa-
tion (20) suggests thatu can be computed as

u =B†
a

[
τ b

a −Daωb
ib

]

whereB†
a is the aforementioned pseudoinverse given

as

B†
a = BT

a

(
BaBT

a

)−1

which in the case of the ESEO actuator combination
can be shown to satisfy

BaB†
a = I

2.5.2. Thruster implementation Reaction thrusters
are by nature on-off devices and are normally only
capable of providing fixed torque. In this paper, bang-
bang control with deadzone, as given in (Song and
Agrawal, 2001) is used to control the thrusters. This
is a discontinous control method that is simple in
formulation and easy to implement, but can result in
excessive thruster action. It is based on a saturation
function, so that the thrusters are fired when the com-
manded torque exceeds a defined upper limit. Increas-
ing the deadzone and the corresponding upper limit
will decrease the fuel consumption, but increase the
attitude error.

3. CONTROLLER DESIGN

3.1 Integrator backstepping

The controller derived in this section is inspired by
(Fossen, 2002) and (Krstić et al., 1995), and the goal

is an integrator backstepping control law for tracking
an arbitrary smooth trajectoryqd (t) =

[
ηd εT

d

]
.

Step 1 The first step in the integrator backstepping
approach involves control of (13) and (14), and the
first backstepping variable is chosen as

z1 =
[

1− |η̃|
ε̃

]
(22)

whereη̃ and ε̃ are given from the quaternion product
in (12). Perfect tracking of the rotation path can be
expressed in quaternion notation as (Fjellstad, 1994)

q (t) = qd (t) ⇔ q̃ (t) =
[±1

0

]
(23)

A virtual control input is defined as

ω̃ = α1 + z2 (24)

whereα1 is a stabilizing function andz2 is a new state
variable. This, together with (22) leaves thez1-system
as

ż1 =
[−sgn (η̃) ˙̃η

˙̃ε

]

=
1
2

[
sgn (η̃) ε̃T

η̃I + S (ε̃)

]
ω̃

=
1
2
GT (q̃) (α1 + z2) (25)

where

GT (q̃) =
[

sgn (η̃) ε̃T

η̃I + S (ε̃)

]

The signum functionsgn (x) is defined nonzero as

sgn (x) =
{−1, x < 0

1, x ≥ 0

to avoid a singularity wheñη = 0. With some calcu-
lations, it can be shown that

G (q̃) z1 = 0 ⇔ sgn (η̃) ε̃ = 0 (26)

A Lyapunov Function Candidate (LFC) can now be
chosen as

V1 = zT
1 z1 (27)

V̇1 = 2zT
1 ż1 = zT

1 GT (q̃) (α1 + z2) (28)

Furthermore, the stabilizing functionα1 is chosen as

α1 = −K1G (q̃) z1 (29)

whereK1 = KT
1 > 0 is a feedback gain matrix.

Inserting this result into the LFC in (28) yields

V̇1 = −zT
1 GT K1Gz1 + zT

1 GT z2

where the argument of the matrixG (q̃) are left out
for simplicity. It should be noted thatGT K1G is
a symmetric positive semidefinite matrix. Thez1-
system from (25) now turns into

ż1 =
1
2
GT (α1 + z2)

=− 1
2
GT K1Gz1 +

1
2
GT z2



Step 2For the second step, thez2-dynamics can be
found by rewriting and differentiating (24) as

ż2 = ˙̃ω − α̇1

and insertion of (18) leaves

Jż2 =J ˙̃ω − Jα̇1

= τ b
a + τ b

g − ωb
ib × (Jωb

ib)− Jω̇b
id − Jα̇1

(30)

A second LFC can now be expressed as

V2 =V1 +
1
2
zT
2 Jz2 (31)

V̇2 = V̇1 + zT
2 Jż2

= V̇1 + zT
2 [τ b

a + τ b
g − ωb

ib ×
(
Jωb

ib

)

− Jω̇b
id − Jα̇1]

Choosing the actuator torque as

τ b
a =−Gz1 −K2z2 + ωb

ib × (Jωb
ib)− τ b

g

+ Jω̇b
id + Jα̇1 (32)

whereK2 = KT
2 > 0 is the feedback gain matrix for

thez2-system, leaves the LFC as

V̇2 = V̇1 + zT
2 [−Gz1 −K2z2]

=− zT
1 GT K1Gz1 − zT

2 K2z2

=−W (z1, z2) ≤ 0 (33)

and the closed-loop dynamics as

ż1 =− 1
2
GT K1Gz1 +

1
2
GT z2 (34)

Jż2 =−K2z2 −Gz1 (35)

3.2 Stability

The stability properties of the closed loop system
given by (34)-(35) follows from (31) and (33). From
(31) it is seen thatV2 (z1, z2) > 0, V2(0) = 0 and
V2 (z1, z2) → ∞ as (z1, z2) → ∞. Similarly, by
(8) and (26) it can be shown thatW (z1, z2) > 0
and W (0) = 0, and hence positive definite. Ac-
cording to the LaSalle-Yoshizawa theorem (Krstić et
al., 1995), this establishes that the equilibrium point
ze = (z1, z2) = (0,0) is uniformly globally asymp-
totically stable (UGAS), which implies thatε̃ → 0 and
η̃ → ±1. Henceforth, (23) implies thatq (t) → qd (t)
ast →∞. Also, (24) and (29) implies that̃ω (t) → 0
ast →∞.

Remark 1.It should be noted that the equilibrium
pointz1 = 0 corresponds to the two quaternion values
q̃ = [±1 0 0 0]T .

Remark 2.The controller given by (32) is similar to
the one found in (Wen and Kreutz-Delgado, 1991).
However, this controller has the advantage that the
feedback from the quaternion error, described by the
first term in (32), can be seen as a feedback with a
state dependent gain matrixG (q̃). The result is that

as the quaternion error increases, the feedback gain
will do the same. In addition, the absolute value in
(22) leaves both quaternion valuesq̃ = [±1 0 0 0]T

asymptotically stable. This ensures that a minimal
rotation towards the equilibrium point is used, and the
performance of the controller is improved. This topic
is analyzed in detail in (Kristiansen and Nicklasson,
2004).

3.3 Implementation

The control law given by (32) contains the expression
α̇1 that involves time derivatives of the states, and
this should be avoided when the control law is imple-
mented. The time differentiation can be performed as

α̇1 = −K1

[
Ġ (q̃) z1 + G (q̃) ż1

]

whereż1 can be found from (25). Similarly,̇G (q̃) can
be expressed as

Ġ (q̃) =
∂G
∂η̃

˙̃η +
∂G
∂ε̃

˙̃ε =
[

sgn (η̃) ˙̃εT

˙̃ηI + S
( ˙̃ε

)
]T

The expressions for̃̇η and ˙̃ε can be found from (13)
and (14), respectively.

4. SIMULATIONS

4.1 Numerical values

The numerical values for the satellite ESEO have been
used. The moments of inertia for the satellite is given
asI = diag

{
4.350 4.3370 3.6640

}
kgm2 and the

orbit altitude is 250 km, corresponding to the perigee
altitude of the planned elliptic orbit. The maximum
torque from the reaction thrusters is set to0.13 N, and
from the reaction wheel0.4 Nm. The wheel moment
of inertia is4 · 10−5 kgm2, and the maximum angular
velocity is5035 rpm.

4.2 Results

The simulation results of the satellite with the back-
stepping controller (32) are presented in the follow-
ing. The satellite body frame starts in perigee with
zero initial angles, i.e.Θi = [0◦ 0◦ 0◦]T and the
desired angles areΘd = [−75◦ − 175◦ 70◦]T rel-
ative to the orbit frame in perigee. This corresponds
to the quaternion valuesqi = [±1 0 0 0]T andqd =
[−0.3772 − 0.4329 0.6645 0.4783]T . The satellite is
further commanded to follow a trajectory that rotates
the body frame one evolution about the orbit frame
every orbit cycle. This corresponds to keeping the at-
titude constant relative to the ECI frame. Fig. 1 shows
the satellite settling to the desired attitude, and Fig. 2
shows attitude tracking over approximately two orbits.
The satellite is shown to settle within approximately
38 seconds, and manages to maintain the desired atti-
tude constant over the entire orbit.
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Fig. 1. Satellite settling at desired values. The plot
shows quaternion valuesq, quaternion deviation
q̃ and angular velocity deviatioñω
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Fig. 2. Satellite tracking the desired attitude. The plot
shows quaternion valuesq, quaternion deviation
q̃ and angular velocity deviatioñω

5. CONCLUSION

In this paper we have presented a quaternion feedback
controller based on a quaternion product and integra-
tor backstepping, that asymptotically tracks a smooth
attitude reference. This has been proved by the use
of the LaSalle-Yoshizawa theorem. Simulations of the
ESEO satellite incorporating four thrusters and one
reaction wheel have also been presented to illustrate
that the controller gives acceptable performance. The
thrusters are controlled by a bang-bang deadzone al-
gorithm. Future work will emphasize the extension of
this controller to the case of system parameter adapta-
tion. Also, analysis of stability when PWM/PWPFM
is utilized for thruster control should be investigated.
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