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Abstract— In this paper, we present a systematic procedure
for obtaining closed-loop stable output-feedback model pre-
dictive control based on reduced-order models. The design
uses linear state estimators, and applies to open-loop stable
systems with hard input- and soft state constraints. Robustness
against the model reduction error is obtained by choosing
the cost function parameters so as to satisfy a linear matrix
inequality condition. We also show by means of an example,
that performance is maintained even when the model reduction
error is relatively large.

I. INTRODUCTION

In this paper, we develop a novel approach for achieving
exponential stability of model predictive control (MPC)
based on reduced order models. The use of model re-
duction techniques along with MPC is desirable in many
applications, in order to reduce the online complexity in
implementations that would otherwise run too slowly. In [8]
we demonstrated how a significant reduction in complexity
could be achieved by truncating only a few number of states,
in particular when the MPC horizons are large. The online
complexity reduction comes at the cost of introducing an
approximation error in the closed-loop system. With the
introduction of the approximation error, questions concerning
closed-loop stability and feasibility arise. These are very
important issues to address, since controllers designed based
on reduced-order models might stabilize the reduced-order
model and not the plant [11].

Our results hinge on the previous work [14], [15], [16] on
robust output-feedback MPC for systems with uncertainties.
In this paper we specialize these results to the case of
reduced-order models. We ensure stability by choosing the
cost function parameters so as to satisfy a set of linear
matrix inequality (LMI) conditions, thereby guaranteeinga
decreasing Lyapunov function at each time step. To the
best of our knowledge, this is the first result that deals
systematically with the model reduction error in model
predictive control. The results make MPC more attractive
for a number of systems that would otherwise be excluded
due to the high complexity of the resulting controllers.

In order to guarantee feasibility of the MPC problem, we
adopt the soft constraints formulation of [16], in which an
additional horizon is introduced to reduce the number of the
slack variables. Consequently, the size of the optimization
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problem is also reduced compared to standard approaches,
such as [21]. This extra feature fits nicely into our design,
since our goal is to to make our MPC procedure more
efficient by introducing reduced-order models.

The traditional MPC strategy requires significant online
computation, limiting the use of this kind of controller to
processes with small system state dimension or relatively
slow dynamics, since the optimization problem that is solved
at each sampling time can otherwise become large. Remedies
such as “input blocking”, short horizons etc. are commonly
used to reduce the complexity and online computational
times. Fast implementation of model predictive control in
real-time systems has been considered, among others, by
[4] and [20]. Also, it was proposed in [2] to solve multi-
parametric quadratic programs (mpQPs) that can be used to
obtain explicit solutions to the MPC problem, such that the
control input can be efficiently computed by evaluating a
piecewise affine function of the system state. Still, as the
state dimension and the control horizon and the number of
constraints are increased, a large increase in both offline and
online complexity follows. The current paper addresses these
issues by using reduced-order models.

The paper outline is as follows: In Section II we de-
scribe the system formulations that we will consider. The
nominal state-feedback design presented in Section III lays
the foundation for the reduced-order MPC described in
Section IV, where we also prove stability of the procedure
and demonstrate performance through a numerical example.
Concluding remarks can be found in Section V.

Throughout we use the following notation:‖x‖2
P denotes

xT Px, [a, · · · , c] denotes
[
aT · · · cT

]T
and In denotes

the n × n identity matrix.

II. SYSTEM DESCRIPTION

We consider a stable, linear, discrete-time plant, described
by the known model

x
p
k+1 = Apx

p
k + Bpuk (1a)

y
p
k = Cpx

p
k, (1b)

wherexp ∈ R
n, u ∈ R

m andy ∈ R
p denote the state, input

and output, respectively, and the matricesAp, Bp andCp are
of appropriate dimensions. Here,p denotes the “plant”. The
system is subject to the following constraints

V uk ≤ v, ∀k ≥ 0 (2a)

Hx
p
k ≤ h, ∀k ≥ 0, (2b)

whereV ∈ R
nv×m, v ≥ 0, andH ∈ R

nh×n.



The input constraints (2a) are “hard”, and must be re-
spected at all time, whereas the state constraints (2b) are
“soft”, and will be treated by penalizing constraint violation
in the MPC cost function. This is a natural assumption, since
input constraints, such as actuator- and valve limitations
are physical limitations that cannot be exceeded. State-
and output constraints, on the other hand, often represent
“desireables” rather than absolute limitations.

A. REDUCED-ORDER NOMINAL MODEL

The plant model (1) is assumed to be of such a dimension
that the online computational requirements conflict with the
time available to compute the control input. For the purpose
of MPC design, we therefore generate a reduced-order model
(ROM), by reducing the order of (1) using an appropriate
model reduction technique, such as, for instance, balanced
truncation [18], balanced residualization [12] or optimal
Hankel norm approximation [1], [3], [10]. These are all
rigorous methods witha priori error bounds and stability
guarantee, provided that (1) is stable. Model reduction tech-
niques are standard textbook material, and good references
can, for instance, be found within the robust control literature
[23], [19].

The nominal model obtained by model reduction is de-
noted by

xk+1 = Axk + Buk (3a)

yk = Cxk, (3b)

wherex ∈ R
nx such thatnx < n, y ∈ R

p, A ∈ R
nx×nx ,

B ∈ R
nx×m and C ∈ R

p×nx . The nominal model must
respect the constraints (2). To enable this, we make the
following assumption:

Assumption 1:It is assumed that the constraints (2b)
apply to theoutputsof (1), and consequently apply naturally
to the outputs of (3). This can easily be achieved by choosing
any states that should be constrained as outputs of the plant.

Remark 1:Associated with the reduced-order model is
an approximation error that can be quantified in general
terms as follows: When substituting (3) for (1), theminimum
achievable Hankel norm of the error system is equal to the
(nx + 1)-st Hankel singular value of the original system (1)
[1], [6], [7]. This error needs to be accounted for in the
controller design.

III. NOMINAL CASE WITH STATE FEEDBACK

In this section we present the soft-constrained state-
feedback MPC policy proposed in [16] for the nominal
system (3), when disregarding the approximation error. The
state-feedback policy will subsequently be used in SectionIV
to develop a robust output-feedback policy for the system (1)
based on the reduced-order model (3).

The following optimization problem leads to an MPC

scheme with guaranteed nominal stability:
[
PN,Nε

]
: J∗ (x) = min

U,ǫ,e
J (x, U, ǫ, e)

s.t.







x0 = x

xi+1 = Axi + Bui

V ui ≤ v, ∀i ∈ {0, · · · , Nu − 1}
ui = 0, ∀i ≥ Nu

Hxi ≤ h + ǫi, ∀i ∈ {0, · · · , Nǫ − 1}
Hxi ≤ h + HAi−Nǫe, ∀ ∈ i {Nǫ, · · · , N − 1}
TxN ≤ t + TAN−Nǫe,

(4)

Here, U = [u0, · · · , uNu−1] and ε = [ǫ0, · · · , ǫNǫ−1] are
the sequence ofNu inputs andNǫ slack variables to be
optimized over the horizonsNu andNǫ, ande ∈ R

nx is an
additional vector of slack variables that has been introduced
to “summarize” constraint violation beyond the prediction
time i = Nǫ − 1. N is the prediction horizon. Further,

J (x, U, ε, e) , ‖[x, U, ε, e]‖2
P (5)

is the cost function, for some appropriate matrixP whose
selection will be explained below, and the matrixT and
the vectort describe a “terminal constraint set”.T and t

can e.g. be chosen so that the terminal constraint set equals
the maximal output admissible set associated with the state
constraints (2b) (see e.g. [5]). We letU∗, ε∗ ande∗ denote
the optimal values ofU , ε ande, resulting from

[
PN,Nε

]
.

Remark 2:Note that by choosing the ingredients in
[
PN,Nε

]
in an appropriate way (see [16]), the formulation

is equivalent to the standard soft-constrained MPC in [21].
Some special features of our particular formulation is how-
ever crucial in our quest for robustly stable MPC based on
reduced-order models.

To help describe various conditions on
[
PN,Nε

]
and on the

cost function matrixP , consider the following autonomous
prediction system:






xn+1

Un+1

εn+1

en+1







=







A [B 0 · · · 0] 0 0
0 Γ (Nu, nu) 0 0
0 0 Γ (Nǫ, nh) H̄

0 0 0 A







︸ ︷︷ ︸

Ā0







xn

Un

εn

en







,

(6)
where H̄ , [0, · · · , 0, H ], and whereΓ

(
N̄ , n̄

)
is a ma-

trix such that, usingŪ =
[
ū0, · · · , ūN̄−1

]
, we have

Γ
(
N̄ , n̄

)
Ū =

[
ū1, · · · , ūN̄−1, 0

]
, that is

Γ
(
N̄ , n̄

)
=












0 In̄ 0 · · · 0
... 0 In̄

. . .
...

...
...

. . .
. . . 0

... 0 · · · 0 In̄

0 0 · · · 0 0












∈ R
N̄n̄×N̄n̄. (7)

Remark 3:Note that ifNǫ = N andP satisfies

ĀT
0 PĀ0 − P + C̄T

0 diag[Q, R, S] C̄0 = 0, (8)



where Ā0 is defined in (6),Q ∈ R
nx×nx , Q ≥ 0, R ∈

R
m×m, R > 0, S ∈ R

nh×nh , S > 0, and where the matrix
C̄0 is such thatC̄0 [x, U, ε, e] = [x, u0, ǫ0], then the cost
function (5) satisfies

J (x, U, ε, e) = ‖xNu
‖
2
PF

+

Nu−1∑

i=0

(

‖xi‖
2
Q + ‖ui‖

2
R

)

+ ‖e‖
2
Π +

N−1∑

i=0

‖ǫi‖
2
S , (9)

whereAT PF A − PF = −Q and AT ΠA − Π = −HT SH ,
and wherexi is given by

[
PN,Nε

]
[16].

The state-feedback MPC design proposed in [16] is based
on

[
PN,Nǫ

]
as follows:

Algorithm 1: (Nominal State-Feedback MPC)
Offline: (i) Choose any integersN , Nu and Nǫ satisfying
N ≥ Nu ≥ 1, N ≥ Nǫ ≥ 1.
(ii) Choose any matricesQ ≥ 0, R > 0 andS > 0.
(iii) ChooseP that satisfies (8).
(iv) Choose anyT andt such that the setXF , {x|Tx ≤ t}
satisfies

Ax ∈ XF , ∀x ∈ XF , XF ⊆ {x|Hx ≤ h} . (10)

Online: At each time stepk ≥ 0, solve
[
PN,Nε

]
, using

x = xk, then applyuk =
[
I 0 · · · 0

]
U∗ (x) to (3).

The following theorem establishes closed-loop stability
when applying Algorithm 1 to the nominal system (3),
disregarding the “plant” (1) altogether.

Theorem 1:The closed-loop system under Algorithm 1
is globally exponentially stable. Moreover, the closed-loop
trajectories satisfy

∞∑

k=0

‖xk‖
2
Q + ‖uk‖

2
R + ‖ǫ∗k‖

2
S ≤ J∗ (x0) , (11)

whereǫ∗k denotes the first block component ofε∗ (xk).
Proof: This is theorem 3 in [16], where the proof can

be found.
We have now established stability of the MPC design of

Algorithm 1, when applied to (3) only. Next, we take model
approximation errors into account.

IV. REDUCED-ORDER MPC WITH OUTPUT
FEEDBACK

In this section, we propose an output-feedback MPC
procedure based on the reduced-order model (3), in which
we take into account the error introduced through the model
reduction process. We also prove closed-loop stability when
applying this controller to the plant (1).

The MPC control input is computed based on the reduced-
order state vectorxk at each time step, andxk should there-
fore be estimated by an observer based on measurementsy

p
k

from the plant. For simplicity, we consider a linear estimator
of the form

x̂k+1 = Ax̂k + Buk + L (yp
k − Cx̂k) , (12)

where x̂k denotes the estimated reduced state at time step
k, and we chooseL such that(A − LC) is Schur (i.e. the
eigenvalues lie strictly inside the unit disc).

When uncertainties are taken into account, we will make
use of the following matrix function:

Σ{Q,R,S} (P ) , ĀT
0 PĀ0 − P + C̄T

0 diag[Q, R, S] C̄0 (13)

The “nominal” cost function matrix, denoted byP0, is
retrieved by solvingΣ{Q,R,S} (P ) = 0, i.e.

Σ{Q,R,S} (P0) = 0. (14)

RequiringΣ{Q,R,S} (P ) ≤ 0 implies P ≥ P0. We will use
Σ{Q,R,S} (P ) at a later stage to search for aP that gives a
cost function for the robust case that is an upper bound on
the nominal cost.

The proposed output-feedback policy for the system, con-
sidering the uncertainties, can now be described as follows:

Algorithm 2: (Output-Feedback MPC)
Offline: (i) Design a state estimator (12).
(ii) Choose any integersN , Nu andNǫ satisfyingN ≥ Nu ≥
1, N ≥ Nǫ ≥ 1.
(iii) Choose any matricesQ ≥ 0, R > 0 andS > 0.
(iv) Choose any matrixP satisfyingΣ{Q,R,S} (P ) ≤ 0.
(v) Choose anyT andt such that the setXF = {x|Tx ≤ t}
satisfies (10).
Online: At each time stepk ≥ 0, solve

[
PN,Nε

]
usingx =

x̂k, then applyuk =
[
I 0 · · · 0

]
U∗ (x̂k) to (1).

Remark 4:Note that the only difference between Algo-
rithm 2 and Algorithm 1 is the introduction of a state estima-
tor, and the requirement thatP satisfiesΣ{Q,R,S} (P ) ≤ 0.
SinceĀ0 is stable, we can always find such aP .

A. ROBUST STABILITY TEST

Next, following the approach of [16], we propose LMI
conditions on the cost function matrixP that are sufficient
for closed-loop stability. To this end, we define the aug-
mented state

x̄ , [xp, x̂] , (15)

wherexp is the plant state and̂x is the estimated ROM state.
The dynamics of̄x in closed-loop are described by

x̄k+1 = Āx̄k + B̄µk, x̄0 = [x0, x̂0] (16)

x̂k = C̄x̄k, (17)

where

Ā =

[
Ap 0
LCp A − LC

]

(18)

B̄ =

[
BpD1

BD1

]

(19)

C̄ =
[
0 I

]
, (20)

andD1 =
[
I 0 · · · 0

]
is such thatuk = D1µk, where

µk = [U∗
k , ǫ∗k, e∗k] contains the minimizers of

[
PN,Nε

]
at

time stepk. The matrixL is the gain of the state estimator
(12).

For the purpose of stability analysis, we need to establish
a feasible solutionµF

k+1 to
[
PN,Nε

]
at time stepk+1, based



on the optimal solutionµk at the previous time stepk. The
following lemma establishes the existence such a solution.

Lemma 1:Let Ā and B̄ be defined as in (18) and (19).
Then

F1 = KF

[
LCp −LC

]
(21)

and

F2 =





Γ (Nu, nu) 0 0
0 Γ (Nǫ, nh) H̄

0 0 A



 , (22)

are such that

µF
k+1 = F1x̄k + F2µk (23)

is a feasible solution to
[
PN,Nε

]
at time stepk + 1. Here,

KF =
[
0, H, HA, · · · , HANǫ−1, ANǫ

]
, (24)

is a particular feasible solution.
Proof: The proof follows from Lemma 5 in [16].

As the final step towards our stability test, we need to find
a suitable cost function matrixP . To this end we introduce
the following definitions:

Ω (Ω0, P ) ,

[
Ω0 0
0 0

]

+ DT
P PDp, (25)

with

DP =

[
C̄ 0
0 Inµ

]

, (26)

andΩ0 ∈ R
(n+nx)×(n+nx).

Φ (Ω0, P ) ,

[
Ā B̄

F1 F2

]

Ω (Ω0, P )

[
Ā B̄

F1 F2

]

− Ω (Ω0, P ) .

(27)
The stability test for Algorithm 2 can now be stated as

follows.
Theorem 2:Assume that, for a givenP , there exists a

matrix Ω0 ∈ R
(n+nx)×(n+nx) such that,

Ω (Ω0, P ) > 0 (28a)

Φ (Ω0, P ) < 0, (28b)

whereΩ (Ω0, P ) is as defined in (25) andΦ (Ω0, P ) is as de-
fined in (27). Then the closed-loop system under Algorithm
2 is exponentially stable.

Proof: Proving stability follows the well-known path
[17] of first showing recursive feasibility, and then showing
that there exists a Lyapunov function for the closed-loop
system that decreases at each time step. Feasibility at each
time step has been established in Lemma 1. Now, consider
the Lyapunov function candidate

V (x̄, µ) ,

∥
∥
∥
∥

[
x̄

µ

]∥
∥
∥
∥

2

Ω(Ω0,P )

, (29)

which is positive definite in view of (28a), and whereµ
denotes the minimizers of

[
PN,Nε

]
, i.e. µk = [U∗

k , ǫ∗k, e∗k].

At time stepk, we have

V ∗
k , V (x̄k, µk) =

∥
∥
∥
∥

[
x̄k

µk

]∥
∥
∥
∥

2

Ω(Ω0,P )

(30)

= ‖x̄k‖
2
Ω0

+

∥
∥
∥
∥

[
C̄x̄k

µk

]∥
∥
∥
∥

2

P

(31)

= ‖x̄k‖
2
Ω0

+

∥
∥
∥
∥

[
x̂k

µk

]∥
∥
∥
∥

2

P

(32)

= ‖[x̄k]‖
2
Ω0

+ J∗
k , (33)

where x̂ takes the place of the nominal state. Similarly, at
the next time stepk +1, the Lyapunov function candidate is
given by

V ∗
k+1 , V (x̄k+1, µk+1) =

∥
∥
∥
∥

[
x̄k+1

µk+1

]∥
∥
∥
∥

2

Ω(Ω0,P )

(34)

= ‖[x̄k+1]‖
2
Ω0

+ J∗
k+1. (35)

Now µF
k+1, as in (23), can be used to derive a bound for

V ∗
k+1. Since

V F
k+1 , V

(
x̄k+1, µ

F
)

=

∥
∥
∥
∥

[
x̄k+1

F1x̄k + F2µk

]∥
∥
∥
∥

2

Ω(Ω0,P )

(36)

= ‖x̄k+1‖
2
Ω0

+
∥
∥
[
x̂k+1, U

F
k+1, ǫ

F
k+1, e

F
k+1

]∥
∥

2

P
(37)

and

V ∗
k+1 = ‖[xk+1, x̂k+1]‖

2
Ω0

+ J∗
k+1, (38)

we have that

(δV )k+1 , V (x̄k+1, µk+1) − V
(
x̄k+1, µ

F
k+1

)
(39)

= ‖x̄k+1‖
2
Ω0

+ J∗
k+1 − ‖x̄k+1‖

2
Ω0

(40)

−
∥
∥
[
x̂k+1, U

F
k+1, ǫ

F
k+1, e

F
k+1

]∥
∥

2

P

= J∗
k+1 −

∥
∥
[
x̂k+1, U

F
k+1, ǫ

F
k+1, e

F
k+1

]∥
∥

2

P
, (41)

and it follows that

(δV )k+1 ≤ 0, (42)

due to the optimality ofJ∗
k+1, and sinceµF

k+1 is feasible
(but most likely sub-optimal). Obviously, this implies

V ∗
k+1 ≤ V F

k+1. (43)

Now, it remains to show that

V F
k+1 − V ∗

k ≤ α‖x̄k‖
2, (44)

for (some arbitrarily small) scalarα > 0. For that purpose,
we use the property (28b). At time stepk, we have

[
x̄k

µk

]T

Φ (Ω0, P )

[
x̄k

µk

]

(45)

=

[
x̄k

µk

]T [
Ā B̄

F1 F2

]T

Ω (Ω0, P )

[
Ā B̄

F1 F2

] [
x̄k

µk

]

− V ∗
k .

(46)



Now, note that
[

Ā B̄

F1 F2

] [
x̄k

µk

]

=

[
Āx̄k + B̄µk

F1x̄k + F2µk

]

(47)

=

[
x̄k+1

µF
k+1

]

, (48)

whereµF
k+1 is the feasible solution, as defined in equation

(23). By inserting (48) into (46), we have that
[
x̄k

µk

]T

Φ (Ω0, P )

[
x̄k

µk

]

(49)

=

[
x̄k+1

µF
k+1

]T

Ω (Ω0, P )

[
x̄k+1

µF
k+1

]

− V ∗
k (50)

=

∥
∥
∥
∥

[
x̄k+1

µF
k+1

]∥
∥
∥
∥

Ω(Ω0,P )

− V ∗
k (51)

= V F
k+1 − V ∗

k (52)

Since the inequality (28b) is strict it then follows that (44)
holds for someα > 0.

B. ROBUST DESIGN

Following [16], we next propose a semi-definite program
(SDP) that may be used to compute a matrixP ≥ P0

that satisfies the stability criterion (28) and is as “close”as
possible to the nominal cost function matrixP0. That is:

inf
P1,P2,Ω0

trace (P1) + qtrace (P2) (53a)

s.t.







P = diag{P1, P2}
Σ{Q,R,S} (P ) ≤ 0
Φ (Ω0, P ) < 0
Ω (Ω0, P ) > 0

(53b)

whereq > 0 is a scalar, and where we have also added the
structural constraintP = diag{P1, P2}, such that the cost
(5) takes the formJ (x, U, ε, e) = ‖[x, U ]‖2

P1
+ ‖[ε, e]‖2

P2
.

Regarding the feasibility of the above SDP, we have the
following strong result (which is proven in [9]):

Theorem 3:If the matrices,Ap and A − LC, are both
stable, then the problem (53) is feasible.
In the sequel, we denote byP ∗ a feasible and (near) optimal
solution to (53).

Remark 5:SinceΣ{Q,R,S} (P ∗) ≤ 0, we have thatP ∗ ≥
P0, whereP0 is as in (14).
By use ofP = P ∗ we obtain the following robust design.

Algorithm 3: (Robust Output-Feedback MPC)
Offline: (i) Choose any integersN , Nu and Nǫ satisfying
N ≥ Nu ≥ 1, N ≥ Nǫ ≥ 1.
(ii) Choose anyT andt such that the setXF = {x|Tx ≤ t}
satisfies (10).
(iii) Choose any observer gain such thatA − LC is stable.
(iv) Choose any matricesQ ≥ 0, R > 0 and S > 0 and
determineP = P ∗ by solving (53).
Online: At each time stepk ≥ 0, solve

[
PN,Nε

]
usingx =

x̂k, then applyuk =
[
I 0 · · · 0

]
U∗ (x̂k) to (1).

In [9], we address the important question of conservatism
of the above robust reduced-order design. Specifically, we
show that, under a reasonable assumption, the proposed

design is non-conservative in the sense thatP ∗ ≈ P0

provided that the neglected dynamics∆(z) , Cp(zI −
Ap)

−1Bp − C(zI − A)−1B are sufficiently small.

C. NUMERICAL EXAMPLE

We consider a6th order plant given by

Ap =











0.28 0.25 −0.19 −0.22 0.03 −0.50
0.25 −0.47 0.30 0.17 −0.11 −0.11
−0.19 0.30 0.46 0.09 −0.02 −0.08
−0.22 0.17 0.09 0.60 −0.06 0.14
0.03 −0.11 −0.02 −0.06 0.46 −0.13
−0.50 −0.11 −0.08 0.14 −0.13 −0.23











Bp =
[
1.0159 0 0.5988 1.8641 0 −1.2155

]T
and

Cp =
[
1.2920 0 0 0.2361 0.8428 0

]
. The system

has a zero atz = 6.83, outside the unit circle, and is
consequently non-minimum phase. The outputy

p
k is subject

to soft unit bound constraints, and the inputuk is subject
to hard unit bound constraints. We chooseNu = N = 10,
Nǫ = 2, Q = I, R = 0.1 andS = 1000I.

First, we reduce the system order fromn = 6 to nx = 5
and nx = 4 using balanced reduction, and we impose the
same constraints on the reduced-order models. Reduced-
order models withnx = 5 and nx = 4 leads to model
reduction errors‖∆(z)‖∞ = 6.9885×10−6 and‖∆(z)‖∞ =
0.0221, respectively. The plant is initialized atxp

0 =
[−0.9044, −9.1380, −2.5036, 0.6696, −0.0821, −4.0350]
while the observer is initialized at̂x0 = C+y

p
0 , whereC+

denotes the Moore-Penrose pseudoinverse ofC, and y
p
0

is the initial plant output. The SDP (53) is solved using
MATLAB with YALMIP [13] and SeDuMi [22].

Fig. 1 compares the closed-loop responses of different
robust MPC designs computed using Algorithm 3. The figure
also shows the response when using the associated nominal
design (NMPC), which is algorithm 3 but usingP = P0 as
in (14).

For this initial condition, the open-loop response over-
shoots the upper output constraint by14%, and so the robust
design is good at keeping its soft constraints. Fig. 1 suggests
that the robust MPC is not overly conservative when the
model uncertainty is relatively small.

If we proceed by truncating tonx = 3, the model reduc-
tion error increases by an order of magnitude to‖∆(z)‖∞ =
0.1373. In this case, the nominal MPC design fails severely,
as illustrated in Fig. 2. In fact, the output for the nominal
design oscillates between its soft constraints. On the other
hand, the “robustified” design still performs well.

V. CONCLUSIONS

In this paper we have developed a procedure for obtain-
ing closed-loop stability of output-feedback MPC based on
reduced-order models. The procedure uses the information
available in the original plant model in the offline phase of
determining the cost function parameters. Since our main
objective is to design an efficient online controller, it is
reasonable to put extra work into the offline stage.
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Fig. 1. Top: NMPC using the plant as the nominal model. Center: NMPC
(dotted) and robust MPC (solid) using a ROM withnx = 5. Bottom: NMPC
(dotted) and robust MPC (solid) using a ROM withnx = 4.

0 20 40 60 80 100

−1

0

1

0 20 40 60 80 100
−1

−0.5

0

0.5

1

y
k

u
k

k

k

Fig. 2. NMPC (dotted) and robust MPC (solid) using a ROM withnx = 3.

For large-scale systems, this procedure may be too com-
putationally demanding, since we require solving LMIs in-
volving the full system matrices. It seems feasible to further
develop the procedure described here by treating parts of the
dynamics as model uncertainty.

VI. ACKNOWLEDGMENTS

Hovland, Løvaas and Gravdahl acknowledge the financial
support from the Research Council of Norway.

REFERENCES

[1] V. M. Adamjan, D. Z. Arov, and M. G. Krein. Analytic properties of
schmidt pairs for a Hankel operator and the generalized Schur-Takagi
problem. Math. USSR Sbornik, 15(1):31–73, 1971.

[2] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos. The
explicit linear quadratic regulator for constrained systems.Automatica,
38(1):3–20, 2002.

[3] M. Bettayeb, L. Silverman, and M. Safonov. Optimal approximation of
continuous-time systems. InProc. of the 19th IEEE Conf. on Decision
and Control, volume 19, pages 195–198, 1980.

[4] L. G. Bleris and M. V. Kothare. Real-time implementationof model
predictive control. InAmerican Control Conference, pages 4166–4171,
2005.

[5] E. G. Gilbert and K. T. Tan. Linear systems with state and control
constraints: The theory and application of maximal output admissible
sets. IEEE Transactions on Automatic Control, 36(9):1008–1020,
1991.

[6] K. Glover. All optimal hankel-norm approximations of linear multi-
variable systems and theirL∞-error bounds.International Journal of
Control, 39(6):1115–1193, 1984.

[7] G. Gu. All optimal Hankel-norm approximations and theirerror
bounds in discrete-time.International Journal of Control, 78(6):408–
423, 2005.

[8] S. Hovland and J. T. Gravdahl. Complexity reduction in explicit MPC
through model reduction. Inthe 17th IFAC World Congress, Seoul,
Korea, July 2008.

[9] S. Hovland, C. Løvaas, J. T. Gravdahl, and G. C. Goodwin. Stability
of model predictive control based on reduced-order models.Technical
report, Dept. of Eng. Cybernetics, the Norwegian Univ. of Science and
Techn., 2008.

[10] S.-Y. Kung and D. Lin. Optimal Hankel-norm model reductions:
Multivariable systems. IEEE Trans. on Automatic Control, AC-
26(4):832–852, 1981.

[11] A. Linnemann. Existence of controllers stabilizing the reduced-order
model and not the plant.Automatica, 24(5):719–719, 1988.

[12] Y. Liu and B. D. O. Anderson. Singular perturbation approximation
of balanced systems. InProceedings of the 28th IEEE Conference on
Decision and Control, pages 1355–1360, New York, December 1989.
IEEE.
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