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Abstract—In this paper, we present a systematic procedure problem is also reduced compared to standard approaches,
for obtaining closed-loop stable output-feedback model p-  such as [21]. This extra feature fits nicely into our design,

dictive control based on reduced-order models. The design gince our goal is to to make our MPC procedure more
uses linear state estimators, and applies to open-loop stigb fficient by introduci duced-ord del
systems with hard input- and soft state constraints. Robustess eincient by introducing reduced-oraer modeis.

against the model reduction error is obtained by choosing  The traditional MPC strategy requires significant online
the cost function parameters so as to satisfy a linear matrix computation, limiting the use of this kind of controller to

inequality condition. We also show by means of an example, processes with small system state dimension or relatively
that performance is maintained even when the model reductio g, gynamics, since the optimization problem that is stive
error is relatively large. . . . .
at each sampling time can otherwise become large. Remedies
. INTRODUCTION such as “input blocking”, short horizons etc. are commonly

In this paper, we develop a novel approach for achievinQSEd to reduce the complexity and online computational
exponential stability of model predictive control (Mpc)times. Fast implementation of model predictive control in
based on reduced order models. The use of model regal-time systems has been considered, among others, by
duction techniques along with MPC is desirable in many4] and [20]. Also, it was proposed in [2] to solve multi-
applications, in order to reduce the online complexity ifParametric quadratic programs (mpQPs) that can be used to
implementations that would otherwise run too slowly. In [g]obtain explicit solutions to the MPC problem, such that the
we demonstrated how a significant reduction in complexitgontrol input can be efficiently computed by evaluating a
could be achieved by truncating only a few number of stateBiecewise affine function of the system state. Still, as the
in particular when the MPC horizons are large. The onlingtate dimension and the control horizon and the number of
complexity reduction comes at the cost of introducing afonstraints are increased, a large increase in both offlide a
approximation error in the closed-loop system. With th@nline complexity follows. The current paper addressesehe
introduction of the approximation error, questions congeg  issues by using reduced-order models.
closed-loop stability and feasibility arise. These areyver The paper outline is as follows: In Section Il we de-
important issues to address, since controllers desigrmﬁbascribe the system formulations that we will consider. The
on reduced-order models might stabilize the reduced-orde@minal state-feedback design presented in Section I lay
model and not the plant [11]. the foundation for the reduced-order MPC described in

Our results hinge on the previous work [14], [15], [16] onSection 1V, where we also prove stability of the procedure
robust output-feedback MPC for systems with uncertaintiegnd demonstrate performance through a numerical example.
In this paper we specialize these results to the case ePncluding remarks can be found in Section V.
reduced-order models. We ensure stability by choosing the Throughout we use the following nOtat'Oﬁpr denotes
cost function parameters so as to satisfy a set of lineaf Pz, [a,--- ] denotes[a’ - cT] and I,, denotes
matrix inequality (LMI) conditions, thereby guaranteeiag the n x n identity matrix.
decreasing Lyapunov function at each time step. To the
best of our knowledge, this is the first result that deals IIl. SYSTEM DESCRIPTION
systematically with the model reduction error in model
predictive control. The results make MPC more attractlv
for a number of systems that would otherwise be exclude
due to the high complexity of the resulting controllers. ay . = Apx} 4+ Bpuy, (1a)

In order to guarantee feasibility of the MPC problem, we WP = Cpa? (1b)
adopt the soft constraints formulation of [16], in which an L
additional horizon is introduced to reduce the number of th@herez? € R™, u € R™ andy € R? denote the state, input
slack variables. Consequently, the size of the optimimatioand output, respectively, and the matricgs B, andC, are
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The input constraints (2a) are “hard”, and must be rescheme with guaranteed nominal stability:
spected at all time, whereas the state constraints (2b) ar NN . ]
“soft”, and will be treated by penalizing constraint viadat TP el T (@) = 2}22'] (z,U,¢€¢€)
in the MPC cost function. This is a natural assumption, since

. . s X =T
input constraints, such as actuator- and valve limitations x? . = Az + Bu,
are physical limitations that cannot be exceeded. State- V};: < ZVZ c {(; Ny —1)
and output constraints, on the other hand, often represent, ) - R 0’ Vi > N’ e
b K2 - bl - u

desireables” rather than absolute limitations. Hx;, <h+e¢, Vie{0,---,N.—1}

Hz; §h+HAi_N€€7Vei{Név""N_l}
A. REDUCED-ORDER NOMINAL MODEL Toy <t+TAT e,

(4)
The plant model (1) is assumed to be of such a dimension

that the online computational requirements conflict wita thHeré. U = [uo,--- ,un, 1] ande = ey, -, en. 1] are
time available to compute the control input. For the purposd® sequence ofV, inputs andN. slack variables to be
of MPC design, we therefore generate a reduced-order mod4jtimized over the horizond/, and N, ande € R"~ is an
(ROM), by reducing the order of (1) using an appropriaté‘dd't'onal ve_zctor of slacl_< var_|abl_es that has been mtrngc
model reduction technique, such as, for instance, balanciy “Summarize” constraint violation beyond the prediction
truncation [18], balanced residualization [12] or optimafimei = Ne— 1. N is the prediction horizon. Further,
Hankel norm approximation [1], [3], [10]. These are all N 2
rigorous methods witha priori error bounds and stability T@Ue,e) =, Ve elllp ®)
guarantee, provided that (1) is stable. Model reductioh-tecis the cost function, for some appropriate matfxwhose
niques are standard textbook material, and good referenggsection will be explained below, and the matffk and
can, for instance, be found within the robust control litera  the vectort describe a “terminal constraint setl! and ¢

[23], [19]. can e.g. be chosen so that the terminal constraint set equals
The nominal model obtained by model reduction is dethe maximal output admissible set associated with the state
noted by constraints (2b) (see e.g. [5]). We Iet", ¢* ande* denote
the optimal values of/, € ande, resulting from [P~ V],
Tpy1 = Axy, + Buy (3a) Remark 2:Note that by choosing the ingredients in

(3b) [PN-N<] in an appropriate way (see [16]), the formulation
is equivalent to the standard soft-constrained MPC in [21].
Some special features of our particular formulation is how-

wherez € R™= such thatn, < n, y € RP, A € R"=X"= .
B ¢ R"*m and C € RP*". The nominal model must €& crucial in our quest for robustly stable MPC based on
reduced-order models.

respect the constraints (2). To enable this, we make thé . ; "
P (2) To help describe various conditions pR™-"¢] and on the

following agsumpthn. . cost function matrixP, consider the following autonomous
Assumption 1:t is assumed that the constraints (2b)

dicti tem:
apply to theoutputsof (1), and consequently apply naturallyIore ction system

Yk = C(Ek,

to the outputs of (3). This can easily be achieved by choosing x,,11 A [BO .- 0] 0 0 Tn
any states that should be constrained as outputs of the plantU,4+1 | | 0 T (Ny,ny) 0 0 U,

Remark 1:Associated with the reduced-order model is| €ny1 | | O 0 ['(Ne,ny) H En |’
an approximation error that can be quantified in genergl én+1 0 0 0 A en
terms as follows: When substituting (3) for (1), thetnimum b
achievable Hankel norm of the error system is equal to the (6)
(n; + 1)-st Hankel singular value of the original system (1)where @ 2 [0,---,0, H], and wherel (N’ﬁ) is a ma-
[1], [6], [7]. This error needs to be accounted for in therix such that, usingU = [@O’... ,’N,J, we have
controller design. T (N, ﬁ) U= [gl, el 0}, that is

(0 I; 0 -+ 0]

1. NOMINAL CASE WITH STATE FEEDBACK L0 ) .

In this section we present the soft-constrained state- I'(N,n) = [: : . - | eRY™> N1 (7)
feedback MPC policy proposed in [16] for the nominal i
system (3), when disregarding the approximation error. The 0 e 0 I
state-feedback policy will subsequently be used in Sedtion o o - 0 0]

to develop a robust output-feedback policy for the system (1
based on the reduced-order model (3).

The following optimization problem leads to an MPC ATPAy — P+ Cldiag|Q, R, S| Co = 0, (8)

Remark 3:Note that if V. = N and P satisfies



where A, is defined in (6),Q € R**"= @ > 0, R € wherei; denotes the estimated reduced state at time step
R™*™ R >0, € R**" § > 0, and where the matrix &, and we choosd such that(A — LC) is Schur (i.e. the

Co is such thatCy [z, U, e,e] = [x,uq, €], then the cost eigenvalues lie strictly inside the unit disc).
function (5) satisfies When uncertainties are taken into account, we will make
N1 use of the following matrix function:
2 2 2 _ _ L _
J(@,Ue,0) = lon, I, + 3 (ol + Juill}) Sio.n.s) (P) 2 ATPAy — P+ CTdiagQ, R, 5] Co (13)
1=0
N1 The “nominal” cost function matrix, denoted by, is
+ H€||121 + Z H6i||25a (9) retrieved by solving=(q r sy (P) =0, i.e.
=0

Yq,r,sy (Fo) = 0. (14)

T _ T _ _ _gT
where A" PpA — Pp = —Q and A"IIA — 11 = —H"SH, RequiringX;¢ g sy (P) < 0 implies P > P,. We will use

and wherez; is given by [PN:N<] [16]. .
The state-fee?jback I\)/III[DC des}i [n ]ro osed in [16] is basE @RS (-P) at a later stage to search forfathat gives a
gn prop @0st function for the robust case that is an upper bound on

N,N. . )
on [P } as follows: the nominal cost.

Algorithm 1: (Nominal State-Feedback MPC) The proposed output-feedback policy for the system, con-
Offline (i) Choose any integers/, N, and Ne satisfying  gjgering the uncertainties, can now be described as follows
].\.] 2Ny 21, N2 NE. = 1. Algorithm 2: (Output-Feedback MPC)

(ify Choose any matrice > 0, & > 0 and 5 > 0. Offline (i) Design a state estimator (12).
(!") Choose P that satisfies (8). A (i) Choose any integerd’, N,, and N, satisfyingN > N, >
(iv) Choose anyl" and¢ such that the seXp = {z|Txz < t} 1,N>N, > 1.

satisfies (i) Choose any matrice§) > 0, R > 0 and S > 0.

Az € Xp,Vz € Xp, Xp C {z|Hz < h}. (10) (iv) Choose any matrix’ satisfyingX o r sy (P) < 0.
(v) Choose any” andt such that the seXp = {z|Tx < t}

Online: At each time stepk > 0, solve [PY:V¢], using satisfies (10).
x =, thenapplyu, = [I 0 --- 0]U* () to (3). Online At each time stegk > 0, solve [PY:Y<] usingz =

The following theorem establishes closed-loop stabilityix, then applyu, = [I 0 --- 0] U* (&) to (1).
when applying Algorithm 1 to the nominal system (3), Remark 4:Note that the only difference between Algo-
disregarding the “plant” (1) altogether. rithm 2 and Algorithm 1 is the introduction of a state estima-

Theorem 1:The closed-loop system under Algorithm 1tor, and the requirement thdt satisfies¥q r sy (P) < 0.
is globally exponentially stable. Moreover, the closedgo Since 4, is stable, we can always find suchra

trajectories satisfy A. ROBUST STABILITY TEST
s Next, following the approach of [16], we propose LMI
Z ”xk”é k| + leills < 77 (20) (11)  conditions on thge cost fFLJJFr)lction matEjR ]that aFe sFLfficient
k=0 for closed-loop stability. To this end, we define the aug-
wheree; denotes the first block component of (). mented state
Proof: This is theorem 3 in [16], where the proof can T2 2P, 3], (15)
be found.

herez? is the plant state and is the estimated ROM state.

[
We have now established stability of the MPC design he dynamics of: in closed-loop are described by

Algorithm 1, when applied to (3) only. Next, we take model

approximation errors into account. Ipp1 = AL+ Bug,  To = [zo,20] (16)
Tp = C’fk, (17)
IV. REDUCED-ORDER MPC WITH OUTPUT
FEEDBACK where

In this section, we propose an output-feedback MPC A= [ Ap 0 ] (18)
procedure based on the reduced-order model (3), in which LC, A-LC
we take into account the error introduced through the model B [Ble} (19)
reduction process. We also prove closed-loop stabilityrwhe BD,
applying this controller to the plant (1). C = [0 I] ’ (20)

The MPC control input is computed based on the reduced- ]
order state vectar; at each time step, ang, should there- and D1 = 7o - O] is such thatuy, = Dlﬂjfv ]gvhere
fore be estimated by an observer based on measurenfents’s = (U, ¢j,¢;] contains the minimizers of PN ] at

from the plant. For simplicity, we consider a linear estiarat tT‘e stepk. The matrixL is the gain of the state estimator

of the form . . .
For the purpose of stability analysis, we need to establish

Fry1 = Ay + Buy + L (y} — Ciy), (12) afeasible solution. , to [PY:V<] at time stepk+1, based



on the optimal solution;, at the previous time step. The At time stepk, we have

following lemma establishes the existence such a solution. 5

Lemma 1:Let A and B be defined as in (18) and (19). VIRV (T, u) = ‘ [wk] (30)
Then Pr] oo, P)
Fy =Kp[LC, —LC (21) _ cz |
= KrlpG, L9 = l2ello, + |, (31)
and LT
T (N, 1) 0 0 = ||zI3, +’ [“”“} (32)
= 0 I'(Ne,ny) HY, (22) o | L] |l
0 0 A = llzlllg, + i, (33)
are such that where & takes the place of the nominal state. Similarly, at
fhy1 = iz + Fopy, (23) the next time stef + 1, the Lyapunov function candidate is
given by
is a feasible solution t¢P:N<] at time stepk + 1. Here, ,
_ Ne—1 gN. Vi, 2V (T, = [mkﬂ} 34
Kr= [O,H, HA,--- \HAN A } ) (24) bt (@1, i) ’ HE+1 ] oo, P) e
is a particular feasible solution. = l[Zxs1]l Gy + Jis1- (35)

Proof: The proof follows from Lemma 5 in [16]. & P . .
As the final step towards our stability test, we need to finq/*NOWS/iergé’ as in (23), can be used to derive a bound for

a suitable cost function matri®. To this end we introduce “*+1°

the following definitions: 2

VE A v(z 7F_[ fik—kl ] 36
A [Q 0O T bt (i1, 17) H Bz + B || g, p) (39)
Q(Q, P) = 0 0 + DpPD,, (25) ) ) ) . >
= ka-l-lHQO + H[$k+1aUk+1a€k+1a€k+1]Hp (37)
with . and
Dp = [O In“] ’ (26) Vk*+1 = ||[Ik+1aff7k+1]”?zo + Jl:Jrla (38)
and Q) € Rmne)x (ntna) we have that
(0 P 2 A B 00 p i B Qi P (OV) i1 =V @rgrs tkg1) =V (Zrs1s thyr) (39)
. F) = [F F] (0, ) {F F} =88, P). = lZals, + Jisr — NI, (40)
i - e oo, Ui ebins b
The stability test for Algorithm 2 can now be stated as k+1 Yk+15 Ckt+1 Ck+1] |1 P ,
follows. =Jiy1 — || [ikﬂv Ulf+1v€£+1v€£+1] ||P’ (41)
Theorem 2:Assume that, for a giver, there exists a _
matrix y € R(»+n2)x(n+n2) gych that, and it follows that
Q(Q, P) >0 (28a) (OV)j41 <0, (42)
® (o, P) <0, (28b)  due to the optimality ofJ;,, and sinceuf,, is feasible

_ i ) _ (but most likely sub-optimal). Obviously, this implies
whereQ (Qo, P) is as defined in (25) andl (2o, P) is as de-

fined in (27). Then the closed-loop system under Algorithm Vi1 < V/fil- (43)
2 is exponentially stable. _ .

Proof: Proving stability follows the well-known path NOW, it remains to show that
[17] of first showing recursive feasibility, and then shogin Four < ol |2
that there exists a Lyapunov function for the closed-loop Vierr = Vi < a2 (44)
system that decreases at each time step. Feasibility at eagh (some arbitrarily small) scalax > 0. For that purpose,

time step has been established in Lemma 1. Now, considge use the property (28b). At time stépwe have
the Lyapunov function candidate

_ 7T _
Sl x’“} ® (0, P) [“ﬂ (45)
V(z,p) = H , (29) [Mk 14k
oo, w)" (4 B]" A B [m] ..
which is positive definite in view of (28a), and where HEk 1 L2 1 F2] Mk

denotes the minimizers ofP¥-N=], i.e. up = (U}, €, €}). (46)



Now, note that design is non-conservative in the sense ti#t ~ P

- i= . B ided that the neglected dynamigs(z) £ C,(zI —
A B[z [ A+ B prove ° - ’
[F1 FQ] [,Uk] = |:F11_7k +F2Mk] (47)  A,)"'B, — C(zI — A)~'B are sufficiently small.
_ [:Em} (48) C- NUMERICAL EXAMPLE
F )
HE+1

We consider &th order plant given by
where ], is the feasible solution, as defined in equation

(23). By inserting (48) into (46), we have that 83? —()6227 _()031)9 _001272 O(‘)Ofl _8?(1)
T . . . . - . - .
T T | —=0.19 0.30 0.46 0.09 —-0.02 -0.08
[MJ ® (S0, P) [MJ (49 A =1 022 017 009 060 —006 0.14
= T = 0.03 -0.11 -0.02 —-0.06 046 -—-0.13
= [ ’;“] Q(QO,P)[ ’;“} — (50) —0.50 —0.11 —0.08 0.14 —0.13 —0.23
Hk+1 Hk+1
[ ®r+1 * B, = |1.0159 0 0.5988 1.8641 0 —1.2155}T and
= F -V (51) P
1] ooy, ) Cp, = [1.2920 0 0 0.2361 0.8428 0]. The system
_vF e has a zero atz = 6.83, outside the unit circle, and is
=V — Vi (52) . . .
consequently non-minimum phase. The outplliis subject
Since the inequality (28Db) is strict it then follows that Y44 to soft unit bound constraints, and the input is subject
holds for somex > 0. B to hard unit bound constraints. We choaSg = N = 10,
B. ROBUST DESIGN N.=2,Q=1,R=0.1andS = 10001.

] ) o First, we reduce the system order from=6ton, =5
Following [16], we next propose a semi-definite programynq,, * — 4 ysing balanced reduction, and we impose the

(SDP) that may be used to compute a matfix > Py  same constraints on the reduced-order models. Reduced-
that satisfies the stability criterion (28) and is as “cloas” 54er models withn. = 5 and n. — 4 leads to model

possible to the nominal cost function matd. That is: reduction errorgA(z)||oc = 6.9885x 10~ and||A(z)]| s =
inf trace (Py) + gtrace (P3) (53a) 0.0221, respectively. The plant is initialized atf =
Py, P20 [—0.9044, —9.1380, —2.5036, 0.6696, —0.0821, —4.0350]
P = diag{ Py, P2} while the observer is initialized at, = C*y!, whereC*
st Yg.rs (P) <0 (53b) denotes the Moore-Penrose pseudoinverseCopfand y?
] @ (Q, P) <0 is the initial plant output. The SDP (53) is solved using
Q(Qo, P) >0 MATLAB with YALMIP [13] and SeDuMi [22].

whereg > 0 is a scalar, and where we have also added the Fig- 1 compares the closed-loop responses of different
structural constrain® = diag{P;, P}, such that the cost robust MPC designs computed using Algorithm 3. The figure

(5) takes the formJ (z,U,e,¢) = |||z U]H?D + Il e]”; ~ also shows the response when using the associated nominal
Regarding the feasibility of the above SDP, we have thd€Sign (NMPC), which is algorithm 3 but usirig = % as
following strong result (which is proven in [9]): in (14). N
Theorem 3:If the matrices, 4, and A — LC, are both For this initial condition, the open-loop response over-
stable, then the problem (53) isp feasible. shoots the upper output constraint bif%, and so the robust
In the sequel, we denote y* a feasible and (near) optimal d€sign is good at keeping its soft constraints. Fig. 1 sugges
solution to (53). that the robust MPC is not overly conservative when the
Remark 5:SinceX g .5y (P*) < 0, we have thatP* > model uncertainty is relatively small.
P,, whereP, is as in (14). If we proceed by truncating ta, = 3, the model reduc-
By use of P = P* we obtain the following robust design. tion error increases by an order of magnitud¢£0(z)|| . =
Algorithm 3: (Robust Output-Feedback MPC) 0.1373. In this case, the nominal MPC design fails severely,
Offline (i) Choose any integer®, N, and N. satisfying &S illustrated in Fig. 2. In fact, the output for the nominal
N>N,>1,N>N.>1. design oscillates between its soft constraints. On therothe

(i) Choose anyl" andt such that the seX = {z|T'z <t} hand, the “robustified” design still performs well.
satisfies (10).

(iii) Choose any observer gain such that- LC is stable. V. CONCLUSIONS

(iv) Choose any matrice§ > 0, R > 0 and S > 0 and In this paper we have developed a procedure for obtain-
determineP = P* by solving (53). ing closed-loop stability of output-feedback MPC based on
Online At each time steg: > 0, solve [PN=NE] usingz = reduced-order models. The procedure uses the information
Zr, then applyuy, = [I 0 .- 0] U* (2) to (1). available in the original plant model in the offline phase of

In [9], we address the important question of conservatismetermining the cost function parameters. Since our main
of the above robust reduced-order design. Specifically, wabjective is to design an efficient online controller, it is
show that, under a reasonable assumption, the proposedsonable to put extra work into the offline stage.
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Fig. 1. Top: NMPC using the plant as the nominal model. CemM&tPC
(dotted) and robust MPC (solid) using a ROM with = 5. Bottom: NMPC
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Fig. 2. NMPC (dotted) and robust MPC (solid) using a ROM with = 3.
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For large-scale systems, this procedure may be too cos]
putationally demanding, since we require solving LMIs in-
volving the full system matrices. It seems feasible to ferth [19]
develop the procedure described here by treating partseof th
dynamics as model uncertainty. [20]
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