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Abstract

A systematic analysis of the mobility of closed chain manipulators with passive joints is presented. The
main observation in this paper is that the mobility of the manipulator, considering the passive joints only,
should always be zero. Further, for the manipulator to be fault tolerant, the mobility should remain zero

when actuator failure occurs for an arbitrary joint.

We present a simple and rigorous approach to the

problem of finding the smallest set of active joints for which the manipulator remains equilibrated with
respect to free swinging joint failure in any joint. Several examples of how to choose the active joints for
different mechanisms to guarantee that the manipulator is equilibrated and fault tolerant are presented.
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1 Introduction

Closed chain manipulators such as parallel manipula-
tors and cooperating serial manipulators have many
advantages over their serial counterparts. Parallel ma-
nipulators are stiffer, faster and more accurate than
serial manipulators at the cost of a smaller workspace.
Cooperating robots can handle heavier and larger ob-
jects than serial manipulators and are thus the pre-
ferred choice in many applications. Both parallel and
cooperating robots are widely used especially in remote
and harsh environments where humans can not or do
not want to operate. The need for a rigorous theory
on what happens when joint failure occurs is thus im-
portant to be able to cope with unforeseen events such
as joint failures.

This paper discusses the effect that passive joints
have on the mobility of parallel manipulators. The
main motivation and also the main example used
throughout the paper is joint failure. We study the
ability of the mechanism to remain equilibrated when
free-swinging joint failure (FSJF) occurs, see Tinos
et al. (2006). FSJF is also referred to as torque failure
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in the literature (Matone and Roth, 1999).

We will denote a manipulator equilibrated if it can
resist a wrench in an arbitrary direction, either through
kinematic constraints or through actuator torques. We
obtain this if the manipulator, considering the passive
joints only, has mobility equal to zero, i.e. we do not
want the passive joints to allow any motion when the
active joints are locked. If this property is satisfied this
is the same as guaranteeing that manipulator does not
have an unstable singularity, following the classification
in Matone and Roth (1999).

For non-overconstrained mechanisms, i.e. when
there are no redundant constraints, we can apply the
well known Griibler formula. The active joints can be
chosen arbitrarily as long as the manipulator remains
non-overconstrained and the self-motion is considered.

For overconstrained mechanisms, there are many ap-
proaches to determine the mobility. In Dai et al. (2006)
the mobility of the mechanism is found from the con-
straint space. The constraints of the system are found
systematically and the redundant constraints are iden-
tified. The mobility is then found by adding the de-
grees of freedom represented by these redundant con-
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straints to the Griibler formula for non-overconstrained
mechanisms. This approach illustrates well the effect
of redundant constraints in the mechanism.

The mobility can also be found by the motion space
as in Rico et al. (2003) and Rico et al. (2006). The de-
gree of freedom of the motion of the end effector is first
found. Then the degree of freedom of the self-motion
manifold of each chain is added. By this approach the
redundant constraints are not found directly. This ap-
proach also gives valuable in-sight on where to place
redundant actuators in the mechanism.

We present a systematic and rigorous analysis of the
mobility of closed chain mechanisms based on the the-
ory of twists. The analysis makes it possible to calcu-
late the mobility of the mechanism based on the num-
ber and type of joints in each sub-chain. We then de-
termine the minimum set of active joints needed for the
manipulator to be equilibrated and fault tolerant. The
mechanism needs to be equilibrated not only with re-
spect to forces acting on the end effector, but also with
respect to forces acting on the chains. Thus, in addi-
tion to the end-effector motion we also need to consider
the internal motion of each chain to guarantee that the
mechanism is equilibrated.

We present several examples of how to apply the the-
ory presented to different mechanisms. For three types
of mechanisms, exceptional linkage and trivial linkage
of type I and II, we show how to choose the minimum
number of active joints so that the mechanisms are
equilibrated and fault tolerant.

2 Rigid Body Motion

This section gives the background of mathematical
modelling of rigid body motion. For a detailed
overview of the topic, the reader is referred to Mur-
ray et al. (1994) and Meng et al. (2007).

We will use the special Euclidean group SE(3) to
represent, the configuration space of a rigid body. In
addition to its group structure, SE(3) is a differen-
tiable manifold, and is what is known as a Lie group.
SE(3) is thus a matrix Lie group and can be written
by homogeneous coordinates

SE(3):H§ ﬂ |peR3,ReSO(3)} (1)

where SO(3) is the 3-dimensional special orthogonal
group. An element g € SFE(3) represents a rotation
and a displacement of a rigid body relative to a refer-
ence configuration. The manifold structure of SE(3) is
given by

®:S0(3) x B® — SE(3): (R,p) — Fg 119] L@
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Associated with every Lie group G is its Lie algebra
g which is defined as the tangent space of G at the
identity e and is written as g £ T.G. A vector space V
is a Lie algebra if there exists a bilinear operation given
by the matrix commutator [v1,va] = v1v2 — vovy. The
Lie algebra se(3) of SE(3) consist of all 4 x 4 matrices

w v
0 0
where v € R? and & is the skew-symmetric matrix
representation of w € R? given by

se(3) = (3)

0 —Ww3 w9
w= w3 0 —w1| € 80(3). (4)
—W?2 w1 0

An element of se(3) can be represented by the twist co-
ordinates £ = [vT wT}T € RS which can be identified
with the twist £ € se(3) by the map

NoB )= |0 - E= [5G esed

The exponential map

exp : se(3) — SE(3) : £ — € (6)

defines a local diffeomorphism taking the zero vector of
se(3) to the identity element of SE(3). Physically ¢,
# € R corresponds to a screw motion along the axis
of a fixed £&. Denote by L, and R, the left and right
translation map, respectively. The differential Lg. of
L, defines the body velocity and the differential R, of
R, defines spatial® velocity of a rigid body. Then for a
trajectory g(t) € SE(3),t € (—¢,€), the body velocity
of the rigid body is given by
w v

while the spatial velocity is given by Ve = Ry, -
g. The body and spatial velocities are related by the
Adjoint map

- . RTR RTp
Vb = Lg(t)*l* . g(t) - |: 0 Op:|

Ve =Ad,V* (8)
where g = (R, p) and
_[R pR
Ad, = {0 R} . (9)

We will write the twist of joint i as G; and the twist
system of chain j as

M; =(G1,Go,...,Gn) = (Mj1, Mjo, ...

n this context, spatial means that the velocity is given with
respect to a globally defined coordinate system. We will also
use spatial for the 3-dimensional space, as opposed to the
planar case.

; Mjn). (10)
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where we use the second notation M ; when we need
to clarify what chain the joint belongs to. We use the
same notation for the joint angles, i.e. ;. The twist
system describes the motion of the end effector for the
open chain.

We will introduce the following notation from Dai
et al. (2006) to represent sets of twists or wrenches.
Braces {-} are used to indicate a set that contains
unique elements while angle brackets (-) are used to
indicate multisets which may contain multiple entries
of each element. We will use cardinality (card) to give
the number of elements in (M;) or {M;}. For {M,},
the cardinality is equal to the dimension. Let the par-
allel manipulator

M = My|[[Ma][ -+ [[ Mg (11)
consist of k serial manipulator sub-chains that share a
common base and a common end effector. The set of
end-effector motions is defined as (Meng et al., 2007)

Cm = Cprmy NCpty NN Oy, (12)
where C; is the set of rigid transformations that M
generates without loop constraints. Cyuq defines the
configurations of the end effector with the loop con-
straints imposed.

We are interested in the passive motion, i.e. the
motion due to the passive joints when the active joints
are fixed. We denote this by

Mp = Mpi||[Mpa| - - || Mpy (13)
where M p; consists of only the passive joints of ma-
nipulator j.

Although only the passive joints are considered, the
twists of the passive joints depend on the configuration
of the active joints. The twist of joint ¢ is given by

gz/ = Ad!](ifwgi (14)

where g; € SE(3) is the transformation from the base
to joint . We will assume it implicitly understood that
the twists, as written in (10), are transformed accord-
ing to (14), and thus write G for G'.

We will find the mobility D considering the passive
joints only. If the mobility of the mechanism is zero we
can conclude that the mechanism is equilibrated with
respect to any external force. On the other hand, if
D > 0 an additional condition needs to be satisfied for
the mechanism to be equilibrated. This is not consid-
ered in this paper.

We will denote a mechanism equilibrated if the fol-
lowing is satisfied:

Definition 2.1. A manipulator M is denoted equi-
librated with respect to an external wrench Fo.; =

[fT TT]T where f,7 € R3, if M, either through kine-
matic constraints or through actuator torque, can pro-
duce a wrench opposite to Fepy, i.e. M can produce
the wrench —kF..; for some k > 0. In the case that
an arbitrary wrench that can be accommodated by the
kinematic constraints, we will say that the manipulator
is passively sustained. When an arbitrary wrench can
be produced by the actuation torque, we will denote it
actively equilibrated.

Note that we do not require that the manipulator can
resist any external wrench, only that it can produce a
wrench of a given type and direction.

In the next section we start by looking at the case
when the constraints are linearly independent, i.e. non-
overconstrained mechanisms. This is very restrictive,
and the results may be misleading if they are not used
with caution. Non-overconstrained mechanisms, are
however, easy to understand and many of the results
from the non-overconstrained case are also true for
overconstrained mechanisms.

3 Non-overconstrained
Mechanisms

We start by looking at the mobility of non-
overconstrained mechanisms when passive joints are
present and find a set of rules to guarantee that the
manipulator is fault tolerant.

3.1 The Planar Case
For the planar case the mobility of the closed chain
mechanism is given by Griibler’s formula

n

D=3N-> (3-f)

i=1

(15)

where N is the number of links in the mechanism and
n is the number of joints. f; is the degree of freedom of
joint ¢ which is 1 for the lower pairs. Griibler’s formula
then becomes

D =3N —2n. (16)

We will start by a simple result which states that a non-
overconstrained closed chain manipulator is always re-
sistant to external forces if the number of active joints
is equal or larger than the dimension of the end-effector
motion Q). The only requirement is that the manipula-
tor remains non-overconstrained when the joint chosen
as active is considered fixed. This is the same as re-
quiring that every component of the end-effector mo-
tion and the internal motion of each chain is generated
by at least one joint, or to require that only joints that
are not locked are chosen. All the results and examples
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can easily be generalised to 2 or 3 degree of freedom
joints. For simplicity we restrict ourselves to the case

fi=1

Proposition 3.1. Given a desired end-effector motion
type Q with m = dim(Q) and a planar parallel manip-
ulator M = Myl|---||My. Then if m joints, which
are not already locked, are chosen active, then Mp is
locked and M is equilibrated.

Proof. Assume all joints passive so that D = m. Then
by choosing the active joints we need to reduce the
degree of freedom of the remaining joints (M p) to zero.
We have that for each joint that is chosen active, n in
Equation (16) is reduced by one. Disregarding this
joint, i.e. assuming it fixed, the number of links N
is also reduced by one. The degree of freedom of the
remaining passive joints when the mechanism remains
non-overconstrained is thus given by

Dy =3(N-1)—-2(n-1)
=3N—-2n—3+2
=D —1. (17)

Repeating this m times, we will have D,, = D —m

where the subscript in D; is the number of active joints

in the mechanism. The mobility of Mp is thus zero.
1

This is consistent with the result that at least m ac-
tuators are needed to generate a motion of dimension
m. Hence, by choosing m joints active, the mechanism
M 4. considering both active and passive joints, gen-
erates ) and M p is equilibrated with respect to any
external disturbance.

3.2 The Spatial Case
For the three-dimensional Euclidean space, Griibler’s
formula becomes

n

D=6N-% (6-f),

i=1

(18)

where f; is 1 for the 1-dimensional lower pairs and we
write

D =6N —b5n. (19)
Proposition 3.2. Given a desired end-effector motion
type Q with m = dim(Q) and a spatial parallel manip-
ulator M = Myl|--||My. Then if m joints, which
are not already locked, are chosen active, then Mp is
locked and M is equilibrated.
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Proof. The proof follows from the planar case. By
choosing the active joints both n and N are re-
duced by one. The degree of freedom of the remain-
ing passive joints when the mechanism remains non-
overconstrained is thus given by

Dy =6(N—-1)—-5(n—-1)
=6N—-5n—-6+5
=D-—1. (20)

Repeating this m times, we will have that the mobility

of Mp is zero. O

Thus we see that we can derive three equivalent
rules on how to choose the active joints for non-
overconstrained mechanisms:

e Choose the active joint from the set of joints that
is not locked due to the kinematic constraints,
considering the previously chosen active joints as
fixed.

e Choose the active joint such that the mechanism
remains non-overconstrained.

e Choose the active joints such that every compo-
nent of the end-effector motion and the internal
motion of each chain is generated by at least one
active joint.

From Propositions 3.1 and 3.2 we see that the active
joints cannot be placed arbitrarily. We need to place at
least one active joint for each degree of freedom of the
self-motion manifold in the respective chain. Denote
the freedom of chain j by D7. This is found by applying
Griibler’s formula to each chain. For the manipulator
to be equilibrated we need to place D’ active joints in
the set of joints that generate the self-motion.

Once this is done, we need to place the remaining
dim(Q) active joints. Each degree of freedom of @) cor-
responds to a one degree of freedom motion. Then,
for each component of the motion @, one active joint
must be chosen among the joints that generate the cor-
responding 1 DOF motion. This will guarantee that
every “direction” of the end-effector motion is actively
equilibrated when the active joints are locked.

3.3 Fault Tolerance

For the manipulator to be fault tolerant we need to
place the redundant actuators in a similar manner. Re-
dundant actuators are the actuators that will guaran-
tee that the manipulator remains actively equilibrated
when actuator failure occurs.

For the chain to be fault tolerant we need DJ + 1
active joints in M; for all chains that are not pas-
sively sustained, i.e. whenever D7 > 0. These active
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joints must be chosen among the joints that generate
the self-motion. This guarantees that the chains are
fault tolerant. In addition, for each subgroup of Q,
one redundant active joint must be chosen among the
joints that generate the motion of the respective sub-
group. Note that one joint can generate a motion in
more than one sub-group. We also note that if a re-
dundant joint is implemented in a chain, this will also
make the mechanism fault tolerant for joint failures in
any active joint that generate a motion in the same
subgroup as the redundant joint.

The results presented so far only apply for non-
overconstrained manipulators. The results do, how-
ever, with a few modifications, give valuable in-sight
into the mobility of overconstrained manipulators. A
spatial manipulator may generate motion that is not
identified by applying the spatial Griibler formula. If
a subset of the joints generate motion in the plane, the
planar Griibler formula must be applied to these joints
to find the dimension of the motion generated by these
joints. In fact, this is the case for all the subgroups. To
guarantee that the passive joints do not generate any
motion, the Griibler formula must be applied to all the
ten subgroup of SE(3), with d being the dimension of
the subgroup

D:dN—i(d—fi). (21)
i=1

Here, only the joints or sets of joints that generate
motion in the given subgroup are considered.

Thus, for the spatial case, the mobility needs to be
checked for all the ten subgroups of SE(3) in addition
to the spatial Griibler formula. Similarly for the pla-
nar case the mobility needs to be checked for all the
subgroups of SE(2), i.e. T'(1), T'(2) and SO(2), in ad-
dition to the planar Griibler formula.

The same is true for the self-motion. A chain in
a spatial mechanism can have self-motion even if the
mobility by the spatial Griibler formula is zero. Also
in this case, the mobility needs to be checked for all
the subgroups of SE(3). When the mobility is found
to be greater than zero, the active and the redundant
joints can be chosen arbitrarily among the joints that
generate the respective motion.

We see that the Griibler formula is not very well
suited for overconstrained mechanisms. In the follow-
ing we thus show how to use the theory of twists to
find the mobility of general mechanisms by applying
the Griibler formula only once or without applying the
Griibler formula at all.

4 QOverconstrained Mechanisms

When the constraints are not linearly independent, the
mechanism is over-constrained, i.e. some of the con-
straints are redundant and have no effect on the mobil-
ity. Based on the approach in Dai et al. (2006) we first
identify the constraints that are common for all chains
and eliminate the redundancy in this set. This set is
easily identified as the intersection of the constraint
space of all the chains. Further the constraints that
constrain each chain to the end effector-motion, the
end effector constraint system, are identified and again
the redundant constraints are found from this set. The
approach presented in Dai et al. (2006) is based on
the screw system of the mechanism and represents the
constraint space as reciprocal screws. Here, we apply
the same general idea as in Dai et al. (2006). The
approach is based on an analysis of the sub-algebras
and sub-manifolds of the Lie Algebra se(3) and their
cotangent spaces.

The approach is general in the sense that no classifi-
cation of the mechanism is required. As pointed out in
Rico et al. (2003), the classification of the mechanism
is not needed to determine its mobility. However, in
our setting, the classification is important in the sense
that it tells us where to place the active joints. As for
the non-overconstrained case, the active joints cannot
be placed arbitrarily in the mechanism. We will see
that only in very special cases can the active joints be
arbitrarily chosen in the mechanism.

The approach in Dai et al. (2006) is based on the
constraint space formulation. It is also shown that the
mobility can be found by the motion space as in Rico
et al. (2003) and Rico et al. (2006). By this approach
the chains are also classified and it is straight forward
to determine the effect a passive joint has on the mech-
anism. We will use the motion space approach to set
up a set of simple rules on where to place the active
joints in the mechanism in order for the mechanism to
be equilibrated. This set of rules naturally leads to an
approach on how to choose actuator redundancy most
efficiently to make the manipulator resistant to joint
failures.

4.1 The Constraint Space

To find the mobility from the constraint space as in Dai
et al. (2006), we start by denoting the motion space of
the chain j as
Mj:(gl7g27"'7gn]) (22)
where G; is the twist of joint ¢ and n; is the number
of joints in chain j. Recall that braces {-} are used
to indicate a set that contains unique elements while
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angle brackets (-) are used to indicate multisets which
may contain multiple entries of each element.
We will denote the constraint system of chain j as
c L

M = M

y (23)

where M; = {F € R®| F-V = 0,Y V € M,} which
is the vanishing of the reciprocal product of Ball (Lip-
kin and Duffy, 2002). This represents the constraints
imposed on the end effector by chain j. Note that we
cannot identify the self-motion from Mj .

Further we will define mechanism motion as the
union of all the twists in the system

Muy=M UMyU---UM;, (24)

evaluated at g € Cpqy, N -+~ N Chrq,. The end-effector
constraints is given as the union of the constraints of
each chain,
—C —C —C -—C
Mg =My UMy U--- UM, (25)

evaluated at g € Cpaq, N+ N Cry,. From this we can
find the constrained motion of the end effector
Mg = (Mg)~. (26)

The intersection of all the constraints are further given
by
—C  ——C _——C ——C
MM:M1 ﬂ./\/lz ﬁka,

or alternatively

(27)
ﬂz = (HM)L. (28)

With the notation of braces and angle brackets, each
of the subsets introduced in this section is given by

k k

{Mu} =M, M) = M,
j=1 Jj=1

c g L1 —C u -1

(M} =M, (M) =Y M,
j=1 Jj=1

k C k C

Mg} =M, My} =D Mj,
j=1 Jj=1

(Mg} = {Mp}* (M} = (M}t

— (My)*, = (Man)*.

Thus, the collection of all constraints is given in (M ),
including repeated elements. The first step is to fac-
torise out all the constraints that are common for all
chains. The “directions” of the end effector represented
by these constraints can be considered the most robust,
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directions as they are constrained by all the sub-chains
in the mechanism. The constraints that are common
for all sub-chains is given by {M,}. We will say that a
single subchain cannot have redundant constraints (as
seen from the other chains or the end effector). This is

—C . .
always true. Because { M} is the same for all chains
we can write

(M) = k- {Myy ). (29)

We see that (ﬂj\cﬂ is (k — 1) times redundant.
For each chain we can factorise out this part by tak-
ing
——C ——C ——C
M} = My} u{Me;}
where {mjcw} n {Mg]} = (). We can add the multisets
of Equation (30) and get

(30)

(M) = (M) + (Mc)
= k- {My} + (Mc) (31)
where (ﬂ]\cﬂ N <ﬂg) = (. As the redundancy in

<M§J/[> is already dealt with, we can focus on (ﬂg}
which may also be redundant. We start by writing

(M) = {Mc} + (M,,). (32)

—Cy . . . .
Here, { M} is the linearly independent part which re-
stricts the motion of the end effector to Mg, while

——C
(M,,) is the collection of the constraints that are lin-
. . —C
early dependent of the entries in {M}. Thus, the re-
. . —C\ .
dundant constraints given by the term (M) in Equa-

. . c
tion (31) are given by card(M, ). The total redun-
dancy in the constraint system is given by

card(Mg,) = (k — 1)card{ My} + card(M. ). (33)

. —C
Finally, we also note that (Mp,) can also be fac-
torised out from

(M) = (M5} + (Mg,). (34)

4.2 The Modified Griibler Formula

The Griibler formula does not take redundant con-
straints into consideration. Redundant constraint are
constraints that do not reduce the mobility of the end
effector or the chains. We therefore need to add these
to the Griibler formula. The Modified Griibler formula
as presented in Dai et al. (2006) is given by adding (33)
to (18)

D= dN—i(d—fi)—i—(k—l)~card{ﬂ§4}+card<m5>
- (35)
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where d is the dimension of the space, normally 3 or 6.
This expression identifies the redundant constraints. It
also gives the mobility due to self-motion. It does not,
however, identify very easily due to what joints these
motions occur. This is considered in more detail in the
next section.

4.3 The Motion Space

The mobility of the mechanism tells us how many ac-
tive joints are needed for the mechanism to be equili-
brated. However, it does not tell us what joints can be
set as passive and what joints need to be active. In the
following, we will show that an alternative to the Mod-
ified Griibler formula given in (35) can be found from
the motion space and we will show how this approach
naturally leads to the classification of different types of
overconstrained joints. This is the same classification
of overconstrained chains as in Rico et al. (2003) and
Rico et al. (2006). Further, in the next section, we will
use this to set up a set of simple rules on where the
active joints need to be placed, i.e. how many active
joints need to be placed in each chain, as well as their
position in the chain.

4.3.1 Exceptional Linkages

In Rico et al. (2003), two sub-chains that have an in-
tersection, but for which the motion space of one sub-
chain is not a subspace of the other, is denoted excep-
tional linkage. We refer to the work of Hervé (1978) for
a formal definition of exceptional, trivial and paradoxi-
cal linkages. Paradoxical linkages are not treated here.
In Rico et al. (2006) this is generalised to the case of
arbitrarily many chains. Here we will look at it from
a different view in order to get a deeper understanding
of the mobility criterion.

We start by finding the mobility of the end effector.
This is given by the intersection of the motion space of
each chain

k

{Mg} = ({M;},

Jj=1

(36)

evaluated at g € My N--- N M. Thus the mobility
of the end effector is given by card{Mg}. Each chain
may also have a mobility independent of the mobility
of the end effector. This is the self-motion and is given
by the degree of freedom in the chain and subtracting
the dimension of the open loop end-effector motion of

the chain.

card{ M, }; = Z fi — card{M;},

?1 n;
card{ My} = Z (Z fi— card{ﬂﬁ) . (37)

The total mobility of the mechanism is then given by
adding (37) to (36). We will write this as a proposition
and provide a different proof than that of Rico et al.
(2006).

Proposition 4.1. The total mobility of a mechanism
is given by the degree of freedom of the end effector,
given in Equation (36) and the self-motion of the chain,
given in Equation (37) by

D = card{ Mg} + Z (ZJ fi — card{ M;; }> )

j=1 \i=1
n k
= card{ Mg} + Z fi— Z card{M;}.  (38)
i=1 j=1

Proof. (sketch) The result follows directly from the ob-
servations that a) the degree of freedom of the end ef-
fector is given by the dimension of {Mf} in Equation
(36); and b) that the self-motion of each chain is given
by Equation (37).

a) The degree of freedom of the end effector is given
by the dimension of { Mg} in Equation (36). This
follows directly from Meng et al. (2007).

b) The dimension of the self-motion manifold can be
found in most textbooks on robotics (e.g. Murray
et al. (1994)) to be the dimension of the null of the
Jacobian N (J), which is given as dim(N(J)) =
n; —m where n; is the number of joints and m is
the dimension of the end-effector motion for the
open chain. This equivalent to (37).

O

We are mainly concerned with the effect of adding a
joint to the chain. Adding a joint to a chain M will
have the same effect as making one joint passive when
only the passive joints of the manipulator are consid-
ered, i.e. adding a joint to M p. In this section we look
at the effect of adding a joint to the mechanisms and in
the next section we use these results to analyse in what
case the manipulator is equilibrated. We will use the
reasoning in Proposition 4.1 and the observation that
a joint that increases the dimension of the end effector
motion of the open chain, but not of the closed chain,
will always be locked. Then there are three different
outcomes of adding a joint to the manipulator:
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e > f; increases by one while card{M;} does
not.

— The dimension of the self-motion manifold of
the chain increases by one.
° Z?;lﬁ and card{M;} increase by one while
card{ Mg} does not.

— The joint will be locked and the mobility of
the system does not change.

° Z:Zl i3

one.

card{M,} and card{Mpg} increase by

— The mobility of the end effector increases by
one.

— The dimension of the self-motion manifold of

the chain does not increase.

Thus, by checking the dimension of card{M;} and
card{ Mg} we can effectively find the effect that a joint
failure has on the mobility of the end effector.

4.3.2 Trivial Linkage of Type |

In Rico et al. (2006) the case when all the sub-chains
generate the same motion

{M;} = {Mg} forj=1...k (39)

is denoted trivial linkages. In this case the mobility is
found directly from (38) by

ko /7
D = card{Mpg} + Z (Z fi— Cafd{ME}>

j=1 \i=1

k nj
= card{ﬂE} — k- CaI“d{ME} + Z (Z f1>

j=1 \i=1

=" fi—(k—1)-card{Mg}. (40)
i=1

In this case there are only two different outcomes:
e > f; increases by one while card{M;} does
not.

— The dimension of the self-motion manifold of
the chain increases by one.

e >, f; and card{M;} increase by one.
— The joint will be locked and the mobility of
the system does not change.
o Y. fi, card{M,} and card{ Mg} increase by
one.

— Will never occur.
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4.3.3 Trivial Linkage of Type Il

In Rico et al. (2003) the case when the entire motion
of the end-effector, connected by two sub-chains, can
be determined and is restricted by one chain is denoted
trivial linkage. As they only consider single loops, the
constraints of the other chain does not affect the mo-
bility of the end effector. In our setting, we define the
corresponding multi-loop classification of trivial link-
age as the following. Assume that we have F’ manipu-
lators that all generate Mg and M’ manipulators that
all generate M, where Mg C Mj;. Then the total
mobility of the system is given by Mg and the internal
mobility of each of the chains. The internal mobility of
the chains in Mg and M, must, however, be treated
differently.
The total mobility of the system is then given by

D = card{ Mg} + Z (i: fi— card{ﬂﬁ)

card{ Mg} + Z (i: fi— card{ﬂE})
+ Z (27: fi— card{mM}>

Z fi— (B —1)-card{ Mg} — M’ - card{ My}
=1

(41)

where 3, sums over all the chains that generate_ﬂE
and ), sums over all the chains that generate M.
Also in this case there are three different outcomes
which we will divide into two classes:
For j € M,
e >, f; increases by one while card{M,} does
not.
— The dimension of the self-motion manifold of
the chain increases by one.
° Z;ZIL and card{M;} increase by one while
card{ Mg} does not.
— The joint will be locked and the mobility of
the system does not change.
o Y fi, card{ My} and card{ Mg} increase by
one.
— Will never occur.
For j € E,
o Y. f; increases by one while card{M;} does
not.

— The dimension of the self-motion manifold of
the chain increases by one.
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° Zglﬁ and card{M;} increase by one while
card{ Mg} does not.

— The joint will be locked and the mobility of
the system does not change.

e Y. fi, card{ My} and card{ Mg} increase by
one.

— The mobility of the end effector increases by
one. The self-motion of the chain does not
increase.

5 Fault Tolerance

In this section, we look into the effect of free-swinging
joint failure (FSJF), or torque failure, in parallel ma-
nipulators and how the results from the previous sec-
tion can be used to prevent that the mechanism turns
inequilibrated when this occurs. For a general treat-
ment and an approach on how to identify joint failure
see Tinos et al. (2006). In this case, as the number of
passive joints in the manipulator increases by one, the
mobility of M p may remain zero or increase by one.
Let m be the number of active joints in M. When
M p does not allow any motion after the joint failure,
we have

FSJF
Dm =0=—= Dmfl =0

(42)
and the manipulator remains equilibrated with respect
to external forces. When M p allows a 1 DOF motion

as a result of the joint failure, i.e.

FSJF

D,, =0=—==D,,_; =1, (43)

the mechanism is not fault tolerant.

We are interested in the condition for which D,,_; =
0. As seen in the previous section, the effect of a free-
swinging joint failure depends on the joint. We start by
setting up a set of rules that determines if a joint failure
will increase the mobility of M p. This can also be used
as a design criterion to guarantee the mechanism to be
fault tolerant. We do that by determining where to
put the actuator redundancy most effectively in order
for the manipulator to be resistant to a joint failure of
any joint.

In the following we will find the conditions for which
the mechanism is equilibrated for all the different out-
comes of joint failure found in Section 4.3.

5.0.4 Exceptional Linkages

e >, f; increases by one while card{M,} does
not.

— The end effector is equilibrated. Chain j will
only remain equilibrated if it is actuator re-
dundant. The redundancy must be in the set
of joints in which the self-motion occurs.

° ZZZIL and card{M;} increase by one while
card{ Mg} does not.

— No action needed. Both end effector and
chains are equilibrated.
o Y. fi, card{M,} and card{Mg} increase by
one.

— The mobility can be compensated with ac-
tuator redundancy in any joint that is not
locked for the motion generated by Mp.

5.0.5 Trivial Linkage of Type |

o Y. f; increases by one while card{M;} does
not.

— The end effector is equilibrated. Chain j will
only remain equilibrated if it is actuator re-
dundant. The redundancy must be in the set
of joints in which the self-motion occurs.

o Y% f; and card{M,} increase by one.

— No action needed. Both end effector and
chains are equilibrated.

o Y. fi, card{M,} and card{ Mg} increase by
one.

— Will never occur.

5.0.6 Trivial Linkage of Type Il

For j € M,
e >, f; increases by one while card{M,} does
not.

— The end effector is equilibrated. Chain j will
only remain equilibrated if it is actuator re-
dundant. The redundancy must be in the set
of joints in which the self-motion occurs.

o Y. fi and card{M;} increase by one while

1=

card{ Mg} does not.

— No action needed. Both end effector and
chains are equilibrated.

° ZZ’;I fi, card{My;} and card{Mg} increase by

one.

— Will never occur.
For j € E,

e >, f; increases by one while card{M,} does
not.
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— The end effector is equilibrated. Chain j will
only remain equilibrated if it is actuator re-
dundant. The redundancy must be in the set
of joints in which the self-motion occurs.

e > 7, fi and card{M;,} increase by one while
card{ Mg} does not.

— No action needed. Both end effector and
chains are equilibrated.

e Y fi, card{ My} and card{ Mg} increase by

one.

— The mobility can be compensated with ac-
tuator redundancy in any joint that is not
locked for the motion generated by Mp.

From the results presented in this section, we see that
we can easily verify if redundant actuation is needed
when joint failure occurs for a given active joint. If
joint failure does not lead to self-motion of the chain
it may be compensated for by another redundant ac-
tuated joint that is not locked for this motion. These
cases are important to recognise in order to not place
unnecessary many active joints in the mechanism. If,
on the other hand, the joint failure leads to self-motion,
a redundant actuated joint is always needed in the re-
spective chain. These observations lead to a simple rule
on how to place the redundant active joints in order
to guarantee that the mechanism remains equilibrated
when actuator failure occurs for an arbitrary joint.

6 Examples

We are interested in the condition for which D,, 1 = 0.
As seen in the previous section, the effect of a free
swinging joint failure depends on the joint in which it
occurs. In the following we show three examples on
how to determine where to put the actuator redun-
dancy most effectively in order guarantee fault toler-
ance with respect to any joint.

6.1 Exceptional Linkages

Consider the mechanisms in Figure 1. One of the arms
is kinematically redundant in order to avoid obstacles.
We find the twists representing each chain

_ Uy P12 X Wy P13 X Wy P14 X Wy
L= 0l”’ Wy, ’ Wy, ’ Wy,

Uz P22 X W P23 X wy P24 X Wy
0]” Wy ’ w; ’ w;

P25 X Wy P26 X Wy
[ o } Ad,, [ w }} (44)

N

N

9 =

160

My

Mo

Mg

T

Figure 1: Exceptional linkage with self motion

where pj; = I:zji Yiji Zji]T is some point on the rev-
olute axis of joint 7 in chain j given in the interial
frame. We can write the transformation from the base
b to joint 5 of My as Ry 5 and psp5 given by

cosfly —sinfy O

Ry p5(022—5)) = |sinfly  cosfr 0 (45)
0 0 1
;

p2ps(Or1-5) = [T2p4 Y24 22,04 (46)

where 05 = Z?Zl 05;. We can then write the twists as

0 212 213 214
1 0 0 0
- 0 —x12 —T13 —T14
Ml - 0 ) 0 ; 0 ; 0 H (47)
0 1 1 1
0 0 0 0
[0 [ Y22 Y23 Y24
0 —Xo9 —x23 —X24
— 1 0 0 0
M2 - 0 ) 0 ’ 0 9 0 ’ (48)
0 0 0 0
o] [ 1 1 1
[ Y25 ) —Z26%2,b4 COS 0o — Y26Y2,b4
—T25 —22622,4 5iN 02 + Y262 b4
0 296Y2,b4 SiN O — 22672 p4 COS O
0 ’ cos 63
0 sin 03
I 1 ] 0
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6.1.1 Equilibrated Mechanism

The motion of each chain is given by

My € X(y), Ma€ X(2)x R(ws) (49)
where X'(w) is the Schoenflies group (3D translation

and rotation about w) and

we = Ra psws. (50)
The constrained space is given by
—-—C 0 0
=] ]} o

Ms ={[0 0 0 —sinf; costy 0]}

- { {Rz,z?swz} } '

Due to the kinematic constraints we have 6 = 0
which gives us

st - (0] (2] 2]} o

Wy Wy W,

Note that none of these are redundant. We can now
write

=gy ={ %) 0] 5] e o
(59)

These are clearly multisets, i.e. there are several differ-
ent combinations of joints that generate the particular
motion. We can now verify that the mechanism is ex-
ceptional, i.e.

ME Cﬂh
ﬂ1 7gﬂ?y

ME Cﬂz,
Ma & M.

As the end effector has three degrees of freedom, we
need at least three active joints. These can be cho-
sen arbitrarily among the joints that generate the end-
effector motion, i.e. all joints except Mog. At this
stage it is important that all the degrees of freedom in
(53) and the internal motion are taken care of. To see
this we look at Equation (38) where we see that the
mobility can be divided into the degree of freedom of
the end-effector and the self-motion of the chains

koo
D= card{Mg} +Z (Z fi— card{./\/lj}> .

j=1 \i=1

End-effector DOF

DOF of self-motion of chain j
(54)
We get the following set of rules for choosing the
joints;

z
x% Yy
Figure 2: Exceptional linkage. We consider the active
joints as fixed and consider only the passive

joints, i.e. Mp. The mechanism M p is equi-
librated with respect to any external distur-

bance. If Moy is chosen as the redundant
actuation, the manipulator is also fault toler-
ant. If M4 is chosen, it is not fault tolerant

e choose four active joint of which at least one is cho-
sen among the joints that generate the self motion,

e choose the joints so that they generate the end-
effector motion 7 (3).

One example of how the active joints can be chosen
is shown in Figure 2. We illustrate the mobility of
Mp by setting the active joints rigid. We see that
the manipulator, considering passive joints only, is now
equilibrated with respect to any external disturbances.

6.1.2 Fault tolerance

Assume we have chosen a set of joints like the ones in
Figure 2 for which the manipulator is equilibrated. Af-
ter observing that Mag does not affect the end-effector
or internal motion we get the twists

AA _ Uy P14 X Wy
wo= {8 [0
vy R P22 X w; P24 X Wy

s (5] ] )
Then the effect of adding a joint to the chain in Mp,

i.e. turning one of the active joints passive in M, de-
pends on the joint in question. We first note that

(55)

mp = M}n ﬂmpg = 0. (57)
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We need to choose one or more additional joints in
order to guarantee that the manipulator remains equi-
librated when joint failure occurs. We will look into
two different cases. First we choose M4 to be the
redundant active joint, then we chose Mas (or equiva-
lently Ms4) and we will see how important this choice
is for fault tolerance of the mechanism.

Assume fist we choose M4 as the redundant active
joint (see Figure 2). We then have two different cases
that need to be considered. See From and Gravdahl
(2009) for a detailed analysis on the effect of joint fail-
ure.

e One of the active joints in M; becomes passive:

- Yomp, fi and card{Mp1} increase by one
while card{Mp} does not. M remains equi-
librated.

Ds =022 p,—0.

e One of the active joints in My becomes passive:

- Yoy, fis card{Mpy} and card{Mp} in-
crease by one. The end effector of Mp has
one degree of freedom (7 (y)).

Ds =025 p,—1.

We can see this if we write out the twists of M p when
M4 is chosen as the redundant actuation and joint
failure occurs in Mogs:

m={[3]}

N

(58)

- (o P22 X W P23 X W P24 X W
IR i Y S B S ¢

and

ﬂp = Mpl ﬂﬂpg = T(y) (59)

We see that when the actuator redundancy is chosen
in M the mechanism is fault tolerant with respect to
joint failures in M only.

For Mas/ May we also consider the same two cases,
there is no difference if we choose Moy or Moy,

e One of the active joints in M; becomes passive:

- Yoy, fi and card{Mp1} increase by one

while card{Mp} does not. M remains equi-
librated.

Ds =022 p,—0.

e One of the active joints in My becomes passive:
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Figure 3: Trivial Linkage of Type I.

- Y, Ji and card{M,} increase by one

while card{ Mp} does not. M remains equi-
librated.

FSJF

Ds =0=—= D, =0.

Again we write out the twists of M p when May is cho-
sen as the redundant actuation and joint failure occurs

in Mag:

= {[3]- P}

s {fi] e] a]) o
and

Mp = M}n ﬂﬂpz =0.

We see that when the actuator redundancy is chosen
in My the mechanism is fault tolerant with respect to
joint failures in all joints.

(61)

6.2 Trivial Linkage of Type |

Mechanisms for which all chains generate the same
motion have some special characteristics. First of all,
none of the joints are locked due to the kinematic con-
straints. Also, a joint fault in one chain which reduces
the mobility of the end effector can be compensated for
by actuator redundancy in any other chain. The chains
may be kinematically redundant which is the case for
M3 in Figure 3. As the reasoning is similar to the pre-
vious example, we give only a cursory description of
how to choose the active joints.

6.2.1 Equilibrated Mechanism

As all chains generate the same motion we have more
freedom in choosing the active joints. All the chains in
Figure 3 generate X (z) which gives the end effector four
degrees of freedom. M3 also has one degree of internal
freedom. Hence, we need to choose at least one of the
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Figure 4: Trivial Linkage of Type I. Bad choice of ac-
tive joints. If joint failure occurs in joint
Mz, the mechanism is no longer equili-
brated with respect to forces in the direction
of the z-axis, such as gravity forces. Joints
Mo and M, are parallelogram joints that
generate motion in S'.

joints in the set that generate the self-motion as active
and the other three can be chosen arbitrarily as long
as the other degrees of freedom (X(2)\R(z,ps;)) can
be generated.?

6.2.2 Fault Tolerance

Assume that we follow the reasoning from the previous
example and choose the active joints as in Figure 4 with
My, Moy, Maz, Mss and M3, active. The motiva-
tion for this choice is that internal motion is present in
M3, so we need one redundant actuator among these
joints (Mz3 and Msy). This redundant actuator will
also assure fault tolerance when joint failure occurs in
joints in the other chains that generate the same mo-
tion, i.e. the intersection of the motions generated by
the redundant actuator and the motion of the fault
tolerant joint is non-empty.

If, however, joint failure occurs in Mjo, chain M;
can generate a motion in the direction of the z-axis.
We have

T(z)NMsg; =0, fori=23,4,5. (62)
As the intersection is empty, the redundancy in Mj
does not make the mechanism fault tolerant with re-
spect to joint M. To guarantee fault tolerance with
respect to all joints, we need actuator redundancy in
the joints that generate motion in this direction as well.
This can be obtained by joints Ma, Moy or M3;. We
thus conclude that, for the mechanism to be fault tol-
erant we need two redundant actuated joints.

2Loosely speaking, X(z)\R(z,psi) can be interpreted as the
motion X (z) minus the motion of R(z, ps;), for a formal def-
inition, see Meng et al. (2007). R(z,p) rotates the point p
around the axis z.

6.3 Trivial Linkage of Type Il

Consider the manipulator in Figure 5. The chains are
described by the twists

m-{[d)
(] e )

Mo — {{Pm X ww:| {p32 X ww:| {p32 X ww:|
3 = ) ’ )

(Adg, ,,) {pﬁ’*‘* * “’Z} , (Ady, ) [p35 * w’f} }

Wy

Due to the kinematic constraints, 3 53 and R3 p4 are
constant and

Ml S T(y), Mg S 'P[,(Z),
Ms € PL(2) x R(wg) x R(ws). (64)
where
wy = R3o3w,, w5 = R3 04w, (65)
so that ws = ws. We then have
—C (ve] [v.] O 0 0
w0 ={ (5] 5] L)L) Lo
—cC (v,] [0 0
% ={[5] o) Lo b
—c [0
My = { Rs 03wy] } . (66)

Considering the kinematic constraint, the constraint
space of M3 becomes simply Mg = {[0 wy]T}. We
see that

M c M5 c MY (67)

or alternatively
My Cc My C Ms (68)

which is the definition of trivial linkage of type II. This
expression can be seen from (64) when applying the
kinematic constraints.

6.3.1 Equilibrated Mechanism
The motion of the end effector is given by
ME Zﬂl ﬁﬂz ﬂﬂ3 Zﬂl :’T(y) (69)

and has thus only one degree of freedom. My has no
internal motion, as can be seen from analysing M, and
M in the plane. M UM, has only one degree of free-
dom, which is the same as the end effector, and has no
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Figure 5: Trivial linkage of type II

self-motion. We can also use (21) (non-overconstrained
mechanisms) with d =6, N =4, n =5 and f; = 1 to
see that M3 allows no internal motion.

As the mechanism has mobility one, we need one
active joint to make the manipulator equilibrated. This
joint must generate the motion 7 (y). From (64) it is
clear that all the joints in M; and My generate the
end-effector motion. If we take a close look at M3z, we
see that the three first joints generate PL(x). The last
two joints in this chain generate R(w,) x R(ws). This
motion depends on the configuration of the first three
joints. Due to the joint constraints we have 031 4+ 032 +
033 = 0 and thus wy = ws = w,. As

T(y) N (R(psa, ws) X R(pss,wz)) =0 (70)
we conclude that these joints are locked.

To guarantee that the mechanism is equilibrated we
can choose any joint that generate the end-effector mo-
tion. The only joints that do not generate this motion
is Mas4 and Mgss. These joints will always be locked.
The mechanism is equilibrated whenever any of the
other joints are actuated.

6.3.2 Fault tolerance

The same applies to fault tolerance. To guarantee that
the manipulator remains equilibrated when joint failure
occurs we can choose any joint that generate the end-
effector motion as the redundant actuation.

7 Conclusion

A set of rules on how to place redundant actuators
in parallel mechanisms in order to guarantee that the
manipulator remains equilibrated when actuator fail-
ure occurs is presented. The manipulator is said to
be equilibrated when the manipulator, considering the
passive joints only, has no mobility. Actuator failure
can be divided into three main classes. The first is
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when no redundant actuation is needed as the joint for
which the actuator failure occurs will be locked. The
second case is when the actuator failure occurs in a
set of joint which generates an internal motion of a
sub-chain. In this case actuator redundancy must be
placed in this set of joints. When the joint does not
generate an internal motion and is not locked, actuator
failure can be compensated by redundancy in any part
of the mechanism which is not locked, including a joint
that generates internal motion. In this case the redun-
dant joint guarantees fault tolerance also with respect
to the joints that generate the self motion. In general,
the chosen redundant actuators must, as a group, gen-
erate any self-motion and all the components of the
end-effector motion.
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