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Abstract: In this paper we derive the singularity-free dynamic equations of AUV-manipulator
systems using a minimal representation. Autonomous underwater vehicles (AUVs) are normally
modeled using the singularity-prone Euler angles, but introducing quasi-coordinates allows us to
derive the dynamics using minimal and globally valid non-Euclidean configuration coordinates.
This is a great advantage as the configuration space of an AUV is non-Euclidean. We thus obtain
a computationally efficient and singularity-free formulation of the dynamic equations with the
same complexity as the conventional Lagrangian approach. The closed form formulation makes
the proposed approach well suited for system analysis and model-based control. This paper
focuses on the kinematic and dynamic properties of AUV-manipulator systems and we present
the explicit matrices needed for implementation together with several mathematical relations
that can be used to speed up the algorithms. The hydrodynamic and damping forces are also
included in the equations. By presenting the explicit equations needed for implementation, the
approach presented becomes more accessible and engineers and programmers can implement
the results without extensive knowledge of the mathematical background.
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1. INTRODUCTION

A good understanding of the dynamics of robotic ma-
nipulators mounted on autonomous underwater vehicles
(AUVs) is important in a wide range of applications.
Especially, the use of robots in harsh and remote areas
has increased the need for AUV-robot solutions. A robotic
manipulator mounted on a moving vehicle is a flexible
and versatile solution and thus an efficient way to perform
challenging tasks over a large sub-sea area. Operations at
deeper water where humans cannot or do not want to oper-
ate, require more advanced and robust underwater systems
and thus the need for continuously operating robots for
surveillance, maintenance, and operation emerges (Love
et al., 2004; Antonelli, 2006; McMillan et al., 1995). Recre-
ating realistic models of deep-sea conditions is thus impor-
tant. Both for simulation and for model-based control the
explicit dynamic equations of AUV-manipulator systems
need to be implemented in a robust and computationally
efficient way to guarantee safe testing and operation of
these systems.

In this paper we study in detail how to model AUVs
with robotic arms, or underwater robotic vehicles (URVs).
For the first time we derive the minimal, singularity free
dynamic equations of AUV-manipulator systems using the
proposed framework. We also show how to add the hydro-
dynamic effects such as added mass and damping forces.
The dynamic equations have approximately the same com-
plexity as the conventional Lagrangian approach and are
better suited for simulation and easier to implement.

It is a well known fact that the kinematics of a rigid
body contains singularities if the Euler angles are used
to represent the orientation and the joint topology is not

taken into account. One solution to this problem is to use a
non-minimal representation such as the unit quaternion to
represent the orientation. These are not generalized coor-
dinates and can thus not be used in Lagrange’s equations.
This is a major drawback when it comes to modeling
vehicle-manipulator systems as most methods used for
robot modeling are based on the Lagrangian approach.
It is thus a great advantage if also the vehicle dynamics
can be derived from the Lagrange equations.

The use of Lie groups and algebras as a mathematical basis
for the derivation of the dynamics of multibody systems
can be used to overcome this problem (Selig, 2000; Park
et al., 1995). We then choose the coordinates generated by
the Lie algebra as local Euclidean coordinates which allows
us to describe the dynamics locally. For this approach
to be valid globally the total configuration space needs
to be covered by an atlas of local exponential coordinate
patches. The appropriate equations must then be chosen
for the current configuration. The geometric approach
presented in Bullo and Lewis (2004) can then be used to
obtain a globally valid set of dynamic equations on a single
Lie group, such as an AUV with no robot attached.

Even though combinations of Lie groups can be used
to represent multibody systems, the formulation is very
complex and not suited for implementation in a simulation
environment. In Kwatny and Blankenship (2000) quasi-
coordinates was used to derive the dynamic equations of
fixed-base robotic manipulators using Poincaré’s formu-
lation of the Lagrange equations. In Kozlowski and Her-
man (2008) several control laws using a quasi-coordinate
approach were presented, but only robots with conven-
tional 1-DoF joints were considered. Common for all these



methods is, however, that the configuration space of the
system is described as q ∈ R

n. This is not a problem when
dealing with 1-DoF revolute or prismatic joints but more
complicated joints such as ball-joints or free-floating joints
then need to be modeled as compound kinematic joints
(Kwatny and Blankenship, 2000), i.e., a combination of
1-DoF simple kinematic joints. For joints that use the
Euler angles to represent the orientation this leads to
singularities in the representation.

In this paper we follow the generalized Lagrangian ap-
proach presented in Duindam and Stramigioli (2008)
which allows us to combine the Euclidean joints and more
general joints, i.e. joints that can be described by the
Lie group SE(3) or one of its ten subgroups, and we
extend these ideas to AUV-manipulator systems. There
are several advantages in following this approach. The use
of quasi-coordinates, i.e., velocity coordinates that are not
simply the time derivative of the position coordinates,
allows us to include joints (or transformations) with a
different topology than that of R

n. For example, for an
AUV we can represent the transformation from the inertial
frame to the AUV body frame as a free-floating joint with
configuration space SE(3) and we avoid the singularity-
prone kinematic relations between the inertial frame and
the body frame velocities that normally arise in deriving
the AUV dynamics (Fossen, 2002).

This approach differs from previous work in that it allows
us to derive the dynamic equations of vehicle-manipulator
systems for vehicles with a configuration space different
from R

n. The dynamics are expressed (locally) in expo-
nential coordinates φ, but the final equations are evaluated
at φ = 0. This has two main advantages. Firstly, the
dynamics do not depend on the local coordinates as these
are eliminated from the equations and the global position
and velocity coordinates are the only state variables. This
makes the equations valid globally. Secondly, evaluating
the equations at φ = 0 greatly simplifies the dynamics
and make the equations suited for implementation in sim-
ulation software. We also note that the approach is well
suited for model-based control as the equations are explicit
and without constraints. The fact that the configuration
space of the AUV is a Lie group also simplifies the imple-
mentation. Even though the expressions in the derivation
of the dynamics are somewhat complex, we have several
tools from the Lie theory that allows us to write the final
expressions in a very simple form.

The paper is organized as follows. Section 2 gives the
detailed mathematical background for the proposed ap-
proach. This section can be skipped and practitioners
mainly interested in implementation can go straight to
Section 4. Section 3 presents the state of the art in AUV-
manipulator modeling and Section 4 gives the explicit
dynamic equations for the AUV-manipulator dynamics
along with some comments on implementing these in a
simulation environment. To the authors’ best knowledge
AUV-manipulator systems have not been studied in detail
in literature using the framework presented here. We also
include hydrodynamic and damping forces, the added mass
and Coriolis matrices and other considerations that are not
encountered in fixed-base robot dynamics.
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Fig. 1. Model setup for a robot attached to a vehicle with
coordinate frame Ψb and inertial reference frame Ψ0.

2. DYNAMIC EQUATIONS OF AUV-MANIPULATOR
SYSTEMS

We extend the classical dynamic equations for a serial
manipulator arm with 1-DoF joints to include the motion
of the AUV on which the manipulator is mounted.

2.1 AUV-Manipulator Kinematics

Consider the setup of Figure 1 describing a general n-link
robot manipulator arm attached to a vehicle. Choose an
inertial coordinate frame Ψ0, a frame Ψb rigidly attached
to the vehicle, and n frames Ψi (not shown) attached to
each link i at the center of mass with axes aligned with
the principal directions of inertia. Finally, choose a vector
q ∈ R

n that describes the configuration of the n joints.
Using standard notation (Murray et al., 1994), we describe
the pose of each frame Ψi relative to Ψ0 as a homogeneous
transformation matrix g0i ∈ SE(3) of the form

g0i =

[
R0i p0i
0 1

]

∈ R
4×4 (1)

with rotation matrix R0i ∈ SO(3) and translation vector
p0i ∈ R

3. This pose can also be described using the vector
of joint coordinates q as

g0i = g0bgbi = g0bgbi(q). (2)

The vehicle pose g0b and the joint positions q thus fully
determine the configuration state of the robot. The spatial
velocity of each link can be expressed using twists:

V 0
0i =

[
v00i
ω0
0i

]

= V 0
0b + V 0

bi = Adg0b
(
V b
0b + Ji(q)q̇

)
(3)

where v00i and ω0
0i are the linear and angular velocities,

respectively, of link i relative to the inertial frame, Ji(q) ∈
R

6×n is the geometric Jacobian of link i relative to Ψb, the
adjoint is defined as Adg :=

[
R p̂R
0 R

]
∈ R

6×6, and p̂ ∈ R
3×3

is the skew symmetric matrix such that p̂x = p× x for all
p, x ∈ R

3. The velocity state is thus fully determined given
the twist V b

0b of the vehicle and the joint velocities q̇.

2.2 AUV-Manipulator Dynamics

The previous section shows how the kinematics of the
system can be described in terms of the (global) state



variables g0b, q, V
b
0b, and q̇. To derive the dynamics of the

complete mechanism (including the 6-DoF between Ψ0 and
Ψb) in terms of these state variables, we follow the gen-
eralized Lagrangian method introduced by Duindam and
Stramigioli (2008). This method gives the dynamic equa-
tions for a general mechanism described by a set Q = {Qi}
of configuration states Qi (not necessarily Euclidean), a
vector v of velocity states vi ∈ R

ni , and several mappings
that describe the local Euclidean structure of the configu-
ration states and their relation to the velocity states. More
precisely, the neighborhood of every state Q̄i is locally
described by a set of Euclidean coordinates φi ∈ R

ni as
Qi = Φi(Q̄i, φi) with Φi(Q̄i, 0) = Q̄i. Φi(Q̄i, φi) defines a
local diffeomorphism between a neighborhood of 0 ∈ R

ni

and a neighborhood of Q̄i.

We start by deriving an expression for the kinetic co-
energy of a mechanism, expressed in coordinates Q, v, but
locally parameterized by the coordinate mappings for each
joint. For joints that can be described by a matrix Lie
group, this mapping can be given by the exponential map
(Murray et al., 1994). Let φ ∈ se(n,R) be the Lie algebra
of SE(3), then the exponential map exp(φ) is given by

eφ̂ = I + φ̂+
φ̂2

2
· · · =

∞∑

n=0

φ̂n

n!
(4)

where I (no subscript) is the identity matrix. The dynam-
ics are thus expressed in local coordinates φ for configu-
ration and v for velocity, and we consider Q a parameter.
After taking partial derivatives of the Lagrangian function,
we evaluate the results at φ = 0 (i.e. at configuration Q) to
obtain the dynamics expressed in global coordinates Q and
v as desired. We note that even though local coordinates
φ appear in the derivations of the various equations, the
final equations are all evaluated at φ = 0 and hence these
final equations do not depend on local coordinates. The
global coordinates Q and v are the only dynamic state
variables and the equations are valid globally, without the
need for coordinate transitions between various areas of
the configuration space. Note also that taking the partial
derivatives of the Lagrangian and evaluating at φ = 0
greatly simplifies (4) and the closed form expressions of the
exponential map is not needed. This fact greatly simplifies
the final equations.

In general, the topology of a Lie group is not Euclidean.
When deriving the dynamic equations for AUVs, this is
normally dealt with by introducing a transformation ma-
trix that relates the local and global velocity variables.
However, forcing the dynamics into a vector represen-
tation in this way, without taking the topology of the
configuration space into account, leads to singularities in
the representation or other deficiencies. To preserve the
topology of the configuration space we will use quasi-
coordinates, i.e. velocity coordinates that are not simply
the time-derivative of position coordinates, but given by
a linear relation. Thus, there exist differentiable matrices
Si such that we can write vi = Si(Qi, φi)φ̇i for every Qi.
For Euclidean joints this relation is given simply by the
identity map while for joints with a Lie group topology we
can use the exponential map to derive this relation.

Given a mechanism with coordinates formulated in this
generalized form, we can write its kinetic energy as

T (Q, v) = 1
2v

TM(Q)v with M(Q) the inertia matrix in
coordinates Q and v the stacked velocities of the vehicle
and the robot joints. The dynamics then satisfy

M(Q)v̇ + C(Q, v)v = τ (5)

with τ the vector of external and control wrenches (collo-
cated with v), and C(Q, v) the matrix describing Coriolis
and centrifugal forces given by

Cij(Q, v) :=
∑

k,l

(
∂Mij

∂φk
S−1
kl −

1

2
S−1
ki

∂Mjl

∂φk

)∣
∣
∣
∣
φ=0

vl (6)

+
∑

k,l,m,s

(

S−1
mi

(
∂Smj

∂φs
−
∂Sms

∂φj

)

S−1
sk Mkl

)
∣
∣
∣
∣
∣
∣
φ=0

vl.

See Duindam and Stramigioli (2008) for details.

To apply this general result to systems of the form of
Figure 1, we write Q = {g0b, q} as the set of config-
uration states where g0b is the Lie group SE(3), and

v =
[

(V b
0b)

T q̇T
]T

as the vector of velocity states. The
local Euclidean structure for the state g0b is given by
exponential coordinates, while the state q is itself globally
Euclidean. Mathematically, we can express configurations
(g0b, q) around a fixed state (ḡ0b, q̄) as

g0b = ḡ0b exp





6∑

j=1

bj(φb)j



 , qi = q̄i + φi ∀ i ∈ {1 . . . n}

with bj the standard basis elements of the Lie algebra
se(3).

From expression (3) for the twist of each link in the
mechanism, we can derive an expression for the total
kinetic energy. Let Ib ∈ R

6×6 and Ii ∈ R
6×6 denote the

constant positive-definite diagonal inertia tensors of the
base and link i (expressed in Ψi), respectively. The kinetic
energy Ti of link i then follows as

Ti =
1

2

(
V i
0i

)T
IiV

i
0i

=
1

2

(
(V b

0b)
T + q̇TJi(q)

T
)
AdTgib Ii Adgib

(
V b
0b + Ji(q)q̇

)

=
1

2

[
(
V b
0b

)T
q̇T
]

Mi(q)

[

V b
0b
q̇

]

=
1

2
vTMi(q)v (7)

with Mb =
[
Ib 0
0 0

]
∈ R

(6+n)×(6+n) for the vehicle and

Mi(q) :=

[
AdTgib Ii Adgib AdTgib Ii Adgib Ji

JT

i AdTgib Ii Adgib J
T

i AdTgib Ii Adgib Ji

]

(8)

for the links. The total kinetic energy of the mechanism is
given by the sum of the kinetic energies of the mechanism
links and the vehicle, that is,

T (q, v) =
1

2
vT

([
Ib 0
0 0

]

+

n∑

i=1

Mi(q)

)

︸ ︷︷ ︸

inertia matrix M(q)

v (9)

with M(q) the inertia matrix of the total system. Note
that neither T (q, v) nor M(q) depend on the pose g0b nor
the choice of inertial reference frame Ψ0.

Finally we include the gravitational forces. Let the wrench
associated with the gravitational force of link i with
respect to coordinate frame Ψi be given by

F i
g =

[
fg
r̂igfg

]

= −mig

[
R0iez
r̂igR0iez

]

(10)



where ez = [0 0 1]
T
and rig is the center of mass of link i

expressed in frame Ψi. In our case Ψi is chosen so that rig
is in the origin of Ψi so we have rig = 0. The equivalent
joint torque associated with link i is given by

τ ig = Ji(q)Ad
T

g0i
(Q)F i

g(Q) (11)

where Ji is the geometric Jacobian and Adg0i = Adg0b Adgbi
is the transformation from the inertial frame to frame i.
The total effect of the gravity is then given by N(Q) =
∑n

i=b τ
i
g which enters (12) in the same way as τ .

Note that we can write (5) in block-form as follows
[

MV V MT

qV

MqV Mqq

] [

V̇ b
0b
q̈

]

+

[
CV V CV q

CqV Cqq

] [

V b
0b
q̇

]

=

[
τV
τq

]

(12)

Here the subscript V refers to the first 6 entries and q the
remaining n entries.

2.3 Vehicles with Configurations Space SE(3)

The configuration space of a free-floating vehicle, such as
an AUV, can be described by the matrix Lie group SE(3).
In this case we have the mapping (Duindam, 2006)

V b
0b =

(

I −
1

2
adφV

+
1

6
ad2φV

− . . .

)

φ̇V (13)

with adp =
[
p̂4...6 p̂1...3

0 p̂4...6

]

∈ R
6×6 for p ∈ R

6 relating

the local and global velocity variables. The corresponding
matrices Si can be collected in one block-diagonal matrix
S ∈ R

(6+n)×(6+n) given by

S(Q,φ) =





(

I −
1

2
adφV

+
1

6
ad2φV

− . . .

)

0

0 I



 . (14)

This shows that the choice of coordinates (Q, v) has the
required form. We note that when differentiating with
respect to φ and substituting φ = 0 this simplifies the
expression substantially.

To compute the matrix C(Q, v) for our system, we can
use the observations that M(q) is independent of g0b,
that S(Q,φ) is independent of q, and that S(Q, 0) ≡ I.
Furthermore, the partial derivative of M with respect to
φV is zero since M is independent of g0b, and the second
term of (6) is only non-zero for the CV V block of C(Q, v).
Firstly, CV V depends on both the first and the second term

in (6). We have i, j = 1 . . . 6. Note that
∂Mij

∂φk
= 0 for k < 7

and
∂Sij

∂φk
= 0 for i, j, k > 6. This simplifies CV V to

Cij(Q, v) =

6+n∑

k=7







∂Mij

∂φk
−

1

2

∂Mjk

∂φi
︸ ︷︷ ︸

=0







∣
∣
∣
∣
∣
∣
∣
∣
φ=0

vk (15)

+

6∑

k=1

(
∂Sij

∂φk
−
∂Sik

∂φj

)
∣
∣
∣
∣
∣
φ=0

(M(q)v)k.

Furthermore, if we write S = (I − 1
2 adφV

+ 1
6 ad

2
φV

− . . .)
we note that after differentiating and evaluating at φ = 0,
∑ ∂Sij

∂φk
is equal to − 1

2 adek where ek is a 6-vector with 1

in the kth entry and zeros elsewhere. Similarly,
∑

∂Sik

∂φj
is

equal to 1
2 adek . This is then multiplied by the kth element

of M(q)v when differentiating with respect to φk so that

CV V (Q, v) =

6∑

k=1

∂MV V

∂qk
q̇k − ad(M(q)v)V (16)

where (M(q)v)V is the vector of the first 6 entries (corre-
sponding to V b

0b) of the vector M(q)v.

CV q(Q, v), i.e., i = 1 . . . 6 and j = 7 . . . (6+n), is found in a

similar manner. First we note that
∂Mjk

∂φi
= 0 for i = 1 . . . 6

and that
∂Sij

∂φk
= ∂Sik

∂φj
= 0 for j = 7 . . . (6 + n), so only the

first part is non-zero and we get

CV q(Q, v) =
6∑

k=1

∂MV q

∂qk
q̇k. (17)

Finally, the terms CqV and Cqq depend only on the first
part of (6) and can be written as (From et al., 2009)

CqV =

n∑

k=1

∂MqV

∂qk
q̇k −

1

2

∂T

∂q

(
[
MV V MT

qV

]
[

V b
0b
q̇

])

(18)

Cqq =

n∑

k=1

∂Mqq

∂qk
q̇k −

1

2

∂T

∂q

(
[
MqV MT

qq

]
[

V b
0b
q̇

])

(19)

The C-matrix is thus given by

C(Q, v) =
n∑

k=1

∂M

∂qk
q̇k (20)

−
1

2





2 ad(M(q)v)V 0
∂T

∂q

(
[
MV V MT

qV

]
[

V b
0b
q̇

])
∂T

∂q

(
[
MqV MT

qq

]
[

V b
0b
q̇

])





3. STATE OF THE ART AUV-MANIPULATOR
DYNAMICS

3.1 State of the Art AUV Dynamics

A wide range of dynamical systems can be described by
the Lagrange equations (Goldstein et al., 2001)

d

dt

(
∂L

∂ẋ
(x, ẋ)

)

−
∂L

∂x
(x, ẋ) = τ (21)

where x ∈ R
n is a vector of generalized coordinates, τ ∈ R

n

are the generalized forces and

L(x, ẋ) : Rn × R
n → R , T (x, ẋ)− V(x). (22)

Here, T (x, ẋ) is the kinetic and V(x) the potential energy
functions. We assume that the kinetic energy function is
positive definite and in the form T (x, ẋ) , 1

2 ẋ
TM(x)ẋ

where M(x) is the inertia matrix. For a kinetic energy
function on this form we can recast the Lagrange equations
(21) into the equivalent form

MRB(x)ẍ+ CRB(x, ẋ)ẋ+N(x) = τ (23)

where CRB(x, ẋ) is the Coriolis and centripetal matrix and

N(x) is the potential forces vector defined as N(x) ,
∂V(x)
∂x

. The Coriolis and centripetal matrix is normally
obtained by the Christoffel symbols of the first kind
(Egeland and Gravdahl, 2003).

In addition, for floating or submerged vehicles we need to
add the hydrodynamic forces and moments. The damp-
ing forces are collected in the damping matrix D and



the restoring forces (weight and buoyancy) are normally
included in N . Furthermore, the motion of the AUV will
generate a flow in the surrounding fluid. This is known as
added mass. For completely submerged vehicles operating
at low velocities the added mass is given by a constant
matrix MA =MT

A > 0. The corresponding Coriolis matrix
is given by CA = −CT

A and is found in the same way as
CRB by replacing MRB with MA (Fossen, 2009).

The dynamics of AUVs are usually given as (Fossen, 2002)

η̇ = J(η)ν, (24)

Mν̇ + C(ν)ν +D(ν)ν +N(η) = τ (25)

where η = [x y z φ θ ψ]
T

is the position and orienta-
tion of the vessel given in the inertial frame and ν =

[u v w p q r]
T

is the linear and angular velocities given
in the body frame. D(ν) is the damping and friction
matrix, M = MRB +MA and C(ν) = CRB(ν) + CA(ν).
The ocean current νc, expressed in the inertial frame, are
added by substituting νr = ν − R0bνc into the dynamics.
The velocity transformation matrix in (24) is given by

J(η) =
[
R0b(Θ) 0

0 TΘ(Θ)

]

whereR0b(Θ) is the rotation matrix

and depends only on the orientations of the vessel given by

the Euler angles Θ = [φ θ ψ]
T
, represented in the reference

frame. TΘ(Θ) is given by (zyx-sequence)

TΘ(Θ) =






1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ

0
sinφ

cos θ

cosφ

cos θ




 . (26)

We note that TΘ(Θ), and thus also J(η), are not defined
for θ = ±π

2 . This is the well known Euler angle singularity

for the zyx-sequence. The inverse mappings T−1
Θ (Θ) and

J−1(η) are defined for all θ ∈ R but singular for θ = ±π
2 .

We can also rewrite the dynamics using general coordi-
nates η, eliminating the body frame coordinates ν by

M̃(η)η̈ + C̃(η, η̇)η̇ + D̃(η, η̇)η̇ + g̃(η) = τ̃ (27)

where

M̃(η) = J−T(η)MJ−1(η),

g̃(η) = J−T(η)g(η),

τ̃ = J−T(η)τ,

D̃(η, η̇) = J−T(η)D(J−1(η)η̇)J−1(η),

C̃(η, η̇) = J−T(η)
[

C(J−1(η)η)−MJ−1(η)J̇(η)
]

J−1(η).

Note that (27) is only valid when J−1(η) is non-singular.

3.2 State of the Art AUV-Manipulator Dynamics

Write the AUV-manipulator dynamics as (Antonelli, 2006)

ξ̇ = J(ξ)ζ, (28)

M(q)ζ̇ + C(q, ζ)ζ +D(q, ζ)ζ +N(q,R0b) = τ (29)

where ξ =
[

ηT qT
]T
, ζ =

[

νT q̇T
]T
, M(q) ∈ R

(6+n)×(6+n)

is the inertia matrix including added mass, C(q, ζ) ∈
R

(6+n)×(6+n) is the Coriolis and centripetal matrix and
D(q, ζ) ∈ R

(6+n)×(6+n) is the damping matrix. The veloc-
ity transformation matrix is given by

J(ξ) =

[
R0b(Θ) 0 0

0 TΘ(Θ) 0
0 0 I

]

. (30)

4. THE PROPOSED APPROACH

In this section we show how to derive the AUV-manipulator
dynamics without the presence of singularities based on
Section 2. The inertia matrix of the AUV is derived in
two steps. First, MRB is found from (9). Then the added
mass MA = MT

A > 0 is found from the hydrodynamic
properties and we get M = MRB +MA. We can now use
M instead of MRB to derive the Coriolis and centripetal
matrix (Fossen, 2002) which gives us C = CRB + CA. As
the configuration space of an AUV can be described by
the matrix Lie group SE(3) the Coriolis matrix is given by
(20) by using M instead of MRB . The dynamic equations
can now be written as

M(Q)v̇ + C(Q, v)v +D(v)v +N(Q) = τ. (31)

Here, v =
[

(V b
0b)

T q̇T
]T

where V b
0b is the velocity state

of the AUV and q̇ the velocity state of the manipulator,
and Q = {g0b, q} where g0b ∈ SE(3) determines the
configuration space of the AUV (non-Euclidean) and q
the configuration space of the manipulator (Euclidean).
We note that the singularity in (28) is eliminated and the
state space (Q, v) is valid globally. D(v) and N(Q) are
found in the same way as for the conventional approach
(Antonelli, 2006). In the following we make some remarks
on implementing the dynamic equations in a software
environment.

Computing the Partial derivatives of M(q1, . . . , qn) The
partial derivatives of the inertia matrix with respect to
q1, . . . , qn are computed by

∂M(q1, . . . , qn)

∂qk
= (32)

n∑

i=k

([
I

JT

i

] [
∂T Adgib
∂qk

Ii Adgib +AdTgib Ii
∂Adgib
∂qk

]

[I Ji]

)

+

n∑

i=k+1









0
∂TJi

∂qk
AdTgib Ii Adgib

. . .

. . .

AdTgib Ii Adgib
∂Ji

∂qk
∂TJi

∂qk
AdTgib Ii Adgib Ji + JT

i AdTgib Ii Adgib
∂Ji

∂qk











Proposition 1. Express the velocity of joint k as V
(k−1)
(k−1)k =

Xk q̇k for constant Xk. The partial derivatives of the
adjoint matrix is given by

∂Adgij
∂qk

=







Adgi(k−1)
adXk

Adg(k−1)j
for i < k ≤ j

−Adgi(k−1)
adXk

Adg(k−1)j
for j < k ≤ i

0 otherwise

Proof: To prove this, we write out the spatial velocity of
frame Ψk with respect to Ψ(k−1) when i < k ≤ j:

X̂k q̇k = V̂
(k−1)
(k−1)k = ġ(k−1)kg

−1
(k−1)k =

∂g(k−1)k

∂qk
gk(k−1)q̇k

where X̂ :=
[

X̂ω Xv

0 0

]

. Comparing the first and last terms,

we get
∂R(k−1)k

∂qk
= X̂ωR(k−1)k,

∂p(k−1)k

∂qk
= X̂ωp(k−1)k +Xv.

We can use this relation in the expression for the partial
derivative of Adg(k−1)k

:



∂Adg(k−1)k

∂q
=

[
∂R(k−1)k

∂qk

p̂(k−1)k
∂qk

R(k−1)k+p̂(k−1)k

∂R(k−1)k
∂qk

0
∂R(k−1)k

∂qk

]

=

[
X̂ω X̂v

0 X̂ω

] [
R(k−1)k p̂(k−1)kR(k−1)k

0 R(k−1)k

]

= adXk
Adg(k−1)k

(33)

It is now straight forward to show that

∂Adgij
∂qk

= Adgi(k−1)

∂Adg(k−1)k

∂qk
Adgkj

= Adgi(k−1)
adXk

Adg(k−1)k
Adgkj

= Adgi(k−1)
adXk

Adg(k−1)j
. (34)

The proof is similar for j < k ≤ i.

Implementation We first define the vector

ξ = (M(q)v)V =







(M(q)v)1
(M(q)v)2

...
(M(q)v)6






=
[
MV V MT

qV

]
[

V b
0b
q̇

]

.

This gives the adjoint part of the second part of (20) as

adξ =










0 −ξ6 ξ5 0 −ξ3 ξ2
ξ6 0 −ξ4 ξ3 0 −ξ1
−ξ5 ξ4 0 −ξ2 ξ1 0
0 0 0 0 −ξ6 ξ5
0 0 0 ξ6 0 −ξ4
0 0 0 −ξ5 ξ4 0










. (35)

The lower part of the matrix in the second term in (20) is
calculated in the following way

∂T

∂q
(M(q)v)V =













∂(Mv)1
∂q1

∂(Mv)2
∂q1

· · ·
∂(Mv)6
∂q1

∂(Mv)1
∂q2

∂(Mv)2
∂q2

· · ·
∂(Mv)6
∂q2

...
. . .

...
∂(Mv)1
∂qn

∂(Mv)2
∂qn

· · ·
∂(Mv)6
∂qn













(36)

where
∂(Mv)j

∂qk
is calculated as

∂(Mv)j
∂qk

=

6+n∑

i=1

∂Mji

∂qk
vi. (37)

The second part of (19) is computed in the same way. We

thus only need to compute the partial derivative ∂M(q)
∂qi

once and use the result in the both in the first and second
part of (20).

5. CONCLUSIONS

In this paper the dynamic equations of AUV-manipulator
systems are derived based on Lagrange’s equations. The
main contribution is to close the gap between manipulator
and AUV dynamics which allows us to derive the AUV-
manipulator dynamics using the Lagrange framework and
without singularities. We derive the dynamics of the AUV
based on Lagrange’s equations which naturally extends to
include also the manipulator dynamics. The globally valid
AUV-manipulator dynamics are thus derived for the first
time using the proposed framework.
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