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Abstract— In a wide range of applications the orientation
of a rigid body does not need to be restricted to one given
orientation, but can be given as a continuous set of frames. We
address the problem of defining such sets and to find simple
tests to verify if an orientation lies within a given set. The
unit quaternion is used to represent the orientation of the rigid
body and we develop three different sets of orientations that
can easily be described by simple constraints in quaternion
space. The three sets discussed can also be described as convex
cones in R

3 defined by different norms. By describing the sets
as convex cones and using certain properties of dual cones, we
are able find simpler representations for the set of orientations
and computationally faster and more accurate tests to verify if
a quaternion lies within the given set.

I. INTRODUCTION

In certain applications, restricting the orientation of a rigid

body to one frame may add unnecessary strict constraints

to the modelling and control of the rigid body. Adding a

freedom in the specification of the orientation is in many

cases energy preserving without compromising performance

and may sometimes even improve performance for a specific

task. One example where energy is critical is in control

of satellites. Much energy can be saved if the satellite is

controlled so that the transmitter or receiver points approxi-

mately in the direction of the earth. Another example is the

end effector of a robotic manipulator where an orientation

error is allowed, for example in spray paint applications. The

second example is motivated by the observation that a small

orientation error does not affect the quality of the paint job.

The speed at which the paint gun follows the path is far more

critical to guarantee uniform paint coating.

In Potkonjak et al. [1] the idea of introducing the paint

quality as a constraint and minimise some additional cost

function was presented. This opens for the possibility of

allowing an orientation error in the specifications of the end

effector orientation in order to improve the performance and

speed of the job, reduce torques and so on. It was shown in

From and Gravdahl [2] that by allowing an orientation error

in the end-effector configuration of a robotic manipulator, the

speed and the quality of the job was improved. However, the

orientation error was chosen intuitively, and the approach

presented was not suitable for implementation in a path

planning algorithm.

In From and Gravdahl [3] orientation error constraints

were transformed into a test of positive definiteness of a

matrix. For different types of orientation errors, a suitable

matrix was found and it was shown that positive definiteness

of these matrices is equivalent to an orientation that satisfies

the given restrictions on the orientation. Further it was shown

how to cast the restrictions on the orientation into LMIs or

barrier functions.

In [3] only the size of the orientation error was restricted.

The orientation error could not be restricted differently about

different axes. In spray paint applications we will generally

allow a bigger orientation error in the direction of the

velocity, while an orientation in the transversal direction is

not desired because the paint layers will overlap. There is

hence a need to be able to also restrict orientation errors in

different directions differently. This could not be achieved

by the ice-cream cone shaped set of orientations presented

in [3].

We present two different sets of orientations that allow us

to restrict the orientation errors about the axes directly. The

restrictions that define the desired set cannot be represented

by simple constraints on the quaternion directly, as with

the ice-cream cone one. This comes from the simple fact

that rotations are not commutative so when more than one

rotation is required to describe the volume it cannot be

described by simple restrictions on the Euler angles.

We choose to represent the set of orientations as a convex

set. The convex cone that restricts the rotations about the

axes directly is defined by the ∞-norm. To find this, we

first find the convex cone defined by the 1-norm and then

use the property that the cone defined by the ∞-norm is the

dual of the 1-norm to find the desired cone. This removes the

discontinuity and non-differentiability of the direct definition

of the ∞-norm. A smooth differentiable function is desirable

when introducing this freedom in an optimisation algorithm

to find the optimal orientation at each time step.

II. REPRESENTING ROTATIONS

Most of the fundamental principles of rotation were pre-

sented in two papers by Leonhard Euler in 1775 [4]. The

first paper shows that any rotation can be accomplished by

a sequence of three rotations about the coordinate axes. In

the second paper, Euler states that any orientation can be

represented by a rotation of some angle φ about some fixed

axis n. He also shows that the composition of two rotations

is itself a rotation.



A. The Unit Quaternion

The unit quaternion representation closely relates to the re-

sults presented in Euler’s second paper. A good introduction

to quaternions is found in [5]. Any positive rotation φ about

a fixed unit vector n can be represented by the four-tuple

Q =

[

q0

q

]

, (1)

where q0 ∈ R is known as the scalar part and q ∈ R
3 as the

vector part. Q(φ,n) is written in terms of φ and n by

q0 = cos (
φ

2
), q = sin (

φ

2
)n. (2)

Q is a quaternion of unit length and denoted a unit quater-

nion. Henceforth, all quaternions have unit length if not other

is stated. Let QP =
[

p0 p
T
]T

. A multiplication of two

quaternions is given by a quaternion product and is written

in vector algebra notations as

QP ∗ Q =

[

p0q0 − p · q
p0q + q0p + p × q

]

. (3)

The cross product implies that quaternion multiplica-

tion is not commutative, as expected. Let QP =
[

p0 p1 p2 p3

]T

and Q =
[

q0 q1 q2 q3

]T

. Then the

quaternion product is written as

QP ∗ Q =









p0q0 − p1q1 − p2q2 − p3q3

p0q1 + p1q0 + p2q3 − p3q2

p0q2 + p2q0 + p3q1 − p1q3

p0q3 + p3q0 + p1q2 − p2q1









. (4)

The quaternion product of two unit quaternions is a unit

quaternion. By the definition of the quaternion the quater-

nions Q and −Q produce the same rotation. This is referred

to as the dual covering. The quaternion identity is given by

QI =
[

1 0 0 0
]T

.

A pure quaternion is a quaternion with zero scalar part.

Any vector, v̄ =
[

x y z
]T

can be represented by a pure

quaternion

v =

[

0
v̄

]

. (5)

The conjugate of a quaternion is defined as

Q∗ =
[

q0 −q1 −q2 −q3

]T

. (6)

B. Quaternions and Rotations

Let a vector, v̄1, be represented by the pure quaternion

v1. This vector can be rotated φ radians around the axis n

by

v2 = Q ∗ v1 ∗ Q∗. (7)

Every vector v̄ ∈ R
3 can be represented by a pure quater-

nion, hence v is not necessarily a unit quaternion. The

quaternion, Q(φ,n), however, is unitary. This represents

the angle and the axis that the vector v̄1 is to be rotated

about. The resulting vector, v̄2, is then of the same length

as v̄1 if and only if Q is a unit quaternion. The quaternion

representation also leads to a useful formula for finding the

shortest rotation from one orientation to another. Let QP and

Q be two orientations. Then, by taking

E = Q∗
P ∗ Q, (8)

E will rotate QP into Q by the shortest rotation.

Note that Equation (8) rotates one frame into another

frame. By a frame it is meant a coordinate system in R
3 using

Cartesian coordinates. One frame with respect to another

frame represents three degrees of freedom and is referred

to as an orientation. The inertial frame is denoted, FI and

the frame that correspond to the inertial frame by a rotation

Q from the inertial frame is denoted FQ. Equation (7)

rotates one vector into another vector and has two degrees

of freedom (e.g. longitude and latitude) [6]. A unit vector

with respect to a unit reference vector is referred to as a

direction. Henceforth, the main concern is with the direction

of the central axis, which is assumed to be the body frame

z-axis of the end effector.

C. Rotation Sequences

In this paper, the orientation is represented by a rotation

sequence of three rotations about the unitary axes. We will

consider two different sequences that both give a complete

description of the orientation.

1) The ZYZ-sequence: The ZYZ-sequence is given by

first a rotation α about the z-axis followed by a rotation

β about the new y-axis. This describes the direction of

the z-axis. The last degree of freedom is given by the

rotation γ about the z-axis. When the sequence is given,

a one-to-one mapping1 between (α, β, γ) and the quaternion

Q =
[

q0 q1 q2 q3

]T

can be found whenever β 6= 0.

Given a quaternion Q. Then α, β and γ from the ZYZ-

sequence are found by [8]

α = arctan2

(

q2q3 − q0q1

q0q2 + q1q3

)

, (9)

β = 2arcsin
√

q2

1
+ q2

2
, (10)

γ = arctan2

(

q2q3 + q0q1

q0q2 − q1q3

)

. (11)

Assume that we would like to restrict the z-axis of FQ to

point in approximately the same direction of the z-axis of

the inertial frame FI . This can be visualised by a cone of

directions and restricted by |β| ≤ βlim where 0 ≤ βlim ≤ π.

The orientation error β can be found from q1 and q2 from

(10) directly.

2) The XYZ-sequence: The XYZ-sequence is given by

first a rotation α about the x-axis followed by a rotation

β about the new y-axis. This describes the direction of

the z-axis. The last degree of freedom is given by the

rotation γ about the z-axis. We see that the XYZ-sequence

allows us to restrict the orientation about the x- and y-

axes independently through α and β, which is what we

wanted. This cannot be achieved by that ZYZ-sequence. In

1If the dual covering of the quaternion is taken into account, a one-to-two
mapping can be found.



[8] simple expressions for the rotations α, β and γ were

presented for the ZYZ-sequence by reducing the equations

of the resulting quaternion. Unfortunately, the equations for

the XYZ-sequence do not reduce in the same way. We thus

propose to the reduce the equations of the rotated vector

ez =
[

0 0 1
]T

to find similar expressions. This is shown

in Section III.

D. Convex Cones and Duality

We will use the definition and notation found in [7] and

define a set C a cone if for every x ∈ C and θ ≥ 0 we have

θx ∈ C. The set C is a convex cone if for any x1, x2 ∈ C
and θ1, θ2 ≥ 0 we have

θ1x1 + θ2x2 ∈ C (12)

We will denote a cone by K. Then, the dual cone K∗ is

defined by

K∗ = {y |xTy ≥ 0 for all x ∈ K}. (13)

The dual cone K∗ is always convex, even if K is not. K∗

is also closed and we have K∗∗ = K.

E. Convex Cones in R
3

We consider three different cones in R
3 given in Figure 1.

We are mainly concerned with the direction of the z-axis

in the rotated frame with respect to the z-axis of FI . The

maximum rotation allowed by the cone is thus given by (the

‖·‖
2
-norm)

βlim = arctan

√

x2 + y2

|z| . (14)

The cones are defined by the degree of the norm, representing

the shape of the cone, and by a parameter ξ representing the

size of the cone by

‖x1, x2, . . . , xn−1‖ ≤ ξ|xn|. (15)

As we are mainly concerned with the z-axis in R
3 we write

‖x, y‖ ≤ ξ|z|. (16)

The following lemmas are useful when it comes to repre-

senting an orientation error or maximum rotation as a cone.

Lemma 2.1: Given a ‖·‖
2
-cone with the parameter ν

restricting the direction of the z-axis, i.e.
√

x2 + y2 ≤ ν|z|. (17)

Then the maximum rotation allowed by this cone is

βlim = arctan ν (18)

around any axis in the xy-plane. This is obtained by the

ZYZ-sequence and can be visualised in Figure 1a).

Proof: The limit value is given by Equation (17) with

equality. The maximum allowed rotation is given simply by

the inverse tangent of the ‖·‖
2
-norm displacement in the xy-

plane over z:

βlim = arctan

√

x2 + y2

|z|
= arctan ν. (19)
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a) ‖·‖
2
-cone in R

3
√

x2 + y2 ≤ ν|z|

c) ‖·‖
1
-cone in R

3 |x| + |y| ≤ µ|z|

b) ‖·‖∞-cone in R
3 max{x, y} ≤ η|z|

Fig. 1. Different convex cones in R
3. The cone defined by the 2-norm is

self dual (setting µ = 1). The cone defined by the ∞-norm is the dual of
the cone defined by the 1-norm.

Lemma 2.2: Given a ‖·‖∞-cone with the parameter η

restricting the direction of the z-axis, i.e.

max{x, y} ≤ η|z|. (20)

Then the maximum rotation allowed by this cone is

βlim = arctan η (21)

around the principal axes (x- and y-axes) and

βlim = arctan
√

2η (22)

around the axes x = ±y. This is obtained by the XYZ-

sequence and can be visualised in Figure 1b).

Proof: In the direction of the principal axes, the

maximum possible displacement is found simply by setting

y = 0 and we get

|x| ≤ η|z| (23)

which gives us

βlim = arctan η. (24)



When x = ±y we have

∥

∥

[

x y
]∥

∥

2
=

√

x2 + y2 =
√

2|x| (25)

which gives us

βlim = arctan

√
2|x|
|z|

= arctan
√

2η. (26)

Lemma 2.3: Given a ‖·‖
1
-cone with the parameter µ

restricting the direction of the z-axis, i.e.

|x| + |y| ≤ µ|z|. (27)

Then the maximum rotation allowed by this cone is

βlim = arctanµ (28)

around the principal axes (x- and y-axes) and

βlim = arctan
µ√
2

(29)

around the axes x = ±y. This is the dual of the ‖·‖∞-cone

and can be visualised in Figure 1c).

Proof: In the direction of the principal axes, the

maximum possible displacement is found simply by setting

y = 0 and we get

|x| ≤ µ|z| (30)

which gives us

βlim = arctan
|x|
|z|

= arctan µ. (31)

When x = ±y we have

∥

∥

[

x y
]∥

∥

2
=

√

(
1

2
x)2 + (

1

2
y)2 =

1√
2
|x| (32)

which gives us

βlim = arctan

1√
2
|x|

|z|
= arctan

µ√
2
. (33)

Note that the maximum rotation for the ‖·‖
1
-cone is

given by arctan µ while for the ‖·‖∞-cone it is given by

arctan
√

2η

For a vector v ∈ R
3 that satisfies the restrictions given by

the cone K we will write v ∈ K. Similarly for a quaternion

Q we will write Q ∈ K if the vector that results from

the rotation of the vector ez =
[

0 0 1
]T

satisfies the

restrictions given by the cone K. Let Qv be the vector part

of V = Q ∗ ez ∗ Q∗. Then the two restrictions are the same

Q ∈ K ⇐⇒ Qv ∈ K

III. REPRESENTING SETS OF ORIENTATIONS AS CONVEX

SETS

The results in this section are based on the observation

that a set of orientations can be represented as a convex

cone. We can then use the properties of convex cones to

transform the set of orientations into a different set that

preserves convexity. We start by giving an alternative proof

of the ZYZ-sequence (‖·‖
2
-norm) presented in the previous

section. This gives an intuitive understanding of why the

‖·‖
2
-norm is so easy to work with. We then show how we

can use the properties of duality of convex cones to find the

cone given by the ‖·‖∞-norm from the cone given by the

‖·‖
1
-norm.

A. The 2-norm

Given a quaternion by the ZYZ-sequence

Q = Qz ∗ Qy ∗ Qf (34)

where

Q =
[

q0 q1 q2 q3

]T

,

Qz =
[

zq
0

0 0 zq
3

]T

,

Qy =
[

yq
0

0 yq
2

0
]T

,

Qf =
[

fq
0

0 0 fq
3

]T

.

Q can then be written as

Q =









q0

q1

q2

q3









=









zq
0

yq
0

fq
0
− zq

3
yq

0
fq

3
zq

3
yq

2
fq

0
+ zq

0
yq

2
fq

3
zq

0

yq
2

fq
0

+ zq
3

yq
2

fq
3

zq
0

yq
0

fq
3

+ zq
3

yq
0

fq
0









. (35)

From this we get the following property that we will use

in the sequel

q2

1
+ q2

2
= ( zq

3

yq
2

fq
0

+ zq
0

yq
2

fq
3
)2

+ ( zq
0

yq
2

fq
0

+ zq
3

yq
2

fq
3
)2

= zq2

3

yq2

2

fq2

0
− 2 zq

0

zq
3

yq2

2

fq
0

fq
3

+ zq2

0

yq2

2

fq2

3

+ zq2

0

yq2

2

fq2

0
+ 2 zq

0

zq
3

yq2

2

fq
0

fq
3

+ zq2

3

yq2

2

fq2

3

= yq2

2
( zq2

3
( fq2

0
+ fq2

3
) + zq2

0
( fq2

0
+ fq2

3
))

= yq2

2
. (36)

A unit vector in the direction of the z-axis is rotated by the

quaternion Q by

V =









v0

v1

v2

v3









=









0
2 yq

0
yq

2
( zq2

0
− zq2

3
)

4 yq
0

yq
2

zq
0

zq
3

yq2

0
− yq2

2









. (37)

The ‖·‖
2
-norm of the vector part of V can be used to restrict

the rotation β in (10) by
√

v2

1
+ v2

2
≤ ν|v3| (38)

where ν = tanβlim. We can then write the restriction as
√

v2

1
+ v2

2

|v3|
≤ ν = tan βlim. (39)



If we assume that the vector part of V is of unit length, the

rotation β can also be found from

β = arcsin
√

v2

1
+ v2

2

= arcsin
√

(2 yq
0

yq
2
( zq2

0
− zq2

3
))2 + (4 yq

0
yq

2
zq

0
zq

3
)2

= arcsin
√

4( yq2

0
yq2

2
zq4

0
+ 2 yq2

0
yq2

2
zq2

0
zq2

3
+ yq2

0
yq2

2
zq4

3
)

= arcsin
√

4 yq2

0
yq2

2
( zq2

0
+ zq2

3
)2

= arcsin
√

4 yq2

0
yq2

2

If we use that yq2

0
= (1 − yq2

2
) and that 2 arcsin x =

arcsin 2x
√

1 − x2 together with the relation in (36) and

β ≥ 0 → yq
2
≥ 0, we get

β = arcsin
√

4 yq2

0
yq2

2

= arcsin

(

2 yq
2

√

(1 − yq2

2
)

)

= 2arcsin ( yq
2
)

= 2 arcsin
√

q2

1
+ q2

2
.

We see that we can represent the restriction on β in

terms of v1, v2 and v3. This example does not give us any

new information, it just shows us how the problem can be

formulated in a different way and that the two approaches

to the problem give us the same answer. We now use this

approach to restrict orientations by the 1- and ∞-norms.

We will see that this approach allows us to find limits on

rotations that we could not find by the approaches presented

in previous publications.

B. The 1-norm

The ‖·‖
1
-cone is given by

|vx| + |vy| ≤ µ|vz| (40)

A unit vector ez =
[

0 0 1
]T

rotated by the quaternion Q

is given as




vx

vy

vz



 =





2(q0q2 + q1q3)
2(q2q3 − q0q1)
2(q2

0
+ q2

3
) − 1



 . (41)

Thus, the restriction that the central axis lies inside the cone

defined by (40) is given by

|2(q0q2+q1q3)|+|2(q2q3−q0q1)| ≤ µ|2(q2

0
+q2

3
)−1|. (42)

or alternatively

|2 yq
0

yq
2
|+|2 xq

0

xq
1
( yq2

2
− yq2

0
)| ≤ µ|( xq2

1
− xq2

0
)( yq2

2
− yq2

0
)|.

(43)

C. The ∞-norm

In the following we will use that the ‖·‖∞-cone is the dual

of the ‖·‖
1
-cone to remove the non-differentiability from the

restriction on the ‖·‖∞-norm.

Proposition 3.1: Let the vector part of the quaternion V =

Q ∗ ez ∗ Q∗ be denoted vQ =
[

Qvx
Qvy

Qvz

]T

and the

vector part of the quaternion V = P ∗ ez ∗ P ∗ be denoted

vP =
[

Pvx
Pvy

Pvz

]T

. Further let K∗ be the dual of K

and Q ∈ K where K is the cone defined by the ‖·‖
1
-norm

|Qvx| + |Qvy| ≤ µ|Qvz| (44)

for some µ. Then, for some η, the two restrictions

Qvx
Pvx + Qvy

Pvy + Qvz
Pvz ≥ 0

m (45)

max{Pvx, Pvy} ≤ η|Pvz|
both guarantee that P ∈ K∗.

Proof: The proof follows directly from the definition

of dual cones in (13) which we rewrite as

K∗ = {vP | vT

QvP ≥ 0, ∀ vQ ∈ K}
= {P | vT

QvP ≥ 0, ∀ vQ ∈ K}. (46)

We now need to determine how to choose µ so that the ‖·‖∞-

cone allows the desired maximum rotation. We will denote

the ‖·‖∞-cone and the ‖·‖
1
-cone equivalent if they allow the

same maximum rotation, i.e. the maximum allowed rotation

for the ‖·‖
1
-cone in the direction of one of the principal

axes is the same as the maximum allowed rotation for the

‖·‖∞-cone when x = ±y.

Proposition 3.2: Given a cone K defined by

|Qvx| + |Qvy| ≤ µ|Qvz|. (47)

and a dual cone K∗ defined by

max {Pvx, Pvy} ≤ η|Pvz|. (48)

Then K and K∗ are equivalent if

µ =
√

2 tan (
π

2
− arctan ν). (49)

Proof: We show the specific proof for the two cones

in question. We do this by showing that the proposition is

true for the limit points of the set. As the set is closed and

convex, we conclude that the set defined by these limit points

is the desired set.

For the principal axes the maximum allowed rotations are

µ and ν for the ‖·‖
1
-cone and the ‖·‖∞-cone respectively

(Equations (28) and (21)). When x = ±y the maximum

allowed rotations are µ√
2

(Equation (29)) for the ‖·‖
1
-cone

and
√

2ν (Equation (22)) for the ‖·‖∞-cone:

‖·‖
1
-cone ‖·‖∞-cone

Principal axes µ ν

x = ±y µ√
2

√
2ν

Let α = arctan ν and β = arctan µ. By definition the limit

points for the two cones are orthogonal (using equality in

(13)), so we have that β = π
2
− α and thus

µ = tan (
π

2
− arctan ν). (50)

Thus, a rotation α = arctan ν for the ‖·‖∞-cone corresponds

to a rotation β = arctan µ for the ‖·‖
1
-cone for the principal

axes (row one above). This means that if we choose µ = ν



we will allow the same orientation error in the direction of

the principal axes for both cones. When x = ±y we have

tan (
π

2
− arctan

√
2ν) =

1√
2

tan (
π

2
− arctan ν)

=
1√
2
µ (51)

So that
√

2ν corresponds to µ√
2

for x = ±y (the second

row). This means that if we choose µ = ν we will allow

twice as big orientation error for the ‖·‖∞-cone than for the

‖·‖
1
-cone in the direction of x = ±y.

Finally we scale the ‖·‖
1
-cone by

√
2 to get the same

maximum rotation for both cones

‖·‖
1
-cone ‖·‖∞-cone

Principal axes
√

2µ ν

x = ±y µ
√

2ν

which concludes the proof.

Note that for the ‖·‖
1
-cone the maximum allowed rotation

is around the principal axes, while for the ‖·‖∞-cone it

is around the axes defined by x = ±y. The geometric

interpretation of the proof can be visualised by looking at

Figure 1.

The approach given by Proposition 3.2 is rather theoretical

and the transformation from the ‖·‖
1
-cone to the ‖·‖∞-cone

may not be very easy in practice. However, we can use Equa-

tion (49) in Proposition 3.2 to find an easy transformation

from the ‖·‖
1
-cone to the ‖·‖∞-cone. As the ‖·‖∞-cone only

takes into account the maximum rotation about the x- or y-

axis we can cancel the other rotation from the restrictions

on the ‖·‖
1
-cone in (42) and (43).

The restriction on the orientation about the x-axis is given

by

|2(q2q3 − q0q1)| ≤ ν|2(q2

0
+ q2

3
) − 1|, (52)

|2 xq
0

xq
1
| ≤ ν|( xq2

1
− xq2

0
)|, (53)

and the restriction on the orientation about the y-axis is given

by

|2(q0q2 + q1q3)| ≤ ν|2(q2

0
+ q2

3
) − 1|, (54)

|2 yq
0

yq
2
| ≤ ν|( xq2

1
− xq2

0
)( yq2

2
− yq2

0
)|, (55)

which guarantees that Q ∈ K∗. µ is the maximum rotation as

defined by the ‖·‖
1
-cone. Thus to allow the same maximum

rotation for the ‖·‖∞-cone we define µ as in Equation (49)

and get

|2(q2q3 − q0q1)| ≤ µx|2(q2

0
+ q2

3
) − 1|, (56)

|2(q0q2 + q1q3)| ≤ µy|2(q2

0
+ q2

3
) − 1|, (57)

which then defines the equivalent ‖·‖∞-cone.

Note that we can choose µx and µy differently so that we

can allow different orientation errors around different axes.

Note also that these constraints are exact. This was not the

case for the orientation around the x- and y-axes presented

in [3].

IV. CONCLUSIONS

The formalism for presenting sets of orientations as convex

cones has been derived. Three different sets of orienta-

tions that can easily be described by simple constraints in

quaternion space have been presented. The properties of

dual convex cones are used to fine simple representations

for the sets of orientations and computationally faster and

more accurate tests to verify if a quaternion lies within the

given set. By representing the sets of orientations as dual

convex cones the non-differentiability properties that arise

when applying the definition of the desired cones directly

are eliminated.
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