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Abstract—This paper describes the development of several
controllers to handle a trajectory tracking problem for a dif-
ferentially wheeled robot. Both simulations and tests on a real
robot were performed. A simple kinematic controller has been
implemented to calculate desired velocities based on current
position and trajectory. In order to also consider the current
velocities, i.e. the dynamics of the system, the output of this
controller was used as input to a dynamic controller derived from
a nonlinear model. The dynamic controller was made adaptive
by using an on-line parameter estimation scheme to estimate the
unknown parameters of the nonlinear model. Lastly, a direct
model reference adaptive controller (MRAC) based on a linear
model was derived and implemented as an alternative to the
adaptive dynamic controller.

Index Terms—Mobile robots, differentially wheeled robots,
trajectory tracking, adaptive control, system identification, agri-
cultural robotics,

I. INTRODUCTION

This paper presents part of the ongoing research for devel-
oping an agricultural robot that autonomously navigates in row
crops while identifying and precision spraying individual weed
leaves with herbicide. The robot is a differentially steered robot
with two rear mounted caster wheels, and may be modeled as
a unicycle-like robot. A picture of the prototype during testing
in row crops is shown in Fig. 1.

Previous research on the project includes development of
a precision drop-on-demand nozzle for herbicide application
[1], a model predictive row controller [2] to minimize poten-
tial crop damage during operation and attitude estimation in
agricultural robotics [3].

The nozzle array presented in [1] is intended to only be
slightly wider than the row crops, meaning that the robot has
to follow the row crops precisely. A small offset could mean
that the weed is out of reach for the nozzles, leaving the weed
untreated. This motivates the research in this paper to find a
trajectory tracking controller that minimizes the tracking error.

Another aspect to consider is changing physical properties
of the robot. For example, the weight of the robot will change
as herbicide and fuel is consumed. To ensure satisfactory
performance at all times, several adaptive approaches that
update the controller gains continuously have been tested.

Unicycle-like robots are used extensively in all kinds of
fields and numerous models and controllers have been de-
scribed in publications. In this paper a nonlinear model
proposed in [4] has been used for simulations. The same

Fig. 1. A picture of the prototype robot on a field test.

model was also used in [5] to develop an adaptive dynamic
controller, which has been implemented and tested here but
with a different adaptation law. In [6] an adaptive controller
using adaptive backstepping is presented. [7] developed a
model reference adaptive controller (MRAC) for the tracking
problem, but only simulations were performed. A similar
direct MRAC has been derived here and implemented on the
robot for testing.

The most important contribution of this paper is the com-
parison of two different adaptive controllers implemented on
the same robot. The author is not aware of any previous
implementations of the MRAC controller presented here on
a real robot.

Different approaches to row crop guidance systems has
been thoroughly explored and reviewed in [8]. However, this
paper focuses merely on tracking a smooth and well defined
trajectory without considering how to obtain the trajectory.
The results obtained should be applicable to most unicycle-
like robots.

II. MATHEMATICAL MODEL

The model used for simulations and some of the controller
designs in this paper was presented in [4]. It is given as
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where h =
[
x y

]T
is the position, ψ is the heading angle, u

is forward velocity, ω is angular velocity and a is the distance
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Fig. 2. Drawing of unicycle-like robot with centered rear mounted caster
wheel, similar to the robot all tests were performed on.

from center of wheel axis to h as shown in Fig. 2. Motor
inputs are given as velocities instead of torque values, which
means that the motor controller is assumed to have a PID
controller or similar. θ is a collection of physical parameters
derived in [4] and included here for reference:
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where Ra is motor resistance, ka motor torque multiplied by
gear ratio, kb motor voltage multiplied by gear ratio, r wheel
radius, Ie motor moment of inertia, Be motor viscous friction
coefficient, kPT , kDT , kPR, kDR are PID motor controller
gains, Iz moment of inertia about vertical axis at center of
mass, m mass.

δ =
[
δx δy 0 δ̄u δ̄ω

]T
(3)

represent the uncertainties of the system caused by wheel slips
and forces exerted by the caster wheel. For the purpose of this
paper it has been assumed that δ = 0.

III. CONTROLLER DESIGN

In many cases unicycle-like robots operate at low speeds
and often inhibit low moment of inertia. In other words, the
dynamics of u and ω are so fast that in many cases one may
simplify u ≈ uref , ω ≈ ωref and only study the kinematic
model given by


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For larger robots operating at higher speeds the dynamics can-
not simply be ignored. In the next sections, various controller
designs are considered.

A. Trajectory Tracking Controller

Let hd(t) =
[
xd(t) yd(t)

]T
denote the time varying

reference trajectory for the robot. Only the reference posi-
tion is considered, he the The tracking error is defined as
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[
xd − x yd − y

]T
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Multiplying (6) with the inverse of A gives[
u
ω

]
= A−1

[
ẋ
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A controller based on inverse kinematics is proposed in [5]:
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where kx, ky > 0 are controller gains and lx, ly > 0
are saturation constants. ucref and ωcref are desired forward
and angular velocities, respectively. The controller is shown
in [5] to have an asymptotically stable equilibrium at the
origin h̃ =

[
0 0

]T
under the assumption of u = ucref

and ω = ωcref . The name trajectory tracking controller and
kinematic controller both refer to the same controller for the
rest of this paper.

Note that it is not necessary to explicitly control the desired
heading, as discussed in [5]. Due to the non-holonomic nature
of a differentially wheeled mobile robot, the heading will be
tangent to the trajectory path given small position errors. Any
heading deviation from the tangent will cause a change in
position errors, so proving stability for the position will be
sufficient.

B. Dynamic Controller

The kinematic controller will work adequately as long as the
dynamics of the system are fast enough, i.e. the assumption
of u ≈ ucref and ω ≈ ωcref is reasonable. In cases where the
dynamics are too slow to be ignored or high precision tracking



is required, the kinematic controller alone may no longer be
sufficient.

Consider the dynamic part of (1)
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Motivated by the inverse dynamics in (11), [5] proposes the
controller given as[
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and k1, k2 > 0 are constant gains. In order to implement (12),
the values of θ must be known. Measuring or otherwise ob-
taining the parameters needed to calculate θ may prove hard,
thus the need to estimate θ becomes a necessity. Replacing θ
with the estimate θ̂ in (12) gives

νref = D̂σ +Eθ̂ (14)
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Following is a stability analysis similar to what was done in
[5]. (11) may be written as

νref = Dν̇ +Eθ (16)

Similarly, (14) is written

νref = D̂σ +Eθ̂ = Gθ −Gθ̃ = Dσ +Eθ −Gθ̃ (17)

where θ̃ = θ − θ̂ and
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(13) may be written as

σ =
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where K = diag(k1, k2). Combining (16), (17) and (19)

Dν̇ +Eθ = Dν̇cref +DKν̃ +Eθ −Gθ̃ (20)
˙̃ν = −Kν̃ +D−1Gθ̃ (21)

where ˙̃ν = ν̇cref − ν̇ describes the error dynamics of the
system. For this analysis, θ is considered known, i.e. θ̂ = θ,

reducing (21) to
˙̃ν = −Kν̃ (22)

Consider the following Lyapunov-like function

V =
1

2
ν̃TP ν̃ (23)

where P = P T > 0. Differentiating (23) along the solution
of (22) gives

V̇ = −ν̃TPKν̃ < 0 ∀ ν̃ 6= 0 (24)

Which means that V̇ is negative definite and global asymptotic
stability can be concluded.

C. On-line Parameter Estimation

The dynamic controller given by (14) needs a good estimate
θ̂ in order to perform well. One approach to estimate θ̂ is to
log a test run with sufficiently excited input signal and use
an off-line system identification technique, e.g. least-squares
method. Another approach is to estimate θ̂ on-line using an
adaptation law ˙̂θ. This section shows the derivation of ˙̂θ using
the gradient method, which is motivated by the minimization
of a cost function.

Consider (10) written on the form
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[
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]
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where νref = [uref ωref ]T . Filtering both sides gives
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Which may be written as the parametric model

z = ΦTθ (27)

where z =
νref

Λ(s) , ΦT = ϕT

Λ(s) and Λ(s) is chosen to be a
Hurwitz polynomial of degree one, e.g. Λ(s) = s + 1. Note
that z and Φ are available measurements, while θ is unknown.
An estimate of z denoted ẑ is generated as

ẑ = ΦT θ̂ (28)

where θ̂ is the currently best estimate of θ. A normalized
estimation error is defined as

ε = (MTM)−1(z − ẑ) = (MTM)−1(z −ΦT θ̂) (29)

where MTM = I +Ns
TNs is a diagonal matrix that nor-

malizes the estimation error, and Ns
TNs is another diagonal

matrix for design of the normalized signal. The reason for this
normalization is to ensure boundedness, i.e.

ΦM−1 ∈ L∞ (30)

If Φ ∈ L∞, then M = I is sufficient. If it is not, choosing

MTM = I + ΦTΦ (31)

will ensure (30) is satisfied [9, p. 172]. An instantaneous cost
function J(θ̂) is defined as

J(θ̂) =
1

2
εTMTMε =

1

2
(z −ΦT θ̂)T (MTM)−1(z −ΦT θ̂)

(32)
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Fig. 3. Block diagram of the model reference adaptive controller.

The gradient of (32) is

∆J(θ̂) = −Φ(MTM)−1(z −ΦT θ̂) = −Φε (33)

Motivated by this, the following adaptation law for generating
θ̂(t) is proposed

˙̂
θ = −Γ∆J(θ̂) = ΓΦε (34)

where Γ = ΓT > is a diagonal gain matrix. According to [9,
p. 175], (34) ensures that

1) θ̂, ε ∈ L∞
2) ε,Ns

T ε, ˙̂θ ∈ L∞
independent of the boundedness properties of Φ. In other
words, both parameters and estimation errors should remain
bounded. It does not, however, ensure that θ̃(t) = θ(t) −
θ̂(t) → 0 as t → ∞. To ensure that the parameters θ̂ do in
fact converge to their actual value θ, Φ must be persistently
excited (PE), i.e., it satisfies [9, p. 254]

α1I ≥
1

T0

∫ t+T0

t

Φ(τ)ΦT(τ) dτ ≥ α0I, ∀t ≥ 0 (35)

for some T0, α0, α1 ≥ 0. It is in general difficult to show that
Φ is PE for an input signal νref , and especially in a case like
this where Φ has some nonlinear elements.

D. Adaptive Dynamic Controller

The results from section III-B and section III-C may be
combined to form an adaptive dynamic controller. The on-line
parameter estimation operates independently from the dynamic
controller and vice versa, making it a modular design. This
may prove beneficial in cases where parameter estimation is
only needed parts of the time, or if it is desirable to run
parameter estimation without running the dynamic controller.
The control laws are given by

νref = D̂σ +Eθ̂, ˙̂θ = ΓΦε (36)

where the notation is the same as in section III-B and section
III-C.

E. Direct Model Reference Adaptive Controller

In this section, a simple direct Model Reference Adaptive
Controller (MRAC) scheme as shown in Fig. 3 is derived.
The concept is to design a model of similar structure to the
plant (robot), let the tracking reference be an input to the
model, and make the output of the plant track the output of the
model. For the direct MRAC approach, this is made possible

by developing adaptation laws for the controller gains directly
without having to identify actual system parameters.

Consider a simplified, linear model of the dynamics of (1)
given by [

u̇
ω̇

]
=

[
au+ buref
cω + dωref

]
(37)

where a, b, c, d are unknown system parameters (not the same
as those introduced in Fig. 2). In this case, u and ω are
considered decoupled and will be analyzed separately. A
reference model um for u is chosen to be

u̇m = −amu+ bmu
c
ref (38)

Laplace transforming (37) and (38) gives

u =
b

s− a
uref , um =

bm
s+ am

ucref (39)

The following control law is proposed

uref = −k∗uu+ l∗uu
c
ref (40)

Inserting (40) into (39) gives

u =
bl∗u

s− a+ bk∗u
ucref , um =

bm
s+ am

ucref (41)

It is desirable to make the transfer functions of (41) equal.
Choosing

l∗u =
bm
b
, k∗u =

a+ am
b

(42)

ensures equal transfer functions. However, it is not possible to
implement since the values of a and b are unknown. Instead
of using the control law (40), a control law using estimates of
k∗u and l∗u is proposed

uref = −ku(t)u+ lu(t)ucref (43)

where ku(t) and lu(t) are the currently best estimates of k∗u
and l∗u, respectively. Adding and subtracting b(−k∗uu+l∗uu

c
ref )

to u̇ yields

u̇ = au+ buref + b(−k∗uu+ l∗ur)− b(−k∗uu+ l∗ur) (44)

which, after combining with (42), may be written as

u̇ = −amu+ bmu
c
refu+ b(k∗uu− l∗uucref + uref ) (45)

Laplace transforming (45) gives

u =
bm

s+ am
ucref

︸ ︷︷ ︸
=um

+
b

s+ am
(k∗uu− l∗uucref + uref ) (46)



Define the tracking error eu = u− um to obtain

eu =
b

s+ am
(k∗uu− l∗uucref + uref ) (47)

Since k∗u and l∗u are unknown, our best estimate of the tracking
error êu is

êu =
b

s+ am
(ku(t)u− lu(t)ucref + uref ) (48)

Inserting uref from (43) into (48) simply gives êu = 0, i.e. the
estimated tracking error is zero. Note that the estimation error
εu = eu− êu = eu = u−um is equal to the tracking error eu.
Combining (43) and (47) while defining the gain parameter
estimation errors k̃u(t) = ku(t)− k∗u, l̃u(t) = lu(t)− l∗u gives

eu =
b

s+ am
(−k̃uu+ l̃uu

c
ref ) (49)

ėu = −ameu + b(−k̃uu+ l̃uu
c
ref ) (50)

Consider the Lyapunov-like function

V =
1

2
e2
u +

|b|
2γ1

k̃2
u +

|b|
2γ2

l̃2u (51)

with γ1, γ2 > 0. Differentiating (51) along the solution of (49)
gives

V̇ =− ame2
u + |b|k̃u

(
−euu sgn(b) +

1

γ1
k̇

)

+ |b|l̃u
(
euu

c
ref sgn(b) +

1

γ2
l̇

) (52)

Choosing

k̇u = γ1euu sgn(b), l̇u = −γ2euu
c
ref sgn(b) (53)

ensures

V̇ = −ame2
u ≤ 0 (54)

Thus it is shown that V̇ is negative semi definite, V has
an upper bound V (0) and bounded below by zero, i.e.
0 ≤ V (t) ≤ V (0). From the boundedness of V (t) and
(51), it is clear that eu, k̃u, l̃u ∈ L∞. ucref , the output of
the kinematic controller (8), is bounded, so ucref ∈ L∞. The
transfer functions of (41) are in L1, and it follows from [9,
p. 80] that u, um ∈ L∞. This means that all signals of (49)
are bounded and ėu ∈ L∞. From [9, p. 74] it follows that
since V (t) is bounded from below and non-increasing, it has
a finite limit as t→∞, denoted V∞. It can also be seen that

||eu||2 =

(∫ ∞

0

e2
u(τ)dτ

)1/2

=

(∫ ∞

0

− 1

am
V̇ (τ)dτ

)1/2

=

(
1

am
(V (0)− V∞)

)1/2

(55)
which is clearly bounded, so that eu ∈ L2. Finally, [9, p. 80]
shows that since ėu, eu ∈ L∞ and eu ∈ L2, then eu(t) → 0
as t→∞.

The results obtained show that the tracking objective of
making the output of the plant u(t) track the output of the
reference model um(t) is achieved. It does not, however,
guarantee that ku(t), lu(t) → k∗u, l

∗
u as t → ∞, i.e. the poles

of the plant may differ from those of the reference model. This

should be of less concern, since ku(t), lu(t) are bounded and
the true values of k∗u, l

∗
u are not of any real importance.

In a very similar manner the same results are found for ω.
A summary of the control laws are given in Table I.

A modification that was done to provide for a more robust
implementation was to add a small feedback loop to (53) to
get

k̇u = γ1euu sgn(b)− αku, l̇u = −γ2euu
c
ref sgn(b)− βlu

(56)
where 0 < α << 1 and 0 < β << 1.

TABLE I. Control Laws for The MRAC

Plant Reference Model Control Law

u = b
s−a

uref um = bm
s+am

ucref

uref = −ku(t)u+ lu(t)ucref ,
k̇u = γ1euu sgn(b)

l̇u = −γ2euucref sgn(b)

eu = u− um

ω = d
s−c

ωref ωm = dm
s+cm

ωc
ref

ωref = −kω(t)ω + lω(t)ωc
ref ,

k̇ω = γ3eωω sgn(d)

l̇ω = −γ4eωωc
ref sgn(d)

eω = ω − ωm

IV. SIMULATIONS AND REAL RUNS

Simulations were performed using Matlab/Simulink, while
real runs were performed on the robot shown in Fig. 4. The
dimensions of the robot are approximately c = 1.1 m and
d = 1.0 m using the notation from Fig. 2. The robot is
running Robot Operating System (ROS) and all controllers
were implemented in C++. The motor controller has a low
level PID controller that uses individual motor velocities as
setpoints, and motor acceleration can be saturated to ensure
slower dynamics. Without limits on acceleration the dynamics
were so fast that all controllers had equal performance. For
both simulations and tests on the real robot the following figure
eight trajectory was used:

xd(t) = re sin(2ωet)

yd(t) = re(cos(ωet)− 1)
(57)

For both simulations and real runs re = 0.6 m and ωe =
0.3 rad/s. The distance from wheel axle to h was cho-
sen to be a = 0.10 m. The simulated system uses θ =[
1.0 0.4 0.2 1.1 0.2 0.9

]T
and initial estimates θ̂0 =[

1.0 1.0 0 1.0 0 1.0
]T

are used for the dynamic and
adaptive dynamic controllers. The on-line parameter estima-
tion method was tested in simulations where θ is known to
ensure that the estimated θ̂ converges to its actual value θ.
It was found that θ̂ does indeed converge correctly while
attempting to track the figure eight, which means that the input
signal is sufficiently excited to ensure convergence.

A comparison of all controllers is shown in Fig. 8. The
estimated parameters during a real run are shown in Fig. 5
and Fig. 6. Controller inputs during a real run are shown in
Fig. 7. It is clear from Fig. 8 (a) and (e) that the kinematic
controller alone does not provide sufficient performance in this
case. The dynamic controller shows good performance given



Fig. 4. A picture of the robot used for the tests. The robot uses a rear caster
wheel.
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Fig. 5. Controller gains for the MRAC during a real run. All controller gains
have initial values of 0.5.

fairly accurate estimates θ̂. The adaptive dynamic controller
appears to be able to improve upon the performance of the
dynamic controller as θ̂ adapts (shown in Fig. 6).

In Fig. 8 (i) and (j) the motor acceleration saturation limit
was increased to make the system a bit faster. It is interesting
that the MRAC improves greatly when the dynamics are faster,
while the adaptive dynamic controller has almost identical
performance to the case with slower dynamics.

V. CONCLUSION

Two different adaptive dynamic controllers for tracking a
trajectory were implemented on a differentially wheeled robot
and compared with non-adaptive kinematic and dynamic con-
trollers. The MRAC configuration, which the author has been
unable to find previous papers presenting real implementations
of, delivered the best performance of all controllers on a
system with fairly slow dynamics, while the other adaptive
dynamic controller had equal or better performance on a very
slow system.
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(a) Simulation with kinematic controller
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(b) Simulation with dynamic controller
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(c) Simulation with adaptive dynamic controller
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(d) Simulation with MRAC
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(e) Real run with kinematic controller
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(f) Real run with dynamic controller
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(g) Real run with adaptive dynamic controller
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(h) Real run with MRAC
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(i) Real run with adaptive dynamic controller on a faster system
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(j) Real run with MRAC on a faster system

Fig. 8. Comparison of all the controllers with a relatively slow system and two selected runs on a faster system.


