Proceedings of the 45th IEEE Conference on Decision & Control
Manchester Grand Hyatt Hotel
San Diego, CA, USA, December 13-15, 2006

FriP10.12

Active surge control using drive torque:
dynamic control laws

Bjornar Bohagen
Norwcgian University of Scicnce and Technology
Department of Engineering Cybernetics
bjornar.bohagen@ilk.ntnu.no

Abstract—In this paper we derive new control laws for
a compression system using only drive torque as control
variable. First we present, with a minor modification, a recently
published stabili ing static control law. Then this control law is
extended with a passive part which can be static or dynamic, a
robust part using nonlinear damping and an adaptive part.
The control laws are module based in the sense that any
combination of the control parts can be used in combination
with the stabili ing part.

I. INTRODUCTION

Towards low mass flows, the stable operating region of
centrifugal compressors is bounded due to the occurrence
of surge. This phenomenon is characterized by oscillations
in system states such as pressurc and mass flow. Surge
is undesirable since it introduces the possibility of severe
damage to the machine due to vibrations and high thermal
loading resulting from lowered efficiency.

Compressor performance is usual described with a com-
pressor map, Fig. 1. This map describes the relation of
compressor pressure ratio, mass flow and speed. using
constant speed lines in a flow-pressure coordinate system.
Surge is considered as an unstable operational mode of the
compressor and the stability boundary in the compressor map
is called the surge line. This line divides the compressor
map in two regions, where the region to the left and right of
the surge line corresponds to open loop stable and unstable
regions respectively.

Traditionally. surge has been avoided using surge avoid-
ancc schemes. Such schemes usc various means in order to
keep the operating point of the compressor away from the
region where surge occurs. Typically, a surge control line
is drawn at a distance away from the surge line, leaving a
surge margin in the compressor map. The surge avoidance
scheme then ensures that the operating point does not cross
this line, Fig. 1. This method restricts the operating range of
the machine to the region in which the system is open loop
stable, and efficiency is limited.

Active surge control is fundamentally different from surge
avoidance. In an active surge control scheme the open loop
unstable region of the compressor map is sought stabilized
with feedback rather than avoided. Thus. the possible operat-
ing regime of the machine is enlarged. Active surge control
of compressors was first introduced by [1], and since then
a number of results have been published. Different actuators
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Fig. 1. Compressor performance and surge related definitions

have been used and examples include recycle., bleed and
throttle valves, gas injection, variable guide vanes and drive
torque. For an overview, consult [2]. [3] and [4].

In this paper we derive control laws by only using the
drive torque to actively stabilize a compression system. The
idea was initially introduced in [5]. and further pursued in
|6]. The paper is organized as follows. The compression
system model is introduced in section II. In section III
previous result for drive torque control law is restated and
discussed, with a minor extension of the laws previously
reported. In section IV the control law is extended with a
passive part. Section V addresses the uncertainty involved
when cancelling terms in the backstepping procedure, and
introduces nonlinear damping in the control law. In section
VI the uncertainty in cancellation is pursued further with
adaption of constant parameters. Simulations are presented in
section VII, and section VIII gives some concluding remarks.

II. COMPRESSION SYSTEM MODEL

A classical result in the field of compressor surge modeling
is the model of Greitzer [7]. which covers a basic compres-
sion system consisting of a compressor, a plenum volume,
in-between ducting and a throttle valve as shown in Fig.
2. In [8] the authors extended the Greitzer model to also
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incorporate variable impeller speed. A similar model was
derived in [9] using an approach based on energy analysis.
which is the model used here.

Consider a compression system in which a centrifugal
compressor supplies compressed gas to a duct which dis-
charges into a plenum volume. from which the compressed
gas discharges over a throttle. A model for this system can
be written as

il |
= -"—,(w —11‘7:( )) (I}

A
b = Z(ww)-) @
o = (ra=Te(ww). 3)

where is the plenum pressure. w is the duct mass flow and
w is impeller speed. Throttle mass flow is given by wy (),
total pressure downstream compressor is denoted . (w, w)
and torque experienced by impeller due to compressor fluid
flow is given by 7. (w,w). Furthermore, the various constants
represent speed of sound at ambient conditions ag, volume
of plenum V', cross section of duct A, length of duct L and
inertia of rotating parts .J.

Pressure dynamics is derived by computing the mass bal-
ance of the plenum volume assuming isentropic conditions
and uniform pressure. Mass flow dynamics is derived by
computing the momentum balance of the duct connecting
compressor and plenum assuming incompressible one dimen-
sional flow in the duct and compressor. Moreover, dynamic
effects related to the compressor stage are assumed small,
leaving total pressure downstream the compressor as a pure
mapping from mass flow and impeller speed. Impeller speed
dynamics is derived by calculating the angular momentum
balance. This is where the drive torque appears. assumed (0
be at our disposal as system input.

Models for throttle mass flow and compressor torque are

taken as
kesign( — o)V| — ol (4)

ke |w|w, (5)

'wr( )

Te (w,w) =

where ¢ is ambient constant pressure, k, is the throttle con-
stant (proportional to throttle opening) and k.. is a compressor
torque constant. The model of throttle valve mass flow is
slightly modified relative to [9]. The modification involves
including the possibility of negative mass flow through the
valve, and to this end the throttle characteristic is assumed
1o be symmetric.

Plenum

Compressor

Throttle

Pas

p —w,(p)

Fig. 2.  Compression system
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From (1)-(3) it can be seen that a desired equilibrium
satisfy

w® = kv ¢ — o (6)
¢ = L(wwf) )
78 = koawtw® (8)

where in all practical cases the desired equilibrium involves
positive valued states and a higher plenum than ambient pres-
sure. For computational convenience of subsequent analysis.
the desired equilibrium is shifted to the origin

= — " wmp=w-—uw ry=w-—w o u=T4-—7y
(&)
where superscript e refers to desired equilibrium. The model

is then rewritten in error coordinates using (1)-(3) and (9)

i = k(2 fi (@) (10)
xo = ko (fo(xo,23) —2y) (11)
@y = kg (u+ f3(we,23)) (12)

where k] = 5‘,;- k-_g — -Ll k:g = 11' and
Nilz) = w'—w(z+ °) (13)
Talza,x3) = clee+waz+w)— °  (14)
fa(zg,x3) = 75 —7To(za+w a3 +w). (15)

Moreover, from (4). (5). (13). (14) and the observations of
pressure downstream the compressor being strictly increasing
in impeller speed. the various functions can be shown to have
the properties

(a=b) (@ -fiB) < 0  (16)
(a=b)(f2(x2,a) = fa(x2,0)) > 0 (17)
(a—b)(f3(x2,a) — f3(22,0)) < 0 (18)

and fy (0) = f2(0,0) = f3(0,0) = 0.
III. STATE FEEDBACK BACKSTEPPING DESIGN
Control laws to be derived are based on results from
|6]. These results are therefore restated for convenience and
completeness. as well as the basis for a minor modification.
The backstepping procedure resulted in backstepping error
variables

2y =T 2z ==x2 2z3=a3— az(z) (19)
where ayg (z9) is a stabilizing function defined by
ag (z2) = —czzg (20)
where ¢3 is a positive constant chosen according 1o
2 " BhGan =l
ey
Furthermore, the input » = 1) + ug with
U = —Cy23 (22)
and the function
, L H. . 1.5, 0.3
Vy (z) — o (Edlzl - §d222 e Ed:]:«::; (23)
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resulted in

. . d
e < 22

Zlfl (1) — 233Q (t) 22,3
+Z:5(H»g + fa (22,23 + a3)

ke
+(f3::‘ (fa(z2, 23 +as) —2z1)) (24)

where z = (z, 29, 23). 223 = (22, 23), d; and ¢, are

positive constants and

(’h, _ ldgkg Ofa(ri,ra
s OFrg
Q (I) = 1 {]‘;K: IQSJ] L ! Hiden e ke (25)

T2 daky

with Ty =22 and ro € L (23 + aa, 03) 1
An alternative formulation for compressor torque in (24)
relative to |6] can be made by rewriting

fa(z2,23) — f3(z2, 3) + f3 (22, 3)

(26)
where (19) has been used. The inequality (24) can now be
expressed

Ja(za,23 + a3) =

Cjz:zzlfl (z1) — 233Q () 223

+2z3(ug + f3 (20, 03)

k-
+03}T_': (f2 (22,23 + a3) — 1))

Vi(z) <

27)

where it has been used that 23 ( f3 (22, 23) — f3 (20.3)) <0
due to (18) and (19).

Two implementations of w; where proposed in [6]. One in
which all terms enclosed by the same bracket as wup in (24)
where cancelled. and one that did not cancel f3 (z2, z3 + ag).
One additional implementation can be made based on the
rewriting (26). where all terms enclosed by the same bracket
as ug in (27) is cancelled. The three variants of the control
law, u = uy + w9, are summarized for convenience

uj = —fa(z2, 23 + a3) —fi;_ (fa(z2,23 + a3) — 1)
uy = —f3(z9,03) —f"i;\ (f2 (22,23 + a3) — 1)
u§ = —n;;j(fg(Zz_Z.a +az) — 1)

(28)
where u;, given by (22), is unchanged for the various
implementations of wu,. Stability results are derived using
(23) and

Vi (z) < —253Q%%° (t) 223 +

where Q°(t) = Q(t) = Q(t). Q‘-’ (f.) contains some
additional terms relative to @ (£) and the superscript refers to
the control law in question. Semi global asymplotic stability
of z = 0 was concluded using (23). (29) and (16), when (21)
and Q™" (t) > 0 holds semi globally. Morcover. if

21 fi(z1) < =612}

the resulls are exponential since (23) and (29) are quadrati-
cally bounded in ||z||,. This inequality holds semi globally

fn;‘! 2

31 Hi(z) (29)

(30)

Iry is some point on the line segment joining 23 + g and oy
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for the throttle model (4). It does not hold globally since
lim ) 0o '3!'},1' =0.

For all lllree control laws. the gain ¢3 has a lower bound
given by (21). For control laws o and b it is sufficient to
choose ¢, arbitrarily large. whereas it must be chosen suffi-
ciently large for control law ¢. The differences of the control
laws are found in the way compressor torque is handled. The
first law directly cancels the model for compressor torque and
the second cancels parts of it. The third control law does not
include an explicit term for cancelling compressor torque.
here stability is achieved by dominating torque with a linear
term (and hence require ¢4 sufficiently large).

Remark 1: Control law b has an additional stabilizing
term in (29). z3 (fs (22, 23) — f3 (22, ag)). compared to con-
trol law a. Comparing « and b. is seems like the cancellation
done in b is more robust than the one done in e since it
leaves an additional stabilizing term. This claim has no rigid
Justification in analysis. but is rather based the observation
that V3 becomes "more negative" for control law & than for a.
The additional stabilizing term can also be shown for control
law ¢, but in this case ¢y is required sufficiently large in
contrast to requirement of arbitrarily large in the first two
cases.

IV. PASSIVITY

The derived control laws are all on the form w = u; + s,
Recalling the analysis leading to (24). it can be recognized
that redefining u = 1y 4 us 4 ug leaves a term zzug in (29).
Since wug is at our disposal and can be chosen freely, this
motivates the investigation of passivity properties of the pair
2aUs.

Using the redefined control input with previously derived
uy and g, the general system dynamics can be expressed as

o { z=1{.(z,uz) a1
Y: =23
where ug and . are system input and output respectively.
Dynamics of this system will depend on the specific imple-
mentation of us. (28). Furthermore. it follows from previous
analysis that z = 0 is semi-globally asymptotically stable
for z = f. (z,0).

The approach of investigating passivily properties was
motivated by the appearance of zzug in (24). Hence. a storage
function. V, 5. for the system is defined on the basis of 14

a }.. (Z) = IJ(Z) (32)

Using results from previous analysis, the time derivative of
(32) along the solution of (31) results in the inequality

doky

23———"'21:'1 (z1) (33)

>t “
23Uus fﬁ

»(2)+233QM" (1)
where it has been shown that Q"¢ (¢) are positi\c definite
by choosing the control gains properly and — 422y f) (1)
IS positive dcﬁmlc by (16). Rewriting the mequalmcs as
zgug > V' “ (z), it is concluded that X. is passive, [10].
To show lhal 3. is output strictly passive, the gain ¢, is
temporary redefined as ¢y = ¢ + 4., for some 4., > 0.
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From this definition. ¢} is considered used in (25) and 4.,
is used to show the system output strictly passive. Using
the temporary redefined c¢,. inequalities can be rewritten
zqug > VY (2) + 6.,23. by which it is concluded that
¥. is output strictly passive. Furthermore, from (33) and
recognizing that zJ ,Q™" (t) zo 3 — 942 2, [, (1) is positive
definite in z. it is concluded that X. is strictly passive.
Due to 2. being output strictly passive of the given form.
it is also finite gain Ly stable with finite-gain less than —\‘-l—

It is known from general theory of passivity that a strictly
passive system in feedback interconnection with a strictly
passive or a outpul strictly passive and zero state observable
system, poses asymptotic stability of the overall system
origin. This motivates the definition of a second system

- : { iHB = fu3 (zu:{- 33) (14)

L Yuz = —u3

representing a SISO dynamic control action for ug. Notice
that system input is a lincar combination of equilibrium
error variables for compressor mass flow and impeller speed
(z3 = @3 -+ egag), and system output is at our disposal.
Hence, the system X,3 can be chosen under restriction of
a given input and output pair (dynamics of the system can
be chosen freely). Choosing it to comply with the properties
of strictly passive or output strictly passive and zcro state
observable will guarantee asymptotic stability for overall
feedback interconnection with X.. Such a dvnamic system
can for instance be a PID type control law. with parameters
chosen such that it represents a strictly passive system, [11].
Moreover. it is believed that best results for the control law
is obtained by choosing ¢z and ¢4 as small as possible so
that stability is achieved for X, and then "tune" the dynamic
part, ¥z, of the controller for performance. The motivation
for this is found in disturbances. since a dynamic controller
can offer low pass filtering in addition to gain. Furthermore.
a dynamic control law can also offer integrating effect on its
error variable. which can improve steady state performance.

Assume now that X5 is chosen according to preceding
discussion. An immediate consequence is the passivity of
overall feedback interconnection of X. and X,5. If system
3.3 is output strictly passive. it follows that the interconnec-
tion is finite gain Lo stable. Furthermore, if (30) holds and
Y3 is linear. the result will be exponential stability of the
overall system.

Sofar the overall stability of £ in feedback interconnec-
tion with a second dynamic system of appropriate passive
properties have been discussed. owever. there also exists
similar results stating that the origin of X. in feedback
interconnection with a time-varying memoryless function
Yoz = hya (L, z3). where hyg (L, z3) is passive. remains
asymptotically stable, [10]. One possible choice is a saturated
linear function fi,3 (£, z3) = sat (cz3). This can be used
to practically replace u; for implementations o and b, by
choosing ¢4 vanishingly small.
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V. UNCERTAINTY
The control law involves direct cancellation of model
terms. These cancellations can be found in w2, and are
done in the final step of the design procedure to avoid sign
indefinite cross terms in (29). Since the terms implemented
in up are model based, these cancellation will involve some
uncertainty with respect to the actual value. Following [12].
a relationship between model and actual value will be taken
as
Jactual = fmodet (1 4+ A (2))

where A () is assumed bounded. From this it can be
recognized that A (¢) represents the models deviation from
its actual value, with A (¢) = 0 implying perfect match of
model and real value. and the model error increases as A (1)
deviates away from zero.

In order to limit the effect of errors introduced by uncer-
tainty in cancelling terms, the control law is extended with a
nonlinear damping term 2. This is not introduced to achieve
asymptotic stability in the presence of uncertainty, but rather
limit the effect of these errors and to guarantee bounded
solutions in their presence.

We restrict the analysis to the case where (34) is
strictly passive with a radially unbounded storage function
Vi ua (2,3) satisfying

(35)

—uzz3 > Vi uz (2u3) + W uz (2u3) , W ua (zuz) >0 (36)

where W, .1 (z,3) is radially unbounded.

Analysis is now conducted for the control law including
the passive part u3. since this gives the most general case
(also incorporating the case when no passive control part is
used). Consider the function

Va (2,2u3) = Va (2) + Vi w3 (2ua)

The overall control law is now defined by u = wuy + ug +
g+ 1y (including also the passive part) or w = wuy + g + 1y
(excluding passive part), where wy constitutes the nonlinear
damping part of the control. Using the previous result (24)
or (27), (28). (29) and (36) with the uncertainty (35), the
time derivative of (37) is upper bounded by

(37)

doks

Vi (tame) S —23aQM (D2 + T af ()
'*Hru:i(zrf:i)
+z3(ug + far (2) A (F)
+fa2(z) Az (t)) (38)

where A; (£)’s are the A (¢) defined in (35) for each cancel-
lation and the fa's are given by
ke
Csf(.f2(32-23+03)—21) (39)
3
{f3 (2. 23 + 3) , f3 (22, a3) . 0}40)
where the function (40) will vary with the different imple-

mentations of g, (28). The terms fa;A; (£) represent error
made when using a given model.

far(z) =

] 3;“ (22, 23)

Il
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The effect of perturbation resulting from uncertainty is
now sought reduced with the control input

uy = —K123fa; — K223fAz (41)
and an upper bound for (38) is then given by
""'_::'brﬁ (t,2,2u,) < —Wa (z~zu.—:) I ”Asum (’)" (42)

where Wa (z,2,,) = —z;_{:;;Q“'b'” (t) z23+ E—:ﬁ-;zl Si(z1)—
W (z4a) and Ay (1) = J"Tl&f (t) + ﬁ&é (t) is scalar
and time varying, [12]. Combining the previous results of
positive definite Q**° and the assumption made in (36).
it is known that W (z,2z,3) is positive definite in its
arguments semi globally. Furthermore. it is noticed that
[|Agumm ()] reduces with increasing x’s. Since Vi (z,2z,3)
and W (z, z,3) are positive definite and radially unbounded
functions, they can be bounded by class K. functions
as v, ([(z,zus)ll) < Va(z 2zu3) < v2(ll(2,2u3)]]) and
v (I(2.243)|]) < Wa (2,2,3). It can now be shown that
system states are bounded by

’YI 1 O"y’.z 0'}’31 ("-‘ﬁgmn “’]"-&,) ' }

"(z- zu:‘l)"m S max { 2] ! 0 Y9 (”(Z “(]) + Zyd ("ﬂ))”] (

43)
which gives a condition of worst case with respect to effects
of model uncertainty or initial conditions . [12]. Furthermore,
it can be shown that the overall system is input-to-state stable
with respect to the disturbance A, (f). Moreover. system
states convergence to the set

gZA — {"(z‘zuii)" S 7[ I OA!'.Z D'Y:il (”A.-tum (’)|

=)

(44)
and semi global uniform bounded solutions (z (t) .z, (¢))
follows.

As already mentioned, these results holds whether or not
the passive control part is used. The practical difference lies
in the estimates of the global bound. since the +'s will be
different for the two cascs.  owever, the Ay, (1) will be
the same whether or not the passive part is included, since
Agum (1) is related to uo only. Furthermore, these results
also give an estimate on bounds of solutions, (43). This can
be used to estimate a less restrictive bound on gains used to
achieve the semi global results, by restricting the region of
attraction from semi global to some predefined region for a
specific plant.

The nonlinear damping was introduced to guarantee a
bound of solutions in presence of uncertainty in cancelled
terms. The results shows that solutions are bounded and will
converge to (44). Furthermore, it can be recognized from (42)
that A,y (1) = 0 results in Va (£, 2, 243) < —Wa (2, 2,.3).
and the system is asymptotically stable. Tuning of control
gains will depend on both the specific implementation of (28)
and the passive part of the controller, since these factors have
an effect on the fae and + functions, which in turn defines
Q.

V1. STATE FEEDBACK ADAPTIVE BACKSTEPPING DESIGN

The state feedback backstepping procedure resulted in
three basic control laws (28), where their differences is due
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to how they cancel the compressor torque. It has also been
shown that these basic control laws can be extended with a
passive parl. z5 — —ug. Furthermore. using nonlinear damp-
ing guaranteed bounded solutions in presence of bounded
uncertainties in cancelled terms,

In this section the uncertainty involved in cancelling terms
are sought improved by parameter estimation. More specif-
ically. constant parameters appearing affine in the cancelled
terms will be addressed. All cancellations comply with the
matching condition, which means that cancelled terms are
in the span of the control variable. More specifically, all
cancellations are done in the final step of the procedure and
collected in the ug part of control law .

Three model specific constants, k.. k2 and ks, can be
recognized from (28) (with k. incorporated in f3). owever.
since kg and k5 always appear in the configuration %; these
will be treated as one unknown constant only, For analysis
it is convenient to rewrite f3 (g1, q2) = 75 — koS3 (q1.g2).
where [} (q1,q2) = |q1 + w*| (g2 + w*®), in order to get an
expression where k. appears explicit. At this stage we ignore
that 75 contains k., since in the actual implementation we
have 74 = 7§ + = and the 7§’s of f3 and = will cancel
out. For the same reason we express uf = —7; + k. ww® —
C‘:}% (f2 (22,23 + a3) — z1).

Parameter estimators are derived by certainty equivalence.
This involves replacing constants in the previously derived
control laws by their estimates. and then analyze to design
the dynamic part for update laws. Parameter estimates will
generally be denoted by @, with subscript 1 referring to i‘,
and subscript 2 referring to k.. Furthermore. deviation of
parameter estimates from their actual value is denoted

zg=hkg— 0
with kg referring to the actual constant. The details of the
derivation is only shown for 23, when deriving for the two

other will consist of the exact same exercise. Consider the
function

(45)

F ; 1 . t g
Vi (z.2g) = V3 (2) + —zﬁ, + —z32

46
2(.‘9 1 2(!02 ( )]

which is positive definite and radially unbounded in (z, zg),
where zg = (241, zg2). The time derivative of (46) using the
certainty equivalence control law

‘u;e = —-T:}-l-ﬂ-gf;i (Zg‘z;; + ag)—esly (fo (22,23 + (l":{.) —2z)

47
(45) and (27). can be upper bounded by
- 1ok _—
Vg (2z,25) < lfz’zlfl (z1) = z-ﬁr,:;Q (t) 22,3
dyky

|
+331(};'301 + zcs(fa (22, 23 + a3) — 21))
01

L i
+232(£392 — z3f3 (22,23 + g)) (48)

where 24, and Zg are at our disposal. These are now chosen
such that the content their brackets in (48) becomes zero

(49)
(50)

2z = —concszs(fe(z2,. 23+ a3) —21)

coaz3fy (22,23 + v3)
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which results in

Vi (2,29) < < Z]fl (21) — 253Q% () 22,3 (51
being equal to (29) Usmg, previous results, it is known
that Vp (z,24) < —W (2) where W (z) = g-’iiz]f] (z1) —
z3 3Q° (t) 22,3 is positive definite and radnll3 unbounded in
z. This implies that all solutions (z (¢} , z¢ (¢)) are uniformly
bounded and that lim; .., z — 0, since lim; .o, W (z) — 0.

owever, no conclusion can be drawn on the convergence of
parameter estimates.

Following the same approach it can be verified that
the other two control laws are given by ub, = —7% +
O2f3 (z2,03) —caby (f2 (22, 23 + a3) — z1) and ugy = —75+
Oow w® —cally (f2 (z2, za + az) — z1). For both of these, the
update law for 0, will be the samc as that for ug,, (49).
The update law for 05 will be 25, = cgozsfi (z2,3) and
2G4 = cgazzww® respectively, Furthermore, it is considered
a design choice whether ¢3 is included as part of the unknown
parameter ¢, or not.

An alternative formulation can be made by splitting up
the brackets enclosing fo and z in (28), and then treat
the constant % as two different constants when appearing
affinc in fy and z; respectively. Treating them as different
constants has no root in the physical model. but is included to
investigate influence on overall system dynamics. A certainty
equivalence control law is then given by

uy = —7G+02f5 (22,23 + ag)+e3fyy z —egbiafo (22, 23 + ovg)
(52)
where the notation #;; and #,- is used for estimates of
% appearing in front of z; and fo respectively. The result
for this scheme is derived in same manner as that of (47).
Consider the function
1 1
Volz,z0) = V(2 +—zo11+-—
(=20) (=) 2ep1y 2egr2 2ego
and the certainty equivalence control law of (52). The time
derivative of (53) is found as

doks

2p12+—202 (53)

21f1(21) — 23 3Q° (t) 20,3

dsks
+ (—2011 — C;Z;h) Zg11

—2012 + c3z3fo (22, 23 + ﬂ’?)) zg12

Vi (z.2g) <

+ (Ezez — 2z3f3 (20,23 + ﬂ’a)) zgo (54)

where Zg11. zg12 and Zgo are at our disposal. These are now
chosen such that content their brackets becomes zero

2411 Cg11C32321 (55)
ZG1 = —co12c3z3fa (22,23 + a3) (56)
%o = coazafy (22,23 4+ a3) (57)
which results in
‘ra ) (fzkz
Vy' (z,29) < zfi(z1) —233Q" () 223 (58)
dsks
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being equal to (51). Hence, by following the same arguments
as for (51), it is concluded that all solutions (z (%), zg (%))
are uniformly bounded and lim; .,z — 0.

The overall system (z,zg) is not strictly passive since
Vi (2, 2,) in (51) or (58) is only negative definite in z. It
is output strictly passive with respect to 23, but it is not
zero state observable since it can not be guaranteed that
zg converges to zero. Hence. the result of passive feedback
interconnections can not be used to introduce the passive
control part us in the same manner as was done in the case of
non-adaptive control law. owever, with the passive part (36)
and the related assumptions. it is still possible to incorporate
a passivc control part. This can bc scen by dcfining

Vi (2,29, 2u3) = Vo (2,20) + Veuz (2u3)  (59)
and calculating the time derivative
Vos (2,20, 2u3) < —W (2) — Wa s (zu3)  (60)

where W, .3 (z,3) and W (z) are positive definite in their
arguments, as can be seen from (36) and (51). Hence. by
following the same arguments as for (51) and (58). it is
concluded that (z (t) , zg (t) , 2,3) is uniformly bounded and
lim; .o (2,2,3) > 0.

Notc that a passivc, output strictly passivc or input strictly
passive X,3 will still give bounded solutions of overall
system and convergence of z to the origin. owever, no
conclusion can be drawn on the convergence of ¥,3 states.
This can be seen by evaluating (60) when Wy 3 (z,3) is not
positive definite in z,3, but rather positive semi definite.

VII.

The compressor map used for simulations is the same as
used in [13]. This is a map based on measurement data,
for which third order approximations in both compressor
speed and mass flow is done to make the map continuos in
these variables. Using (6) and (7). the throttle characteristics
can be plotted in the compressor map. This is illustrated
in Fig. 3 for two different throttle openings (represented

SIMULATION
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by different k,’s). where the intersection of compressor and
throttle characteristics constitutes the possible equilibrium
of the system This means that freedom to choose a desired
operating point for the compression system using only the
drive torque as actuator is limited to some point on the
throttle characteristics.

Using (7) and (8). the torque characteristic can be plotted
in the compressor map. This is illustrated in Fig. 3 for two
constant torque inputs of different amplitude. The system
equilibrium is then given by the intersection of throttle and
torque characteristic.

Simulations will go through a scenario in which the system
is initially operating in point 1 of Fig. 3 (k; = 0.015
and 74 = 250). The system is then driven to operating
point 2 (k; = 0.015 and 74 = 400) aftcr 500 scconds.
which involves a change of torque input for the uncontrolled
system and a change of desired equilibrium for the controlled
system. The system is driven (o operating point 3 (k; =
0.008 and 7, = 400) after 1500 seconds. which involves
a change in the throttle opening for the both uncontrolled
and controlled system in addition to a change of desired
equilibrium for the controlled system. Change of throttle
opening and equilibrium points are done with a step change
of the parameter in question, in series with a first order filter
(T" = 100). This is done to get a realistic response from
the control law with respect to commanded torque. since a
step change introduces a relatively large amplitude of error
variables. Without this filter the system still poses the same
qualitative response as with the filter, but the commanded
torque becomes unrcasonably large in the transients.

For the scenario described, the throttle openings consti-
tutes equilibrium points for which the compressor charac-
teristics has a negative and positive slope in w. From the
literature it is well known that a negative slope constitutes
stable equilibriums, For positive slope however, the system
need not be stable and surge can occur.

The open loop response is shown in Fig. 4. This simulation
shows stable behavior for the first two operating points.
before eventually entering surge in the last operating point.
From the plot of compressor speed, it seems like this state
is not oscillating. owever, a closer examination reveals
relative small oscillation also for this state.

The closed loop response of the stabilizing control laws
from section III is shown in Fig. 5, for control gains ¢z = 20,
¢y = 1 and ¢4 = 0.1. For ¢4 = 1 the response is practically
identical for the various implementations, whereas for ¢y =
0.1 one can identify some differences. Furthermore, it can
be seen that the amplitude of ¢, influences the convergence
rate. This is especially the case for control law a.

The closed loop response of the adaptive control laws
from section VI is shown in Fig. 6 and Fig. 7. for control
gains c3 = 20, ¢4 = 1, cg1 = 107° and cgp = 10719,
These simulations where conducted with the adaptive gain
#, being bounded to a positive value. The justification for this
is found in the physics, when it is known that this parameter
is positive. If this parameter was not bounded and the gain
cgy was chosen relatively high, the system states showed the
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stabilizing control laws from section 1II. Control laws a, &, and ¢ are
represented by solid. dash-dotted and dotted lines respectively.

same transients as in Fig. 6. but the control input would be
unreasonably large. Choosing cg; relatively low resulted in
reasonable amplitude of control input. but the system will
enter surge while "waiting" for 6, to converge (converge to
some value that stabilizes the system). The various control
laws seems to give the same response for system states and
input also in this case (note different scale for 74 relative to
previous plots). Furthermore. the response for @ is almost
identical for the different control laws. Some differences are
found in the ¢, response. where it is also evident that the
lower saturation of parameter estimate have been active. The
actual values of the two unknown parameters are kg, =
0.0497 and kge = 0.0285. These simulations show that ¢,
does not converge to its actual value, whereas 03 does.

VIII. CONCLUDING REMARKS

The various control laws can be divided into a stabilizing
part, a robust part, a passive part and an adaptive part. It is
shown that the overall control law can consist of all these
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parts or a selection, but the stabilizing part must always be
present to guarantee stability. Furthermore, the stabilizing
part can be implemented in three different ways. depending
on how the controller compensates for compressor torque.
Simulation using only the stabilizing part and simulation us-
ing the stabilizing and adaptive part showed small dilferences
for the various implementations of the stabilizing patt.

The control laws makes use of pressure downstream
the compressor. This can either be implemented using a
model (compressor map) or measurement. If implemented
using a compressor map. this introduces uncertainty due to
model based cancellation (addressed in section V). This is
especially the case to the left of the surge line, when limited
knowledge of steady state compressor behavior is available
in this region. Furthermore, the uncertainty involved in the
compressor map gives rise to uncertainty of equilibrium
points for a practical installation, as they are identified using
this map. A solution to this problem might be to estimate

FriP10.12

the equilibrium points.

An alternative to estimate kg, is to use identification
techniques. such as reported in [14]. These techniques can
also be used to get a good initial estimate for the variables,
when an adaptive scheme is preferred.

All control laws require measurement of mass flow. ow-
ever, measurement of mass flow for dynamic purposes is
troublesome. Hence, a mass flow observer should be incor-
porated in the control law before it can be implemented in
practice.
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