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Summary

Computational fluid dynamics CFD gives engineers and researchers the op-
portunity to model accurately complex physical processes involving heat
transfer and fluid flow. At the same time, one wishes to be able to de-
sign optimal model based controllers for such systems, for which no simple
analytical solutions or compact models exist. Typically these models have
a number of unknowns that exceeds 10 000, and sometimes even millions.
Model based controller design for systems of such high dimensionality is
infeasible due to the high computational requirements. Through the use
of modern model order reduction techniques, one can bypass the high di-
mensionality of the computational fluid dynamics models during controller
design. This thesis combines the scientific disciplines of computational fluid
dynamics, model order reduction and control theory, as important steps
towards employing real-time, optimal and model based control for systems
described by high-dimensional models.

The history of computational fluid dynamics is reviewed and the proce-
dure is demonstrated through an example using the finite volume method.
It is demonstrated how CFD models can be put in standard state-space form
for analysis of system properties, such as stability, and it a CFD model of
an unstable system is stabilized through reduced-order control. Different
model reduction techniques are introduced, focusing on methods that are
particularly suited for control design and large-scale systems. A new way
of selecting snapshots for snapshot-based model reduction is proposed.

Some selected topics from control theory are included for completeness,
in particular model predictive control and also the explicit solution of the
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model predictive control problem based on multiparametric programming.
This thesis proposes to use model reduction in order to make explicit model
predictive control feasible for a larger number of systems, and it is shown
that a significant reduction in online controller complexity can be achieved,
without compromising performance and stability. Further, we consider
output-feedback controller design based on reduced-order models. When
using reduced-order models to design model-based controllers for complex
systems, there always arises a question of guaranteed closed-loop stability
in presence of the uncertainty introduced. Some important properties of
the resulting closed-loop systems, and controller and observer criteria, for
stability are established. Moreover, this thesis presents a novel design pro-
cedure for robust model predictive control based on reduced-order models.
The procedure gives provable closed-loop stability in the presence of the
model approximation error introduced in the model reduction process. To
our knowledge, this is the first time stability is proven for model predictive
control designed based on reduced-order models.

Many physical systems in for instance mechatronics, micro-electric me-
chanical systems, rotating machinery, aerodynamics and acoustics are best
described by CFD models with a large number of states. At the same time,
they are characterized by very fast dynamics, such that the controllers ap-
plied are required to be equally fast. We develop fast model based controllers
with constrained control input, in combination with state estimators in an
output-feedback structure. For the first time, reduced-order models devel-
oped using a model constrained optimization-based reduction technique are
used for constrained optimal control, demonstrating significantly improved
performance over control design based on the standard methods, such as
proper orthogonal decomposition, that is most frequently used for large-
scale systems. This is an important step towards achieving and actually
implementing real-time, model based and constrained optimal control for
such systems.
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Chapter 1

Introduction

“640k should be enough for anybody."
-Bill Gates, 1981

ONTRARY to what was envisioned in the opening quote, the world has
C seen a formidable increase in computing power over the last decades.
Because of this, engineers and researchers take on greater and greater com-
puting tasks.

Computational fluid dynamics (CFD) has emerged as a powerful tool
in many areas of industry and academia. CFD is a joint designation for
numerical methods for solving and analyzing problems concerning fluid-,
heat- and mass flow by computer simulation. These methods include grid
generation, spatial and temporal discretization, solution of the resulting
equations, etc.

The underlying phenomena in most CFD applications are described by
partial differential equations, which implies that the system state is infinite-
dimensional. A lot of effort has been put into designing control laws for
these distributed parameter systems.Most of these solutions are restricted
to problems with relatively simple geometries and flows, for example for in-
compressible channel flows, pipe flows and cylinder flows. Moreover, many
physical problems are multi-disciplinary, with several PDEs describing dif-
ferent effects within the problem domain. While this is very difficult to
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2 Introduction

handle with the theory of distributed parameter systems, it is relatively
straightforward to set up such a problem in any commercial CFD software
package. This is indeed the “raison d’étre" for CFD.

Although CFD is a very useful tool for analyzing flow phenomena, the
computational cost of solving CFD problems is high. It is not unusual that
a CFD code needs hours, and even days and weeks to solve a difficult prob-
lem, for instance if three spatial dimensions are considered for a complex
geometry and flow pattern. If optimization is to be performed based on a
CFD model, for example to optimize a design, hundreds or even thousands
of solutions are needed before an optimal design is found.

Moreover, since CFD analysis often gives accurate solutions that can
help us understand the behavior of a given system, it is desirable to design
control laws based on CFD models. We then face the following problems:
CFD models

e are expensive to use for unsteady simulations,
e do not couple well with other disciplines such as active control and
e are too large for model based-, optimal- and robust control design.

Consequently, as engineers and researchers take on greater challenges with
the increasing use of CFD, they are inevitably faced with the “curse of
dimensionality".

Generally, controllers are of the same order as the plant. Consequently,
it is prohibitively expensive to compute common controller structures for
large-scale systems. When the plant is high-order, the controllers also re-
quire extensive state information, are extremely difficult to tune and are
expensive to implement and maintain.

To overcome these problems, the theory of model order reduction has
emerged over the last decades. The motivation is clear from the viewpoint
of a control engineer: With a low-order model at hand that approximates
the necessary behavior of the CFD model well, we regain the opportunity
to apply our large control system design toolbox.
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Example 1. Optimal Control of Reservoirs

Oil and gas wells and reservoirs are usually described by complex CFD mod-
els with 103-10° dynamic variables, and are controlled by engineers based on
complex simulation studies and the engineer’s experience. There is a great
potential for improving the operation by introducing optimal control strate-
gies for the reservoirs (e.g. for water injection strategies). With proper use
of model order reduction techniques, one can envision that approzimate, low
order models can be used to design model-based optimal controllers of low
order.

1.1 Scope of Thesis

For systems with relatively simple flow regimes and geometries, one can
aim at designing controllers and stabilizing the underlying system of par-
tial differential equations through the use of controllers designed based on
mathematical analysis of the PDEs. For the broader specter of systems,
this is not feasible as flow regimes and geometries turn complex. It is, how-
ever, the great strength of CFD that one is able to describe such problems
on a computer, and obtain very accurate simulation results that cannot be
achieved by simplifying models and systems of partial differential equations.
Through the use of model order reduction techniques, it is then possible to
develop models of low dimension that capture the essential dynamics. This
way, one can achieve improved performance and closed-loop stability for
problems that would otherwise be impossible to even model with conven-
tional analytical tools.

In this work, we consider models that result from spatial (and temporal)
discretization of partial differential equations by using CFD techniques and
software. We consider the problem of designing low order model-based
optimal control for the high-fidelity CFD models. We focus on constrained
control, since meeting constraints are important for systems in which safe
operation is critical. In particular, we consider model predictive control, and
the explicit solution to the model predictive control problem, and we strive
to make these technologies applicable to systems described by CFD-models.
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This requires model reduction, state estimation, handling of uncertainties
and ensuring robust stability.



Chapter 2

Background Material

HIS chapter introduces the tools and techniques that will be used in
T subsequent chapters to develop reduced-order models and low order
controllers. Section 2] gives a brief introduction to CFD, Section de-
scribes the system representations that we will consider, Section gives
an overview of the model reduction methodology that will be used, and
Section [2.4] presents some control preliminaries. In Section we discuss
some issues that emerge when we apply controllers based on reduced-order
models on the high-fidelity model, and in Section we give a motivating
example.

2.1 Computational Fluid Dynamics

This section presents the fundamentals of CFD, provides some motivating
examples and reviews the basics of the methodology.

Definition 1. Computational Fluid Dynamaics
Computational Fluid Dynamics or CFD is the analysis of systems involving
fluid flow, heat transfer and associated phenomena by means of computer-
based simulation , ).

With the need for a better understanding of flow phenomena, the aerospace
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6 Background Material

industry became the driving force for the development of CFD techniques
in the 1960s. The realization that CFD is cheaper and faster than ex-
periments, quickly made CFD an important tool in the design, R&D and
manufacturing processes of aircraft and jet engines.

Over the years, the development of CFD codes has been intimately
coupled to advances in computer hardware capabilities, since the solution
of complicated flow problems require the manipulation of thousands or even
millions of numbers. Along with the exponential growth of processing speed
and memory capacity', CFD has become a powerful and prominent tool
that is subject to massive research, and is used within numerous areas of
application, such as

e reservoir evaluation and simulation,

e design optimization,

e flow around vehicles, lift and drag computation,
e marine engineering,

e combustion modeling,

e fuel cell design and analysis,

e flow inside rotating passages etc.,

e chemical process engineering,

e clectrical end electronic engineering,

e wind loading and ventilation in buildings,
e weather prediction,

e flow in rivers and oceans,

! Almost every measure of the capabilities of digital electronic devices is linked to
Moore’s Law; the number of transistors that can be inexpensively placed on an integrated
circuit is increasing exponentially, doubling approximately every two years.
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e flow in arteries and veins and
e carthquake modeling.

Still, many CFD applications require huge computing resources, and the
size of problems that can be solved on an ordinary computer is quite lim-
ited. The following example illustrates the potential and computational
requirements of state of the art CFD codes.

Example 2. Farth Quake Simulation

In|Akcelik et al. (tZ_Q&‘j), the authors carry out 1 Hz simulations of the 199/
Northridge earthquake in Los Angeles with 100 million grid points. Their
simulations are among the largest unstructured mesh computations reported
to date, requiring multiple hours on thousands of processors.

Example 2] provides a stark contrast to the prophecy of the IBM chair-
man in the early days of computers:

“I think there is a world market for maybe five computers."
-Thomas Watson, chairman of IBM, 1943
2.1.1 A Brief Introduction to CFD

From a scientific viewpoint, computational fluid dynamics can be divided
into three phases;

1. pre-processing,
2. solving equations, and
3. post-processing.

The main parts of these three elements will be summarized in the next
three subsections. Most of the material in this subsection is based on

Versteeg and Malalasekera (LQ% but the literature on CFD is vast, and a
number of excellent books exist ([Eetzagﬂ_and_ﬂeud 2002, |Andﬁr.sgn| 1993,

Wessehné, Uﬂ)j .
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Pre-Processing

In the pre-processing phase, the problem is transformed into a format suit-
able for the solver. In this step, the user must define the computational
domain, the governing equations, fluid properties and which phenomena
that need to be modeled. An important part of specifying CFD problems,
as well as when solving partial differential equations in general, is specifica-
tion of appropriate boundary conditions (BC) and initial conditions (IC).

Then comes gridding; the sub-division of the computational domain
into a number of small sub-domains. The result of the gridding process is
a grid (or mesh), consisting of a (large) number of elements. The solution
to the governing equations is defined at nodes inside each grid element.
Consequently, the accuracy of the solution depends on the number of grid
elements. Usually, the grid is finer in areas where large variations occur in
the flow, and coarser in regions where little happen. Figure 2] shows a
grid example for flow around a cylinder. Several different mesh types exist,
such as uniform and non-uniform, regular and unstructured. A handbook
of grid generation can be found in Thompson ef. all (1998).

@

Figure 2.1: Example of a non-uniform, unstructured grid with 5557 ele-
ments, used for computing the flow around a cylinder located at the left.
The grid is finer close to the cylinder, since this is where we have large
gradients. The grid is generated with the commercial software Comsol Mul-
tiphysics.

Solving Equations

A common CFD solver performs the following steps:
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e Approximation of unknown flow variables by simple functions.

e Discretization by substituting the approximations for the governing
equations.

e Solution of the resulting algebraic equations.

There are three different directions when it comes to approximation and
discretization; finite difference, finite element and spectral methods. @We
will not go into the differences between these methods. The finite volume
method is demonstrated in Section Qrefsec:plate.

Solvers include familiar algorithms from linear algebra, such as Gauss-
Seidel iteration, Krylov subspace methods and the conjugate gradient method.
For large problems, the Multigrid method (Briggs and McCormick, 2000)
has become very popular in recent years.

Post-Processing

The post-processing stage naturally deals with presenting to the user the
results provided by the solver in the previous step. The post-processor
usually provides a variety of plotting tools, particle tracking and animations.
Figure 2.2l shows a two-dimensional surface plot for the velocity field around
the cylinder.

@‘,\”

Figure 2.2: Flow around a cylinder. The solution is generated with the
commercial software Comsol Multiphysics, using the grid in Figure 211
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2.2 System Description

In this section we discuss some properties of the types of systems that we
will consider in later chapters.

2.2.1 CFD Models

Models that arise through spatial (and temporal) discretization of PDEs
over the computational domain, are subsequently referred to as CFD mod-
els. The CFD models are assumed to be accurate representations of the
underlying PDEs, which can be achieved by selecting a proper grid and
numerical algorithm.

When discretizing linear partial differential equations, or when lineariz-
ing a nonlinear CFD system, we frequently end up with linear systems in
generalized state-space form

Ez = Az + Bu (2.1a)
y=Cuz, (2.1b)

frequently referred to as descriptor systems. Here, x € R™ represents the
descriptor variables, u € R™ contains the inputs and y € RP contains the
outputs of the system, and E, A € R"™" B € R™™ and C € RP*". In
CFD applications, « contains the n unknown flow quantities in the compu-
tational grid. Many commercial CFD software packages allow the user to
export the CFD descriptions on the format (2.1]). For nonlinear CFD codes,
the linearization matrices E, A, B, C are evaluated at steady-state flow con-
ditions. The state space matrices are typically sparse matrices of very large
dimension, e.g. n > 10*. Although these matrices could be manipulated to
obtain a smaller state-space system, such a procedure is often complicated
and can destroy the sparsity of the system. The sparsity is useful in nu-
merical methods used in e.g. model reduction. The more general form (2.1])
is therefore preferred. However, the state dimension of the system is still
prohibitively large for many applications, such as flow control design.

In CFD applications, it is common that the matrix F contains some
zero rows, which arise from flow boundary conditions. Consequently, the
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matrix E can be singular. In this case, (2.I]) consists of a combination of
ordinary differential equations and algebraic equations. Such systems are
referred to as differential algebraic equations (DAEs). With a slight abuse
of notation, we shall subsequently refer to x as the system state, also in the
case of singular F.

Assumption 1. It is assumed in the following that the matriz pencil (A — \E)
is reqular, i.e. (A — AE) is singular only for a finite number of \.

Assumption[lis not restrictive, and guarantees the existence and unique-
ness of the solution of (2.I)) for any specified initial condition.

In the following we shall use the notation G (E, A, B,C) to refer to
systems of the form (ZI)). If £ = I,,, we use the notation G (4, B,C). We
will also denote by G (s) and G, (s) the transfer functions of the high-fidelity
and reduced-order models, respectively.

2.2.2 Stability Properties of Descriptor Systems

The following theorem establishes stability of descriptor models.

Theorem 1. A descriptor model Ex = Ax is stable if all finite eigenvalues
A of (A — AE) are in the open left-half complex plane.

The generalized eigenvalues A can be obtained by solving the equation
det(A — AE) = 0. (2.2)

In the discrete-time case, the system is stable if the generalized eigenvalues
lie strictly inside the unit circle.

Remark 1. Note that if A is negative definite while E is positive definite,
the system Ei = Ax is stable. This is, however, a conservative criterion,
since a system may well be stable although this does not hold.
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2.3 Model-Order Reduction

This section defines the problem of model-order reduction, gives a short
literature overview and presents some fundamentals and algorithms that
are used in subsequent chapters.

2.3.1 Introduction and Problem Statement

Model-order reduction has emerged over the last couple of decades as an
important tool to analyze and design controllers for complex systems.
The literature on model reduction is vast, particularly for linear sistems.

A survey can be found in |Antoulas et all (2001), and the books
(2005a) and Benner et all (2005) describe many of these algorithms in detail.
The monograph by (Obinata and Anderson (IZDLl]J) treats the application of
model reduction techniques for control of linear systems, although large-
scale systems are not covered specifically. For nonlinear systems, on the
other hand, model reduction is still very much an open problem.

The model reduction problem can be stated as follows. For a system
modeled by the nonlinear differential equation

= f(x,u) (2.3a)
y=g(z,u), (2.3b)

where x € R" is the system state, v € R™ contains the m inputs to the
system and y € R? contains the p outputs; find a new dynamical system

~

r = f(zr,u) (2.4a)
Yr = g (xp,u), (2.4b)

where z, € R", v € R™, and y, € RP such that » < n and the following
criteria should be satisfied:

1. The approximation error is “small", preferably with a global error
bound.

2. System properties, such as stability and passivity, are preserved.
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3. The procedure is automatic, numerically stable and efficient.

If the system is modeled by a linear time invariant model of the general
form (2.I0), we seek an rth order approximation

z, = Az, + Bou (2.5a)
yr = Cry, (2-5b)

where z,. € R", y,. € RP, A, € R™" B, € R™"™ (C, € RP*" and subject to
the same criteria as above.

Comment 1. An alternative to model-order reduction as described above, is
to develop a low-dimensional model by identifying the major characteristics
and most important physical phenomena of an initially complex model of the
system at hand. Such characteristics could be time scales and spatial varia-
tions, for example. Based on this, one can then tailor the low-dimensional
model so as to incorporate these characteristics. This procedure is not au-
tomatic, and it requires greal knowledge about the system in question. On
the other hand, one can ensure that specific physical properties and relations
are handled properly in the simplification process. Successful use of such an
approach is demonstrated in |Storkaas, Skogestad, and Godhaurl (tZ_Q&“j)

Preservation of system properties such as stability and passivity gives
advantages when it comes to controller design. For example, given a pas-
sive system described by a passive high-order model?, a passivity preserving
model reduction procedure can be used to find a passive model of low order.
Then, a (strictly) passive model based controller of low order can be de-
signed. The closed loop consisting of the plant and the low order controller
is then provably stable, using arguments from the theory of interconnections
of passive systems. Preservation of passivity is particularly important in ap-
plications such as circuit design, where large circuits consisting of passive

2Although a given plant or system of partial differential equations is passive, the
high-fidelity CFD model designed to describe the plant is not necessarily passive. In
order to ensure this, a discretization scheme that preserves the passivity property should

be used (Kristiansen and Egﬁland, |20_0_d)
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circuit elements are to be replaced by smaller circuits using a smaller number
of passive elements. Several researchers have studied this problem, among
others |Antoulad (2005H), Bai and Freund (2001), and [Sorensenl (2004). In
fluid flow applications, however, the issue of passivity preservation is less
important, since the systems encountered are rarely passive.

Model reduction for control is somewhat different from model reduction
for simulation purposes, and it is treated among others bylﬁmm_ammmm
(IZD_Q]J) and [Zhou et all (I_L9_9_d) A reduced-order model that gives good ap-
proximation in open loop may not necessarily be a good approximation in
closed loop, since the system dynamics change once the feedback loop is
closed. If the ultimate objective is the low-order controller (rather than
the low order model), then it is essential that the closed-loop performance
objective be incorporated in the reduction technique. A common approach
is to use frequency weighting in order to emphasize the importance of ap-
proximation quality in the bandwidth of the closed-loop system. Another
approach is to use iterative plant- and controller reduction in a closed-loop
configuration (see e.g. [Wortelboer et all, 1999).

Next, we will briefly introduce some model reduction techniques that
will be used in later chapters.

2.3.2 Balanced Truncation

Balanced truncation is a standard technique for model reduction of sta-
ble, linear systems, and can be found in many standard references on
control (see e.g. |Zhou et all, 11996). It was originally introduced to the
control community by IME (ll?ﬁ)ﬂ) Although the method is computa-
tionally demanding when the system order is large, recent and ongoing
research address the extension of these algorithms to large-scale settings
Sorensen_and AnLQulaé,m, Gugercin and AnLQulaé,M, Li and Whii}é,
[20_(11 lBﬁnneuL_alJ, IZD_Oﬂ) Modern numerical linear algebra techniques has

allowed balanced truncation techniques to be applied efficiently to systems
of order up to n = 10° , Iﬁ)

Loosely speaking, balanced truncation is done by truncating states that
give the least contribution to the input-output behavior. This motivates
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considering the controllable and observable subspaces of the state space.
The controllable subspace contains the set of states that can be reached
with zero initial state and a given input wu(t), while the observable subspace
comprises those states that, as initial conditions, can produce a non-zero
output y(t) without external input. The controllability and observability
grammians P and Q are n X n matrices whose eigenvectors span the control-
lable and observable subspaces, respectively. If the system is minimal, the
Gramians are positive definite. The following fundamental theorem gives
conditions for the existence of the Gramians.

Theorem 2. If G(A, B,C) is exponentially stable, then the controllabil-
ity and observability Gramians P and Q exist, and are the unique positive
definite solutions to the Lyapunov equations

AP +PAT + BBT =0, (2.6)

AT9+0A+CTC =o. (2.7)

A system is said to be balanced when the states that are excited most by
input are at the same time the states that produce the most output energy.
In such a realization, the grammians are both equal to a diagonal matrix,
say %, with the elements o; on the diagonal in descending order,

P=Q=1. (2.8)

The diagonal elements o; are called the system’s Hankel singular values.
Model reduction by balanced truncation proceeds by first obtaining the bal-
anced system realization, and then truncating the states with small Hankel
singular values.

The error introduced by balanced truncation is upper bounded by

1G(5) = Gr (Nl <2 D 0w (2.9)

k=r+1

This means that the error is equal to twice the sum of the truncated Hankel
singular values. The error can also be represented in terms of a time-domain
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output error,

ly &) =y Oy <2 D orllu®l,. (2.10)

k=r+1

Remark 2. From Theorem[3 it is easily understood that balanced truncation
15 restricted to stable systems.

Several extensions to balanced truncation exist. It is especially worth
mentioning LQG balanced truncation (LLQHQkh&eJ;e_and_Sih&rmaﬂ, |L9f5_3i),
that is specifically targeted at control applications by considering a closed-
loop balanced realization, and is applicable to unstable systems, contrary to
the standard implementation. Some nonlinear extensions also exist, see for

example [Scherperl (1993) and [Lall et all (2002), and the references therein.

2.3.3 Model Reduction by Projection

Model reduction by projection is a general framework that can be used to
describe many reduction algorithms for large-scale systems. For a general
system, described as in equation (2.3]), model reduction by projection works
as follows. It is assumed that the state x can be approximated by a linear
combination of r basis vectors

x~ Q.1 (2.11)

where z,, € R" is the reduced state and ®, € R™*" is a projection matrix
containing as columns the r basis vectors ¢1, ¢a, ..., ¢,. Substituting (ZIT])
into (23), and requiring the resulting residual to be orthogonal to the space
spanned by &, gives the reduced model

@ () = 7 f (@ (1), u (1)) (2.12a)
yr (1) = g (Prar (1) ,u(?)), (2.12b)

where x, € R" is the reduced state and y,, € RP? is the output of the reduced
model.
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For linear systems, the reduced state-space model is given by

E, i, = Ayz, + Byu (2.13a)
Yr = Cray, (213b)

where
E,=3l'E®,, (2.14)
A, = 3T A, (2.15)
B, = o!'B, (2.16)

and

C, = Cd,. (2.17)

Several model reduction algorithms use the general projection frame-
work just described; however, they differ in the computation of the projec-
tion matrix ®,.

2.3.4 Proper Orthogonal Decomposition
First introduced independently by [Karhunenl (1946) and [Loéve (1946), POD

is sometimes called the Karhunen-Loéve expansion. The method is also
known under the name principal component analysis. When first applied in
the context of fluid mechanics in (M), it was used to study turbu-
lent flows. Applicable even for very high-order systems and non-linear prob-
lems, POD has become the most popular method within the field of model
reduction and control for CFD applications. This approach has been consid-
ered for active control purposes by numerous authors (Kunisch and Volkwein,
Im)j, Ma@a‘si_mmmim, lﬂ)ﬂj) However, there are several limitations as-
sociated with using the POD; in particular, POD-based reduced models lack
the quality guarantees of those derived using more rigorous methods such
as balanced truncation. Even in the case of stable LTI systems, reduction
via POD can lead to undesirable and unpredictable results, such as unstable
reduced models.
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POD can be described in view of the projection framework described
in Section 233 In the search of the basis vectors ®,., the POD procedure
proceeds as follows. Collect a finite number of M samples z (¢;) from (2.1I)
or (23), for t = t1,...tp, in a matrix of snapshots

X = [z 2% aM] =[x (), 2 (ta), ... 2 (tm)], (2.18)

where the columns {X. ]}J]\i , can be thought of as the spatial coordinate
vectors of the system at time step ¢;. The rows {X; .}, describe the time
trajectories of the system evaluated at different locations in the spatial
domain (I&@sgh_ami_w)m, |L9_EL(1) The snapshots may be taken from
physical experiments or from computer (CFD) simulations.

For a given number of basis vectors r, the POD basis is found by mini-
mizing the error A between the original snapshots and their representation
in the reduced space, defined by

M
A=Yl ()~ (@) [ (t) — & (1) (2.19)
=1

where 7 (t;) = ©, 01z (t;).

The minimizing solution ®, can be found via the set of left singular
vectors of the snapshot matrix X, which is conveniently computed using
the singular value decomposition of X,

X =oxul, (2.20)

where the columns of ® = [¢1, ..., ¢ps] form the optimal orthogonal basis
for the space spanned by X. ® and ¥ are unitary matrices (i.e. ®~! =
®T w~1 = ¥T) and ¥ is a diagonal matrix with the singular values o; of X
on the diagonal. The r most significant basis functions are associated with
the r largest singular values o;, ¢ = 1,...r, of X. If the singular values
o; fall of rapidly in magnitude, a reduced-order model may be constructed
by projection using ®, consisting of the r first columns of ®. These basis
functions are the ones that capture the most salient characteristics of the
snapshot data X.
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The reduced-order model will capture only the dynamics present in the
snapshot data, and so the choice of snapshots is critical. Suitable inputs
should therefore be used to excite the system, so that the desired charac-
teristics are present in the data. Frequently, snapshots are taken from the
impulse- or step responses of the CFD model. Moreover, some methods exist
for adaptively deciding how many snapshots to include, and where to take

them, see for example Meyer and Matthies (2003) or [Hinze and Volkwein

Proper orthogonal decomposition is summarized in Algorithm [II

Algorithm 1. Proper Orthogonal Decomposition

1. Simulate the state equations and record snapshots X of the system
state.

2. Perform singular value decomposition of the snapshot data, as in ([2.20]).

3. Extract the v most significant basis vectors ®, based on the singular
values o; of the snapshot matriz X.

4. Project the governing equations onto the reduced basis as in (ZI12) or
(ZTI4)-I7) to find the reduced model.

2.3.5 Goal-Oriented Model-Constrained Reduction

Goal-oriented model-constrained reduction is a reduction algorithm pro-
posed in Bui-Thanh et al (Iﬂ)j)_ﬂ), that also uses the general projection
framework in Section Z33l In this procedure, a cost similar to (ZI3]) is
used as an objective function in an optimization formulation. The opti-
mization problem seeks to find the rth-order basis ®, = [¢1,...,¢,] € R"*"
and the corresponding reduced-order state solution z,(t) € R” so that the
Lo-norm of the error between the full-order and reduced-order output is
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minimized®. For the linear model (2.I]), this can be formulated as

1 d g [ l T [ l

gﬂi;/o (y - yr) (y - yT> dt (2:21a)
ﬂ : T 2 : T 2
+5 [ (=0fe) "+ Do (4le))
i=1 i.j=1,i#j

subject to:
OIEld, il = T AlLd 2l + oI Bl 1=1,...,S (2.21b)
Pzl (0) =2'(0), 1=1,...,S (2.21c)
yh=Cloal, 1=1,....8. (2.21d)

The summation over [ allows one to consider a finite set of S instantiations
of the governing equations (ZI) that could arise from variations in the
coefficient matrices E, A, B and C, the input u, or the initial state xg.
The superscript [ thus denotes the [th instance of the system, which has
corresponding state ! (¢), input ' (t), and output y'(¢). For example,
where ([ZJ)) represents a spatially discretized PDE, these variations stem
from changes in the domain shape, boundary conditions, coefficients, initial
conditions or sources of the underlying PDEs.

The two key differences between the formulation (22I]) and the POD
are that the model-constrained optimization approach

1. enforces the reduced-order governing equations as constraints, and

2. minimizes the output error, while the POD minimizes the error of
state prediction over the entire domain.

The former issue ensures that the error (y — y)7 (y — y,) in (ZZIa) is eval-
uated for g, that are achieved by simulating the reduced-order model, and

3If y and y, are taken to be the impulse response of G (s) and G, (s), respectively,
then ||y — yr ||, is equal to the difference [|G (s) — Gr (5)]|,,, in H2-norm between the two
system transfer functions.
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not just from projection, as for Z in (ZI9). By emphasizing the impor-
tance of an accurate approximation of input-to-output behavior instead of
attempting to minimize the error over the entire state domain, it is hoped
that reduced models are obtained that are e.g. more suitable for use in an
output-feedback implementation.

The full-order output ¢! (¢) is obtained from simulating the high-fidelity
model over a selected set of inputs and the interval ¢ € [0, T'). The second
term in the cost function (Z2Tal) is a regularization term to yield orthonor-
mal basis vectors, with [ as a regularization parameter.

This approach retains applicability to nonlinear systems, but addresses
some of the limitations of the POD by targeting the projection basis to
output functionals of interest, and by bringing additional knowledge of
the reduced-order governing equations into the construction of the basis.
Formulation of the problem of determining the basis as an optimal con-
trol problem has also been considered for distributed parameter systems by
Borggaard (2006).

Determining the basis via the optimization procedure will in general be
more computationally demanding than using POD. However, this additional
offline cost is a tradeoff that can be made, if necessary to achieve low order
models of acceptable quality.

2.4 Control Preliminaries

In this section, some preliminaries about the control theory used subse-
quently will be described.

2.4.1 The Linear-Quadratic Regulator

The linear-quadratic regulator (LQR) is a model-based optimal control
scheme. For a discrete-time linear system given by xp = Axp + Buyg, the
feedback control law is found by minimizing the cost functional defined by

o)
J = Z (az}wik + u{Ruk) (2.22)
=0
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where @@ and R are design weighting matrices that penalize deviation from
zero of the states, and use of control energy, respectively. The feedback
control law that minimizes this cost is given by

u = —Kjz, (2.23)
where K, is found as (Kwakernaak and Sivan, 1972)
K, = (R+B"PB)"'BTPA, (2.24)

and P is found by solving the discrete-time algebraic Riccati equation

P=Q+AT (P-PB(R+B"PB)" BTP) A, (2.25)

2.4.2 Model Predictive Control

Model predictive control (MPC) policies are optimization based control
policies that calculate the current control input by solving a constrained
optimization problem, with a cost similar to ([222]), parameterized by the
current system state. This strategy has been widely adopted in the in-
dustrial process control community and implemented successfully in many
applications. The greatest strength of MPC is the intuitive way in which
constraints can be incorporated in a multivariable control problem formula-
tion. Here we will give a brief introduction to a standard MPC formulation.
For further reading on MPC, there exists a number of books ,

lZD_Q]J), (IAllngLQLaﬂd_ZhﬁugL lZD_Oﬂ) and tutorials m, )

A Standard MPC Formulation

Model predictive control is formulated for a discrete-time state-space model

Tht1 = Azxy, + Buy, (2.26&)
yr = Cy, (2.26b)

where k € Z, and z;, € R", u € R™ and y, € RP denote the state, inputs
and outputs, respectively, at time step k. The constant matrices A, B and
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C are of appropriate dimensions, and (A, B) is a controllable pair. For
the regulator problem (regulating the system states to zero), the model
predictive controller solves at time step k£ the optimization problem

min e o (2.27a)
N-1

T Z (ngrilexknLi\k + ung'iRukJri) }
i=0

subject to:

Umin < Ukti < Umax, ¢ =0,...,N —1 (2.27b

Ymin < Ykti < Ymaxs 0 =1,..., N (2.27c
g1 = Kagp , Ny <i <N -1 (2.27d

(2.27e
Tppivik = ATppip + Buggi, 0 >0 (2.27f
Yktilk = CTppipp, k20, (2.27g

Tklk = Tk

)
)
)
)
)
)

where P and @ are design weighting matrices of appropriate dimensions
that penalize deviation from zero of the states xpy; at the end of the pre-
diction horizon N and over the entire horizon, respectively. In this work,
the final cost matrix P and gain K are calculated from the algebraic Ric-
cati equation, under the assumption that the constraints are not active for
k > N. The weight R penalizes use of control action u. The notation
(*) ks, 1s used to emphasize that the predictions (-),,; are made based on
the value at step k. N, defines the control horizon, which is the number
of future control moves to be optimized. In this work, we set N, = N,
for convenience. The sequence Uy = [uf u] ... uﬁu_l]T contains the
future control inputs that yield the best predicted output with respect to
the performance criterion on the prediction horizon. Once this set has been
found, the first control input ug is applied to the process, before the whole
optimization problem is re-solved at the next sample. The optimization
problem is then slightly different, having been updated by a new process
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measurement, a new starting point and an additional time slice at the end
of the time horizon.

It is well established that implementing a linear model predictive con-
troller requires solving a quadratic program (QP) in Uy at each time step
(Maciejowski, mﬂj) With some manipulations, the problem in ([2.27)) can

be written

1
min {QU,? HU, + x{FUk} (2.28a)
k
subject to: GU, < W + Exy, (2.28b)

where the matrices H, ', G, W and E are functions of the weighting matri-
ces P, @, R and the bounds tmin, Umax, Ymin and Ymax. 1f the weighting ma-
trices in ([2.27al) satisfy P = 0, R > 0 and @ = 0, then H > 0 and the prob-
lem is strictly convex. The Karush-Kuhn-Tucker conditions (KKT) are then
sufficient conditions for optimality (INO(’PdHl and Wriehd, |L9_EL(1, page 333),
and the solution Uy can be shown to be unique , 120_02)
The assumptions on @ and R are usually met by choosing @) and R to
be diagonal matrices that appropriately penalize the relative importance of
state or input values.

This traditional MPC strategy requires significant online computation,
limiting the use of this kind of controller to processes with small system state
dimension or relatively slow dynamics, since the optimization problem that
is solved at each sampling time can otherwise become large.

2.4.3 Soft Constraints

When MPC is applied, a process can operate near, or even at specified
process constraints. In many cases this leads to the most cost effective op-
eration for a given plant, since constraints are often directly associated with
cost. But system constraints sometimes cause problems with respect to the
feasibility of the optimization problem to be solved by the model predictive
controller. Unexpectedly large disturbances may occur, forcing the system
to a state from which there is no way of keeping it within the specified
limits without breaking some set of constraints. Feasibility problems may
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also occur due to modeling errors, especially for linearized systems, or when
initializing the system, potentially outside the intended region of operation.

Preferably, infeasibility of the MPC optimization problem should be
avoided at all costs. In [Kerrigan and Maciejowski (2001, 2000a) methods
are presented that allows one to determine a priori whether or not an MPC
controller has this desirable property, when the effects of the disturbances
have been neglected in the design of the controller. The authors apply
invariant set theory to establish which initial states guarantee feasibility
of the MPC controller for all time. Nevertheless, mechanisms should be
implemented that ensure that the control system has a way of dealing with
feasibility problems. Several possible solutions for handling such problems
have been proposed, ranging from simple, but sub-optimal approaches like
using the same control signal as in the previous time step, to more refined
approaches like that of Vada et all (Iﬂ)j)_l), where the constraints are relaxed
in an optimal manner subject to a user-defined prioritization. The approach
that will be considered in this thesis is constraint softening by means of slack
variables. One advantage with this approach is that the optimization to be
performed by the MPC controller at each step remains a quadratic program.

Constraints are normally divided into two different classes. Input con-
straints, such as actuator and valve limitations are typical examples of phys-
ical limitations that will lead to hard constraints. A hard constraint is ab-
solute, in that it can under no circumstances be violated. A valve can only
be opened to a certain limit, and this limit cannot be exceeded. Output
or state constraints, however, are not necessarily absolute. For example, it
may be desirable for a given process to operate within a specific temper-
ature range. But one might consider allowing for the system temperature
to exceed the desired range, if this is the only way of keeping the system
within some level of control. A constraint that may be violated if required,
is called a soft constraint.

By introducing slack wvariables to the problem formulation the desired
constraints can be softened effectively. The slack variables are zero if no con-
straints are violated. By penalizing the non-zero values of the slack variables
in the cost function, the constraint violations are kept to a minimum.

Penalty functions that lead to constraint violation and use of slack only if
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the original problem is otherwise left infeasible are called ezact penalty func-
tions. Consequently, the constraints will not be violated unnecessarily if the
penalty function is exact. In order to achieve an exact penalty function, the
1-norm or the co-norm must be used to penalize constraint violations, and

the penalty weight must be sufficiently large (Kerrigan and Maciejowski,
20001, [Hovland, 2004).

2.4.4 Explicit MPC via Quadratic Programming

It has recently been shown that a great deal of the computational effort in
traditional MPC can be done offline. In Bemporad et all (2002), the au-
thors proposed solving multiparametric quadratic programs (mpQPs) that
are used to obtain explicit solutions to the MPC problem, such that the
control input can be computed by evaluating a piecewise affine function
of the current system state. Thus, the explicit model predictive controller
(eMPC) accomplishes online MPC functionality without solving an opti-
mization problem at each time step.

In parametric programming, the solution to a mathematical program is
found explicitly for a range of parameter values. Mathematical programs
that contain more than a single parameter are commonly referred to as
multiparametric programs (Iﬁﬁ, m, page 1-2). The problem ([Z28)
can be viewed as an mpQP in Uy, where zj is a vector of parameters.

Following [Bemporad et all (2002), consider (Z28), and define

22U, + H 'Flgy,. (2.29)

Then, the problem in (Z28) can be transformed into

min {%ZTHZ} (2.30a)

z

subject to: Gz < W + Sxy, (2.30b)

which is an mpQP in z, parameterized by zp. The matrix S is found as
S = E+ GH'FT. By considering the KKT conditions of this quadratic
program in z, the solution z* is seen to remain optimal in a neighborhood
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of x where the active set remains optimal. The region in which this active
set remains optimal can be shown to be a polyhedron in the parameter
space (that is, the state space) (Bemporad et all, M) The mpQP in z
can be solved offline for the state space area of interest. Computing the
control input at a time step k then becomes a straightforward task: Given
the system state zj, the optimal control inputs U are obtained through an
affine mapping,

U = Kz, + ki, iZl,...,Np (2.31)

where N, is the number of polyhedral regions and the subscript 7 denotes the
ith affine function. K; and k; are constant within each polyhedral region
in the parameter space. The online effort is thus reduced from solving a
potentially large optimization problem at each time step to evaluating a
piecewise affine function of the current state, by determining the region ¢ in
which the current state x; resides.

This has several advantages: Firstly, the online computational time can
be reduced to the microsecond-millisecond range, and secondly, MPC func-
tionality is achieved with low complexity, easily verifiable real-time code.
Further, execution is deterministic, and there is no need for floating point
arithmetics (no recursive numerical computations). All these advantages
justify the employment of eMPC in embedded and safety-critical systems.
Hegrenzes et all (lZDﬂ_d) consider using eMPC for spacecraft attitude control.
In Johansen et al (Il)ﬂﬂ) the authors consider hardware implementation of
eMPC, where memory requirements, computational speeds and hardware
architecture design is studied using field programmable gate arrays (FPGA)
and an application specific integrated circuit (ASIC).

2.5 Low-Order Controllers for Large-Scale
Systems

In this section, we discuss some issues relevant to the task of developing
model-based or optimal controllers of low order to a high-fidelity model.
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2.5.1 Different Paths to a Low Order Controller

Simple controllers are normally preferred over complex controllers, since the
computational requirements are smaller, hardware design and implementa-
tion is less complex and error-prone, and they are more transparent to the
user. For this reason, low order controllers are preferred over high order
controllers. Also, the need for real-time control of many physical systems
necessitates controllers that are of low order. In general, model-based or
optimal controllers, such as LQG and H, controllers, designed for a given
plant have roughly the same dimension as the plant. The need for complex-
ity reduction is therefore evident whenever the plant model is large. There
are several fundamentally different approaches to designing controllers of
low order, as illustrated in Figure

High-order High-order
model controller
Model Direct\design Controller
reduction reduction
L ow-order L ow-order
plant controller

Figure 2.3: Different avenues for low order controller design.

The different procedures can be summarized as follows:

1. Perform direct design of low-order controller based on a high-order
model.

2. Design an initial controller for the plant/high-order model, and then
reduce the order of the controller.
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3. Perform plant model reduction and design a controller based on the
reduced-order plant model.

Procedure 1 usually depends heavily on some properties of the plant, and
requires great computations if the state dimension of the plant is large. The
approach is outside the scope of this work and interested readers are referred
to (Hsu et all, 1994, Bernstein and Haddad, 1989, Iwasaki and Skeltorl, 1993,
I_Gu_ei_aﬂ, 119_9_3, |G_u,_e$_alJ, 119_9_3) Procedure 2 is very common for systems
of medium size, for instance in the robust control community, where tools
such as Ho design is frequently used to design an initial controller, fol-
lowed by controller reduction. This procedure has been studied for CFD
models by, among others, [Atwell et all (2001), |Atwell and King (2005). The
main drawback of this approach is that it requires the design of an appro-
priate initial controller, which is not feasible in many applications where
the state dimension is large. This leaves us with the third approach, al-
beit this procedure is often criticized for introducing approximation (and
consequently errors) at an earlier stage in the design process, which may
propagate errors into the controller design. This can, however, be com-
pensated for by designing controllers robust to uncertainties and model-
ing errors. Also, with a plant model with small state dimension available,
we may use our large toolbox for control system design. Model reduc-
tion for control of large-scale systems has been considered in a number

of settings (Kunisch and Volkweinl, 1999, [Bmmimﬂ 2000, |Atwell et all,
[2011]] lAfammﬂLand_HmzA [2011]] [Ahu,]a_ei_aﬂ I_C&hen_ei_alj IZD_O_d
Kunisch and Volkweid, 2006, Willcox and Megretski, 2003, Evans, 2003).
One recently proposed approach that seems promising, is the Optimality
System POD method (Kunisch an lkwei ,Iﬂ)ﬂﬂ), which generates re-
duced models for control by iteratively computing a POD basis that targets
the closed-loop optimality system.

An alternative to the approaches sketched in Figure 23] is to obtain a
low-order model directly by closed-loop identification, where the identifica-
tion criterion takes the control performance objective into account, and to

use this model for controller design. According to|Codrons et all (|19_9_d), the

question whether to use model reduction or identification is of secondary im-
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portance, whereas the critical issue is to include closed-loop considerations
in the process. In our opinion, however, if a high-fidelity model is avail-
able, one should make use of this knowledge when constructing a low-order
model. We therefore prefer to use model reduction rather that closed-loop
identification, although both approaches are viable.

2.5.2 Output-Feedback Control with Reduced-Order
Model

When a controller is designed, we need to connect the controller to the plant
or high-fidelity model. When we are using controllers designed based on a
reduced-order model, we need to compute an estimate of the reduced-order
state variable x,, based on the output of the CFD model, using some sort
of state estimator. The structure of the closed loop is illustrated in Figure

24

| CFD Yy
Model
U Ty ROM
Controller le—— and - |
Observer

Figure 2.4: Block diagram of the reduced-order output-feedback setup. Z,
is an estimate of the reduced state based on an observer, using the reduced
model (ROM) and measurements from the CFD model.

Output feedback control combined with model uncertainty may lead to
system instability, although the original model is stable and the controller
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stabilizes the reduced model. The mere existence of controllers stabilizing
the reduced-order model and not the plant (ILinnﬁmaJld, h%ﬁ) necessitates
stability analysis of the closed-loop system.

2.5.3 Closed-Loop Stability of Linear CFD models

In this section we will present an example of closed-loop stability analysis
for a simple control structure.

Consider a linear high-fidelity model of the form (2.1), for which we have
derived a reduced-order model of the form (Z3]). Based on this model, we
can design a controller using any model-based controller synthesis tool, such
as LQG, LQR, or a robust controller using tools such as H, design. The
controller, which can also contain a state observer, is given by the general
controller state-space model

T = Ace + Beoue (2.32)
Ye = chw (2'33)
where z. € R" is the controller state, u. contains the inputs to the controller,
such as the plant output, and the output of the controller is the input to

the plant, i.e. y. = u.
The closed-loop system is given by

Ei = Az + Bu = Az + BC.x, (2.34)
T, = Acxe + Boue = Acxe + B.Cx, (2.35)
or
Ex = Az, (2.36)
where z = [27 mZ]T,
= E 0
e=[E Y o
and N
- BC,
is] o9

We then have the following result:



32 Background Material

Theorem 3. The closed loop system consisting of the full model [2.1I) and
the output-feedback controller ([Z32) is stable, provided that the generalized
ergenvalues of (A — )\E) are stable, i.e. A (A,E_) C C U{oo}, where

A=Li>ﬁﬂ
and _—
E::[o _u]'
Proof. The result follows directly from Theorem [II |

In the case where E = I,,, it suffices to check the eigenvalues of A.
The following example illustrates the design process for a particular
output-feedback design.

Example 3. Based on the ROM, we design the continuous-time LQR coun-
terpart of Section[2.7.1]),

u=—K,x,. (2.39)

We design an observer
Iy = Apity + Byu + Ly (y — Criiy) (2.40)
Ur = Cr 2y, (2.41)

such that (A, — L,C,) is Hurwitz, and we use feedback from the estimated
reduced state, i.e.
u=—K,Z. (2.42)

Our control structure takes the form of Figure [2.] Now, the closed-loop
system 1s stable provided that the generalized eigenvalues of (A — )\E) are
stable, where A and E are given by

- A —BK,

A:Lm(m—&m—uaw (2.43)
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and

fo [g ﬂ . (2.44)

2.6 Order Reduction and Stabilization of an
Unstable CFD Model

This section serves as a motivating example, in which we consider stabiliza-
tion of a computational fluid dynamics model of an unstable system. We
illustrate how to set ut a simple CFD model based on partial differential
equations and discretization via the finite volume method. It is further
shown how the CFD model can be put in a standard state-space form.
A stabilizing controller is found based on optimal control design for the
reduced-order model and then applied to the full model, where it is shown
to stabilize the system. This section is based on Hovland and Gravdahl

(20064 L)

2.6.1 Introduction

While the CFD models in Chapter [{] were nominally stable, we now extend
the focus to unstable models in this chapter. This contribution demonstrates
the possibility of designing stabilizing controllers to a class of systems that
would otherwise be very computationally demanding or maybe even infea-
sible, due to the large state-dimension of such CFD models.

2.6.2 Case Study: Heated Plate
CFD Model

To demonstrate how an unstable system can be stabilized using POD and
feedback control, we study heat conduction in a plate. The plateis 1m x1m,
defining the two-dimensional computational domain ©Q = [0, 1] x [0, 1] de-
picted in figure25l The plate is insulated along the boundaries, apart from
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the center of each boundary, where four flux actuators are located. This
defines Neumann boundary conditions on all boundaries.

(3] U2

us

T

Figure 2.5: Sketch of plate with actuators on boundaries (bold lines).

The temperature 7' (t,z,y) of the plate is governed by the unsteady
linear two-dimensional heat equation

or  o0°T . 9°T

pcpa = k@ + ka—y2

where p and ¢, are the density and specific heat capacity of the plate, re-

spectively, and k is the thermal conductivity, that is assumed to be uniform

over the computational domain and independent of temperature. Note that

2 now and in the following denotes a spatial coordinate and no longer the

state variable. The source term S £ S, + Sr is a term containing heat

sinks and sources. In the present problem, convective heat transfer to the

surroundings gives rise to a sink term

S, = hA(T — Tno) [W], (2.46)

+ 5, (2.45)
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where h is the convective heat transfer coefficient, A is the heat transfer area
of the surface and Ty, is the ambient temperature. Due to electric current,
the plate is subject to an internal temperature-dependent heat source

Sr=kT [W/m?], (2.47)

where k1 > 0, at all points except from the boundary. Intuitively, this pos-
itive feedback from the temperature to the source may lead to a physically
unstable system if the convective heat loss to the surroundings is not large
enough. An increase in temperature will then lead to a stronger source,
which again increases the temperature, and so on.

Discretizing the governing equation by the finite volume method, (2.45])
is integrated over each control volume (C'V') and over the time interval from
t to t + At, to obtain (Versteeg and Malalasekera, [1993)

t+ At oT
pc —dt> dV =
/CV </t Yot
t+At 92T
k——= | dVdt
/t /cv ( 3332)

t+AL 92T t+AL
—I—/ / <k—2> dVdt —I—/ S dVdt,
t cv 0y t cv

where the order of integration has been changed for the first term. Using the
numerically unconditionally stable backward Euler (fully implicit) temporal
discretization and n grid points over the spatial domain €2, the system (2.45])
can be written as a system of n equations of the form

aplp = awlw + agTE +asTs +anTn + (IOPTI(% + Su, (2'48)

where the a’s are coefficients and Tp is the temperature at the grid point
(point P) under consideration at time step k£ + 1. S, and Sp arise from
discretizing the source term S as

AV -S=8,+SpTp, (2.49)
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p Cp k h T | k1
1000 | 1000 | 1000 | 100 | 293 | 1000

Table 2.1: Numerical values of parameters.

where Sp is included in ap. Using the convenient compass notation, Ty,
Tg, Ts and T are the temperatures at the west, east, south and north
adjacent grid points, respectively, at time step & + 1.

TIQ is the temperature at grid point P at time step k. Collecting the
temperature at all grid points in a row vector T (k) € R™ leads to a discrete
linear system of the form

ET(k+1) = AT (k)+ Bu(k)+V,
. (2.50)

y(k) = CT(k),

where E € R"*" is a penta-diagonal matrix containing the coefficients a,,

aw, ag, as and ay and A € R™*" is a diagonal matrix with a(}g on the main

diagonal.

B € R™™ contains the contributions from the inputs, while the constant
source terms give rise to a constant term V € R™.

To validate that the plate model is unstable, we compute the generalized
eigenvalues A\ of (A — AF), using the numerical parameter values in Table
21 which confirms that the system has a pole outside the unit circle, at
A = 1.0001.

When the system matrices are of very high order, designing a model-
based stabilizing controller is a computationally demanding task. This mo-
tivates the search for a reduced-order model.

Reduced-Order Model

The PDE (2.43]) is discretized using 50 grid points in both the z- and y-
direction. This gives in total 2500 states in the CFD model. To construct

a model of reduced order, we use proper orthogonal decomposition, as out-
lined in Section 2234] Algorithm [Il The system (2.50) is simulated for
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M = 600 time steps, thus forming the matrix of snapshots X. During this
simulation the inputs are varied randomly taking moderate step changes
over a suitable range to excite as much of the system dynamics as possi-
ble. SVD of the snapshot matrix is performed, and the singular values are
considered in order to form the POD basis ®,., as depicted in figure

10

10

0 10 100 200 300
Singular value number
Figure 2.6: Singular values o of the snapshot matrix. The *’s indicate

singular values corresponding to the extracted basis functions. Note that
the ordinate axis is logarithmic.

As can be seen from the figure the singular values fall off quite rapidly,
and many of the singular values are close to zero, indicating that the basis
functions corresponding to those singular values can be omitted without
loss of information. There is no systematic approach to establish how many
basis functions that should be included in ®,. The heuristic criterion

T 2
pP= % (2.51)
i=1"1
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gives an indication on how much of the energy that is conserved in the
reduced-order model. If P ~ 1 most of the energy is captured in the
first r basis functions, indicating a fairly accurate reduced-order model
(Astrid et alJ, M) If we choose r = 4 basis functions, P = 99.99%.
Moreover, if the reduced-order model has four states the number of states
in the reduced-order model is equal to the number of inputs. Consequently,
the reduced-order model is fully actuated, which might be favorable when
tracking a reference profile for the complete state. The reduced-order model
is seen to be controllable and hence also stabilizable.

Using the projection framework outlined in Section we get the
reduced-order model

OTED, T, (k+1) = T A®, T, (k) + ®L Bu (k) + 1V. (2.52)
Defining E, £ ®I E®, allows us to write

T, (k+1) = E- 0T A®, T, (k) + E- 10T Bu (k)
+E'olv, (2.53)

where E, is invertible since £, ® and ®, are all nonsingular. This yields
the reduced-order model on discrete state-space form

T, (k+1) = AT, (k) + Byu (k) + V, (2.54a)
yr (k) = C. T, (k) (2.54b)

where T, € R", v € R™, y, € R, A, = E-10TAD, € R™" B, =
E-1oIB € R™™ V., = E7'®I'V € R” and C, € RP*". In this exam-
ple, r = m = 4. To ensure tracking for the plate temperature, we set C' to
be the n x n identity matrix. Consequently, C, € R™*".

The reduced-order model (254)) is unstable since

p(4,) = 1.0001. (2.55)

Remark 3. Note that the general POD procedure does not automatically
preserve stability properties during the reduction process. Nominally stable
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models may result in unstable reduced-order models, and vice versa. In order
to be able to replace the analysis of the full model by analysis of the reduced-
order model it is important that the stability properties are well reflected
in the reduced-order model. This is the subject of on-going research. One
criterion for preserving stability properties in POD is presented in
). The result is however not applicable to models of very high order.

The reduced-order state T, (k) is estimated online through a linear ob-
server of the form

T, (k+1) = (A, — LC) T, (k) + Byu (k) + V, + Ly (k) , (2.56)

where y (k) is the output from the high-order CFD model and L is chosen
such that p (A4, — LC,) < 1.

2.6.3 Controller Design

Feedback control is performed by use of heat flux actuators on parts of the
boundary of the domain, shown as the bold lines in figure 2.5 The control
objective is to reach a constant temperature reference T% while at the same
time rejecting disturbances. The reference temperature T is set to be a
uniform temperature of 300° K.

Since the full model is too large for controller design the reduced-order
model is analyzed instead. The reduced-order reference T¢ is found as T¢ =
®I'T?. Given the unstable reduced-order model ([Z354)), the control objective
is to stabilize the system around the reference temperature. Defining the
tracking error as

e(k) 2T T, (k), (2.57)

T

the control input is chosen as
u=Ke=K (Td ~T, (k:)) , (2.58)

where K is chosen such that p (A, — B,K) < 1. The controller gain K is
taken to be the solution to the linear quadratic regulator problem as defined

in Section 2411
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Using feedback from the estimated temperature Tr, we can construct
the closed-loop matrices A and E as in (243) and ([Z44). By computing
the generalized eigenvalues of the closed-loop system, we can then conclude
that the closed-loop system is stable, since the poles of the closed-loop
systems lie strictly inside the unit disc. The largest closed-loop eigenvalue
lies at z = 0.9973. The will, however, be a steady state error, due to the
disturbance V.

Taking into consideration the disturbance V', the controller should in-
clude integral action in order to minimize the steady-state tracking error.
To do this in a straightforward way, we define the augmented state

T (k) & L(Tk (_k)l)} e R™™, (2.59)

giving an augmented state-space model

T(k+1) = AT (k)+ BAu(k)+V,
j) = CT ), (260)
where
ie [g‘ﬂ ¢ 2 (oo,
(2.61)
~ A B ~ A |4
bl e )

and Au (k) = u (k) — u(k — 1). In this augmented state-space model, inte-
gral action is built-in, and the input increment Aw (k) is found as

Au(k) = K (T =T (k) .
where K is the feedback gain matrix found above.

2.6.4 Nwumerical Simulation

Initially, the plate temperature is at rest, and equal to the ambient temper-
ature at 293 K. At ¢t = 0 the inner source is switched on. Without control
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the temperature of the plate is strictly increasing. The plate temperature
is shown for four different time instants in figure 2.7

I -2400
I t=6000
[ 1t=9000
I t=12000

y [m] 0 o0 x [m]

Figure 2.7: Plate temperature without control, shown for t =
2400, 6000, 9000 and 12000s.

If the simulation is run for a longer period of time the temperature
continues to increase, illustrating the instability of the system.

Now, the full CFD-model is simulated with the controller designed for
the reduced-order model in section [Z.6.3] The weighting matrices @ and R
are set to @ = 50 - I, and R = 107* . I,,,. The system is stabilized, and
it is simulated until steady-state is reached, after approximately ¢ = 100
minutes. The largest steady-state error is close to 3K, as shown in figure
238

It is seen that although the original CFD model is symmetric, the con-
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Figure 2.8: Steady state temperature, shown here for ¢ = 6000 s.

troller based on the reduced-order model does not manage to exploit this
symmetry, since the symmetry is not preserved in the model-order reduction
scheme.

2.6.5 Concluding Remarks

In this chapter we have demonstrated, using a case study, that a CFD-model
of an unstable system can be stabilized through model-order reduction and
a controller designed for the reduced-order model. This makes it possible
to design stabilizing controllers for systems that would otherwise be very
computationally demanding.

It should be noted that expansion into orthonormal basis function is
only applicable for square-integrable signals. Unstable systems generally
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have responses which are not square-integrable, and consequently the theory
of POD does not apply. In this work, however, the instability is slow, and
so the responses do not blow up, and we are able to collect meaningful
snapshots and the subsequent POD expansion works well. However, one
should take care when using POD on unstable systems, as these responses
may blow up and make approximation by an orthonormal basis impossible.






Chapter 3

Complexity Reduction in
Explicit MPC

N this chapter we propose to use model reduction techniques to make
I explicit model predictive control possible for a larger number of applica-
tions and for longer control horizons. The material deviates slightly from
the rest of the thesis, since we mainly consider models with a relatively
low number of states and, at this point, the results are not applicable to
most CFD-models. However, we present a design procedure that can prove
essential for achieving this goal eventually, as the field of explicit MPC and
multiparametric programming is further developed. The chapter is based

on Hovland and Gravdahl (2008).

3.1 Introduction

The traditional MPC strategy presented in Section demands a signifi-
cant amount of online computation, limiting the use of this kind of controller
to processes with relatively slow dynamics, since an optimization problem
is solved at each sampling time. The explicit solution of the model predic-
tive control problem, presented in Section 2.4.4] leads to online constrained
optimal control without having to solve an optimization problem at each

45
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time step.

The main drawback of eMPC is the large increase in both offline and
online complexity as the state dimension of the system model grows larger
and the control horizon and the number of constraints are increased. For
this reason, the procedure is limited to models of relatively low order, typ-
ically with less than 10 states. This has motivated the use of complex-
ity reduction techniques, such as input parametrization, as discussed in

(2002).

The main contribution of this chapter is the combination of eMPC and
rigorous model reduction techniques with upper bounds on the approxima-
tion error, thereby reducing the complexity of eMPC. This makes the control
scheme attractive for a number of systems that would otherwise be excluded
due to the high complexity of the resulting controllers. The proposed use of
model reduction techniques is demonstrated for several applications, among
others for control of fuel cell breathing. In all applications, a significant re-
duction in controller complexity is achieved.

For clarity, we use the basic balanced truncation algorithm presented
in Section to compute reduced-order models in this chapter, albeit
techniques focusing on closed-loop approximation quality, such as LQG bal-
anced truncation or frequency-weighted balanced truncation, are assumed
to further improve performance in our results.

3.2 Reduced-Order MPC

Reduced-order models will be used to design output-feedback eMPC con-
trollers for the systems. The eMPC control input is computed based on
the reduced state vector z, (k) at every time step k, and z, must therefore
be estimated by an observer, based on measurements from the plant (or
the output of the original model). When we are dealing with output con-
straints, it is particularly important that the output of the reduced-order
model is a good estimate of the plant output, in order to satisfy the output
constraints for the plant. The observer(s) should therefore account for the
approximation error in the reduced model.
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A basic linear observer such as the Luenberger observer, does not ac-
count explicitly for uncertainties, that are amplified by the observer gain
matrices. Consequently, the state estimate may not be accurate enough in
the presence of model perturbation. We therefore follow common practice
in the literature (Astrid et all, 2002, Muske and Rawlings, 1993), and use a
Kalman filter, which is known to have desirable properties for systems with
noise in outputs and state equations. The Kalman filter is here defined in
terms of the discretized reduced model with added noise,

2, (k+1) = Ay (k) + Bru (k) + Tw (k) (3.1a)
yr (k) = Crzy (k) + v (K), (3.1b)

where v (k) and w (k) are assumed to be zero mean white noise processes
with covariance matrices Ry = RE > 0and Qi = QZ > 0, respectively, and
where I defines the mapping between w and the different states. In this
setup, the noise processes are expected to account for uncertainty in the
state equations through I'w (k), and the uncertainty in the output through
v (k). The closed-loop system with Kalman filter and explicit model pre-
dictive controller takes the general form of Figure 2.4]

A number of questions regarding robust stability, feasibility and robust
constraint fulfillment arises when the reduced model is used to control the
high-order model. Since the explicit MPC solution is equivalent to the stan-
dard MPC solution, many methods for robust stability analysis developed
for standard MPC (see e.g. Bemporad and Morari, 1999) can be used to
conclude stability for the reduced-order eMPC in the presence of the uncer-
tainty introduced through the model reduction process. Some recent results
on MPC stability in the presence of model uncertainty have been developed
(Heath et all, [2005H, [Heath and Wills, 2005, Heath et all, [20054). Also,
tests for robust MPC stability of input-constrained systems with unstruc-
tured uncertainty have recently been established by Lovaas et all (IZD_O_ZH)

In Chapter @ we develop criteria for guaranteeing stability of MPC based
on reduced-order models. In this chapter, however, we use the nominal
model (the reduced model) for controller design, and address certain robust-
ness issues during the design stage. While we do not explicitly analyze the




48 Complexity Reduction in Explicit MPC

robustness of the reduced model predictive controller in this chapter, good
performance is achieved by ad hoc tuning based on exhaustive simulations
for ranges of operating conditions. In many cases this approach leads to bet-
ter performance than using robust MPC techniques (Bemporad and Morari,
m) Choosing the right robust MPC technique is an art, and much ex-
perience is necessary to make it work.

Given the uncertainty introduced through the model reduction process,
one cannot guarantee that feasibility of the underlying optimization problem
is maintained and that the constraints on the states/outputs are fulfilled.
This problem can be handled through the use of soft constraints. Con-
straints on the states/outputs often represent desirable operational limits
rather than fundamental operational constraints. In addition, from a prac-
tical point of view it does not make sense to use tight state constraints
because of the presence of noise, disturbances and numerical errors. Relax-
ing the state constraints in effect removes the feasibility problem, at least

for stable systems (Bemporad and Morari, |L9_EL(1) Ezxact penalty functions

can be used to allow constraint violation only when absolutely necessary

Kerrigan and Maciejowski, [2000H).

3.3 Case Studies

The proposed control structure will be demonstrated using 6 different ran-
dom systems to illustrate the potential for complexity reduction, and two
specific examples to show performance when using reduced-order eMPC.

By implementing the piecewise affine function as a binary search tree,
the online computational time is logarithmic in the number of polyhedra
in the state space partition (IIQudﬁl_Qt_alJ, 120_0_3) The online memory and
processing requirements increase with the number of regions in the partition.
This number is therefore used in the following as a measure of complexity
of the explicit model predictive controller, and a reduction in the number
of regions is considered to be a reduction in controller complexity.
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3.3.1 Example 1

Without considering approximation quality and closed-loop performance,
6 different random systems of order n = 6, with two inputs and two out-
puts have been considered. For all six systems, the inputs and outputs are
constrained such that

lug| <1, i=1,2 (3.2)
lyil <1, i=1,2

and the control horizon is fixed at N,, = 4. The resulting controller complex-
ity is tabulated in Table Bl The table shows that eMPC for the original
system is very demanding, with O (105) polyhedral in the state space parti-
tion. But by truncating only one state, the controller complexity is reduced
to a manageable level, as the number of regions is reduced by two orders of

magnitude.
System/r | 3 4 5 6
1 603 1447 1487 117573
2 625 1549 1589 122675
3 519 1095 1145 109656
4 539 1125 1136 95896
5 537 1033 1755 116438
6 513 1461 2145 109711

Table 3.1: Example 1: Controller complexity (in terms of number of regions
in the state space) for 6 random systems with two inputs and two outputs,
with upper and lower bounds on inputs and outputs.

3.3.2 Example 2

For a random stable LTI system of order n = 15, the input is constrained
such that |u| < 5 and the output is constrained such that |y| < 1. Figure 31l
compares the complexity of the eMPC solution for different model orders
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r and different control horizons N, for this example. For all » and N, we
set @ = 10%-CT'C, and R = 1073. The figure illustrates that the controller

Figure 3.1: Example 2: Complexity in terms of number of regions in the
eMPC solution, for different model orders r and different control horizons
N,. For r = 13, 14 and 15, no solutions have been found with control
horizon N, =9, indicated by the dotted line and the question mark. The
system order should be reduced to r = 7 or even r = 6 to obtain a significant
reduction in complexity.

complexity increases by over an order of magnitude as we include more
states in the reduced model and increase the control horizon N,,. For r = 3,
the number of regions ranges from 155 for N, = 5 to 1287 for N,, = 10. For
the original 15th order model, we are unable to compute the state space
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r | Error bound
3 1.4 x 1071
4 7.4 x 1072
5 3.3 x 1072
6 6.7 x 1073
7 3.1x 1073
8 1.5x 1074
9 2.0x 1076
10| 35x1077
11 2.7x 1078
12 | 4.5x10710
13| 55x1071
14 | 43 x10717

Table 3.2: Bound on model reduction error for Example 2.

partition for N, > 8, due to the formidable computational requirement.
The state space partition comprises 27442 regions for N, = 8. For r = 12,
the number of regions in the state space partition is 55139 for N, = 9.

The model reduction error bound (2.9)) is shown in Table B2 and illus-
trates the trade-off that must be made between controller complexity and
quality of the reduced model, and consequently the quality of the resulting
controller.

From Figure Bl it can be seen that by reducing the number of states
down to 6, the controller complexity remains relatively low for the control
horizons considered. We therefore generate our explicit model predictive
controller using 6 states in the reduced model. For r = 6, the error bound
is |G (s) — Gy (s)]|, <6.7x 1073, Still, the eMPC controller based on the
6th order reduced model is sufficient for control, as illustrated in Figure B.2]
where it can be seen that both the input and the output are kept within
their bounds, when the plant is initialized with a representative non-zero
state vector. The horizon length is N, = 9 and the explicit MPC solution
based on the reduced-order model consists of 7625 polyhedral. The figure
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shows the performance with eMPC based on the full-order model, with a
control horizon N, = 8, for which the controller consists of 27442 regions.

Although the error bound merely establishes a bound on the error be-
tween the two transfer functions in open loop, it does not guarantee perfor-
mance, degree of sub-optimality and constraint satisfaction for the closed
loop system. It is nevertheless an indication that a great reduction in com-
plexity might be achieved without compromising the performance.

>
0.2 FOM — — -1
-0.4 . : : . -
1 2 3 4 5
t[s]
5
|
|
I
=0
FOM — — - rg
-5 L L L L )
0 1 2 3 4 5

t[s]

Figure 3.2: Top: Output y of Example 2 with eMPC based on full order
model (FOM) with N,, = 8 and reduced-order model with » = 6 and N,, = 9.
The output is constrained between £1. Bottom: Control input, constrained
between =45.
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3.3.3 Example 3

This example is a scaled, linearized model for control of fuel cell breathing,
as described in |PJ1kmsb.p_aJl_e_t_al.| (IZDL)AI) The model is a stable LTI system
with one input (compressor voltage), two performance variables z (system
net power and oxygen excess ratio) and 8 states. Focusing on the method-
ology presented above, we use a slightly simplified version of the model in
Pukrushpan et. all (IZOM) In our simplified model, we ignore disturbances
(stack current), and assume that the performance variables z are measured,
which amount to setting the output y = 2. We discretize the model with
sampling time 75 = 1ms, and derive reduced-order models with r = 3 to
r = 7 states. For these reduced models, we solve the eMPC offline problem
for eMPC horizons 1-5, with bounds on the input and outputs:

lul <5, [y1] <0.03, [y2| <0.2. (3.4)

We set the weight matrices to be @ = 1000 x CI'C, and R = 1. The
complexity of different eMPC controllers for this example is shown in Table
B3, while the model reduction error bound (2.9]) is shown in Table B4l It
can be seen from Table [33] that the complexity of the controller increases
rapidly for the original model (r = 8), while the increase is less pronounced
for r = 3 and r = 4. The tables also show that by truncating 4 states, the
controller complexity is reduced by an order of magnitude for N, = 5, at the
cost of introducing an approximation error ||G (s) — G, (s)||,, < 1.3 x 107,
If we reduce the number of states down to r = 3, the number of regions
in the state space partition is reduced by over two orders of magnitude
compared to the original model, for N, = 5. By truncating only one state,
the number of regions is reduced by 34% for N, = 5.

The simulation in Figure B.3lshows the difference in closed loop behavior
when using the full-order model with 8 states, and reduced-order models
with 3 and 7 states.

In this simulation, the eMPC horizon is N,, = N = 5, which gives 105
regions in the controller for r = 3, 9964 regions for r = 7 and 14999 regions
for the full-order model with 8 states. Moreover, it can be seen that both



54 Complexity Reduction in Explicit MPC

r/N, |1 2 3 4 5
3 |7 19 41 69 105
4 |7 51 237 740 1813
5 |7 55 333 1472 5020
6 |7 55 331 1575 6068
7 |7 57 393 2186 9964
8 |7 61 445 2695 14999

Table 3.3: Controller complexity for Example 3. r = 8 corresponds to no
model truncation (r = n).

Error bound
1.6 x 1073
1.3x 1074
4.9 x 107°
4.4 % 1076
2.6 x 1077

N O ULk W=

Table 3.4: Bound on model reduction error for Example 3.

outputs remain within their bounds. The sub-optimality of the reduced-
order controllers is clearly illustrated in the plot.

3.4 Concluding Remarks

It has been demonstrated that the performance of eMPC based on reduced-
order models is of comparable quality to that of eMPC for the original
systems. It is possible to use longer control horizons, while at the same time
keeping the controller complexity low, at the cost of some controller sub-
optimality. The degree of complexity reduction depends on the application,
but is shown to be significant in all our examples. For input-constrained
and soft-constrained systems, the approach is especially attractive, since the
requirements to satisfy the output constraints need not be met. However,
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Figure 3.3: Example 3: Closed-loop response to a disturbance at ¢ = 0.05s.
The figure compares the performance for the full-order model (FOM), and
reduced models with r =3 (r3) and r = 7 (r7), all with N, = 5.

further work focuses on developing guarantees for satisfaction of output
constraints.






Chapter 4

Stability of MPC Based on
Reduced-Order Models

N this chapter, we present a novel, systematic procedure for obtaining
I closed-loop stable output-feedback model predictive control based on
reduced-order models. The design uses linear state estimators, and applies
to open-loop stable systems with hard input- and soft state constraints.
Robustness against the model reduction error is obtained by choosing the
cost function parameters so as to satisfy a linear matrix inequality condition.
We also show by means of an example, that performance is maintained even
when the model reduction error is relatively large. This chapter is based on

Hovland et all (20084).

4.1 Introduction

The use of model reduction techniques along with MPC is desirable in many
applications, in order to reduce the online complexity in implementations
that would otherwise run too slowly. In Section [B] we demonstrated how
a significant reduction in complexity could be achieved by truncating only
a few number of states, in particular when the MPC horizons are large.
The online complexity reduction came at the cost of introducing an ap-

o7
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proximation error in the closed-loop system. With the introduction of the
approximation error, questions concerning closed-loop stability and feasi-
bility arise. These are very important issues to address, since controllers
designed based on reduced-order models might stabilize the reduced-order
model and not the plant (Imemaﬁ L%ﬁ

The results in this chapter are based on the previous work m
MB, on robust output-feedback MPC for systems with uncer-
tainties. Here, we specialize these results to the case of reduced-order mod-
els. We ensure stability by choosing the cost function parameters so as to
satisfy a set of linear matrix inequality (LMI) conditions, thereby guaran-
teeing a decreasing Lyapunov function at each time step. To the best of our
knowledge, this is the first result that deals systematically with the model
reduction error in model predictive control. The results make MPC more
attractive for a number of systems that would otherwise be excluded due to
the high complexity of the resulting controllers.

In order to guarantee feasibility of the MPC problem, we adopt the soft
constraints formulation of [Lavaas et all (120_03), in which an additional hori-
zon is introduced to reduce the number of the slack variables. Consequently,
the size of the optimization problem is also reduced compared to standard
approaches, such as [SLL)kam_aMBMgEJ (ILM) This extra feature fits
nicely into our design, since our goal is to to make our MPC procedure more
efficient by introducing reduced-order models.

The traditional MPC strategy requires significant online computation,
limiting the use of this kind of controller to processes with small system
state dimension or relatively slow dynamics, since the optimization problem
that is solved at each sampling time can otherwise become large. Remedies
such as “input blocking", short horizons etc. are commonly used to reduce
the complexity and online computational times. Fast implementation of
model predictive control in real-time systems has been considered, among
others, by [Bleris and Kothard (2005) and [Pannocchia. et all (2007). Also, it
was proposed in &mm_adﬂ_a_] (IJ)DQ to solve multiparametric quadratic
programs (mpQPs) that can be used to obtain explicit solutions to the
MPC problem, such that the control input can be efficiently computed by
evaluating a piecewise affine function of the system state. Still, as the
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state dimension and the control horizon and the number of constraints are
increased, a large increase in both offline and online complexity follows. The
current work addresses these issues by using reduced-order models.

The chapter outline is as follows: In Section we describe the sys-
tem formulations that we will consider. The nominal state-feedback design
presented in Section lays the foundation for the reduced-order MPC
described in Section 4] of which we prove stability in Section 5l In Sec-
tion we propose a procedure for synthesis of a robust MPC design, and
we demonstrate performance through a numerical example in Section 7]
Concluding remarks can be found in Section .8

Throughout we use the following notation: ||z||% denotes 27 Pz, [a, - , ]

T T]

denotes [a o M7 and I, denotes the n x n identity matrix.

4.2 System Description

We consider a stable, linear, discrete-time plant, described by the known
model

Tp+1 = Axy + Buy (4.1a)

where x € R", v € R™ and y € R? denote the state, input and output,
respectively, and the matrices A, B and C are of appropriate dimensions.
It has not been considered whether the following theory can be extended
to descriptor models of the form (ZI]). For descriptor models with non-
singular mass matrix F, one can of course apply the theory by inverting F
and multiplying throughout the state equation. The system is subject to
the following constraints

Vup <wv, Yk >0 (4.2a)
Hzxyp < h, Yk >0, (4.2b)

where V € R™*™ ¢ >0, and H € R"*",



60 Stability of MPC Based on Reduced-Order Models

The input constraints (£.2al) are hard constraints, that must be respected
at all time, whereas the state constraints (£2h]) are soft constraints, and
will be treated by penalizing constraint violation in the MPC cost function.
This is a natural assumption, since input constraints, such as actuator- and
valve limitations are physical limitations that cannot be exceeded. State-
and output constraints, on the other hand, often represent desirable, rather
than absolute limitations.

4.2.1 Reduced-Order Nominal Model

The plant model ([@J]) is assumed to be of such a dimension that the online
computational requirements conflict with the time available to compute the
control input. For the purpose of MPC design, we therefore generate a
reduced-order model (ROM), by reducing the order of (Il using an ap-
propriate model reduction technique, such as any of the methods presented
in the previous chapters.

The nominal model obtained by model reduction is denoted by

Tpy oy = Are, + Brug (4.3a)
yrk = Crxrky (4:3b)

where z, € R” such that r < n, y, € RP, A, € R™*" B, € R™™ and
C, € RP*". The nominal model must respect the constraints (£2). To
enable this, we make the following assumption:

Assumption 2. It is assumed that the constraints ([L2D) apply to the out-
puts of [@I), and consequently apply naturally to the outputs of [A3). This
can easily be achieved by choosing any states that should be constrained as
outputs of the plant.

Remark 4. Associated with the reduced-order model is an approximation
error that can be quantified in general terms as follows: When substituting
#3) for (I, the minimum achievable Hankel norm of the error system
is equal to the (r 4+ 1)-st Hankel singular value of the original system (@I

AAJ@W_QMIJ, m, |Ql_mm_z}, M, @, M) This error needs to be

accounted for in the controller design.
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4.3 Nominal Case with State Feedback

In this section we present the soft-constrained state-feedback MPC pol-
icy proposed in [Lovaas et all (2008) for the nominal system (@3], when
disregarding the approximation error. The state-feedback policy will subse-
quently be used in Section 4] to develop a robust output-feedback policy
for the system (£.I)) based on the reduced-order model (£3)).

The following optimization problem leads to an MPC scheme with guar-
anteed nominal stability:

[PN’NE] : J* (z‘r) = minJ(xr,Ua €, 6)

Ue,e
Ty =z,
Ty = Az, + Brug
Vu, <w, Vie{0,---,N, —1}
s.t.¢ wy; =0, Vi > N, (4.4)

eri §h+€i, ViE{O,"',NE—l}
Hz,, <h+HANe Vei{N,--- ,N—1}
\ Ty <t+TAN Nee,

Here,
UuQ
v=|
UN,—1
and
€0
I .
€N.—1

are the sequence of N, inputs and N, slack variables to be optimized over the
horizons N, and N, and e € R" is an additional vector of slack variables
that has been introduced to summarize constraint violation beyond the
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prediction time 7 = N — 1. N is the prediction horizon. Further,

T
Ty Ty
J(z,,U,e,e) = (EJ P (EJ (4.5)

is the cost function, for some appropriate matrix P whose selection will be
explained below, and the matrix 7" and the vector ¢ describe a “terminal
constraint set". T" and ¢ can e.g. be chosen so that the terminal constraint
set equals the maximal output admissible set associated with the state con-

straints ({20 (see e.g.|Gilbert and Tan, 1991)). We let U*, e* and e* denote

the optimal values of U, € and e, resulting from [PN ’NE]. We let the set

S£ {[xr U ¢ e]T| [z, U ¢ e]Tsatisfy [PN’NE]}, (4.6)
such that we can write the constraints in [PN’NS] as

Ty
U
9
€

eSsS. (4.7)

Remark 5. Note that by choosing the parameters in [PN’NE] m an ap-
propriate way (see |Lovaas et QZJ, LZQQS), the formulation is equivalent to
the standard soft-constrained MPC in|Scokaert and Bauzlmgﬂ JLQQQ) Some

special features of our particular formulation is however crucial in our quest
for robustly stable MPC based on reduced-order models.

To help describe various conditions on [PN ’NE] and on the cost function
matrix P, consider the following autonomous prediction system:

Ty A, [B, 0O - 0] 0 0 Ty,

Upsr | _ | 0 T(Numa) 0 0 Uy, (48)
En+1 0 0 r (Ne, nh) H En ’ ’
€n+1 0 0 0 A, en
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63
where
0
a=|: |
H
and where I' (N, ﬁ) is a matrix such that, using
U
U= ; ,
U1
we have
(751
TV U= |,
UN_—1
0
that is _ -
0 I O 0
0 In
D'(N,na)=|: : - - o eRN™Nm (4.9)
0 - 0 Iy
o0 - 0 0
Remark 6. Note that if No. = N and P satisfies
ATPAy — P+ Cldiag[Q, R, S] Cy =0, (4.10)

where Ag is defined in @), Q € R™", Q > 0, R € R™™ R > 0,

S € R™Xmh S > 0, and where the matriz Cy is such that
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then the cost function ([@3) satisfies

Ny—1

2 2 2
T (@r,Us2,e) = [l 7, + D (lenliy + luiliz)
1=0
N-1
+lellf+ Y leills (4.11)
=0
where
ATPpA, — Pr = —Q
and

ATTIA, —T1 = —~HTSH,
and where x,, is given by [PN’NE] (tL@JL(L&L@.LQlJ, [Z_O_Qrﬂ)

Remark 7. Note that the set S is invariant for the system (L8], namely

Aplz, U ¢ e]TeS, Vizg, U € e]TeS. (4.12)
The state-feedback MPC design proposed in|Lgvaas et all (IZODS) is based

on [PN’NE] as follows:

Algorithm 2. Nominal State-Feedback MPC
Offtine:

1. Choose any integers N, Ny and N, satisfying N > N, > 1, N > N, >
1.

2. Choose any matrices QQ > 0, R >0 and S > 0.
3. Choose P that satisfies ([EI0).

4. Choose any T and t such that the set Xp = {x,|Tz, <t} satisfies

AT.TT S XF,V.TT S XF, Xrp C {QST‘H.Z‘T < h} . (413)
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Online: At each time step k > 0, solve [PN’NE] , using T, = xr,, then apply

up=[I 0 -+ 0]U*(z,) to @3I).

Remark 8. Note that [PN’NS] 18 always feasible, since a particular feasible
solution is given by
Ty

v = KF:ETW

where

Kp

(4.14)

HAN
Al

The following theorem establishes closed-loop stability when applying
Algorithm [2 to the nominal system (£.3]), disregarding the plant (LI alto-
gether.

Theorem 4. The closed-loop system under Algorithm [Q is globally expo-
nentially stable. Moreover, the closed-loop trajectories satisfy

(0.9]

2 2 2
D e g + llukll + ekl < J* (2ro), (4.15)
k=0

where € denotes the first block component of €* (xy, ).

Proof. This is theorem 3 in |Lovaas et all (IZD_Oﬁ), where the proof can be
found. |

We have now established stability of the MPC design of Algorithm [2]
when applied to (L3]) only. In other words, we have shown that the closed-
loop system consisting of only the reduced-order model and the model pre-
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dictive controller is stable. In the next section, we take the model approxi-
mation errors into account.

4.4 Reduced-Order MPC with Output Feedback

In this section, we propose an output-feedback MPC procedure based on
the reduced-order model (@3], in which we take into account the error
introduced through the model reduction process. We also prove closed-loop
stability when applying this controller to the plant (.T]).

The MPC control input is computed based on the reduced-order state
vector xp at each time step, and xp should therefore be estimated by an
observer, using measurements gy, from the plant. We consider a linear esti-
mator of the form

i'rk_H = Arjfrk + Brup + L (yk - Cri'rk) 5 (4'16)

where #,, denotes the estimated reduced state at time step k, and we choose
L such that (A, — LC,) is Schur (i.e. the eigenvalues lie strictly inside the
unit disc). Other observer structures may also be feasible, although this has
not been studied further.

When uncertainties are taken into account, we will make use of the
following matrix function:

So.rs) (P) £ AfPAg — P+ Cj diag [Q, R, S] Co. (4.17)

The nominal cost function matrix, denoted by Fy, is retrieved by solving
¥10,r,s} (P) = 0, which we can write as

Y0,r,sy (o) = 0. (4.18)

Requiring ¥(g g sy (P) < 0 implies P > Py. We will use X¢g p gy (P) at a
later stage to search for a P that gives a cost function for the robust case
that is an upper bound on the nominal cost.

The proposed output-feedback policy for the system, considering the
uncertainties, can now be described as follows:
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Algorithm 3. Output-Feedback MPC with Reduced Model
Offtine:

1. Generate a reduced-order model ([A3]).
2. Design a state estimator ([LI10) based on the reduced-order model.

3. Choose any integers N, N,, and N, satisfying N > N, > 1, N > N, >
1.

4. Choose any matrices @ >0, R > 0 and S > 0.
5. Choose any matriz P satisfying (g r sy (P) < 0.

6. Choose any T and t such that the set Xp = {z,|Tz, <t} satisfies

EI3).

Online: At each time step k > 0, solve [PN’NE] using T, = I, , then apply

up=[I 0 -+ 0]U*(&,) to @I).
Remark 9. Note that we can always find P such that
YiQ.r,sy (P) 0.
This follows trivially from stability of (&S], and by recognizing that
AYPAy — P+ Cldiag|Q, R, S| Cy

18 nothing more than a particular discrete-time Lyapunov equation for sys-
tem ([ER). Hence, since

nglag [Q7 R7 S] C_'0 > 07
there always exists a P such that X(q g sy (P) = 0.

In the following section, we will prove stability of the proposed output-
feedback policy.
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4.5 Robust Stability Test

Now, we propose LMI conditions on the cost function matrix P that are
sufficient for closed-loop stability. To this end, we define the augmented

state
z2 [g,8], (4.19)

where x is the plant state and 2, is the estimated ROM state. The dynamics
of z in closed-loop are described by

Tyl = Afk + B,uk, Tg = [xo,im] (4.20)
&y, = CZpy, (4.21)
where
- A 0
A= [LO A, — LOT] : (4.22)
= | BD;
B = [BTDJ , (4.23)
c=[o 1], (4.24)
and
Di=[I 0 - 0]
is such that
up = Dipg,
where
U
pe = | € (4.25)
ey

contains the minimizers of [PN’Nf] at time step k. The matrix L is the gain
of the state estimator (E.I0]).

For the purpose of stability analysis, we need to establish a feasible
solution ukFH to [PN’NE] at time step k+1, based on the optimal solution
at the previous time step k. The following lemma, establishes the existence
such a solution.
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Lemma 1. Let A and B be defined as in (E22) and [EZ3). Then

F\ = Kp [LC —LC,] (4.26)
and
' (Ny,ny) 0 0
Fy = 0 I'(Ne,np) H |, (4.27)
0 0 A,
are such that
lhyy = FiZy + Fap (4.28)

15 a feasible solution to [PN’NE] at time step k + 1, where, Kr is as in

E19).

Proof. The closed-loop dynamics are given by (£20) and (28], which we

can write o
Tyt A B\ Ty
= i 4.29
[Mk-ﬁ-l] [Fl F2] [Hlj (4.29)
We need to verify that
eR" xS, V e R" x S, 4.30
|:F1 FJ [Mk] [Mk (4.30)

where S is as in (£6]). Expanding ([@29) allows us to write

Th41 Axy, + BD1puy,
Erpiy | = [Ar@p, + BDipp + [LC —LCy] 7 | . (4.31a)
HE+1 Kp [LC —LC,| Zj + Fopy,

Now, it is straightforward to find a matrix G such that the set S in (Z.0)
can be written as

S = {[xT /J,}T |Gu — GKpz, < g} , (4.32)
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where g £ [v v ... h ... h t]T > 0. Inserting [;f:rk“ ,Uk+1] into
#32) gives
Gugy1 — GKply,, <g (4.33a)
\

GFyu, — GKp (Arj:rk + BDl,uk) <g. (433}3)

Now, to see that inequality (£33L) holds, we note from (8] that
|:A7’$7’k + BDLLL]C:| — AO |:x'l‘k:| ) (434)

Fopug, ok

Consequently, the result follows from ([{£12). |

As the final step towards our stability result, we need to find a suitable
cost function matrix P. To this end we introduce the following definitions:

Q(Q, P) 2 [%0 8} +DtpPD,, (4.35)
with B
cC 0
pe-[0 0] 30
and Qy e R(vH7)x(n+7)
A [A B A B
s (QO’P) - |:F1 F2:| Q(QO’P) |:F1 F2:| - Q(Q()’P) : (437)

The stability test for Algorithm [B] can now be stated as follows.

Theorem 5. Assume that, for a given P, there exists a matriz Qy €
ROAMX(+) guch that,

Q(Qo, P) >0 (4.38a)
® (Q, P) < 0, (4.38b)

where 2 (Qo, P) is as defined in [@30) and @ (o, P) is as defined in ([EL37T).
Then the closed-loop system under Algorithm[3 is exponentially stable.
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Proof. Proving stability follows the well-known path (Mayne et all, [2000)
of first showing recursive feasibility, and then showing that there exists a
Lyapunov function for the closed-loop system that decreases at each time
step. Feasibility at each time step has been established in Lemma [Il Now,
consider the Lyapunov function candidate

i
which is positive definite in view of ([A38al), and where p denotes the mini-
mizers of [PN’NE], as in (L25)). At time step k, we have

2
V(z,p) 2 , (4.39)

Q(Q20,P)

_ 2
Vi 2V (Tg, ) = ‘ [aﬂ (4.40)
Hidla(o,p)
= _ 2
_ 2 Cxp
. 4.41
jml,+ 5| (44)
N 2
= ||zl + h:} (4.42)
P
= |l[z&lll5, + J7, (4.43)

where 2, takes the place of the nominal state. Similarly, at the next time
step k + 1, the Lyapunov function candidate is given by

Fkﬂ}
Hr+11 o0, P)

= [@r41)l1Gy + Tit1- (4.45)

2

Vi £V (Zpp1s o) = ‘ (4.44)

Now u£+1, as in (28], can be used to derive a bound for V;* ;. Since

_ 2

VEL 2V (2 H[ Tkl } 4.46

k+1 k415 " Fidy + Fopy o~ ( )
_ . 2

= H$k+1HQO [xrk+1?U£+l7€£+l7e£+l] HP (4.47)
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and ,
Vicer = [ [#r11s 2ri] lgg + Ties (4.48)
we have that
(OV)y1 =V (g1, 1) =V (Zhot1, i) (4.49)
= [ Zr 1116 + Jier — 1 Z11 18y (4.50)
. 2
- | [Erpsss Ukt €hg1s 6lcF+1] HP
. 2
= Jiy1 — ‘ [%Hv Ulfﬂ’ €£+1’ €kF+1] HP’ (4.51)
and it follows that
(6V)j1 <0, (4.52)

since ,ukF 41 s feasible and

it (Hii1) = T

Obviously, this implies
Vi <V (4.53)

Now, it remains to show that
Vi = Vi < ollze]?, (4.54)

for (some arbitrarily small) scalar o« > 0. For that purpose, we use the
property (£38D). At time step k, we have

_ T _
Lk Tk
P (Qp, P 4.55
e wen | (4.55)
Trx 51T = =
= Q(Qo, P - V. 4.56
[Mlj [Fl FJ (& )[Fl Fo] L * 40
Now, note that
A B [z A;T:k+Buk]
= ” 4.57
[F1 FJ [Hk] [kaJerk (4.57)
_ [x’}“] , (4.58)
M1
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where uf’ 41 is the feasible solution, as defined in equation ([.28]). By insert-

ing [@58) into ({50, we have that

_ 7T _
Tk Tk
® (0, P 4.59
" @) 7] (4.59)
_ T _
— [33’;“] Q(Q, P) [x’;“} - (4.60)
Hht1 Fr1
= {x’;ﬂ] — vy (4.61)
Hrr1lllao,p)
=VE, -V (4.62)

Since the inequality (£38D) is strict it then follows that (Z54) holds for
some « > 0. |

4.6 Robust Design

Note that, given P, it is a standard LMI feasibility problem to search for €2
that satisfies ([@38]), thereby checking robust stability of a particular design.
Such a P is, however, likely to give a conservative design. We next propose
a semi-definite program (SDP) that may be used to compute a matrix P
that satisfies the stability criterion ([A38]), thereby guaranteeing closed-loop
stability in the presence of model approximation errors, and is as close as
possible to the nominal cost function matrix Fp.
Such an SDP can be formulated e.g. as

. }gﬁjﬂotrace (P1) + gtrace () (4.63a)
P = diag{Py, P}
st “lenrsy(P) <0 (4.63D)

(I)(QQ,P) <0
Q(Q,P) >0

where ¢ > 0 is a scalar, and where we have also added the structural con-
straint P = diag{P1, P»}, such that the cost (L)) takes the form J (z,U, ¢, e) =
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[, U]H2Pl + ||, e]H%. Regarding the feasibility of the above SDP, we have
the following strong result:

Theorem 6. If the matrices, A and A, — LC,., are both stable, then the
problem ([AG3)) is feasible.

Proof. To construct a feasible solution and thereby prove Theorem [6, we
will adapt the arguments used to prove Theorem 4.5 in M) To
this end, let 2 be a “Lyapunov matrix” satisfying
ATQA-Q <.
Note that, using Q, any scalar € > 0 and some sufficiently large scalar
a1 > 0, the following inequality holds:
— — T A~ — — T A~

[A Bl " Q[A B]-[I o] Q[I 0

— diag{0,01 DI Dy 4 €11} < 0. (4.64)
Also, define matrices, H; and Ho, satisfying the following two Lyapunov
inequalities:

(N, ny) HiT(Ny,ny,) — Hy < —a1 D Dy,

[F(Ne,nh) HFHQ [F(Ne,nh) H

0 A, 0 Ar:| — Hy < 0.

Here, the various matrices are as in the definition of Fy in ([£27]), and the
scalar a; > 0 is as in ([@64). From the strict inequalities above and from
the structure of the matrix F5, we note that the following inequality holds
T .
[Fy F»]" diag{Hy,e2Hs} [F1  Fb]
— [0 1) diag{H1,e2Ho} [0 1]
+ diag{—egagf, OélD;FDl + 62[} <0, (4.65)

using some sufficiently large scalar as > 0 and any sufficiently small scalar
€2 > 0. By choosing e2 = €; > 0 small enough and adding (A.64]) to (£65)
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we obtain

@ (Q.P) <0, P2 diag{0, Hy, e Ho}. (4.66)
It can then be verified that the following is a feasible solution to (LG3):

P =diag{Py, P,} = Py +cP, Qy=cQ, (4.67)

where ¢ > 0 is some sufficiently large scalar. To see this, note from (EIg])
and the definitions of Hy, Ha, that Xyg g sy(Fo + cP) < 0, for any ¢ > 0.
Furthermore, using ({67, we have

D(Q, P) = c®(Q, P) + (0, By).
|

In the sequel, we denote by P* a feasible and (near) optimal solution to
E.53).
Remark 10. Since ¥ g s} (P*) <0, we have that P* > Py, where Py is
as in (LIF]).

By use of P = P* we obtain the following robust design.

Algorithm 4. Robust Output-Feedback Reduced-Order MPC
Offtine:

1. Choose any integers N, N, and N, satisfying N > N, > 1, N > N, >
1.

2. Generate a reduced-order model.

3. Choose any T and t such that the set Xp = {z,|Tx, <t} satisfies

E13).
4. Choose any observer gain such that A, — LC, is stable.

5. Choose any matrices Q@ > 0, R >0 and S > 0 and determine P = P*

by solving ([ALG3)).
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Online: At each time step k > 0, solve [PN’NE] using T, = I, , then apply
up=[I 0 - 0]U*(&,) to @I).

We next address the important question of conservatism of the above
robust reduced-order design. Specifically, we show that, under a reasonable
assumption, the proposed design is non-conservative in the sense that P* ~
Py provided that the neglected dynamics A(z) £ Cp(2I —A,) 1B, —C (21—
A)~1B are sufficiently small.

Consider the following assumption which relates the plant model to the
reduced order model:

Assumption 1. We have

AT A12:| |:BT:|
A = 5 B - 5 C - Cr C .
|:A21 A22 BQ [ 2]

Furthermore, the matriz Ass is stable.

Remark 11. Note that A, can be placed in the upper left corner of A by
using a balanced realization of the plant model. Furthermore, the require-
ment that Ass is stable, is always satisfied when the reduced order model is
obtained using, for example, balanced truncation.

Under the above assumption, we will show that Algorithm [ converges
to the associated nominal design obtained using P = F, as the neglected
dynamics goes to zero A(z) = C(zI — A)™'B — C.(2I — A,) ' B,. To this
end, note that, replacing the matrices Asy, By in Assumption [0l by dAsq,
0By using some scalar § (and thereby changing the plant model) amounts
to shrinking the neglected dynamics by a factor to obtain A(z) « 0A(z).
Thus we shall be concerned with establishing the following theorem, which
shows that: if the matrices Ay, By are “small”, then P =~ Fj.

Theorem 7. Suppose Assumptiond holds. For any given € > 0, there exists
a § > 0, such that, if we make the assignments Aoy «— dAs1, By «+— 6Bs,
then

Trace (P* — Py) <e.
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Proof. Let Pr be the solution to g0y (Pr) + 1 = 0. For any given € > 0,
consider

P =Py +aP ‘o (4.68)

= o' a=—r )
0 I, 0 (PI) )

where ¢ = min{1, ¢} > 0 and where 0 (diag{ Py, P»}) £ Trace (P )+qTrace (P,)
[see (E63])]. In view of (near) optimality of P*, it suffices to show that there
exists a 0 > 0 such that P in (68 is feasible provided we make the assign-
ments A9y «— 0Ag1, By <+ dBs. Moreover, since the inequality ® (Qg, P) < 0
in (@63D) is strict, it suffices, by continuity arguments, to show that P is
feasible when Ay = 0, Bs = 0 (i.e., using 6 = 0). To this end, let Ay < 0,
By +— 0 and consider the following matrix which is similar to

A B
By
(When A21 = 0, B2 = 0)

T £ [diag{T, I}] [1:_4; FB’J [diag{T, 1}]~"

A, —LC, Aip—LCy 0 0

B 0 Ag 0 0
N LC, LCy A, B.D;|’ (4.69)
KpLC, KpLCs 0 )
where
I, 0 —1I,,
T=210 Ippy 0 |, (4.70)

0 0 I,

x

and where have made use Assumption[Il Since the matrices, A, — LC,., Aso,
are stable and ¥y g sy (P) <0, it follows by the structure of the matrix T
that there exist some positive definite symmetric matrix X € R" such that

1T diag{ X, P}T — diag{X, P} < 0. (4.71)
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Since the above inequality is equivalent to ® (g, P) < 0 with Qg = TTXT,
the result follows. That is, choosing Qo = TTXT and diag{P;, P2} =
P = Py + aPy yields a feasible solution provided we make the assignments

Aoy «— §As1, By « 0B>, using some sufficiently small, but positive, scalar
0. [ |

Theorem [1 suggests that Algorithm [ converges to a certainty equiva-
lence implementation of the design of [Scokaert and Rawlings (1999) as the
model uncertainty tends to zero, provided that we make suitable choices for
T,t, N and N.

4.7 Numerical Examples

In this section we will consider two different systems. The first is a random
non-minimum phase 6th order plant with oscillatory dynamics that we will
use to illustrate the procedure. Since this system is non-minimum phase,
which leads to a challenging control task, the example suggests that our
procedure can be used on systems that contain complex dynamics. The
second example is a CFD model describing the motion in a building, which
will demonstrate the usefulness of the procedure in real-world problems.

4.7.1 Random 6th-Order System

We consider a 6th order plant given by

0.2809  0.2505 —0.1990 —-0.2232 0.0321 —0.5003
0.2505 —0.4756 0.3022  0.1714 —0.1126 —0.1190
—0.1990 0.3022  0.4621  0.0965 —0.0284 —0.0891

A= —0.2232 0.1714 0.0965 0.6050 —0.0633 0.1457 ’
0.0321 —0.1126 —-0.0284 —0.0633 0.4647 —0.1332
| —0.5003 —0.1190 —-0.0891 0.1457 —0.1332 —0.2399 |
B = [1.0159 0 0.5988 1.8641 0 —1.2155]T,
and

C=[1.2920 0 0 02361 0.8428 0].
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The system has a zero at z = 6.83, outside the unit circle, and is conse-
quently non-minimum phase. The output y; is subject to soft unit bound
constraints, and the input uy, is subject to hard unit bound constraints. We
choose N, =N =10, N.=2,Q =1, R=0.1 and S = 10001.

First, we reduce the system order from n =6 to r = 5 and r = 4 using
balanced reduction (although other model reduction methods could have
been used), and we impose the same constraints on the reduced-order mod-
els. Reduced-order models with » = 5 and r = 4 leads to model reduction
errors ||A(2)]|eo = 6.9885 x 107% and ||A(2)]|oo = 0.0221, respectively. The
plant is initialized at

= [~0.9044, —9.1380, —2.5036, 0.6696, —0.0821, —4.0350]

while the observer is initialized at #,, = C;fyy, where C" denotes the
Moore-Penrose pseudoinverse of C'., and yq is the initial plant ou ut. The
SDP is solved using MATLAB with YALMIP m @gﬂse-
DuMi ) and Matlab Invariant Set Toolbox ,

Figure IZ:[I compares the closed-loop responses of different robust MPC
designs computed using Algorithm @ The figure also shows the response
when using the associated nominal design (NMPC), which is algorithm [
but using P = Py as in ([£I8).

For this initial condition, the open-loop response overshoots the upper
output constraint significantly, and so the robust design is good at keeping
its soft constraints. Figure 1] suggests that the robust MPC is not overly
conservative when the model uncertainty is relatively small.

If we proceed by truncating to r = 3, the model reduction error in-
creases by an order of magnitude to [|A(2)|lcc = 0.1373. In this case, the
nominal MPC design fails severely, as illustrated in Figure In fact, the
output for the nominal design oscillates between its soft constraints. On
the other hand, the “robustified" design obtained by applying Algorithm [
still performs well.
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Figure 4.1: Top: NMPC using the plant as the nominal model. Center:
NMPC (dotted) and robust MPC (solid) using a ROM with » = 5. Bottom:
NMPC (dotted) and robust MPC (solid) using a ROM with r = 4.



4.7 Numerical Examples 81
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Figure 4.2: NMPC (dotted) and robust MPC (solid) using a ROM with
r=3.

4.7.2 Vibration Control of Hospital Building

To investigate the potential of using the design procedure for control of CFD
models, we consider a model of the Los Angeles University Hospital building
(IC_b.ah].a.mu_aJldian_me;ed 2002). The building has 8 floors, each with 3
degrees of freedom; vertical and horizontal displacements, and rotation. The
CFD model of the building is given as an LTI, which has 48 states, one input
and one output. The system is lightly damped, with long lasting oscillations
in response to an impulse input (representing the building’s response to, for
example, an earthquake).

The relatively large number of states in this CFD model, combined
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with the need for a fast controller in order to effectively counteract the
vibrations, would rule out an MPC design based on the model with 48
states. To generate reduced-order models for this problem, we use balanced
truncation, and first obtain a model with 8 states, for which the model
reduction error ||A(z)|/c = 0.0755.

Based on the reduced-order model, model predictive controllers are de-
signed. The controller objective is to reduce the magnitude and the du-
rations of the oscillations. In open loop, the building keeps oscillating for
up to 15 seconds, as shown in Figure £33 The controller parameters are
chosen as N, = N =10, N, =4, Q = 108C,”C, R = 0.001 and S = 10001.
From Figure [L.3]it can be seen that both the robust MPC and the nominal

0.01f
ATE / N o o
> 0 A AT 7 T
v
-0.01f
0 2 4 6 8 10
t
0.01f
1 / A P
> 0 T;LI \7\' \ vi
v
-0.01f
0 2 4 6 8 10

Figure 4.3: Performance with robust MPC (top) and NMPC (bottom) The
open loop response is shown as the red, dashed line.
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MPC are able to significantly reduce the oscillations present in the open
loop response. The robust MPC is slightly conservative in this simulation.

Now, we proceed by using 6, 5 and 4 states in the reduced-order models.
The impulse responses of the CFD model and the reduced-order models in
open loop are compared in Figure [44]

0.01t
-0.01 . !
0 5 10 15
t
0.01
-0.01 . t
0 5 10 15
t
0.01
>0
-0.01 t
0 5 10 15

Figure 4.4: Impulse response from reduced-order models.

Figure L5l shows the closed-loop performance of the different controllers,
where it can be seen that the nominal design fails for » = 5 and r = 4, while
the robust design is still stable.
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r=6

Figure 4.5: Closed-loop impulse response using NMPC (dotted) and robust
MPC (solid).
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4.8 Concluding Remarks

In this chapter we have developed a procedure for obtaining closed-loop
stability of output-feedback MPC based on reduced-order models. The
procedure uses the information available in the original plant model in the
offline phase of determining the cost function parameters. Since our main
objective is to design an efficient online controller, it is reasonable to put
extra work into the offline stage.

For large-scale systems, this procedure may be too computationally de-
manding, since we require solving LMIs involving the CFD system matrices.
It seems feasible to further develop the procedure described here by treating
parts of the dynamics as model uncertainty.






Chapter 5

Explicit MPC for Large-Scale
Systems

N this chapter we present a framework for achieving constrained opti-
I mal real-time control for large-scale systems with fast dynamics. The
methodology uses the explicit solution of the model predictive control prob-
lem combined with model reduction, in an output-feedback implementa-
tion. Reduced-order models are derived using the goal-oriented, model-
constrained optimization formulation from Section [Z3.5] that yields efficient
models tailored to the control application at hand. The approach is illus-
trated on a simple example for a 1D heat equation, and for a challenging
large-scale flow problem that aims to control the shock position in a super-
sonic diffuser. We compare the results with control based on reduced-order

models using POD. This chapter is based on [Hovland et all (2006, 20081).

5.1 Introduction

With the increasing interest in fluid flow control over the last decade, there
arises a need for control methodology that can achieve constrained opti-
mal real-time control of distributed systems with fast dynamics, such as
e.g. in mechatronics, MEMS, rotating machinery and acoustics. Model

87
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reduction combined with MPC has been applied in process control sys-
tems, such as in |Astrid and Weiland (Il)ﬂ_d), where the authors use POD
to generate a reduced-order model that is used to control an industrial
glass feeder. eMPC, however, has several advantages for implementation
in real-time systems: 1) The online computational time can be reduced
to the microsecond-millisecond range, and 2) constrained, optimal control
is achieved with low complexity, easily verifiable real-time code, justifying
the employment of eMPC in embedded and safety-critical systems. How-
ever, the use of eMPC is critically dependent on having a system model
of low order, typically with a maximum of ten states. For CFD applica-
tions, this motivates use of model order reduction methodology applicable
for large-scale systems, that can provide reduced models of very low order,
that at the same time are suitable for control. CFD models of systems such
as those mentioned above, typically have state dimensions exceeding 10%,
which is prohibitive for model-based controller design. In order to achieve
real-time control, the control structure must be capable of computing the
control input faster than the sampling rate of the system. Therefore, we
need approximate simulation models that are of sufficiently low order for
control design, and a framework for coupling the controller with the plant
based on the approximate models, while accounting for the error inherent
in the approximate model. Such designs were also considered in Chapter
and [, but here we extend the methodology to large-scale systems, for
which the model reduction methods from Chapter Bl and @ are too compu-
tationally demanding. We present a new framework for achieving real-time
constrained optimal control for large-scale systems with fast dynamics that
exploits recent advances in a goal-oriented model reduction methodology
and eMPC.

The contribution of this chapter is twofold: 1) We propose an approach
for achieving constrained optimal control in applications that are described
by models of high order, while being characterized by fast sampling rates,
by combining a goal-oriented model reduction method with the explicit
solution to the MPC problem. We attach the control structure to the plant
with a Kalman filter that accounts for the error introduced in the model
approximation process. 2) We demonstrate the performance of reduced
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models obtained by goal-oriented optimization in control system design.

Demonstrating the feasibility of achieving real-time constrained optimal
control for large-scale systems with fast dynamics is essential if reduced-
order modeling methods are to be adopted in applications, such as onboard
actual aerospace systems. Even with the considerable recent progress in
model reduction to enable flow control, achieving real-time control in a con-
strained setting has not previously been possible. It is only the application
of the recently developed model reduction methodology, which targets the
control problem to give models of very low dimension, that makes explicit
MPC a feasible approach in this setting. To our knowledge, this is the first
time that model reduction has been used in an explicit MPC setting to
address the issue of constraints.

5.2 Reduced-Order MPC

We use the control structure of Figure[2.4], and a Kalman filter as in (3] to
estimate the reduced-order states based on the output of the CFD model,
and we denote by Z, the resulting estimate of the reduced state z,.

The framework for guaranteeing robust stability of reduced-order MPC
described in Chapter @ relies on solving LMIs that are of the same dimension
as the number of states in the CFD model. For large-scale systems such as
those considered in this chapter, this is not feasible with the current setup,
due to the large computational requirements involved when solving LMIs.
We therefore use the nominal model (the reduced model) for controller
design, and address certain robustness issues during the design stage.

Given the uncertainty introduced through the model reduction process,
one cannot guarantee that feasibility of the underlying optimization problem
is maintained and that the constraints on the states/outputs are fulfilled.
This problem is handled through the use of soft constraints. Relaxing the
state constraints in effect removes the feasibility problem, at least for stable

systems (IB_em.pm_ad_and_Mmaﬂ, |_LQ9_Q).
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5.2.1 Implementation of Model-Constrained Reduction

We will use the model-constrained optimization approach described in Sec-
tion to derive reduced-order models.

In practice, the optimization problem (22I) may not be tractable for
large-scale problems. In a computationally efficient implementation of the

method (Bui-Thanh et alJ, mﬂ_ﬂ), the basis functions are assumed to be a

linear combination of a finite collection of full-state snapshots X':
P, = X=, (5.1)

where = € RM*7 M is the number of snapshots and 7 is the dimension of the
reduced state. Then, the elements of the matrix = become the optimization
variables, and the number of optimization variables becomes is reduced from
rxnto M xr. As a consequence, neither the gradient computation nor the
optimization step computation (which dominate the cost of an optimization
iteration) scale with the full system size n.

If the model reduction procedure is to be implemented on a computer
for a particular problem, a discrete formulation is required. Consequently,
the integrals in equation (2.2Ial) are replaced by summation, which leads to
the following formulation of the optimization problem:

1 S M T

. V4 V4 V4 V4

min o > (yk - yrk) (yk - yrk)
(=1 k=1

[
/8 - T 2 ! T 2
5 2o =sfe) + Y (o) (5.2a)
j=1 ij=1,i#j
subject to:
O ED,af, = A'®af, + @By, £=1,...,8, k=1,....M
(5.2b)

O.af =af, £=1,...,8, (5.2c)
yt =C'®xt  0=1,...,8, k=1,..., M, (5.2d)

where the system matrices £, A, B and C correspond to the discrete-time
state-space model.
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To solve the constrained optimization problem (5.2)), we choose to elim-
inate the state variables x, and state equations (5.2B)-(5.2d]) and solve an
equivalent unconstrained optimization problem in the Z-variables. The an-
alytic gradient can be found through basic calculus of variations and use of
adjoint variables, and an unconstrained optimization algorithm that uses a
trust-region-based Newton method dCﬂﬁmaﬂ_amd_lj, |L9_9_d) can be used to
determine the optimal basis. Since the optimization problem is nonlinear
and nonconvex, it is important to generate a good initial guess. One possi-
bility is to pick the POD basis as an initial guess. Alternatively, the initial
guess for the case of r basis vectors can be chosen to be the solution of the
optimization problem for r — 1 basis vectors plus an arbitrary rth vector.
This iterative procedure can be initialized at any value r > 1 with the POD
basis vectors as an initial guess on the first iteration.

5.2.2 Complexity

The complexity of the proposed control scheme is given by the offline model
reduction cost plus the cost of solving the eMPC problem offline for the
reduced model. The former is determined by the number of optimization
variables in the optimization problem (5.2]), which is Mr, as well as the cost
of solving the high-fidelity model (to generate the snapshots and to compute
the gradient information required by the optimizer). The cost of solving
the eMPC problem is problem dependent, but increases rapidly with the
number of parameters, the number of input steps to be optimized and the
number of constraints in the mpQP. For problems whose solutions consist of
a large number of regions, one can easily run into numerical problems. Also,
the memory required to store the eMPC solution online increases rapidly
as the size of the solution grows. A large number of polyhedra in the
online solution requires a large search tree with many nodes, which entails
a longer searching process which might compromise real-time requirements.
The scheme is therefore limited to cases where the reduced models can be
made reasonably small, typically with around ten states.

Further complexity reduction techniques, such as input blocking, can
be used to make the eMPC procedure more tractable in cases where the



92 Explicit MPC for Large-Scale Systems

problem is large.
In the next two sections, we will study in detail both model reduction
and closed-loop results for two specific model reduction benchmarks.

5.3 Case Study: Heat Diffusion

To investigate the implementation of the reduced-order control setup de-
scribed above, we consider a benchmark described in i

), describing heat diffusion in a one-dimensional rod. In this bench-
mark, discretization of the one-dimensional heat diffusion equation leads to
a single-input single-output LTT of the form (2] with £ = I. The model
has 200 states, which are the temperatures at different locations in the rod.
The input u is a heat source located at 1/3 of the rod length, and the output
y is the temperature recorded at 2/3 of the length.

5.3.1 Model Reduction

We will compare results using both POD and model reduction by model
constrained optimization. First, we discuss how to select the snapshots for
the model reduction procedure.

Snapshot selection

Deciding how, how many and how often to pick snapshots is non-trivial
in snapshot-based model reduction schemes. Collecting a large number of
snapshots for the method in Section leads to a large number of opti-
mization variables, which in turn increases the complexity of the optimiza-
tion problem.

Instead, we propose to use non-uniform time grids for the snapshots. M
snapshots can found in the interval ¢ € [0, T, with the kth snapshot time
tr as

T(sF1 —1)

tkzﬁuk:1727"'7M (53)
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where s > 0 is a constant stretching factor. 7' can be chosen by the user,
for example based on the step response settling time, or the time to reach
steady-state, for the high-fidelity model. While an increase in M is expected
to increase the quality of the reduced-order models, it also leads to an
increase in the size of the optimization problem that must be solved to
determine the basis ®,.. The choice of M must reflect this trade-off between
reduced model quality and reduction cost. The effect of s is to ensure that
the snapshots are collected more frequently when the response is changing
more rapidly, and it can be tuned for the application at hand. The snapshot
distribution is more dense in the beginning of the interval ¢ € [0, T if s is
chosen so that s > 1, and more dense at the end of the interval if s < 1.
By tuning s, the user may pick snapshots to better fit the nature of the
response for the application at hand.

If we choose M = 20 snapshots distributed uniformly in the interval ¢t €
(0, 60], the steady-state approximation is good, but the transient response
is inaccurate, as shown in Figure 511

To further illustrate the difference in approximation quality with differ-
ent snapshot selections, consider Figure[5.2] where the reduced-order models
are derived using the optimization framework.

The figure compares the step responses for two different reduced-order
models with the step response of the high-fidelity model. The reduced
model in the upper plot was found by solving the problem (5.2)) for M = 20
snapshots chosen uniformly over the interval ¢t € (0, 5] for a step input to
the large-scale model. The reduced-order model approximates the transient
response quite well, but there is evidently a steady-state error.

For the heat diffusion example in Case 1, collecting snapshots the way
described above gave better results than uniform time grids while at the
same time keeping the number of snapshots low, which is illustrated in the
lower plot of Figure The figure also visualizes the non-uniform time
grid used to generate the reduced-order model. The approximation quality
is obviously higher than for the model in the upper plot, using the same
number of snapshots.
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Figure 5.1: Step response of high-fidelity model and reduced-order model of
order r = 4, generated using 20 snapshots uniformly distributed between 0
and 60s. The transient error is emphasized by zooming in the bottom plot.
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Figure 5.2: Step response of high-fidelity model and reduced-order models of
order r = 4, generated by solving optimization problem (5.2]) by comparing
snapshots at time instants indicated by the black circles. Top: 20 snapshots
uniformly distributed between 0 and 5s. The steady-state error is evident.
Bottom: Non-uniform time grid. Here, T'= 60, M = 20 and s = 1.9.
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Model Reduction Results

Reduced-order models of order 1 to 10 are compared in Table 5] in terms
of the relative Hs norm of the corresponding error systems, defined as

o 1G(9) = G (8)lne
L I T

The reduced-order models are generated by comparing snapshots of the step
response of the high-fidelity model at 20 time instants. It is seen that the
goal-oriented model based reduction algorithm (labeled GOMBR in Table
B.1) leads to a significant increase in approximation quality from POD in
most cases for this metric, especially for low r.

(5.4)

r | H§ for GOMBR | H§ for POD
1 |0.6213 0.7959

2 10.0647 0.5023

3 10.0230 0.0692

4 10.0217 0.0627

5 | 0.02087 0.0841

6 | 0.02085 0.0742

7 10.0207 0.0468

8 | 0.0020 0.0020

9 |0.0012 0.0012

10 | 8.6236 x 10~* 38 x 10~*

Table 5.1: Assessment of reduced-order models of order 1 to 10. The
reduced-order models with the optimized basis give a significant reduction
in the relative 2-norm of the error system, especially for low orders.

5.3.2 Closed-Loop Results

To compare the performance of the reduced-order models in closed loop,
we first implement an output-feedback infinite horizon LQ-regulator based
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on the reduced-order models. We consider the objective of regulating the
output of the large-scale system to zero based on the reduced-order models.
The controller weights are chosen to reflect this objective, by setting @ =
CTQC, where Q € RP*P is the weight on the output. The input computed
by the LQ regulator is given by v = —KZ,, where K is a constant feedback
matrix, and Z, is the estimated reduced state. The results are shown in
Figure (.3l and 5.4] for simulation of an optimized and a POD reduced-order
model, respectively, with the same weights and r = 3. The figures clearly
illustrate that the reduced-order model obtained with an optimized basis
performs much better in closed loop than the one with a POD basis, and
emphasizes the observation from Table Bl that the optimized reduced-
order models give a better approximation, particularly for small r.

In real-world control problems there will always be some constraints on
the state, input and/or output variables. To handle this, eMPC is a better
choice than the unconstrained LQ regulator. To illustrate and visualize the
setup, we first consider the case where r = 2, that is we have only 2 states
in the reduced-order model. We set the prediction (and control) horizon
N = 2. To demonstrate the controller’s ability to enforce constraints, we
constrain the control input such that |u| < 1000. First, the explicit solution
to the MPC problem is solved in an offline phase for the relevant area of the
reduced-order state space. This solution is used to control the high-fidelity
model in an output-feedback setup. The system is initialized with a non-
zero output. The resulting response is shown in Figure [5.5] for an optimized
basis, where it is seen that the bound constraint on the control input is
active during the first half second. It can also be observed that the output
from the reduced-order model converges relatively slowly to the output of
the high-fidelity model, after about 0.5s. The partition of the state space
into regions with constant (K, k;) is shown in Figure (6] with the phase
plane trajectory of the reduced state &, for the simulation in Figure
indicated by the dotted line.

Based on simulations, the reduced-order models generated with the op-
timized basis perform better in closed loop than the POD models. For this
benchmark, they are able to handle higher controller gains, the output is
regulated faster to the origin and the control action is smoother. This is il-



98 Explicit MPC for Large-Scale Systems

Figure 5.3: Output-feedback LQ regulator for the high-fidelity model based
on a reduced-order model with optimized basis for » = 3. Top: Estimated
output from the reduced-order model ¢, vs output from the high-fidelity
model y. Bottom: Control input.
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Figure 5.4: Output-feedback LQ regulator for the high-fidelity model based
on a reduced-order model with POD basis for r = 3. Top: Estimated output
from the reduced-order model ¢, vs output from the high-fidelity model y.
Bottom: Control input.
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Figure 5.5: Closed-loop performance using eMPC, with » = 2 and an opti-
mized basis. Top: High-fidelity y and estimated g, from the reduced-order
model. Bottom: eMPC control input, constrained such that |u| < 1000.
The input constraint is seen to be active during the first half second.
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Figure 5.6: Example of state-space partition for a reduced-order model with
r = 2, with state trajectory starting in o and ending in *. The different
color shades indicate the 21 regions R; in the state space. The controller
feedback matrices (Kj;,k;) are constant within each region.
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lustrated by Figure[5.7l The difference in performance may be attributed to
the way in which the goal-oriented models are targeted to give an accurate
approximation of the output. For r = 5 it is also observed that the out-
put from the reduced-order models converge to the true output an order of
magnitude faster than for r» = 2, resulting in a better closed-loop response.
This is what one would expect; adding more states to the reduced-order
model leads to better approximations.
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Figure 5.7: Performance comparison for r = 5 with eMPC horizon N =
10. Top: Output of the full model using reduced-order control based on
optimized- and POD basis. Bottom: Control input for the two different
cases.
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5.4 Case Study: Supersonic Diffuser

This example is a challenging model reduction problem where the objective
is to control the position of a shock in a supersonic inlet. The problem is
based on an unsteady CFD formulation to simulate subsonic and supersonic
flows through a jet engine inlet that is designed to provide a compressor

with air at the required conditions (Willcox and Lassaux, 2005). Figure 5.8

shows mach contours in the diffuser at nominal operation.

Figure 5.8: Steady-state mach contours in diffuser. A shock sits downstream
of the throat.

The case considered has a steady-state Mach number of 2.2. The flow
is assumed inviscid and is modeled by the Euler equations. The underlying
CFD code is nonlinear, and the model is linearized about a steady-state
solution, giving a stable continuous-time model of the form (2.II), where the
continuous-time state x(t) contains the n = 11,730 unknown perturbation
flow quantities at each point in the computational grid, and the matrices A,
B, C and FE result from the CFD spatial discretization of the Euler equa-
tions'. The vector u € R? contains the inputs to the system and y € R
contains the system output. In this case, the flow state quantities are den-
sity, flow velocity components and enthalpy, and the output y is the average
Mach number at the throat. There are 3,078 grid points in the computa-
tional domain, giving a total of n = 11,730 unknowns. The descriptor
matrix F is sparse, and some rows contain only zeros; consequently, F is
singular and the inlet model represents a general differential algebraic equa-

! The system matrices are available in the Oberwolfach Model Reduction Benchmark
Collection; http://www.imtek.uni-freiburg.de/simulation/benchmark/|
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tion system. The input u contains bleed actuation b (manipulated variable)
and an incoming density disturbance d, i.e.

= [Z] . (5.5)

A discrete-time system is obtaining by applying a backward Euler time
integration method.

5.4.1 Model Reduction

Reduced-order models of order 1 to 10 are compared in Table in terms
of the metric (5.4]). The reduced-order models are generated by compar-
ing snapshots of the step response of the high-fidelity model at 20 time
instants. It is seen that the goal-oriented model based reduction algorithm
(labeled GOMBR in Table 5.2]) leads to a significant increase in approxima-
tion quality from POD in most cases for this metric, especially for low r.
The goal-oriented basis is optimized with the POD basis as the initial guess.
In all these cases, the reduced-order model obtained by POD is unstable,
while the optimized reduced-order models are not.

In order to better evaluate the reduced-order models, we compare time-
domain and frequency-domain responses for the CFD model of a supersonic
inlet with models of reduced order obtained from an optimized basis. We
consider a reduced model with 10 states, which was the lowest order that
gave satisfactory approximation quality. The optimized basis is found by
minimizing the output error for 200 samples in the interval ¢ € (0,2)s in
response to a step in each of the two inputs. That is, first we set b = 1 and
d = 0 and collect 200 samples in the time interval, and then we re-initialize
the model, set b = 0 and d = 1 and collect another 200 samples in the same
time interval. We use the POD basis vectors generated from the snapshot
data as an initial guess for the optimization algorithm.

The transfer function

g1 = % (5.6)

from bleed b to output y, is shown in Figure for the CFD model and the
reduced model obtained with an optimized basis. Figure B.I0 illustrates the
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r | H§ for GOMBR | H§ for POD
1 ]0.6213 0.7959

2 10.0647 0.5023

3 10.0230 0.0692

4 10.0217 0.0627

5 | 0.02087 0.0841

6 | 0.02085 0.0742

7 10.0207 0.0468

8 10.0020 0.0020

9 [0.0012 0.0012

10 | 8.6236 x 10~* 38 x 1074

Table 5.2: Assessment of reduced-order models of order 1 to 10. The
reduced-order models with the optimized basis give a significant reduction
in the relative 2-norm of the error system, especially for low orders.

same comparison for the transfer function

Go = %, (5.7)

from the disturbance input d to output y. The transfer function from the
disturbance to the output contain a delay, and are consequently more diffi-
cult for the reduced-order model to approximate. The reduced-order model
is accurate for lower frequencies, but does not capture the disturbance re-
sponse at higher frequencies. However, these higher frequencies are un-
likely to occur in typical atmospheric disturbances illcox and Megretski,
m;; thus, the reduced model performance shown in Figures[5.9and G I0is
deemed acceptable for the purposes of controller design. Figure 511 shows
the time-domain responses to a step in bleed actuation and a Gaussian den-
sity disturbance input. The frequency content of this disturbance input is
representative of that expected in practical flight conditions. It can be seen
that the reduced model obtained by optimization accurately predicts the
time-domain response, confirming its suitability for conditions of practical
interest. It is interesting to note that the reduced-order model obtained
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Figure 5.9: Bode diagram comparison of transfer function from bleed b to
Mach number y for the CFD model (11,730 states) and the reduced model
of order r = 10.

by POD performs reasonably well within the range in which the snapshots
were collected, i.e. during the first 2 seconds. After that, the output of the
POD ROM diverges, illustrating the instability of the model.
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Figure 5.10: Bode diagram comparison of transfer function from disturbance
d to Mach number y for the CFD model (11,730 states) and the reduced
model of order r = 10.
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Figure 5.11: Top: Response in Mach number y to step in bleed input b
for the CFD model (11,730 states) and the reduced model of order r = 10.
Bottom: Response in Mach number y to Gaussian disturbance input d for
the CFD model and a reduced model of order r = 10.
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5.4.2 Closed-Loop Results

Implementing MPC or eMPC directly on the high-fidelity model is infeasible
in large-scale settings, for instance when working with models obtained
from CFD analysis. We therefore use reduced-order control, where reduced-
order models are used to design output-feedback explicit model predictive
controllers for the high-fidelity model.

The eMPC framework that uses the reduced-order model was illustrated
in Figure 241

The control is implemented as shown in Figure In nominal flow
conditions, a strong shock sits downstream of the inlet throat. In order to
stabilize the shock position in the presence of incoming flow disturbances,
and thus prevent engine unstart, active flow control is effected through flow
bleeding upstream of the throat.

— |

Incoming flow I
1 Engine compressor
1 Shock —_—
Inlet disturbances Upstream bleed 1
- =
Figure 5.12:  Active flow control setup for the supersonic inlet

, 12003).

The high order of the inlet model is prohibitive for optimal and model-
based control, which motivates the use of model reduction. It should be
noted that this benchmark is relatively difficult to approximate. Various
model reduction methods have been applied to this problem with varying
degrees of success. As shown in [Wi i (IZD_O_d), POD and
Krylov-based methods yield reduced models that are unstable, unless great
care is taken during the model reduction process. One reason for this may
be that there are inverse responses from the inputs to the output, suggesting
non-minimum phase. Non-minimum phase systems are harder to approxi-
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mate than minimum phase systems (IAn.tml].aS_ei_alJ, lZDﬂj) Balanced trun-

cation is guaranteed to produce stable models, but is difficult to apply in this
case due to the singular descriptor matrix F. Good results were shown us-
ing the Fourier model reduction approach in Mammmsﬂ (Im)j),
however, that method is applicable only to linear models, in contrast to the
optimized-basis algorithm that we are using.

The eMPC framework can be extended naturally to handle disturbances
such as the density disturbance. In the controller, we obtain a reduced-order
prediction model of the form

‘%Tk+i+1 = ATkaJri + szbk-i-z + Bgdk+2|k + L (y - ngJri) (58&)
g’r'k+7; = Crirk+i§ Z Z 07 (58b)

where B? and B are the columns of B, corresponding to the inputs b and
d, respectively, and i = 1,..., N is the ith step on the prediction horizon.
We assume that the disturbance dj is measured, and we use the notation
dy i, to emphasize that the disturbance d4, given the measured value at
time step k, is predicted based on an assumption on the future behavior
of the disturbance. If we assume that the disturbance is constant over the
prediction horizon, one straightforward way to implement the prediction
model (B8) is to augment the state vector and the system matrices as
follows:

R Ty
i = . 59
A, B¢
a __ T r
il 510
and
Cr=1[C. 0]. (5.11)

To avoid numerical difficulties (the augmented system is marginally stable
if we set dp4q1 = dj), we replace the 1 in equation (B.I0) with a scalar §,
and typically choose § = 0.99.

Now, the control structure can be summarized as follows:
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e The Mach number is measured using the output equation

yr = Cxy,. (5.12)

e The reduced state is estimated using a Kalman filter based on the
reduced-order model and the output of the CFD model.

e The reduced state estimate is fed to the explicit model predictive
controller along with the measured disturbance, where the bleed input
br, is found as an explicit function of the augmented state (5.9)).

e Control is effected through upstream bleed.

For all results presented in the following, the inlet model is discretized
with a time step of A; = 0.025s. The controllers are verified to be suffi-
ciently fast for this example.

The disturbance input is set to be a Gaussian distribution, which is
described by its amplitude A, rise time o and peak time ¢, through the
relation

d=p(t) = —Apge (=tn)°, (5.13)

In the following, we address the controller robustness by tuning its per-
formance for a set of disturbances for which the linear model is a good
representation of the nonlinear CFD model. (Note that the linearized CFD
model is only valid for small perturbations from steady-state conditions.)
Subsequently, we add measurement noise to account for errors in the Mach
number measurements. The parameter values for the disturbance inputs
are shown in Table (3] and the different disturbance cases are shown in
Figure B.131

The computed control input by is in fact a perturbation about the nom-
inal steady state bleed b** of 1% of the inlet mass flow,

b = b + by, (5.14)
We therefore require that the total bleed bt is non-negative, i.e.

brgi > —0.01; i > 0. (5.15)
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Case | A e tp
1 001 2f; 5
2 002 2f2 5
3 0.04 2f2 5

Table 5.3: Disturbance parameter values for different simulation cases.
fo = 3.426 is related to the steady-state for which the nonlinear model
is linearized.

0.04 -
1\ - — Casel
[ RS Case 2
0.03 ! ‘\ - — —Case3
)
_ ! \
=002 o
PR
|- -\
0.01 AR
/j-./ \_ '-‘\
77 NA
0 P NN
3 4 5 6 7 8
ts]

Figure 5.13: Magnitude of disturbance inputs used in Cases 1-3.

We also put an upper bound on the control action,
biti < bmax; @ > 0, (5.16)
and we bound the Mach number at the throat
Ymin < Yrjp; < Ymax; ¢ = 0. (5.17)

Since our objective is to prevent the shock from moving upstream causing
engine unstart, we will set ymin > 1, €.g. Ymin = 1.1. The controller tun-
ing parameters are the weighting matrices, the prediction horizon, and the
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control horizon in the MPC formulation. Good performance is obtained by
setting M = N =10, Q = CI'C,, R = 0.05 and P to the solution to the
algebraic Riccati equation. The resulting closed-loop performance is shown
for the different disturbance cases in Figure .14l Tt is seen that the con-

136F C— I S —— ”—7 ...............
: : N T T : : :
g 135 ........ ....... ....... ........ ....... ....... ........ .......
134 ........ ....... ....... ....... ....... ....... ....... .......
1.33 L
0 2 4 6 8 10 12 14 16
t[s]
o N e o e
: : N : _7 : : :
S L35E e T T
134 ........ ....... ....... ....... ....... ....... ....... .......
1.33 L
0 2 4 6 8 10 12 14 16
t[s]
136F S S > o SR i s ’ ...... SRR
: : ; : s : : :
- 1.35F - SRR SR :.\ ....... SRR PR RN SRR :
: : N S : : :
134 ........ ....... ....... \// ....... ........ .......
: : SN : : : :
1.33 1 1 1 1 1 1 1 J
0 2 4 6 8 10 12 14 16
t[s]

Figure 5.14: Uncontrolled (dashed) and controlled (solid) Mach number for
Case 1 (top), Case 2 (middle) and Case 3 (bottom).
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troller gives good performance in all three cases. There are, however, some
minor oscillations in the closed-loop response, which are attributed to full
model/reduced model mismatch and inexact modeling of the disturbance
in the prediction model. Recall that we assume that the disturbance is
constant over the prediction horizon, while it in fact increases or decreases,
corresponding to the shape of the Gaussian distribution. Also, the hori-
zon M = N = 10 is somewhat short, especially since there is an inverse
response from inputs to output.

In order to guarantee feasibility of the MPC problem, we soften the
constraints on the outputs.

If we again consider disturbance Case 3, we see from Figure [5.14] that
the controlled Mach number falls below 1.36. Now, we set ymin = 1.36 as
a soft constraint, and penalize constraint violation with an exact penalty
function. The resulting Mach number is compared to the simulation from
Figure B.14] which has a hard constraint y,;, = 1.1 in Figure The
corresponding control inputs are shown in Figure .10l

To further address the question of robustness, we add noise to the mea-
sured Mach number y. For that purpose we add Gaussian white noise of
different intensities to the output of the CFD model during the simulation,
and study the effect in closed loop.

Figure .17 shows a simulation run without noise, compared to three
simulation runs with Gaussian white noise. It can be seen that in the pres-
ence of noise, particularly at the two lower levels, the controller performance
remains good.
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1.365¢

> 1.36

min

- — -y . =11
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1.355 : : g
0 5 10 15
tfs]
Figure 5.15: Mach number at inlet throat for two simulations with distur-
bance Case 3, with a soft constraint yzi;, > 1.36 and a hard constraint
Yk+i > 1.1. The horizontal line indicates the soft lower bound for the soft-
constrained case.
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Figure 5.16: Control input for two simulations with disturbance Case 3,
with a soft constraint ymi, = 1.36 and a hard constraint gy, = 1.1.
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Figure 5.17: Controlled Mach number with measurement noise. Top left: No
noise. Top right: Gaussian white noise of intensity 2.5 x 10~7. Bottom left:
Gaussian white noise of intensity 107%. Bottom right: Gaussian white noise
of intensity 10™%, corresponding to Mach number measurement accuracy
within +0.01M.
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5.5 Concluding Remarks

This chapter presented a new framework for constrained optimal control
of fast, large-scale systems, such as those arising in aerospace flow control
applications. This is an important step towards achieving and actually
implementing real-time, constrained optimal, control for such systems. The
methodology, which combines eMPC with model reduction, is demonstrated
for an example that considers control of a supersonic inlet. This example
presents a significant challenge to model reduction methods. First, POD
reduced models suffer from instability and thus cannot be used in a control
setting. Further, obtaining models of very low dimensional is critical in
order for the eMPC scheme to be viable for real-time control. Using a goal-
oriented reduction methodology, we were able to derive a reduced model
with ten states that yields acceptable approximation quality and is within
the capacity of the eMPC scheme.

The proposed methodology is also applicable for more complicated con-
trol tasks, such as nonlinear MPC and reference tracking, for which the
explicit solution of the MPC problem can still be found, although approxi-
mately, in some cases.






Chapter 6

Conclusions and Further Work

The results presented in this thesis are a step towards achieving advanced
model-based real-time control for systems described by CFD-models. A
framework is established for achieving constrained optimal control for large-
scale systems with fast dynamics, through the use of model reduction, state
estimation and low order controller design. Even with the considerable
recent progress in model reduction to enable flow control, achieving real-
time control in a constrained setting—which is crucial if these methods are
to be adopted in actual systems—has not previously been possible. It is only
the combination of recently developed model reduction methodology, along
with state estimation and explicit model predictive control, that makes the
approach feasible in this setting. To our knowledge, this is the first time
that model reduction has been used in an explicit MPC setting to address
the issue of constraints.

Moreover, it is demonstrated how model reduction techniques can sig-
nificantly reduce the complexity of explicit model predictive control. This is
essential, since it allows the control methodology to be applied for a larger
number of systems, and for a wider range of controller parameters.

We develop a novel robust model predictive control design procedure
which facilitates the design of model predictive control based on reduced-
order models. The procedure guarantees closed-loop stability when the

121
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reduced-order model predictive controller is attached to the high-fidelity
model, and relies on solving a semi-definite program. The design uses the
original plant model in an offline phase of determining cost function param-
eters, thereby making use of both the reduced-order model and the original
model in the design. Since the main objective is to design an efficient on-
line controller, it is reasonable to put some extra work in the offline phase.
For large-scale systems, however, this procedure is too computationally de-
manding. Future work should investigate the possibility of treating parts
of the dynamics as model uncertainty, or other ways to make the design
applicable to larger systems.

More general stability analysis of closed-loop systems consisting of con-
trollers based on reduced-order models of CFD-models should also be con-
sidered. In particular, stability of explicit MPC based on reduced-order
models would be an interesting result. Moreover, development of model-
based reduction methodology targeted at control applications for large-scale
systems is needed. Many of the model reduction methods that are used fre-
quently to design low order controllers, do not take into account the outputs
of the system, but considers all states in the state space.

Further, model reduction of nonlinear systems entailed by reduced-order
control is still very much an open research field. More rigorous methods are
needed that are applicable to large-scale systems, and do not require an
excessive amount of computations. Nonlinear control theory should then
be applied, to achieve robust nonlinear control with low-order controllers.
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