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SummaryComputational �uid dynami
s CFD gives engineers and resear
hers the op-portunity to model a

urately 
omplex physi
al pro
esses involving heattransfer and �uid �ow. At the same time, one wishes to be able to de-sign optimal model based 
ontrollers for su
h systems, for whi
h no simpleanalyti
al solutions or 
ompa
t models exist. Typi
ally these models havea number of unknowns that ex
eeds 10 000, and sometimes even millions.Model based 
ontroller design for systems of su
h high dimensionality isinfeasible due to the high 
omputational requirements. Through the useof modern model order redu
tion te
hniques, one 
an bypass the high di-mensionality of the 
omputational �uid dynami
s models during 
ontrollerdesign. This thesis 
ombines the s
ienti�
 dis
iplines of 
omputational �uiddynami
s, model order redu
tion and 
ontrol theory, as important stepstowards employing real-time, optimal and model based 
ontrol for systemsdes
ribed by high-dimensional models.The history of 
omputational �uid dynami
s is reviewed and the pro
e-dure is demonstrated through an example using the �nite volume method.It is demonstrated how CFD models 
an be put in standard state-spa
e formfor analysis of system properties, su
h as stability, and it a CFD model ofan unstable system is stabilized through redu
ed-order 
ontrol. Di�erentmodel redu
tion te
hniques are introdu
ed, fo
using on methods that areparti
ularly suited for 
ontrol design and large-s
ale systems. A new wayof sele
ting snapshots for snapshot-based model redu
tion is proposed.Some sele
ted topi
s from 
ontrol theory are in
luded for 
ompleteness,in parti
ular model predi
tive 
ontrol and also the expli
it solution of the



iimodel predi
tive 
ontrol problem based on multiparametri
 programming.This thesis proposes to use model redu
tion in order to make expli
it modelpredi
tive 
ontrol feasible for a larger number of systems, and it is shownthat a signi�
ant redu
tion in online 
ontroller 
omplexity 
an be a
hieved,without 
ompromising performan
e and stability. Further, we 
onsideroutput-feedba
k 
ontroller design based on redu
ed-order models. Whenusing redu
ed-order models to design model-based 
ontrollers for 
omplexsystems, there always arises a question of guaranteed 
losed-loop stabilityin presen
e of the un
ertainty introdu
ed. Some important properties ofthe resulting 
losed-loop systems, and 
ontroller and observer 
riteria, forstability are established. Moreover, this thesis presents a novel design pro-
edure for robust model predi
tive 
ontrol based on redu
ed-order models.The pro
edure gives provable 
losed-loop stability in the presen
e of themodel approximation error introdu
ed in the model redu
tion pro
ess. Toour knowledge, this is the �rst time stability is proven for model predi
tive
ontrol designed based on redu
ed-order models.Many physi
al systems in for instan
e me
hatroni
s, mi
ro-ele
tri
 me-
hani
al systems, rotating ma
hinery, aerodynami
s and a
ousti
s are bestdes
ribed by CFD models with a large number of states. At the same time,they are 
hara
terized by very fast dynami
s, su
h that the 
ontrollers ap-plied are required to be equally fast. We develop fast model based 
ontrollerswith 
onstrained 
ontrol input, in 
ombination with state estimators in anoutput-feedba
k stru
ture. For the �rst time, redu
ed-order models devel-oped using a model 
onstrained optimization-based redu
tion te
hnique areused for 
onstrained optimal 
ontrol, demonstrating signi�
antly improvedperforman
e over 
ontrol design based on the standard methods, su
h asproper orthogonal de
omposition, that is most frequently used for large-s
ale systems. This is an important step towards a
hieving and a
tuallyimplementing real-time, model based and 
onstrained optimal 
ontrol forsu
h systems.
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Chapter 1Introdu
tion�640k should be enough for anybody."-Bill Gates, 1981Contrary to what was envisioned in the opening quote, the world hasseen a formidable in
rease in 
omputing power over the last de
ades.Be
ause of this, engineers and resear
hers take on greater and greater 
om-puting tasks.Computational �uid dynami
s (CFD) has emerged as a powerful toolin many areas of industry and a
ademia. CFD is a joint designation fornumeri
al methods for solving and analyzing problems 
on
erning �uid-,heat- and mass �ow by 
omputer simulation. These methods in
lude gridgeneration, spatial and temporal dis
retization, solution of the resultingequations, et
.The underlying phenomena in most CFD appli
ations are des
ribed bypartial di�erential equations, whi
h implies that the system state is in�nite-dimensional. A lot of e�ort has been put into designing 
ontrol laws forthese distributed parameter systems.Most of these solutions are restri
tedto problems with relatively simple geometries and �ows, for example for in-
ompressible 
hannel �ows, pipe �ows and 
ylinder �ows. Moreover, manyphysi
al problems are multi-dis
iplinary, with several PDEs des
ribing dif-ferent e�e
ts within the problem domain. While this is very di�
ult to1



2 Introdu
tionhandle with the theory of distributed parameter systems, it is relativelystraightforward to set up su
h a problem in any 
ommer
ial CFD softwarepa
kage. This is indeed the �raison d'être" for CFD.Although CFD is a very useful tool for analyzing �ow phenomena, the
omputational 
ost of solving CFD problems is high. It is not unusual thata CFD 
ode needs hours, and even days and weeks to solve a di�
ult prob-lem, for instan
e if three spatial dimensions are 
onsidered for a 
omplexgeometry and �ow pattern. If optimization is to be performed based on aCFD model, for example to optimize a design, hundreds or even thousandsof solutions are needed before an optimal design is found.Moreover, sin
e CFD analysis often gives a

urate solutions that 
anhelp us understand the behavior of a given system, it is desirable to design
ontrol laws based on CFD models. We then fa
e the following problems:CFD models
• are expensive to use for unsteady simulations,
• do not 
ouple well with other dis
iplines su
h as a
tive 
ontrol and
• are too large for model based-, optimal- and robust 
ontrol design.Consequently, as engineers and resear
hers take on greater 
hallenges withthe in
reasing use of CFD, they are inevitably fa
ed with the �
urse ofdimensionality".Generally, 
ontrollers are of the same order as the plant. Consequently,it is prohibitively expensive to 
ompute 
ommon 
ontroller stru
tures forlarge-s
ale systems. When the plant is high-order, the 
ontrollers also re-quire extensive state information, are extremely di�
ult to tune and areexpensive to implement and maintain.To over
ome these problems, the theory of model order redu
tion hasemerged over the last de
ades. The motivation is 
lear from the viewpointof a 
ontrol engineer: With a low-order model at hand that approximatesthe ne
essary behavior of the CFD model well, we regain the opportunityto apply our large 
ontrol system design toolbox.



1.1 S
ope of Thesis 3Example 1. Optimal Control of ReservoirsOil and gas wells and reservoirs are usually des
ribed by 
omplex CFD mod-els with 103-106 dynami
 variables, and are 
ontrolled by engineers based on
omplex simulation studies and the engineer's experien
e. There is a greatpotential for improving the operation by introdu
ing optimal 
ontrol strate-gies for the reservoirs (e.g. for water inje
tion strategies). With proper useof model order redu
tion te
hniques, one 
an envision that approximate, loworder models 
an be used to design model-based optimal 
ontrollers of loworder.1.1 S
ope of ThesisFor systems with relatively simple �ow regimes and geometries, one 
anaim at designing 
ontrollers and stabilizing the underlying system of par-tial di�erential equations through the use of 
ontrollers designed based onmathemati
al analysis of the PDEs. For the broader spe
ter of systems,this is not feasible as �ow regimes and geometries turn 
omplex. It is, how-ever, the great strength of CFD that one is able to des
ribe su
h problemson a 
omputer, and obtain very a

urate simulation results that 
annot bea
hieved by simplifying models and systems of partial di�erential equations.Through the use of model order redu
tion te
hniques, it is then possible todevelop models of low dimension that 
apture the essential dynami
s. Thisway, one 
an a
hieve improved performan
e and 
losed-loop stability forproblems that would otherwise be impossible to even model with 
onven-tional analyti
al tools.In this work, we 
onsider models that result from spatial (and temporal)dis
retization of partial di�erential equations by using CFD te
hniques andsoftware. We 
onsider the problem of designing low order model-basedoptimal 
ontrol for the high-�delity CFD models. We fo
us on 
onstrained
ontrol, sin
e meeting 
onstraints are important for systems in whi
h safeoperation is 
riti
al. In parti
ular, we 
onsider model predi
tive 
ontrol, andthe expli
it solution to the model predi
tive 
ontrol problem, and we striveto make these te
hnologies appli
able to systems des
ribed by CFD-models.



4 Introdu
tionThis requires model redu
tion, state estimation, handling of un
ertaintiesand ensuring robust stability.



Chapter 2Ba
kground Material
This 
hapter introdu
es the tools and te
hniques that will be used insubsequent 
hapters to develop redu
ed-order models and low order
ontrollers. Se
tion 2.1 gives a brief introdu
tion to CFD, Se
tion 2.2 de-s
ribes the system representations that we will 
onsider, Se
tion 2.3 givesan overview of the model redu
tion methodology that will be used, andSe
tion 2.4 presents some 
ontrol preliminaries. In Se
tion 2.5 we dis
usssome issues that emerge when we apply 
ontrollers based on redu
ed-ordermodels on the high-�delity model, and in Se
tion 2.6 we give a motivatingexample.2.1 Computational Fluid Dynami
sThis se
tion presents the fundamentals of CFD, provides some motivatingexamples and reviews the basi
s of the methodology.De�nition 1. Computational Fluid Dynami
sComputational Fluid Dynami
s or CFD is the analysis of systems involving�uid �ow, heat transfer and asso
iated phenomena by means of 
omputer-based simulation (Versteeg and Malalasekera, 1995).With the need for a better understanding of �ow phenomena, the aerospa
e5



6 Ba
kground Materialindustry be
ame the driving for
e for the development of CFD te
hniquesin the 1960s. The realization that CFD is 
heaper and faster than ex-periments, qui
kly made CFD an important tool in the design, R&D andmanufa
turing pro
esses of air
raft and jet engines.Over the years, the development of CFD 
odes has been intimately
oupled to advan
es in 
omputer hardware 
apabilities, sin
e the solutionof 
ompli
ated �ow problems require the manipulation of thousands or evenmillions of numbers. Along with the exponential growth of pro
essing speedand memory 
apa
ity1, CFD has be
ome a powerful and prominent toolthat is subje
t to massive resear
h, and is used within numerous areas ofappli
ation, su
h as
• reservoir evaluation and simulation,
• design optimization,
• �ow around vehi
les, lift and drag 
omputation,
• marine engineering,
• 
ombustion modeling,
• fuel 
ell design and analysis,
• �ow inside rotating passages et
.,
• 
hemi
al pro
ess engineering,
• ele
tri
al end ele
troni
 engineering,
• wind loading and ventilation in buildings,
• weather predi
tion,
• �ow in rivers and o
eans,1Almost every measure of the 
apabilities of digital ele
troni
 devi
es is linked toMoore's Law; the number of transistors that 
an be inexpensively pla
ed on an integrated
ir
uit is in
reasing exponentially, doubling approximately every two years.



2.1 Computational Fluid Dynami
s 7
• �ow in arteries and veins and
• earthquake modeling.Still, many CFD appli
ations require huge 
omputing resour
es, and thesize of problems that 
an be solved on an ordinary 
omputer is quite lim-ited. The following example illustrates the potential and 
omputationalrequirements of state of the art CFD 
odes.Example 2. Earth Quake SimulationIn Ak
elik et al. (2003), the authors 
arry out 1 Hz simulations of the 1994Northridge earthquake in Los Angeles with 100 million grid points. Theirsimulations are among the largest unstru
tured mesh 
omputations reportedto date, requiring multiple hours on thousands of pro
essors.Example 2 provides a stark 
ontrast to the prophe
y of the IBM 
hair-man in the early days of 
omputers:�I think there is a world market for maybe �ve 
omputers."-Thomas Watson, 
hairman of IBM, 19432.1.1 A Brief Introdu
tion to CFDFrom a s
ienti�
 viewpoint, 
omputational �uid dynami
s 
an be dividedinto three phases;1. pre-pro
essing,2. solving equations, and3. post-pro
essing.The main parts of these three elements will be summarized in the nextthree subse
tions. Most of the material in this subse
tion is based onVersteeg and Malalasekera (1995), but the literature on CFD is vast, and anumber of ex
ellent books exist (Ferziger and Peri
, 2002, Anderson, 1995,Wesseling, 2001).



8 Ba
kground MaterialPre-Pro
essingIn the pre-pro
essing phase, the problem is transformed into a format suit-able for the solver. In this step, the user must de�ne the 
omputationaldomain, the governing equations, �uid properties and whi
h phenomenathat need to be modeled. An important part of spe
ifying CFD problems,as well as when solving partial di�erential equations in general, is spe
i�
a-tion of appropriate boundary 
onditions (BC) and initial 
onditions (IC).Then 
omes gridding ; the sub-division of the 
omputational domaininto a number of small sub-domains. The result of the gridding pro
ess isa grid (or mesh), 
onsisting of a (large) number of elements. The solutionto the governing equations is de�ned at nodes inside ea
h grid element.Consequently, the a

ura
y of the solution depends on the number of gridelements. Usually, the grid is �ner in areas where large variations o

ur inthe �ow, and 
oarser in regions where little happen. Figure 2.1 shows agrid example for �ow around a 
ylinder. Several di�erent mesh types exist,su
h as uniform and non-uniform, regular and unstru
tured. A handbookof grid generation 
an be found in Thompson et al. (1998).
Figure 2.1: Example of a non-uniform, unstru
tured grid with 5557 ele-ments, used for 
omputing the �ow around a 
ylinder lo
ated at the left.The grid is �ner 
lose to the 
ylinder, sin
e this is where we have largegradients. The grid is generated with the 
ommer
ial software Comsol Mul-tiphysi
s.Solving EquationsA 
ommon CFD solver performs the following steps:
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• Approximation of unknown �ow variables by simple fun
tions.
• Dis
retization by substituting the approximations for the governingequations.
• Solution of the resulting algebrai
 equations.There are three di�erent dire
tions when it 
omes to approximation anddis
retization; �nite di�eren
e, �nite element and spe
tral methods. �Wewill not go into the di�eren
es between these methods. The �nite volumemethod is demonstrated in Se
tion �refse
:plate.Solvers in
lude familiar algorithms from linear algebra, su
h as Gauss-Seidel iteration, Krylov subspa
e methods and the 
onjugate gradient method.For large problems, the Multigrid method (Briggs and M
Cormi
k, 2000)has be
ome very popular in re
ent years.Post-Pro
essingThe post-pro
essing stage naturally deals with presenting to the user theresults provided by the solver in the previous step. The post-pro
essorusually provides a variety of plotting tools, parti
le tra
king and animations.Figure 2.2 shows a two-dimensional surfa
e plot for the velo
ity �eld aroundthe 
ylinder.

Figure 2.2: Flow around a 
ylinder. The solution is generated with the
ommer
ial software Comsol Multiphysi
s, using the grid in Figure 2.1.



10 Ba
kground Material2.2 System Des
riptionIn this se
tion we dis
uss some properties of the types of systems that wewill 
onsider in later 
hapters.2.2.1 CFD ModelsModels that arise through spatial (and temporal) dis
retization of PDEsover the 
omputational domain, are subsequently referred to as CFD mod-els. The CFD models are assumed to be a

urate representations of theunderlying PDEs, whi
h 
an be a
hieved by sele
ting a proper grid andnumeri
al algorithm.When dis
retizing linear partial di�erential equations, or when lineariz-ing a nonlinear CFD system, we frequently end up with linear systems ingeneralized state-spa
e form
Eẋ = Ax + Bu (2.1a)

y = Cx, (2.1b)frequently referred to as des
riptor systems. Here, x ∈ R
n represents thedes
riptor variables, u ∈ R

m 
ontains the inputs and y ∈ R
p 
ontains theoutputs of the system, and E,A ∈ R

n×n, B ∈ R
n×m and C ∈ R

p×n. InCFD appli
ations, x 
ontains the n unknown �ow quantities in the 
ompu-tational grid. Many 
ommer
ial CFD software pa
kages allow the user toexport the CFD des
riptions on the format (2.1). For nonlinear CFD 
odes,the linearization matri
es E,A,B,C are evaluated at steady-state �ow 
on-ditions. The state spa
e matri
es are typi
ally sparse matri
es of very largedimension, e.g. n > 104. Although these matri
es 
ould be manipulated toobtain a smaller state-spa
e system, su
h a pro
edure is often 
ompli
atedand 
an destroy the sparsity of the system. The sparsity is useful in nu-meri
al methods used in e.g. model redu
tion. The more general form (2.1)is therefore preferred. However, the state dimension of the system is stillprohibitively large for many appli
ations, su
h as �ow 
ontrol design.In CFD appli
ations, it is 
ommon that the matrix E 
ontains somezero rows, whi
h arise from �ow boundary 
onditions. Consequently, the



2.2 System Des
ription 11matrix E 
an be singular. In this 
ase, (2.1) 
onsists of a 
ombination ofordinary di�erential equations and algebrai
 equations. Su
h systems arereferred to as di�erential algebrai
 equations (DAEs). With a slight abuseof notation, we shall subsequently refer to x as the system state, also in the
ase of singular E.Assumption 1. It is assumed in the following that the matrix pen
il (A− λE)is regular, i.e. (A− λE) is singular only for a �nite number of λ.Assumption 1 is not restri
tive, and guarantees the existen
e and unique-ness of the solution of (2.1) for any spe
i�ed initial 
ondition.In the following we shall use the notation G (E,A,B,C) to refer tosystems of the form (2.1). If E = In, we use the notation G (A,B,C). Wewill also denote by G (s) and Gr (s) the transfer fun
tions of the high-�delityand redu
ed-order models, respe
tively.2.2.2 Stability Properties of Des
riptor SystemsThe following theorem establishes stability of des
riptor models.Theorem 1. A des
riptor model Eẋ = Ax is stable if all �nite eigenvalues
λ of (A− λE) are in the open left-half 
omplex plane.The generalized eigenvalues λ 
an be obtained by solving the equation

det(A− λE) = 0. (2.2)In the dis
rete-time 
ase, the system is stable if the generalized eigenvalueslie stri
tly inside the unit 
ir
le.Remark 1. Note that if A is negative de�nite while E is positive de�nite,the system Eẋ = Ax is stable. This is, however, a 
onservative 
riterion,sin
e a system may well be stable although this does not hold.
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kground Material2.3 Model-Order Redu
tionThis se
tion de�nes the problem of model-order redu
tion, gives a shortliterature overview and presents some fundamentals and algorithms thatare used in subsequent 
hapters.2.3.1 Introdu
tion and Problem StatementModel-order redu
tion has emerged over the last 
ouple of de
ades as animportant tool to analyze and design 
ontrollers for 
omplex systems.The literature on model redu
tion is vast, parti
ularly for linear systems.A survey 
an be found in Antoulas et al. (2001), and the books Antoulas(2005a) and Benner et al. (2005) des
ribe many of these algorithms in detail.The monograph by Obinata and Anderson (2001) treats the appli
ation ofmodel redu
tion te
hniques for 
ontrol of linear systems, although large-s
ale systems are not 
overed spe
i�
ally. For nonlinear systems, on theother hand, model redu
tion is still very mu
h an open problem.The model redu
tion problem 
an be stated as follows. For a systemmodeled by the nonlinear di�erential equation
ẋ = f (x, u) (2.3a)
y = g (x, u) , (2.3b)where x ∈ R

n is the system state, u ∈ R
m 
ontains the m inputs to thesystem and y ∈ R

p 
ontains the p outputs; �nd a new dynami
al system
ẋr = f̂ (xr, u) (2.4a)
yr = ĝ (xr, u) , (2.4b)where xr ∈ R

r, u ∈ R
m, and yr ∈ R

p su
h that r ≪ n and the following
riteria should be satis�ed:1. The approximation error is �small", preferably with a global errorbound.2. System properties, su
h as stability and passivity, are preserved.
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tion 133. The pro
edure is automati
, numeri
ally stable and e�
ient.If the system is modeled by a linear time invariant model of the generalform (2.1), we seek an rth order approximation
ẋr = Arxr + Bru (2.5a)
yr = Crxr, (2.5b)where xr ∈ R

r, yr ∈ R
p, Ar ∈ R

r×r, Br ∈ R
r×m, Cr ∈ R

p×r, and subje
t tothe same 
riteria as above.Comment 1. An alternative to model-order redu
tion as des
ribed above, isto develop a low-dimensional model by identifying the major 
hara
teristi
sand most important physi
al phenomena of an initially 
omplex model of thesystem at hand. Su
h 
hara
teristi
s 
ould be time s
ales and spatial varia-tions, for example. Based on this, one 
an then tailor the low-dimensionalmodel so as to in
orporate these 
hara
teristi
s. This pro
edure is not au-tomati
, and it requires great knowledge about the system in question. Onthe other hand, one 
an ensure that spe
i�
 physi
al properties and relationsare handled properly in the simpli�
ation pro
ess. Su

essful use of su
h anapproa
h is demonstrated in Storkaas, Skogestad, and Godhavn (2003).Preservation of system properties su
h as stability and passivity givesadvantages when it 
omes to 
ontroller design. For example, given a pas-sive system des
ribed by a passive high-order model2, a passivity preservingmodel redu
tion pro
edure 
an be used to �nd a passive model of low order.Then, a (stri
tly) passive model based 
ontroller of low order 
an be de-signed. The 
losed loop 
onsisting of the plant and the low order 
ontrolleris then provably stable, using arguments from the theory of inter
onne
tionsof passive systems. Preservation of passivity is parti
ularly important in ap-pli
ations su
h as 
ir
uit design, where large 
ir
uits 
onsisting of passive2Although a given plant or system of partial di�erential equations is passive, thehigh-�delity CFD model designed to des
ribe the plant is not ne
essarily passive. Inorder to ensure this, a dis
retization s
heme that preserves the passivity property shouldbe used (Kristiansen and Egeland, 2000).
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ir
uit elements are to be repla
ed by smaller 
ir
uits using a smaller numberof passive elements. Several resear
hers have studied this problem, amongothers Antoulas (2005b), Bai and Freund (2001), and Sorensen (2004). In�uid �ow appli
ations, however, the issue of passivity preservation is lessimportant, sin
e the systems en
ountered are rarely passive.Model redu
tion for 
ontrol is somewhat di�erent from model redu
tionfor simulation purposes, and it is treated among others by Obinata and Anderson(2001) and Zhou et al. (1996). A redu
ed-order model that gives good ap-proximation in open loop may not ne
essarily be a good approximation in
losed loop, sin
e the system dynami
s 
hange on
e the feedba
k loop is
losed. If the ultimate obje
tive is the low-order 
ontroller (rather thanthe low order model), then it is essential that the 
losed-loop performan
eobje
tive be in
orporated in the redu
tion te
hnique. A 
ommon approa
his to use frequen
y weighting in order to emphasize the importan
e of ap-proximation quality in the bandwidth of the 
losed-loop system. Anotherapproa
h is to use iterative plant- and 
ontroller redu
tion in a 
losed-loop
on�guration (see e.g. Wortelboer et al., 1999).Next, we will brie�y introdu
e some model redu
tion te
hniques thatwill be used in later 
hapters.2.3.2 Balan
ed Trun
ationBalan
ed trun
ation is a standard te
hnique for model redu
tion of sta-ble, linear systems, and 
an be found in many standard referen
es on
ontrol (see e.g. Zhou et al., 1996). It was originally introdu
ed to the
ontrol 
ommunity by Moore (1981). Although the method is 
omputa-tionally demanding when the system order is large, re
ent and ongoingresear
h address the extension of these algorithms to large-s
ale settings(Sorensen and Antoulas, 2002, Guger
in and Antoulas, 2004, Li and White,2002, Benner et al., 2000). Modern numeri
al linear algebra te
hniques hasallowed balan
ed trun
ation te
hniques to be applied e�
iently to systemsof order up to n = 106 (Benner, 2007).Loosely speaking, balan
ed trun
ation is done by trun
ating states thatgive the least 
ontribution to the input-output behavior. This motivates
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onsidering the 
ontrollable and observable subspa
es of the state spa
e.The 
ontrollable subspa
e 
ontains the set of states that 
an be rea
hedwith zero initial state and a given input u(t), while the observable subspa
e
omprises those states that, as initial 
onditions, 
an produ
e a non-zerooutput y(t) without external input. The 
ontrollability and observabilitygrammians P and Q are n×n matri
es whose eigenve
tors span the 
ontrol-lable and observable subspa
es, respe
tively. If the system is minimal, theGramians are positive de�nite. The following fundamental theorem gives
onditions for the existen
e of the Gramians.Theorem 2. If G(A,B,C) is exponentially stable, then the 
ontrollabil-ity and observability Gramians P and Q exist, and are the unique positivede�nite solutions to the Lyapunov equations
AP + PAT + BBT = 0, (2.6)
ATQ+QA + CTC = 0. (2.7)A system is said to be balan
ed when the states that are ex
ited most byinput are at the same time the states that produ
e the most output energy.In su
h a realization, the grammians are both equal to a diagonal matrix,say Σ, with the elements σi on the diagonal in des
ending order,

P = Q = Σ. (2.8)The diagonal elements σi are 
alled the system's Hankel singular values.Model redu
tion by balan
ed trun
ation pro
eeds by �rst obtaining the bal-an
ed system realization, and then trun
ating the states with small Hankelsingular values.The error introdu
ed by balan
ed trun
ation is upper bounded by
‖G (s)− Gr (s)‖∞ ≤ 2

n∑

k=r+1

σk. (2.9)This means that the error is equal to twi
e the sum of the trun
ated Hankelsingular values. The error 
an also be represented in terms of a time-domain
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kground Materialoutput error,
‖y (t)− yr (t)‖2 ≤ 2

n∑

k=r+1

σk ‖u (t)‖2 . (2.10)Remark 2. From Theorem 2 it is easily understood that balan
ed trun
ationis restri
ted to stable systems.Several extensions to balan
ed trun
ation exist. It is espe
ially worthmentioning LQG balan
ed trun
ation (Jon
kheere and Silverman, 1983),that is spe
i�
ally targeted at 
ontrol appli
ations by 
onsidering a 
losed-loop balan
ed realization, and is appli
able to unstable systems, 
ontrary tothe standard implementation. Some nonlinear extensions also exist, see forexample S
herpen (1993) and Lall et al. (2002), and the referen
es therein.2.3.3 Model Redu
tion by Proje
tionModel redu
tion by proje
tion is a general framework that 
an be used todes
ribe many redu
tion algorithms for large-s
ale systems. For a generalsystem, des
ribed as in equation (2.3), model redu
tion by proje
tion worksas follows. It is assumed that the state x 
an be approximated by a linear
ombination of r basis ve
tors
x ≈ Φrxr, (2.11)where xr ∈ R

r is the redu
ed state and Φr ∈ R
n×r is a proje
tion matrix
ontaining as 
olumns the r basis ve
tors φ1, φ2, . . . , φr. Substituting (2.11)into (2.3), and requiring the resulting residual to be orthogonal to the spa
espanned by Φr gives the redu
ed model

ẋr (t) = ΦT
r f (Φrxr (t) , u (t)) (2.12a)

yr (t) = g (Φrxr (t) , u (t)) , (2.12b)where xr ∈ R
r is the redu
ed state and yr ∈ R

p is the output of the redu
edmodel.



2.3 Model-Order Redu
tion 17For linear systems, the redu
ed state-spa
e model is given by
Erẋr = Arxr + Bru (2.13a)

yr = Crxr, (2.13b)where
Er = ΦT

r EΦr, (2.14)
Ar = ΦT

r AΦr, (2.15)
Br = ΦT

r B, (2.16)and
Cr = CΦr. (2.17)Several model redu
tion algorithms use the general proje
tion frame-work just des
ribed; however, they di�er in the 
omputation of the proje
-tion matrix Φr.2.3.4 Proper Orthogonal De
ompositionFirst introdu
ed independently by Karhunen (1946) and Loève (1946), PODis sometimes 
alled the Karhunen-Loève expansion. The method is alsoknown under the name prin
ipal 
omponent analysis. When �rst applied inthe 
ontext of �uid me
hani
s in Lumley (1967), it was used to study turbu-lent �ows. Appli
able even for very high-order systems and non-linear prob-lems, POD has be
ome the most popular method within the �eld of modelredu
tion and 
ontrol for CFD appli
ations. This approa
h has been 
onsid-ered for a
tive 
ontrol purposes by numerous authors (Kunis
h and Volkwein,1999, Astrid et al., 2002, Ravindran, 2000, Benner and Saak, 2005, Atwell et al.,2001, Afanasiev and Hinze, 2001). However, there are several limitations as-so
iated with using the POD; in parti
ular, POD-based redu
ed models la
kthe quality guarantees of those derived using more rigorous methods su
has balan
ed trun
ation. Even in the 
ase of stable LTI systems, redu
tionvia POD 
an lead to undesirable and unpredi
table results, su
h as unstableredu
ed models.
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kground MaterialPOD 
an be des
ribed in view of the proje
tion framework des
ribedin Se
tion 2.3.3. In the sear
h of the basis ve
tors Φr, the POD pro
edurepro
eeds as follows. Colle
t a �nite number of M samples x (ti) from (2.1)or (2.3), for t = t1, . . . tM , in a matrix of snapshots
X =

[
x1, x2, . . . , xM

]
= [x (t1) , x (t2) , . . . , x (tM )] , (2.18)where the 
olumns {X·, j}

M
j=1 
an be thought of as the spatial 
oordinateve
tors of the system at time step tj . The rows {Xi, ·}

n
i=1 des
ribe the timetraje
tories of the system evaluated at di�erent lo
ations in the spatialdomain (Kunis
h and Volkwein, 1999). The snapshots may be taken fromphysi
al experiments or from 
omputer (CFD) simulations.For a given number of basis ve
tors r, the POD basis is found by mini-mizing the error ∆ between the original snapshots and their representationin the redu
ed spa
e, de�ned by

∆ =
M∑

i=1

[x (ti)− x̃ (ti)]
T [x (ti)− x̃ (ti)] , (2.19)where x̃ (ti) = ΦrΦ

T
r x (ti).The minimizing solution Φr 
an be found via the set of left singularve
tors of the snapshot matrix X , whi
h is 
onveniently 
omputed usingthe singular value de
omposition of X ,

X = ΦΣΨT , (2.20)where the 
olumns of Φ = [φ1, . . . , φM ] form the optimal orthogonal basisfor the spa
e spanned by X . Φ and Ψ are unitary matri
es (i.e. Φ−1 =
ΦT ,Ψ−1 = ΨT ) and Σ is a diagonal matrix with the singular values σi of Xon the diagonal. The r most signi�
ant basis fun
tions are asso
iated withthe r largest singular values σi, i = 1, . . . r, of X . If the singular values
σi fall of rapidly in magnitude, a redu
ed-order model may be 
onstru
tedby proje
tion using Φr 
onsisting of the r �rst 
olumns of Φ. These basisfun
tions are the ones that 
apture the most salient 
hara
teristi
s of thesnapshot data X .



2.3 Model-Order Redu
tion 19The redu
ed-order model will 
apture only the dynami
s present in thesnapshot data, and so the 
hoi
e of snapshots is 
riti
al. Suitable inputsshould therefore be used to ex
ite the system, so that the desired 
hara
-teristi
s are present in the data. Frequently, snapshots are taken from theimpulse- or step responses of the CFD model. Moreover, some methods existfor adaptively de
iding how many snapshots to in
lude, and where to takethem, see for example Meyer and Matthies (2003) or Hinze and Volkwein(2005).Proper orthogonal de
omposition is summarized in Algorithm 1.Algorithm 1. Proper Orthogonal De
omposition1. Simulate the state equations and re
ord snapshots X of the systemstate.2. Perform singular value de
omposition of the snapshot data, as in (2.20).3. Extra
t the r most signi�
ant basis ve
tors Φr based on the singularvalues σi of the snapshot matrix X .4. Proje
t the governing equations onto the redu
ed basis as in (2.12) or(2.14)-(2.17) to �nd the redu
ed model.2.3.5 Goal-Oriented Model-Constrained Redu
tionGoal-oriented model-
onstrained redu
tion is a redu
tion algorithm pro-posed in Bui-Thanh et al. (2007), that also uses the general proje
tionframework in Se
tion 2.3.3. In this pro
edure, a 
ost similar to (2.19) isused as an obje
tive fun
tion in an optimization formulation. The opti-mization problem seeks to �nd the rth-order basis Φr = [φ1, . . . , φr] ∈ R
n×rand the 
orresponding redu
ed-order state solution xr(t) ∈ R

r so that the
L2-norm of the error between the full-order and redu
ed-order output is
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kground Materialminimized3. For the linear model (2.1), this 
an be formulated as
min
Φr ,x

1

2

S∑

l=1

∫ T

0

(

yl − yl
r

)T (

yl − yl
r

)

dt (2.21a)
+

β

2





r∑

j=1

(
1− φT

j φj

)2
+

r∑

i,j=1,i6=j

(
φT

i φj

)2



subje
t to:
ΦT

r El
rΦrẋ

l
r = ΦT

r Al
rΦrx

l
r + ΦT

r Bl
ru

l, l = 1, . . . ,S (2.21b)
Φxl

r (0) = xl (0) , l = 1, . . . ,S (2.21
)
yl

r = C lΦxl
r, l = 1, . . . ,S. (2.21d)The summation over l allows one to 
onsider a �nite set of S instantiationsof the governing equations (2.1) that 
ould arise from variations in the
oe�
ient matri
es E, A, B and C, the input u, or the initial state x0.The supers
ript l thus denotes the lth instan
e of the system, whi
h has
orresponding state xl (t), input ul (t), and output yl (t). For example,where (2.1) represents a spatially dis
retized PDE, these variations stemfrom 
hanges in the domain shape, boundary 
onditions, 
oe�
ients, initial
onditions or sour
es of the underlying PDEs.The two key di�eren
es between the formulation (2.21) and the PODare that the model-
onstrained optimization approa
h1. enfor
es the redu
ed-order governing equations as 
onstraints, and2. minimizes the output error, while the POD minimizes the error ofstate predi
tion over the entire domain.The former issue ensures that the error (y − yr)

T (y − yr) in (2.21a) is eval-uated for yr that are a
hieved by simulating the redu
ed-order model, and3If y and yr are taken to be the impulse response of G (s) and Gr (s), respe
tively,then ‖y − yr‖L2
is equal to the di�eren
e ‖G (s) − Gr (s)‖

H2
in H2-norm between the twosystem transfer fun
tions.
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tion, as for x̃ in (2.19). By emphasizing the impor-tan
e of an a

urate approximation of input-to-output behavior instead ofattempting to minimize the error over the entire state domain, it is hopedthat redu
ed models are obtained that are e.g. more suitable for use in anoutput-feedba
k implementation.The full-order output yl (t) is obtained from simulating the high-�delitymodel over a sele
ted set of inputs and the interval t ∈ [0, T 〉. The se
ondterm in the 
ost fun
tion (2.21a) is a regularization term to yield orthonor-mal basis ve
tors, with β as a regularization parameter.This approa
h retains appli
ability to nonlinear systems, but addressessome of the limitations of the POD by targeting the proje
tion basis tooutput fun
tionals of interest, and by bringing additional knowledge ofthe redu
ed-order governing equations into the 
onstru
tion of the basis.Formulation of the problem of determining the basis as an optimal 
on-trol problem has also been 
onsidered for distributed parameter systems byBorggaard (2006).Determining the basis via the optimization pro
edure will in general bemore 
omputationally demanding than using POD. However, this additionalo�ine 
ost is a tradeo� that 
an be made, if ne
essary to a
hieve low ordermodels of a

eptable quality.2.4 Control PreliminariesIn this se
tion, some preliminaries about the 
ontrol theory used subse-quently will be des
ribed.2.4.1 The Linear-Quadrati
 RegulatorThe linear-quadrati
 regulator (LQR) is a model-based optimal 
ontrols
heme. For a dis
rete-time linear system given by xk = Axk + Buk, thefeedba
k 
ontrol law is found by minimizing the 
ost fun
tional de�ned by
J =

∞∑

k=0

(
xT

k Qxk + uT
k Ruk

) (2.22)
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es that penalize deviation fromzero of the states, and use of 
ontrol energy, respe
tively. The feedba
k
ontrol law that minimizes this 
ost is given by
u = −Klqx, (2.23)where Klq is found as (Kwakernaak and Sivan, 1972)

Klq = (R + BT PB)−1BT PA, (2.24)and P is found by solving the dis
rete-time algebrai
 Ri

ati equation
P = Q + AT

(

P − PB
(
R + BTPB

)−1
BT P

)

A. (2.25)2.4.2 Model Predi
tive ControlModel predi
tive 
ontrol (MPC) poli
ies are optimization based 
ontrolpoli
ies that 
al
ulate the 
urrent 
ontrol input by solving a 
onstrainedoptimization problem, with a 
ost similar to (2.22), parameterized by the
urrent system state. This strategy has been widely adopted in the in-dustrial pro
ess 
ontrol 
ommunity and implemented su

essfully in manyappli
ations. The greatest strength of MPC is the intuitive way in whi
h
onstraints 
an be in
orporated in a multivariable 
ontrol problem formula-tion. Here we will give a brief introdu
tion to a standard MPC formulation.For further reading on MPC, there exists a number of books (Ma
iejowski,2001), (Allgöwer and Zheng, 2000) and tutorials (Rawlings, 2000).A Standard MPC FormulationModel predi
tive 
ontrol is formulated for a dis
rete-time state-spa
e model
xk+1 = Axk + Buk, (2.26a)

yk = Cxk, (2.26b)where k ∈ Z, and xk ∈ R
n, uk ∈ R

m and yk ∈ R
p denote the state, inputsand outputs, respe
tively, at time step k. The 
onstant matri
es A, B and
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C are of appropriate dimensions, and (A,B) is a 
ontrollable pair. Forthe regulator problem (regulating the system states to zero), the modelpredi
tive 
ontroller solves at time step k the optimization problem

min
Uk

{

xT
k+N |kPxk+N |k (2.27a)

+

N−1∑

i=0

(

xT
k+i|kQxk+i|k + uT

k+iRuk+i

)
}subje
t to:

umin ≤ uk+i ≤ umax, i = 0, . . . , N − 1 (2.27b)
ymin ≤ yk+i ≤ ymax, i = 1, . . . , N (2.27
)
uk+1 = Kxk+i|k , Nu ≤ i ≤ N − 1 (2.27d)
xk|k = xk (2.27e)
xk+i+1|k = Axk+i|k + Buk+i, i ≥ 0 (2.27f)
yk+i|k = Cxk+i|k, k ≥ 0, (2.27g)where P and Q are design weighting matri
es of appropriate dimensionsthat penalize deviation from zero of the states xk+i at the end of the pre-di
tion horizon N and over the entire horizon, respe
tively. In this work,the �nal 
ost matrix P and gain K are 
al
ulated from the algebrai
 Ri
-
ati equation, under the assumption that the 
onstraints are not a
tive for

k ≥ N . The weight R penalizes use of 
ontrol a
tion u. The notation
(·)k+i|k is used to emphasize that the predi
tions (·)k+i are made based onthe value at step k. Nu de�nes the 
ontrol horizon, whi
h is the numberof future 
ontrol moves to be optimized. In this work, we set Nu = N ,for 
onvenien
e. The sequen
e Uk =

[
uT

0 uT
1 . . . uT

Nu−1

]T 
ontains thefuture 
ontrol inputs that yield the best predi
ted output with respe
t tothe performan
e 
riterion on the predi
tion horizon. On
e this set has beenfound, the �rst 
ontrol input u0 is applied to the pro
ess, before the wholeoptimization problem is re-solved at the next sample. The optimizationproblem is then slightly di�erent, having been updated by a new pro
ess
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kground Materialmeasurement, a new starting point and an additional time sli
e at the endof the time horizon.It is well established that implementing a linear model predi
tive 
on-troller requires solving a quadrati
 program (QP) in Uk at ea
h time step(Ma
iejowski, 2001). With some manipulations, the problem in (2.27) 
anbe written
min
Uk

{
1

2
UT

k HUk + xT
k FUk

} (2.28a)subje
t to: GUk ≤W + Exk, (2.28b)where the matri
es H, F , G, W and E are fun
tions of the weighting matri-
es P , Q, R and the bounds umin, umax, ymin and ymax. If the weighting ma-tri
es in (2.27a) satisfy P � 0, R ≻ 0 and Q � 0, then H ≻ 0 and the prob-lem is stri
tly 
onvex. The Karush-Kuhn-Tu
ker 
onditions (KKT) are thensu�
ient 
onditions for optimality (No
edal and Wright, 1999, page 333),and the solution Uk 
an be shown to be unique (Bemporad et al., 2002).The assumptions on Q and R are usually met by 
hoosing Q and R tobe diagonal matri
es that appropriately penalize the relative importan
e ofstate or input values.This traditional MPC strategy requires signi�
ant online 
omputation,limiting the use of this kind of 
ontroller to pro
esses with small system statedimension or relatively slow dynami
s, sin
e the optimization problem thatis solved at ea
h sampling time 
an otherwise be
ome large.2.4.3 Soft ConstraintsWhen MPC is applied, a pro
ess 
an operate near, or even at spe
i�edpro
ess 
onstraints. In many 
ases this leads to the most 
ost e�e
tive op-eration for a given plant, sin
e 
onstraints are often dire
tly asso
iated with
ost. But system 
onstraints sometimes 
ause problems with respe
t to thefeasibility of the optimization problem to be solved by the model predi
tive
ontroller. Unexpe
tedly large disturban
es may o

ur, for
ing the systemto a state from whi
h there is no way of keeping it within the spe
i�edlimits without breaking some set of 
onstraints. Feasibility problems may
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ur due to modeling errors, espe
ially for linearized systems, or wheninitializing the system, potentially outside the intended region of operation.Preferably, infeasibility of the MPC optimization problem should beavoided at all 
osts. In Kerrigan and Ma
iejowski (2001, 2000a) methodsare presented that allows one to determine a priori whether or not an MPC
ontroller has this desirable property, when the e�e
ts of the disturban
eshave been negle
ted in the design of the 
ontroller. The authors applyinvariant set theory to establish whi
h initial states guarantee feasibilityof the MPC 
ontroller for all time. Nevertheless, me
hanisms should beimplemented that ensure that the 
ontrol system has a way of dealing withfeasibility problems. Several possible solutions for handling su
h problemshave been proposed, ranging from simple, but sub-optimal approa
hes likeusing the same 
ontrol signal as in the previous time step, to more re�nedapproa
hes like that of Vada et al. (2001), where the 
onstraints are relaxedin an optimal manner subje
t to a user-de�ned prioritization. The approa
hthat will be 
onsidered in this thesis is 
onstraint softening by means of sla
kvariables. One advantage with this approa
h is that the optimization to beperformed by the MPC 
ontroller at ea
h step remains a quadrati
 program.Constraints are normally divided into two di�erent 
lasses. Input 
on-straints, su
h as a
tuator and valve limitations are typi
al examples of phys-i
al limitations that will lead to hard 
onstraints. A hard 
onstraint is ab-solute, in that it 
an under no 
ir
umstan
es be violated. A valve 
an onlybe opened to a 
ertain limit, and this limit 
annot be ex
eeded. Outputor state 
onstraints, however, are not ne
essarily absolute. For example, itmay be desirable for a given pro
ess to operate within a spe
i�
 temper-ature range. But one might 
onsider allowing for the system temperatureto ex
eed the desired range, if this is the only way of keeping the systemwithin some level of 
ontrol. A 
onstraint that may be violated if required,is 
alled a soft 
onstraint.By introdu
ing sla
k variables to the problem formulation the desired
onstraints 
an be softened e�e
tively. The sla
k variables are zero if no 
on-straints are violated. By penalizing the non-zero values of the sla
k variablesin the 
ost fun
tion, the 
onstraint violations are kept to a minimum.Penalty fun
tions that lead to 
onstraint violation and use of sla
k only if
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alled exa
t penalty fun
-tions. Consequently, the 
onstraints will not be violated unne
essarily if thepenalty fun
tion is exa
t. In order to a
hieve an exa
t penalty fun
tion, the
1-norm or the ∞-norm must be used to penalize 
onstraint violations, andthe penalty weight must be su�
iently large (Kerrigan and Ma
iejowski,2000b, Hovland, 2004).2.4.4 Expli
it MPC via Quadrati
 ProgrammingIt has re
ently been shown that a great deal of the 
omputational e�ort intraditional MPC 
an be done o�ine. In Bemporad et al. (2002), the au-thors proposed solving multiparametri
 quadrati
 programs (mpQPs) thatare used to obtain expli
it solutions to the MPC problem, su
h that the
ontrol input 
an be 
omputed by evaluating a pie
ewise a�ne fun
tionof the 
urrent system state. Thus, the expli
it model predi
tive 
ontroller(eMPC) a

omplishes online MPC fun
tionality without solving an opti-mization problem at ea
h time step.In parametri
 programming, the solution to a mathemati
al program isfound expli
itly for a range of parameter values. Mathemati
al programsthat 
ontain more than a single parameter are 
ommonly referred to asmultiparametri
 programs (Tøndel, 2003, page 1-2). The problem (2.28)
an be viewed as an mpQP in Uk, where xk is a ve
tor of parameters.Following Bemporad et al. (2002), 
onsider (2.28), and de�ne

z , Uk + H−1F T xk. (2.29)Then, the problem in (2.28) 
an be transformed into
min

z

{
1

2
zT Hz

} (2.30a)subje
t to: Gz ≤W + Sxk, (2.30b)whi
h is an mpQP in z, parameterized by xk. The matrix S is found as
S = E + GH−1F T . By 
onsidering the KKT 
onditions of this quadrati
program in z, the solution z∗ is seen to remain optimal in a neighborhood
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ale Systems 27of xk where the a
tive set remains optimal. The region in whi
h this a
tiveset remains optimal 
an be shown to be a polyhedron in the parameterspa
e (that is, the state spa
e) (Bemporad et al., 2002). The mpQP in z
an be solved o�ine for the state spa
e area of interest. Computing the
ontrol input at a time step k then be
omes a straightforward task: Giventhe system state xk, the optimal 
ontrol inputs Uk are obtained through ana�ne mapping,
Uk = Kixk + ki, i = 1, . . . , Np (2.31)where Np is the number of polyhedral regions and the subs
ript i denotes the

ith a�ne fun
tion. Ki and ki are 
onstant within ea
h polyhedral regionin the parameter spa
e. The online e�ort is thus redu
ed from solving apotentially large optimization problem at ea
h time step to evaluating apie
ewise a�ne fun
tion of the 
urrent state, by determining the region i inwhi
h the 
urrent state xk resides.This has several advantages: Firstly, the online 
omputational time 
anbe redu
ed to the mi
rose
ond-millise
ond range, and se
ondly, MPC fun
-tionality is a
hieved with low 
omplexity, easily veri�able real-time 
ode.Further, exe
ution is deterministi
, and there is no need for �oating pointarithmeti
s (no re
ursive numeri
al 
omputations). All these advantagesjustify the employment of eMPC in embedded and safety-
riti
al systems.Hegrenæs et al. (2005) 
onsider using eMPC for spa
e
raft attitude 
ontrol.In Johansen et al. (2006) the authors 
onsider hardware implementation ofeMPC, where memory requirements, 
omputational speeds and hardwarear
hite
ture design is studied using �eld programmable gate arrays (FPGA)and an appli
ation spe
i�
 integrated 
ir
uit (ASIC).2.5 Low-Order Controllers for Large-S
aleSystemsIn this se
tion, we dis
uss some issues relevant to the task of developingmodel-based or optimal 
ontrollers of low order to a high-�delity model.
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kground Material2.5.1 Di�erent Paths to a Low Order ControllerSimple 
ontrollers are normally preferred over 
omplex 
ontrollers, sin
e the
omputational requirements are smaller, hardware design and implementa-tion is less 
omplex and error-prone, and they are more transparent to theuser. For this reason, low order 
ontrollers are preferred over high order
ontrollers. Also, the need for real-time 
ontrol of many physi
al systemsne
essitates 
ontrollers that are of low order. In general, model-based oroptimal 
ontrollers, su
h as LQG and H∞ 
ontrollers, designed for a givenplant have roughly the same dimension as the plant. The need for 
omplex-ity redu
tion is therefore evident whenever the plant model is large. Thereare several fundamentally di�erent approa
hes to designing 
ontrollers oflow order, as illustrated in Figure 2.3.
High-order

model
High-order
controller

Low-order
plant

Low-order
controller

Controller
reduction

Model
reduction

Direct    design

Figure 2.3: Di�erent avenues for low order 
ontroller design.The di�erent pro
edures 
an be summarized as follows:1. Perform dire
t design of low-order 
ontroller based on a high-ordermodel.2. Design an initial 
ontroller for the plant/high-order model, and thenredu
e the order of the 
ontroller.
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ale Systems 293. Perform plant model redu
tion and design a 
ontroller based on theredu
ed-order plant model.Pro
edure 1 usually depends heavily on some properties of the plant, andrequires great 
omputations if the state dimension of the plant is large. Theapproa
h is outside the s
ope of this work and interested readers are referredto (Hsu et al., 1994, Bernstein and Haddad, 1989, Iwasaki and Skelton, 1993,Gu et al., 1993, Gu. et al., 1993). Pro
edure 2 is very 
ommon for systemsof medium size, for instan
e in the robust 
ontrol 
ommunity, where toolssu
h as H∞ design is frequently used to design an initial 
ontroller, fol-lowed by 
ontroller redu
tion. This pro
edure has been studied for CFDmodels by, among others, Atwell et al. (2001), Atwell and King (2005). Themain drawba
k of this approa
h is that it requires the design of an appro-priate initial 
ontroller, whi
h is not feasible in many appli
ations wherethe state dimension is large. This leaves us with the third approa
h, al-beit this pro
edure is often 
riti
ized for introdu
ing approximation (and
onsequently errors) at an earlier stage in the design pro
ess, whi
h maypropagate errors into the 
ontroller design. This 
an, however, be 
om-pensated for by designing 
ontrollers robust to un
ertainties and model-ing errors. Also, with a plant model with small state dimension available,we may use our large toolbox for 
ontrol system design. Model redu
-tion for 
ontrol of large-s
ale systems has been 
onsidered in a numberof settings (Kunis
h and Volkwein, 1999, Ravindran, 2000, Atwell et al.,2001, Afanasiev and Hinze, 2001, Ahuja et al., 2007, Cohen et al., 2006,Kunis
h and Volkwein, 2006, Will
ox and Megretski, 2005, Evans, 2003).One re
ently proposed approa
h that seems promising, is the OptimalitySystem POD method (Kunis
h and Volkwein, 2006), whi
h generates re-du
ed models for 
ontrol by iteratively 
omputing a POD basis that targetsthe 
losed-loop optimality system.An alternative to the approa
hes sket
hed in Figure 2.3, is to obtain alow-order model dire
tly by 
losed-loop identi�
ation, where the identi�
a-tion 
riterion takes the 
ontrol performan
e obje
tive into a

ount, and touse this model for 
ontroller design. A

ording to Codrons et al. (1999), thequestion whether to use model redu
tion or identi�
ation is of se
ondary im-
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e, whereas the 
riti
al issue is to in
lude 
losed-loop 
onsiderationsin the pro
ess. In our opinion, however, if a high-�delity model is avail-able, one should make use of this knowledge when 
onstru
ting a low-ordermodel. We therefore prefer to use model redu
tion rather that 
losed-loopidenti�
ation, although both approa
hes are viable.2.5.2 Output-Feedba
k Control with Redu
ed-OrderModelWhen a 
ontroller is designed, we need to 
onne
t the 
ontroller to the plantor high-�delity model. When we are using 
ontrollers designed based on aredu
ed-order model, we need to 
ompute an estimate of the redu
ed-orderstate variable xr, based on the output of the CFD model, using some sortof state estimator. The stru
ture of the 
losed loop is illustrated in Figure2.4.
CFD

Model

ROM 
and

Observer

Controller

PSfrag repla
ements
u x̂r

y

Figure 2.4: Blo
k diagram of the redu
ed-order output-feedba
k setup. x̂ris an estimate of the redu
ed state based on an observer, using the redu
edmodel (ROM) and measurements from the CFD model.Output feedba
k 
ontrol 
ombined with model un
ertainty may lead tosystem instability, although the original model is stable and the 
ontroller
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ale Systems 31stabilizes the redu
ed model. The mere existen
e of 
ontrollers stabilizingthe redu
ed-order model and not the plant (Linnemann, 1988) ne
essitatesstability analysis of the 
losed-loop system.2.5.3 Closed-Loop Stability of Linear CFD modelsIn this se
tion we will present an example of 
losed-loop stability analysisfor a simple 
ontrol stru
ture.Consider a linear high-�delity model of the form (2.1), for whi
h we havederived a redu
ed-order model of the form (2.5). Based on this model, we
an design a 
ontroller using any model-based 
ontroller synthesis tool, su
has LQG, LQR, or a robust 
ontroller using tools su
h as H∞ design. The
ontroller, whi
h 
an also 
ontain a state observer, is given by the general
ontroller state-spa
e model
ẋc = Acxc + Bcuc (2.32)
yc = Ccxc, (2.33)where xc ∈ R

r is the 
ontroller state, uc 
ontains the inputs to the 
ontroller,su
h as the plant output, and the output of the 
ontroller is the input tothe plant, i.e. yc = u.The 
losed-loop system is given by
Eẋ = Ax + Bu = Ax + BCcxc (2.34)
ẋc = Acxc + Bcuc = Acxc + BcCx, (2.35)or

Ē ˙̄x = Āx̄, (2.36)where x̄ =
[
xT xT

c

]T ,
Ē =

[
E 0
0 Ir

] (2.37)and
Ā =

[
A BCc

BcC Ac

] (2.38)We then have the following result:
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losed loop system 
onsisting of the full model (2.1) andthe output-feedba
k 
ontroller (2.32) is stable, provided that the generalizedeigenvalues of (
Ā− λĒ

) are stable, i.e. λ
(
Ā, Ē

)
⊂ C

− ∪ {∞}, where
Ā =

[
A BCc

BcC Ac

]and
Ē =

[
E 0
0 Ir

]

.Proof. The result follows dire
tly from Theorem 1. �In the 
ase where E = In, it su�
es to 
he
k the eigenvalues of Ā.The following example illustrates the design pro
ess for a parti
ularoutput-feedba
k design.Example 3. Based on the ROM, we design the 
ontinuous-time LQR 
oun-terpart of Se
tion 2.4.1,
u = −Krxr. (2.39)We design an observer̂̇

xr = Arx̂r + Bru + Lr (y − Crx̂r) (2.40)
ŷr = Crx̂r, (2.41)su
h that (Ar − LrCr) is Hurwitz, and we use feedba
k from the estimatedredu
ed state, i.e.

u = −Krx̂r. (2.42)Our 
ontrol stru
ture takes the form of Figure 2.4. Now, the 
losed-loopsystem is stable provided that the generalized eigenvalues of (
Ā− λĒ

) arestable, where Ā and Ē are given by
Ā =

[
A −BKr

LrC (Ar −BrKr − LrCr)

]

, (2.43)
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Ē =

[
E 0
0 Ir

]

. (2.44)2.6 Order Redu
tion and Stabilization of anUnstable CFD ModelThis se
tion serves as a motivating example, in whi
h we 
onsider stabiliza-tion of a 
omputational �uid dynami
s model of an unstable system. Weillustrate how to set ut a simple CFD model based on partial di�erentialequations and dis
retization via the �nite volume method. It is furthershown how the CFD model 
an be put in a standard state-spa
e form.A stabilizing 
ontroller is found based on optimal 
ontrol design for theredu
ed-order model and then applied to the full model, where it is shownto stabilize the system. This se
tion is based on Hovland and Gravdahl(2006a,b,
).2.6.1 Introdu
tionWhile the CFD models in Chapter 5 were nominally stable, we now extendthe fo
us to unstable models in this 
hapter. This 
ontribution demonstratesthe possibility of designing stabilizing 
ontrollers to a 
lass of systems thatwould otherwise be very 
omputationally demanding or maybe even infea-sible, due to the large state-dimension of su
h CFD models.2.6.2 Case Study: Heated PlateCFD ModelTo demonstrate how an unstable system 
an be stabilized using POD andfeedba
k 
ontrol, we study heat 
ondu
tion in a plate. The plate is 1m×1m,de�ning the two-dimensional 
omputational domain Ω = [0, 1] × [0, 1] de-pi
ted in �gure 2.5. The plate is insulated along the boundaries, apart from
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enter of ea
h boundary, where four �ux a
tuators are lo
ated. Thisde�nes Neumann boundary 
onditions on all boundaries.
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Figure 2.5: Sket
h of plate with a
tuators on boundaries (bold lines).The temperature T (t, x, y) of the plate is governed by the unsteadylinear two-dimensional heat equation
ρcp

∂T

∂t
= k

∂2T

∂x2
+ k

∂2T

∂y2
+ S, (2.45)where ρ and cp are the density and spe
i�
 heat 
apa
ity of the plate, re-spe
tively, and k is the thermal 
ondu
tivity, that is assumed to be uniformover the 
omputational domain and independent of temperature. Note that

x now and in the following denotes a spatial 
oordinate and no longer thestate variable. The sour
e term S , Sc + ST is a term 
ontaining heatsinks and sour
es. In the present problem, 
onve
tive heat transfer to thesurroundings gives rise to a sink term
Sc = hA (T − T∞) [W] , (2.46)
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tion and Stabilization of an Unstable CFDModel 35where h is the 
onve
tive heat transfer 
oe�
ient, A is the heat transfer areaof the surfa
e and T∞ is the ambient temperature. Due to ele
tri
 
urrent,the plate is subje
t to an internal temperature-dependent heat sour
e
ST = k1T

[
W /m3

]
, (2.47)where k1 > 0, at all points ex
ept from the boundary. Intuitively, this pos-itive feedba
k from the temperature to the sour
e may lead to a physi
allyunstable system if the 
onve
tive heat loss to the surroundings is not largeenough. An in
rease in temperature will then lead to a stronger sour
e,whi
h again in
reases the temperature, and so on.Dis
retizing the governing equation by the �nite volume method, (2.45)is integrated over ea
h 
ontrol volume (CV ) and over the time interval from

t to t + ∆t, to obtain (Versteeg and Malalasekera, 1995)
∫

CV

(∫ t+∆t

t

ρcp
∂T

∂t
dt

)

dV =

∫ t+∆t

t

∫

CV

(

k
∂2T

∂x2

)

dV dt

+

∫ t+∆t

t

∫

CV

(

k
∂2T

∂y2

)

dV dt +

∫ t+∆t

t

∫

CV

S dV dt,where the order of integration has been 
hanged for the �rst term. Using thenumeri
ally un
onditionally stable ba
kward Euler (fully impli
it) temporaldis
retization and n grid points over the spatial domain Ω, the system (2.45)
an be written as a system of n equations of the form
aP TP = aW TW + aETE + aSTS + aNTN + a0

P T 0
P + Su, (2.48)where the a's are 
oe�
ients and TP is the temperature at the grid point(point P ) under 
onsideration at time step k + 1. Su and SP arise fromdis
retizing the sour
e term S as

∆V · S = Su + SP TP , (2.49)
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ρ cp k h T∞ k1

1000 1000 1000 100 293 1000Table 2.1: Numeri
al values of parameters.where SP is in
luded in aP . Using the 
onvenient 
ompass notation, TW ,
TE , TS and TN are the temperatures at the west, east, south and northadja
ent grid points, respe
tively, at time step k + 1.

T 0
P is the temperature at grid point P at time step k. Colle
ting thetemperature at all grid points in a row ve
tor T (k) ∈ R

n leads to a dis
retelinear system of the form
ET (k + 1) = ĀT (k) + B̄u (k) + V̄ ,

y (k) = C̄T (k) ,
(2.50)where E ∈ R

n×n is a penta-diagonal matrix 
ontaining the 
oe�
ients ap,
aW , aE, aS and aN and Ā ∈ R

n×n is a diagonal matrix with a0
P on the maindiagonal.

B̄ ∈ R
n×m 
ontains the 
ontributions from the inputs, while the 
onstantsour
e terms give rise to a 
onstant term V̄ ∈ R

n.To validate that the plate model is unstable, we 
ompute the generalizedeigenvalues λ of (A− λE), using the numeri
al parameter values in Table2.1, whi
h 
on�rms that the system has a pole outside the unit 
ir
le, at
λ = 1.0001.When the system matri
es are of very high order, designing a model-based stabilizing 
ontroller is a 
omputationally demanding task. This mo-tivates the sear
h for a redu
ed-order model.Redu
ed-Order ModelThe PDE (2.45) is dis
retized using 50 grid points in both the x- and y-dire
tion. This gives in total 2500 states in the CFD model. To 
onstru
ta model of redu
ed order, we use proper orthogonal de
omposition, as out-lined in Se
tion 2.3.4, Algorithm 1. The system (2.50) is simulated for
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M = 600 time steps, thus forming the matrix of snapshots X . During thissimulation the inputs are varied randomly taking moderate step 
hangesover a suitable range to ex
ite as mu
h of the system dynami
s as possi-ble. SVD of the snapshot matrix is performed, and the singular values are
onsidered in order to form the POD basis Φr, as depi
ted in �gure 2.6.
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Figure 2.6: Singular values σ of the snapshot matrix. The ∗'s indi
atesingular values 
orresponding to the extra
ted basis fun
tions. Note thatthe ordinate axis is logarithmi
.As 
an be seen from the �gure the singular values fall o� quite rapidly,and many of the singular values are 
lose to zero, indi
ating that the basisfun
tions 
orresponding to those singular values 
an be omitted withoutloss of information. There is no systemati
 approa
h to establish how manybasis fun
tions that should be in
luded in Φr. The heuristi
 
riterion
P =

∑r
i=1 σ2

i
∑M

i=1 σ2
i

, (2.51)
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ation on how mu
h of the energy that is 
onserved in theredu
ed-order model. If P ≈ 1 most of the energy is 
aptured in the�rst r basis fun
tions, indi
ating a fairly a

urate redu
ed-order model(Astrid et al., 2002). If we 
hoose r = 4 basis fun
tions, P = 99.99%.Moreover, if the redu
ed-order model has four states the number of statesin the redu
ed-order model is equal to the number of inputs. Consequently,the redu
ed-order model is fully a
tuated, whi
h might be favorable whentra
king a referen
e pro�le for the 
omplete state. The redu
ed-order modelis seen to be 
ontrollable and hen
e also stabilizable.Using the proje
tion framework outlined in Se
tion 2.3.3 we get theredu
ed-order model
ΦT

r EΦrTr (k + 1) = ΦT
r AΦrTr (k) + ΦT

r Bu (k) + ΦT
r V. (2.52)De�ning Er , ΦT

r EΦr allows us to write
Tr (k + 1) = E−1

r ΦT
r AΦrTr (k) + E−1

r ΦT
r Bu (k)

+ E−1
r ΦT

r V, (2.53)where Er is invertible sin
e E, ΦT
r and Φr are all nonsingular. This yieldsthe redu
ed-order model on dis
rete state-spa
e form

Tr (k + 1) = ArTr (k) + Bru (k) + Vr (2.54a)
yr (k) = CrTr (k) , (2.54b)where Tr ∈ R

r, u ∈ R
m, yr ∈ R

p, Ar = E−1
r ΦT

r AΦr ∈ R
r×r, Br =

E−1
r ΦT

r B ∈ R
r×m, Vr = E−1

r ΦT
r V ∈ R

r and Cr ∈ R
p×r. In this exam-ple, r = m = 4. To ensure tra
king for the plate temperature, we set C tobe the n× n identity matrix. Consequently, Cr ∈ R

n×r.The redu
ed-order model (2.54) is unstable sin
e
ρ (Ar) = 1.0001. (2.55)Remark 3. Note that the general POD pro
edure does not automati
allypreserve stability properties during the redu
tion pro
ess. Nominally stable
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ed-order models, and vi
e versa. In orderto be able to repla
e the analysis of the full model by analysis of the redu
ed-order model it is important that the stability properties are well re�e
tedin the redu
ed-order model. This is the subje
t of on-going resear
h. One
riterion for preserving stability properties in POD is presented in Prajna(2003). The result is however not appli
able to models of very high order.The redu
ed-order state Tr (k) is estimated online through a linear ob-server of the form
T̂r (k + 1) = (Ar − LCr)Tr (k) + Bru (k) + Vr + Ly (k) , (2.56)where y (k) is the output from the high-order CFD model and L is 
hosensu
h that ρ (Ar − LCr) < 1.2.6.3 Controller DesignFeedba
k 
ontrol is performed by use of heat �ux a
tuators on parts of theboundary of the domain, shown as the bold lines in �gure 2.5. The 
ontrolobje
tive is to rea
h a 
onstant temperature referen
e T d while at the sametime reje
ting disturban
es. The referen
e temperature T d is set to be auniform temperature of 300 ◦ K.Sin
e the full model is too large for 
ontroller design the redu
ed-ordermodel is analyzed instead. The redu
ed-order referen
e T d

r is found as T d
r =

ΦT
r T d. Given the unstable redu
ed-order model (2.54), the 
ontrol obje
tiveis to stabilize the system around the referen
e temperature. De�ning thetra
king error as

e (k) , T d
r − Tr (k) , (2.57)the 
ontrol input is 
hosen as

u = Ke = K
(

T d
r − Tr (k)

)

, (2.58)where K is 
hosen su
h that ρ (Ar −BrK) < 1. The 
ontroller gain K istaken to be the solution to the linear quadrati
 regulator problem as de�nedin Se
tion 2.4.1.



40 Ba
kground MaterialUsing feedba
k from the estimated temperature T̂r, we 
an 
onstru
tthe 
losed-loop matri
es Ā and Ē as in (2.43) and (2.44). By 
omputingthe generalized eigenvalues of the 
losed-loop system, we 
an then 
on
ludethat the 
losed-loop system is stable, sin
e the poles of the 
losed-loopsystems lie stri
tly inside the unit dis
. The largest 
losed-loop eigenvaluelies at z = 0.9973. The will, however, be a steady state error, due to thedisturban
e V .Taking into 
onsideration the disturban
e V , the 
ontroller should in-
lude integral a
tion in order to minimize the steady-state tra
king error.To do this in a straightforward way, we de�ne the augmented state
T̃ (k) ,

[
Tr (k)

u (k − 1)

]

∈ R
r+m, (2.59)giving an augmented state-spa
e model

T̃ (k + 1) = ÃT̃ (k) + B̃∆u (k) + Ṽ ,

ỹ (k) = C̃T̃ (k) ,
(2.60)where

Ã ,

[
A B
0 I

]

, C̃ ,
[
C 0

]
,

B̃ ,

[
B
I

]

, Ṽ ,

[
V
0

]

,

(2.61)and ∆u (k) = u (k)− u (k − 1). In this augmented state-spa
e model, inte-gral a
tion is built-in, and the input in
rement ∆u (k) is found as
∆u (k) = K

(

T d
r − Tr (k)

)

,where K is the feedba
k gain matrix found above.2.6.4 Numeri
al SimulationInitially, the plate temperature is at rest, and equal to the ambient temper-ature at 293K. At t = 0 the inner sour
e is swit
hed on. Without 
ontrol



2.6 Order Redu
tion and Stabilization of an Unstable CFDModel 41the temperature of the plate is stri
tly in
reasing. The plate temperatureis shown for four di�erent time instants in �gure 2.7.
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Figure 2.7: Plate temperature without 
ontrol, shown for t =
2400, 6000, 9000 and 12000 s.If the simulation is run for a longer period of time the temperature
ontinues to in
rease, illustrating the instability of the system.Now, the full CFD-model is simulated with the 
ontroller designed forthe redu
ed-order model in se
tion 2.6.3. The weighting matri
es Q and Rare set to Q = 50 · Ir and R = 10−4 · Im. The system is stabilized, andit is simulated until steady-state is rea
hed, after approximately t = 100minutes. The largest steady-state error is 
lose to 3K, as shown in �gure2.8.It is seen that although the original CFD model is symmetri
, the 
on-
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Figure 2.8: Steady state temperature, shown here for t = 6000 s.troller based on the redu
ed-order model does not manage to exploit thissymmetry, sin
e the symmetry is not preserved in the model-order redu
tions
heme.2.6.5 Con
luding RemarksIn this 
hapter we have demonstrated, using a 
ase study, that a CFD-modelof an unstable system 
an be stabilized through model-order redu
tion anda 
ontroller designed for the redu
ed-order model. This makes it possibleto design stabilizing 
ontrollers for systems that would otherwise be very
omputationally demanding.It should be noted that expansion into orthonormal basis fun
tion isonly appli
able for square-integrable signals. Unstable systems generally



2.6 Order Redu
tion and Stabilization of an Unstable CFDModel 43have responses whi
h are not square-integrable, and 
onsequently the theoryof POD does not apply. In this work, however, the instability is slow, andso the responses do not blow up, and we are able to 
olle
t meaningfulsnapshots and the subsequent POD expansion works well. However, oneshould take 
are when using POD on unstable systems, as these responsesmay blow up and make approximation by an orthonormal basis impossible.





Chapter 3Complexity Redu
tion inExpli
it MPC
In this 
hapter we propose to use model redu
tion te
hniques to makeexpli
it model predi
tive 
ontrol possible for a larger number of appli
a-tions and for longer 
ontrol horizons. The material deviates slightly fromthe rest of the thesis, sin
e we mainly 
onsider models with a relativelylow number of states and, at this point, the results are not appli
able tomost CFD-models. However, we present a design pro
edure that 
an proveessential for a
hieving this goal eventually, as the �eld of expli
it MPC andmultiparametri
 programming is further developed. The 
hapter is basedon Hovland and Gravdahl (2008).3.1 Introdu
tionThe traditional MPC strategy presented in Se
tion 2.4.2 demands a signi�-
ant amount of online 
omputation, limiting the use of this kind of 
ontrollerto pro
esses with relatively slow dynami
s, sin
e an optimization problemis solved at ea
h sampling time. The expli
it solution of the model predi
-tive 
ontrol problem, presented in Se
tion 2.4.4, leads to online 
onstrainedoptimal 
ontrol without having to solve an optimization problem at ea
h45



46 Complexity Redu
tion in Expli
it MPCtime step.The main drawba
k of eMPC is the large in
rease in both o�ine andonline 
omplexity as the state dimension of the system model grows largerand the 
ontrol horizon and the number of 
onstraints are in
reased. Forthis reason, the pro
edure is limited to models of relatively low order, typ-i
ally with less than 10 states. This has motivated the use of 
omplex-ity redu
tion te
hniques, su
h as input parametrization, as dis
ussed inTøndel and Johansen (2002).The main 
ontribution of this 
hapter is the 
ombination of eMPC andrigorous model redu
tion te
hniques with upper bounds on the approxima-tion error, thereby redu
ing the 
omplexity of eMPC. This makes the 
ontrols
heme attra
tive for a number of systems that would otherwise be ex
ludeddue to the high 
omplexity of the resulting 
ontrollers. The proposed use ofmodel redu
tion te
hniques is demonstrated for several appli
ations, amongothers for 
ontrol of fuel 
ell breathing. In all appli
ations, a signi�
ant re-du
tion in 
ontroller 
omplexity is a
hieved.For 
larity, we use the basi
 balan
ed trun
ation algorithm presentedin Se
tion 2.3.2 to 
ompute redu
ed-order models in this 
hapter, albeitte
hniques fo
using on 
losed-loop approximation quality, su
h as LQG bal-an
ed trun
ation or frequen
y-weighted balan
ed trun
ation, are assumedto further improve performan
e in our results.3.2 Redu
ed-Order MPCRedu
ed-order models will be used to design output-feedba
k eMPC 
on-trollers for the systems. The eMPC 
ontrol input is 
omputed based onthe redu
ed state ve
tor xr (k) at every time step k, and xr must thereforebe estimated by an observer, based on measurements from the plant (orthe output of the original model). When we are dealing with output 
on-straints, it is parti
ularly important that the output of the redu
ed-ordermodel is a good estimate of the plant output, in order to satisfy the output
onstraints for the plant. The observer(s) should therefore a

ount for theapproximation error in the redu
ed model.



3.2 Redu
ed-Order MPC 47A basi
 linear observer su
h as the Luenberger observer, does not a
-
ount expli
itly for un
ertainties, that are ampli�ed by the observer gainmatri
es. Consequently, the state estimate may not be a

urate enough inthe presen
e of model perturbation. We therefore follow 
ommon pra
ti
ein the literature (Astrid et al., 2002, Muske and Rawlings, 1993), and use aKalman �lter, whi
h is known to have desirable properties for systems withnoise in outputs and state equations. The Kalman �lter is here de�ned interms of the dis
retized redu
ed model with added noise,
x̂r (k + 1) = Arx̂r (k) + Bru (k) + Γw (k) (3.1a)

yr (k) = Crx̂r (k) + v (k) , (3.1b)where v (k) and w (k) are assumed to be zero mean white noise pro
esseswith 
ovarian
e matri
es Rk = RT
k ≻ 0 and Qk = QT

k ≻ 0, respe
tively, andwhere Γ de�nes the mapping between w and the di�erent states. In thissetup, the noise pro
esses are expe
ted to a

ount for un
ertainty in thestate equations through Γw (k), and the un
ertainty in the output through
v (k). The 
losed-loop system with Kalman �lter and expli
it model pre-di
tive 
ontroller takes the general form of Figure 2.4.A number of questions regarding robust stability, feasibility and robust
onstraint ful�llment arises when the redu
ed model is used to 
ontrol thehigh-order model. Sin
e the expli
it MPC solution is equivalent to the stan-dard MPC solution, many methods for robust stability analysis developedfor standard MPC (see e.g. Bemporad and Morari, 1999) 
an be used to
on
lude stability for the redu
ed-order eMPC in the presen
e of the un
er-tainty introdu
ed through the model redu
tion pro
ess. Some re
ent resultson MPC stability in the presen
e of model un
ertainty have been developed(Heath et al., 2005b, Heath and Wills, 2005, Heath et al., 2005a). Also,tests for robust MPC stability of input-
onstrained systems with unstru
-tured un
ertainty have re
ently been established by Løvaas et al. (2007b).In Chapter 4 we develop 
riteria for guaranteeing stability of MPC basedon redu
ed-order models. In this 
hapter, however, we use the nominalmodel (the redu
ed model) for 
ontroller design, and address 
ertain robust-ness issues during the design stage. While we do not expli
itly analyze the



48 Complexity Redu
tion in Expli
it MPCrobustness of the redu
ed model predi
tive 
ontroller in this 
hapter, goodperforman
e is a
hieved by ad ho
 tuning based on exhaustive simulationsfor ranges of operating 
onditions. In many 
ases this approa
h leads to bet-ter performan
e than using robust MPC te
hniques (Bemporad and Morari,1999). Choosing the right robust MPC te
hnique is an art, and mu
h ex-perien
e is ne
essary to make it work.Given the un
ertainty introdu
ed through the model redu
tion pro
ess,one 
annot guarantee that feasibility of the underlying optimization problemis maintained and that the 
onstraints on the states/outputs are ful�lled.This problem 
an be handled through the use of soft 
onstraints. Con-straints on the states/outputs often represent desirable operational limitsrather than fundamental operational 
onstraints. In addition, from a pra
-ti
al point of view it does not make sense to use tight state 
onstraintsbe
ause of the presen
e of noise, disturban
es and numeri
al errors. Relax-ing the state 
onstraints in e�e
t removes the feasibility problem, at leastfor stable systems (Bemporad and Morari, 1999). Exa
t penalty fun
tions
an be used to allow 
onstraint violation only when absolutely ne
essary(Kerrigan and Ma
iejowski, 2000b).
3.3 Case StudiesThe proposed 
ontrol stru
ture will be demonstrated using 6 di�erent ran-dom systems to illustrate the potential for 
omplexity redu
tion, and twospe
i�
 examples to show performan
e when using redu
ed-order eMPC.By implementing the pie
ewise a�ne fun
tion as a binary sear
h tree,the online 
omputational time is logarithmi
 in the number of polyhedrain the state spa
e partition (Tøndel et al., 2003). The online memory andpro
essing requirements in
rease with the number of regions in the partition.This number is therefore used in the following as a measure of 
omplexityof the expli
it model predi
tive 
ontroller, and a redu
tion in the numberof regions is 
onsidered to be a redu
tion in 
ontroller 
omplexity.



3.3 Case Studies 493.3.1 Example 1Without 
onsidering approximation quality and 
losed-loop performan
e,
6 di�erent random systems of order n = 6, with two inputs and two out-puts have been 
onsidered. For all six systems, the inputs and outputs are
onstrained su
h that

|ui| ≤ 1, i = 1, 2 (3.2)
|yi| ≤ 1, i = 1, 2 (3.3)and the 
ontrol horizon is �xed at Nu = 4. The resulting 
ontroller 
omplex-ity is tabulated in Table 3.1. The table shows that eMPC for the originalsystem is very demanding, with O

(
105

) polyhedral in the state spa
e parti-tion. But by trun
ating only one state, the 
ontroller 
omplexity is redu
edto a manageable level, as the number of regions is redu
ed by two orders ofmagnitude. System/r 3 4 5 6

1 603 1447 1487 117573
2 625 1549 1589 122675
3 519 1095 1145 109656
4 539 1125 1136 95896
5 537 1033 1755 116438
6 513 1461 2145 109711Table 3.1: Example 1: Controller 
omplexity (in terms of number of regionsin the state spa
e) for 6 random systems with two inputs and two outputs,with upper and lower bounds on inputs and outputs.3.3.2 Example 2For a random stable LTI system of order n = 15, the input is 
onstrainedsu
h that |u| ≤ 5 and the output is 
onstrained su
h that |y| ≤ 1. Figure 3.1
ompares the 
omplexity of the eMPC solution for di�erent model orders
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it MPC
r and di�erent 
ontrol horizons Nu for this example. For all r and Nu, weset Q = 103 ·CT

r Cr and R = 10−3. The �gure illustrates that the 
ontroller
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ements
NuFigure 3.1: Example 2: Complexity in terms of number of regions in theeMPC solution, for di�erent model orders r and di�erent 
ontrol horizons

Nu. For r = 13, 14 and 15, no solutions have been found with 
ontrolhorizon Nu = 9, indi
ated by the dotted line and the question mark. Thesystem order should be redu
ed to r = 7 or even r = 6 to obtain a signi�
antredu
tion in 
omplexity.
omplexity in
reases by over an order of magnitude as we in
lude morestates in the redu
ed model and in
rease the 
ontrol horizon Nu. For r = 3,the number of regions ranges from 155 for Nu = 5 to 1287 for Nu = 10. Forthe original 15th order model, we are unable to 
ompute the state spa
e
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r Error bound
3 1.4× 10−1

4 7.4× 10−2

5 3.3× 10−2

6 6.7× 10−3

7 3.1× 10−3

8 1.5× 10−4

9 2.0× 10−6

10 3.5× 10−7

11 2.7× 10−8

12 4.5 × 10−10

13 5.5 × 10−14

14 4.3 × 10−17Table 3.2: Bound on model redu
tion error for Example 2.partition for Nu > 8, due to the formidable 
omputational requirement.The state spa
e partition 
omprises 27442 regions for Nu = 8. For r = 12,the number of regions in the state spa
e partition is 55139 for Nu = 9.The model redu
tion error bound (2.9) is shown in Table 3.2, and illus-trates the trade-o� that must be made between 
ontroller 
omplexity andquality of the redu
ed model, and 
onsequently the quality of the resulting
ontroller.From Figure 3.1 it 
an be seen that by redu
ing the number of statesdown to 6, the 
ontroller 
omplexity remains relatively low for the 
ontrolhorizons 
onsidered. We therefore generate our expli
it model predi
tive
ontroller using 6 states in the redu
ed model. For r = 6, the error boundis ‖G (s)− Gr (s)‖∞ ≤ 6.7 × 10−3. Still, the eMPC 
ontroller based on the
6th order redu
ed model is su�
ient for 
ontrol, as illustrated in Figure 3.2,where it 
an be seen that both the input and the output are kept withintheir bounds, when the plant is initialized with a representative non-zerostate ve
tor. The horizon length is Nu = 9 and the expli
it MPC solutionbased on the redu
ed-order model 
onsists of 7625 polyhedral. The �gure



52 Complexity Redu
tion in Expli
it MPCshows the performan
e with eMPC based on the full-order model, with a
ontrol horizon Nu = 8, for whi
h the 
ontroller 
onsists of 27442 regions.Although the error bound merely establishes a bound on the error be-tween the two transfer fun
tions in open loop, it does not guarantee perfor-man
e, degree of sub-optimality and 
onstraint satisfa
tion for the 
losedloop system. It is nevertheless an indi
ation that a great redu
tion in 
om-plexity might be a
hieved without 
ompromising the performan
e.
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onstrainedbetween ±5.



3.3 Case Studies 533.3.3 Example 3This example is a s
aled, linearized model for 
ontrol of fuel 
ell breathing,as des
ribed in Pukrushpan et al. (2004). The model is a stable LTI systemwith one input (
ompressor voltage), two performan
e variables z (systemnet power and oxygen ex
ess ratio) and 8 states. Fo
using on the method-ology presented above, we use a slightly simpli�ed version of the model inPukrushpan et al. (2004). In our simpli�ed model, we ignore disturban
es(sta
k 
urrent), and assume that the performan
e variables z are measured,whi
h amount to setting the output y = z. We dis
retize the model withsampling time Ts = 1ms, and derive redu
ed-order models with r = 3 to
r = 7 states. For these redu
ed models, we solve the eMPC o�ine problemfor eMPC horizons 1-5, with bounds on the input and outputs:

|u| ≤ 5, |y1| ≤ 0.03, |y2| ≤ 0.2. (3.4)We set the weight matri
es to be Q = 1000 × CT
r Cr and R = 1. The
omplexity of di�erent eMPC 
ontrollers for this example is shown in Table3.3, while the model redu
tion error bound (2.9) is shown in Table 3.4. It
an be seen from Table 3.3 that the 
omplexity of the 
ontroller in
reasesrapidly for the original model (r = 8), while the in
rease is less pronoun
edfor r = 3 and r = 4. The tables also show that by trun
ating 4 states, the
ontroller 
omplexity is redu
ed by an order of magnitude for Nu = 5, at the
ost of introdu
ing an approximation error ‖G (s)− Gr (s)‖∞ ≤ 1.3× 10−4.If we redu
e the number of states down to r = 3, the number of regionsin the state spa
e partition is redu
ed by over two orders of magnitude
ompared to the original model, for Nu = 5. By trun
ating only one state,the number of regions is redu
ed by 34% for Nu = 5.The simulation in Figure 3.3 shows the di�eren
e in 
losed loop behaviorwhen using the full-order model with 8 states, and redu
ed-order modelswith 3 and 7 states.In this simulation, the eMPC horizon is Nu = N = 5, whi
h gives 105regions in the 
ontroller for r = 3, 9964 regions for r = 7 and 14999 regionsfor the full-order model with 8 states. Moreover, it 
an be seen that both
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r/Nu 1 2 3 4 5

3 7 19 41 69 105
4 7 51 237 740 1813
5 7 55 333 1472 5020
6 7 55 331 1575 6068
7 7 57 393 2186 9964
8 7 61 445 2695 14999Table 3.3: Controller 
omplexity for Example 3. r = 8 
orresponds to nomodel trun
ation (r = n).

r Error bound
3 1.6 × 10−3

4 1.3 × 10−4

5 4.9 × 10−5

6 4.4 × 10−6

7 2.6 × 10−7Table 3.4: Bound on model redu
tion error for Example 3.outputs remain within their bounds. The sub-optimality of the redu
ed-order 
ontrollers is 
learly illustrated in the plot.3.4 Con
luding RemarksIt has been demonstrated that the performan
e of eMPC based on redu
ed-order models is of 
omparable quality to that of eMPC for the originalsystems. It is possible to use longer 
ontrol horizons, while at the same timekeeping the 
ontroller 
omplexity low, at the 
ost of some 
ontroller sub-optimality. The degree of 
omplexity redu
tion depends on the appli
ation,but is shown to be signi�
ant in all our examples. For input-
onstrainedand soft-
onstrained systems, the approa
h is espe
ially attra
tive, sin
e therequirements to satisfy the output 
onstraints need not be met. However,
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Figure 3.3: Example 3: Closed-loop response to a disturban
e at t = 0.05 s.The �gure 
ompares the performan
e for the full-order model (FOM), andredu
ed models with r = 3 (r3) and r = 7 (r7), all with Nu = 5.further work fo
uses on developing guarantees for satisfa
tion of output
onstraints.





Chapter 4Stability of MPC Based onRedu
ed-Order Models
In this 
hapter, we present a novel, systemati
 pro
edure for obtaining
losed-loop stable output-feedba
k model predi
tive 
ontrol based onredu
ed-order models. The design uses linear state estimators, and appliesto open-loop stable systems with hard input- and soft state 
onstraints.Robustness against the model redu
tion error is obtained by 
hoosing the
ost fun
tion parameters so as to satisfy a linear matrix inequality 
ondition.We also show by means of an example, that performan
e is maintained evenwhen the model redu
tion error is relatively large. This 
hapter is based onHovland et al. (2008a).4.1 Introdu
tionThe use of model redu
tion te
hniques along with MPC is desirable in manyappli
ations, in order to redu
e the online 
omplexity in implementationsthat would otherwise run too slowly. In Se
tion 3 we demonstrated howa signi�
ant redu
tion in 
omplexity 
ould be a
hieved by trun
ating onlya few number of states, in parti
ular when the MPC horizons are large.The online 
omplexity redu
tion 
ame at the 
ost of introdu
ing an ap-57



58 Stability of MPC Based on Redu
ed-Order Modelsproximation error in the 
losed-loop system. With the introdu
tion of theapproximation error, questions 
on
erning 
losed-loop stability and feasi-bility arise. These are very important issues to address, sin
e 
ontrollersdesigned based on redu
ed-order models might stabilize the redu
ed-ordermodel and not the plant (Linnemann, 1988).The results in this 
hapter are based on the previous work Løvaas et al.(2007a,b, 2008) on robust output-feedba
k MPC for systems with un
er-tainties. Here, we spe
ialize these results to the 
ase of redu
ed-order mod-els. We ensure stability by 
hoosing the 
ost fun
tion parameters so as tosatisfy a set of linear matrix inequality (LMI) 
onditions, thereby guaran-teeing a de
reasing Lyapunov fun
tion at ea
h time step. To the best of ourknowledge, this is the �rst result that deals systemati
ally with the modelredu
tion error in model predi
tive 
ontrol. The results make MPC moreattra
tive for a number of systems that would otherwise be ex
luded due tothe high 
omplexity of the resulting 
ontrollers.In order to guarantee feasibility of the MPC problem, we adopt the soft
onstraints formulation of Løvaas et al. (2008), in whi
h an additional hori-zon is introdu
ed to redu
e the number of the sla
k variables. Consequently,the size of the optimization problem is also redu
ed 
ompared to standardapproa
hes, su
h as S
okaert and Rawlings (1999). This extra feature �tsni
ely into our design, sin
e our goal is to to make our MPC pro
edure moree�
ient by introdu
ing redu
ed-order models.The traditional MPC strategy requires signi�
ant online 
omputation,limiting the use of this kind of 
ontroller to pro
esses with small systemstate dimension or relatively slow dynami
s, sin
e the optimization problemthat is solved at ea
h sampling time 
an otherwise be
ome large. Remediessu
h as �input blo
king", short horizons et
. are 
ommonly used to redu
ethe 
omplexity and online 
omputational times. Fast implementation ofmodel predi
tive 
ontrol in real-time systems has been 
onsidered, amongothers, by Bleris and Kothare (2005) and Panno

hia et al. (2007). Also, itwas proposed in Bemporad et al. (2002) to solve multiparametri
 quadrati
programs (mpQPs) that 
an be used to obtain expli
it solutions to theMPC problem, su
h that the 
ontrol input 
an be e�
iently 
omputed byevaluating a pie
ewise a�ne fun
tion of the system state. Still, as the



4.2 System Des
ription 59state dimension and the 
ontrol horizon and the number of 
onstraints arein
reased, a large in
rease in both o�ine and online 
omplexity follows. The
urrent work addresses these issues by using redu
ed-order models.The 
hapter outline is as follows: In Se
tion 4.2 we des
ribe the sys-tem formulations that we will 
onsider. The nominal state-feedba
k designpresented in Se
tion 4.3 lays the foundation for the redu
ed-order MPCdes
ribed in Se
tion 4.4, of whi
h we prove stability in Se
tion 4.5. In Se
-tion 4.6 we propose a pro
edure for synthesis of a robust MPC design, andwe demonstrate performan
e through a numeri
al example in Se
tion 4.7.Con
luding remarks 
an be found in Se
tion 4.8.Throughout we use the following notation: ‖x‖2P denotes xT Px, [a, · · · , c]denotes [
aT · · · cT

]T and In denotes the n× n identity matrix.4.2 System Des
riptionWe 
onsider a stable, linear, dis
rete-time plant, des
ribed by the knownmodel
xk+1 = Axk + Buk (4.1a)

yk = Cxk, (4.1b)where x ∈ R
n, u ∈ R

m and y ∈ R
p denote the state, input and output,respe
tively, and the matri
es A, B and C are of appropriate dimensions.It has not been 
onsidered whether the following theory 
an be extendedto des
riptor models of the form (2.1). For des
riptor models with non-singular mass matrix E, one 
an of 
ourse apply the theory by inverting Eand multiplying throughout the state equation. The system is subje
t tothe following 
onstraints

V uk ≤ v, ∀k ≥ 0 (4.2a)
Hxk ≤ h, ∀k ≥ 0, (4.2b)where V ∈ R

nv×m, v ≥ 0, and H ∈ R
nh×n.



60 Stability of MPC Based on Redu
ed-Order ModelsThe input 
onstraints (4.2a) are hard 
onstraints, that must be respe
tedat all time, whereas the state 
onstraints (4.2b) are soft 
onstraints, andwill be treated by penalizing 
onstraint violation in the MPC 
ost fun
tion.This is a natural assumption, sin
e input 
onstraints, su
h as a
tuator- andvalve limitations are physi
al limitations that 
annot be ex
eeded. State-and output 
onstraints, on the other hand, often represent desirable, ratherthan absolute limitations.4.2.1 Redu
ed-Order Nominal ModelThe plant model (4.1) is assumed to be of su
h a dimension that the online
omputational requirements 
on�i
t with the time available to 
ompute the
ontrol input. For the purpose of MPC design, we therefore generate aredu
ed-order model (ROM), by redu
ing the order of (4.1) using an ap-propriate model redu
tion te
hnique, su
h as any of the methods presentedin the previous 
hapters.The nominal model obtained by model redu
tion is denoted by
xrk+1

= Arxrk
+ Bruk (4.3a)

yrk
= Crxrk

, (4.3b)where xr ∈ R
r su
h that r < n, yr ∈ R

p, Ar ∈ R
r×r, Br ∈ R

r×m and
Cr ∈ R

p×r. The nominal model must respe
t the 
onstraints (4.2). Toenable this, we make the following assumption:Assumption 2. It is assumed that the 
onstraints (4.2b) apply to the out-puts of (4.1), and 
onsequently apply naturally to the outputs of (4.3). This
an easily be a
hieved by 
hoosing any states that should be 
onstrained asoutputs of the plant.Remark 4. Asso
iated with the redu
ed-order model is an approximationerror that 
an be quanti�ed in general terms as follows: When substituting(4.3) for (4.1), the minimum a
hievable Hankel norm of the error systemis equal to the (r + 1)-st Hankel singular value of the original system (4.1)(Adamjan et al., 1971, Glover, 1984, Gu, 2005). This error needs to bea

ounted for in the 
ontroller design.
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k 614.3 Nominal Case with State Feedba
kIn this se
tion we present the soft-
onstrained state-feedba
k MPC pol-i
y proposed in Løvaas et al. (2008) for the nominal system (4.3), whendisregarding the approximation error. The state-feedba
k poli
y will subse-quently be used in Se
tion 4.4 to develop a robust output-feedba
k poli
yfor the system (4.1) based on the redu
ed-order model (4.3).The following optimization problem leads to an MPC s
heme with guar-anteed nominal stability:
[
PN,Nε

]
: J∗ (xr) = min

U,ǫ,e
J (xr, U, ǫ, e)

s.t.


xr0
= xr

xri+1
= Arxri

+ Brui

V ui ≤ v, ∀i ∈ {0, · · · , Nu − 1}
ui = 0, ∀i ≥ Nu

Hxri
≤ h + ǫi, ∀i ∈ {0, · · · , Nǫ − 1}

Hxri
≤ h + HAi−Nǫ

r e, ∀ ∈ i {Nǫ, · · · , N − 1}
TxrN

≤ t + TAN−Nǫ
r e,

(4.4)
Here,

U =






u0...
uNu−1




and

ε =






ǫ0...
ǫNǫ−1




are the sequen
e ofNu inputs and Nǫ sla
k variables to be optimized over thehorizons Nu and Nǫ, and e ∈ R

r is an additional ve
tor of sla
k variablesthat has been introdu
ed to summarize 
onstraint violation beyond the
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ed-Order Modelspredi
tion time i = Nǫ − 1. N is the predi
tion horizon. Further,
J (xr, U, ε, e) ,







xr

U
ε
e







T

P







xr

U
ε
e







(4.5)is the 
ost fun
tion, for some appropriate matrix P whose sele
tion will beexplained below, and the matrix T and the ve
tor t des
ribe a �terminal
onstraint set". T and t 
an e.g. be 
hosen so that the terminal 
onstraintset equals the maximal output admissible set asso
iated with the state 
on-straints (4.2b) (see e.g. Gilbert and Tan, 1991). We let U∗, ε∗ and e∗ denotethe optimal values of U , ε and e, resulting from [
PN,Nε

]. We let the set
S ,

{[
xr U ε e

]T
|
[
xr U ε e

]T satisfy [
PN,Nε

]}

, (4.6)su
h that we 
an write the 
onstraints in [
PN,Nε

] as






xr

U
ε
e






∈ S. (4.7)Remark 5. Note that by 
hoosing the parameters in [

PN,Nε
] in an ap-propriate way (see Løvaas et al., 2008), the formulation is equivalent tothe standard soft-
onstrained MPC in S
okaert and Rawlings (1999). Somespe
ial features of our parti
ular formulation is however 
ru
ial in our questfor robustly stable MPC based on redu
ed-order models.To help des
ribe various 
onditions on [

PN,Nε
] and on the 
ost fun
tionmatrix P , 
onsider the following autonomous predi
tion system:







xrn+1

Un+1

εn+1

en+1







=







Ar [Br 0 · · · 0] 0 0
0 Γ (Nu, nu) 0 0
0 0 Γ (Nǫ, nh) H̄
0 0 0 Ar







︸ ︷︷ ︸

Ā0







xrn

Un

εn

en







, (4.8)
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k 63where
H̄ =






0...
H




 ,and where Γ

(
N̄ , n̄

) is a matrix su
h that, using
Ū =






ū0...
ūN̄−1




 ,we have

Γ
(
N̄ , n̄

)
Ū =








ū1...
ūN̄−1

0








,that is
Γ

(
N̄ , n̄

)
=












0 In̄ 0 · · · 0... 0 In̄
. . . ...... ... . . . . . . 0... 0 · · · 0 In̄

0 0 · · · 0 0












∈ R
N̄n̄×N̄n̄. (4.9)Remark 6. Note that if Nǫ = N and P satis�es

ĀT
0 PĀ0 − P + C̄T

0 diag [Q,R, S] C̄0 = 0, (4.10)where Ā0 is de�ned in (4.8), Q ∈ R
r×r, Q ≥ 0, R ∈ R

m×m, R > 0,
S ∈ R

nh×nh, S > 0, and where the matrix C̄0 is su
h that
C̄0







xr

U
ε
e







=





xr

u0

ǫ0



 ,
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ed-Order Modelsthen the 
ost fun
tion (4.5) satis�es
J (xr, U, ε, e) =

∥
∥xrNu

∥
∥2

PF
+

Nu−1∑

i=0

(

‖xri
‖2Q + ‖ui‖

2
R

)

+ ‖e‖2Π +
N−1∑

i=0

‖ǫi‖
2
S , (4.11)where

AT
r PF Ar − PF = −Qand

AT
r ΠAr −Π = −HTSH,and where xri

is given by [
PN,Nε

] (Løvaas et al., 2008).Remark 7. Note that the set S is invariant for the system (4.8), namely
Ā0

[
xr U ε e

]T
∈ S, ∀

[
xr U ε e

]T
∈ S. (4.12)The state-feedba
k MPC design proposed in Løvaas et al. (2008) is basedon [

PN,Nǫ
] as follows:Algorithm 2. Nominal State-Feedba
k MPCO�ine:1. Choose any integers N , Nu and Nǫ satisfying N ≥ Nu ≥ 1, N ≥ Nǫ ≥

1.2. Choose any matri
es Q ≥ 0, R > 0 and S > 0.3. Choose P that satis�es (4.10).4. Choose any T and t su
h that the set XF , {xr|Txr ≤ t} satis�es
Arxr ∈ XF ,∀xr ∈ XF , XF ⊆ {xr|Hxr ≤ h} . (4.13)
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k 65Online: At ea
h time step k ≥ 0, solve [
PN,Nε

], using xr = xrk
, then apply

uk =
[
I 0 · · · 0

]
U∗ (xr) to (4.3).Remark 8. Note that [

PN,Nε
] is always feasible, sin
e a parti
ular feasiblesolution is given by







xr

U
ε
e







= KF xr,where
KF =












0
H

HAr...
HANǫ−1

r

ANǫ
r












. (4.14)The following theorem establishes 
losed-loop stability when applyingAlgorithm 2 to the nominal system (4.3), disregarding the plant (4.1) alto-gether.Theorem 4. The 
losed-loop system under Algorithm 2 is globally expo-nentially stable. Moreover, the 
losed-loop traje
tories satisfy
∞∑

k=0

‖xrk
‖2Q + ‖uk‖

2
R + ‖ǫ∗k‖

2
S ≤ J∗ (xr0

) , (4.15)where ǫ∗k denotes the �rst blo
k 
omponent of ε∗ (xrk
).Proof. This is theorem 3 in Løvaas et al. (2008), where the proof 
an befound. �We have now established stability of the MPC design of Algorithm 2,when applied to (4.3) only. In other words, we have shown that the 
losed-loop system 
onsisting of only the redu
ed-order model and the model pre-
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ed-Order Modelsdi
tive 
ontroller is stable. In the next se
tion, we take the model approxi-mation errors into a

ount.4.4 Redu
ed-Order MPC with Output Feedba
kIn this se
tion, we propose an output-feedba
k MPC pro
edure based onthe redu
ed-order model (4.3), in whi
h we take into a

ount the errorintrodu
ed through the model redu
tion pro
ess. We also prove 
losed-loopstability when applying this 
ontroller to the plant (4.1).The MPC 
ontrol input is 
omputed based on the redu
ed-order stateve
tor xk at ea
h time step, and xk should therefore be estimated by anobserver, using measurements yk from the plant. We 
onsider a linear esti-mator of the form̂
xrk+1

= Arx̂rk
+ Bruk + L (yk − Crx̂rk

) , (4.16)where x̂rk
denotes the estimated redu
ed state at time step k, and we 
hoose

L su
h that (Ar − LCr) is S
hur (i.e. the eigenvalues lie stri
tly inside theunit dis
). Other observer stru
tures may also be feasible, although this hasnot been studied further.When un
ertainties are taken into a

ount, we will make use of thefollowing matrix fun
tion:
Σ{Q,R,S} (P ) , ĀT

0 PĀ0 − P + C̄T
0 diag [Q,R, S] C̄0. (4.17)The nominal 
ost fun
tion matrix, denoted by P0, is retrieved by solving

Σ{Q,R,S} (P ) = 0, whi
h we 
an write as
Σ{Q,R,S} (P0) = 0. (4.18)Requiring Σ{Q,R,S} (P ) ≤ 0 implies P ≥ P0. We will use Σ{Q,R,S} (P ) at alater stage to sear
h for a P that gives a 
ost fun
tion for the robust 
asethat is an upper bound on the nominal 
ost.The proposed output-feedba
k poli
y for the system, 
onsidering theun
ertainties, 
an now be des
ribed as follows:
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k 67Algorithm 3. Output-Feedba
k MPC with Redu
ed ModelO�ine:1. Generate a redu
ed-order model (4.3).2. Design a state estimator (4.16) based on the redu
ed-order model.3. Choose any integers N , Nu and Nǫ satisfying N ≥ Nu ≥ 1, N ≥ Nǫ ≥
1.4. Choose any matri
es Q ≥ 0, R > 0 and S > 0.5. Choose any matrix P satisfying Σ{Q,R,S} (P ) ≤ 0.6. Choose any T and t su
h that the set XF = {xr|Txr ≤ t} satis�es(4.13).Online: At ea
h time step k ≥ 0, solve [

PN,Nε
] using xr = x̂rk

, then apply
uk =

[
I 0 · · · 0

]
U∗ (x̂rk

) to (4.1).Remark 9. Note that we 
an always �nd P su
h that
Σ{Q,R,S} (P ) ≤ 0.This follows trivially from stability of (4.8), and by re
ognizing that

ĀT
0 PĀ0 − P + C̄T

0 diag [Q,R, S] C̄0is nothing more than a parti
ular dis
rete-time Lyapunov equation for sys-tem (4.8). Hen
e, sin
e
C̄T

0 diag [Q,R, S] C̄0 > 0,there always exists a P su
h that Σ{Q,R,S} (P ) = 0.In the following se
tion, we will prove stability of the proposed output-feedba
k poli
y.
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ed-Order Models4.5 Robust Stability TestNow, we propose LMI 
onditions on the 
ost fun
tion matrix P that aresu�
ient for 
losed-loop stability. To this end, we de�ne the augmentedstate
x̄ , [x, x̂r] , (4.19)where x is the plant state and x̂r is the estimated ROM state. The dynami
sof x̄ in 
losed-loop are des
ribed by

x̄k+1 = Āx̄k + B̄µk, x̄0 = [x0, x̂r0
] (4.20)

x̂rk
= C̄x̄rk

, (4.21)where
Ā =

[
A 0

LC Ar − LCr

]

, (4.22)
B̄ =

[
BD1

BrD1

]

, (4.23)
C̄ =

[
0 I

]
, (4.24)and

D1 =
[
I 0 · · · 0

]is su
h that
uk = D1µk,where

µk =





U∗
k

ε∗k
e∗k



 (4.25)
ontains the minimizers of [
PN,Nε

] at time step k. The matrix L is the gainof the state estimator (4.16).For the purpose of stability analysis, we need to establish a feasiblesolution µF
k+1 to [

PN,Nε
] at time step k+1, based on the optimal solution µkat the previous time step k. The following lemma establishes the existen
esu
h a solution.



4.5 Robust Stability Test 69Lemma 1. Let Ā and B̄ be de�ned as in (4.22) and (4.23). Then
F1 = KF

[
LC −LCr

] (4.26)and
F2 =





Γ (Nu, nu) 0 0
0 Γ (Nǫ, nh) H̄
0 0 Ar



 , (4.27)are su
h that
µF

k+1 = F1x̄k + F2µk (4.28)is a feasible solution to [
PN,Nε

] at time step k + 1, where, KF is as in(4.14).Proof. The 
losed-loop dynami
s are given by (4.20) and (4.28), whi
h we
an write
[
x̄k+1

µk+1

]

=

[
Ā B̄
F1 F2

] [
x̄k

µk

]

. (4.29)We need to verify that
[

Ā B̄
F1 F2

] [
x̄k

µk

]

∈ R
n × S, ∀

[
x̄k

µk

]

∈ R
n × S, (4.30)where S is as in (4.6). Expanding (4.29) allows us to write





xk+1

x̂rk+1

µk+1



 =





Axk + BD1µk

Arx̂rk
+ BD1µk +

[
LC −LCr

]
x̄k

KF

[
LC −LCr

]
x̄k + F2µk



 . (4.31a)Now, it is straightforward to �nd a matrix G su
h that the set S in (4.6)
an be written as
S =

{[
xr µ

]T
|Gµ−GKF xr ≤ g

}

, (4.32)



70 Stability of MPC Based on Redu
ed-Order Modelswhere g ,
[
v v . . . h . . . h t

]T
≥ 0. Inserting [

x̂rk+1
µk+1

] into(4.32) gives
Gµk+1 −GKF x̂rk+1

≤ g (4.33a)
⇓

GF2µk −GKF (Arx̂rk
+ BD1µk) ≤ g. (4.33b)Now, to see that inequality (4.33b) holds, we note from (4.8) that

[
Arx̂rk

+ BD1µk

F2µk

]

= Ā0

[
x̂rk

µk

]

. (4.34)Consequently, the result follows from (4.12). �As the �nal step towards our stability result, we need to �nd a suitable
ost fun
tion matrix P . To this end we introdu
e the following de�nitions:
Ω (Ω0, P ) ,

[
Ω0 0
0 0

]

+ DT
P PDp, (4.35)with

DP =

[
C̄ 0
0 Inµ

]

, (4.36)and Ω0 ∈ R
(n+r)×(n+r).

Φ (Ω0, P ) ,

[
Ā B̄
F1 F2

]

Ω (Ω0, P )

[
Ā B̄
F1 F2

]

− Ω (Ω0, P ) . (4.37)The stability test for Algorithm 3 
an now be stated as follows.Theorem 5. Assume that, for a given P , there exists a matrix Ω0 ∈
R

(n+r)×(n+r) su
h that,
Ω (Ω0, P ) > 0 (4.38a)
Φ (Ω0, P ) < 0, (4.38b)where Ω (Ω0, P ) is as de�ned in (4.35) and Φ (Ω0, P ) is as de�ned in (4.37).Then the 
losed-loop system under Algorithm 3 is exponentially stable.



4.5 Robust Stability Test 71Proof. Proving stability follows the well-known path (Mayne et al., 2000)of �rst showing re
ursive feasibility, and then showing that there exists aLyapunov fun
tion for the 
losed-loop system that de
reases at ea
h timestep. Feasibility at ea
h time step has been established in Lemma 1. Now,
onsider the Lyapunov fun
tion 
andidate
V (x̄, µ) ,

∥
∥
∥
∥

[
x̄
µ

]∥
∥
∥
∥

2

Ω(Ω0,P )

, (4.39)whi
h is positive de�nite in view of (4.38a), and where µ denotes the mini-mizers of [
PN,Nε

], as in (4.25). At time step k, we have
V ∗

k , V (x̄k, µk) =

∥
∥
∥
∥

[
x̄k

µk

]∥
∥
∥
∥

2

Ω(Ω0,P )

(4.40)
= ‖x̄k‖

2
Ω0

+

∥
∥
∥
∥

[
C̄x̄k

µk

]∥
∥
∥
∥

2

P

(4.41)
= ‖x̄k‖

2
Ω0

+

∥
∥
∥
∥

[
x̂rk

µk

]∥
∥
∥
∥

2

P

(4.42)
= ‖[x̄k]‖

2
Ω0

+ J∗
k , (4.43)where x̂r takes the pla
e of the nominal state. Similarly, at the next timestep k + 1, the Lyapunov fun
tion 
andidate is given by

V ∗
k+1 , V (x̄k+1, µk+1) =

∥
∥
∥
∥

[
x̄k+1

µk+1

]∥
∥
∥
∥

2

Ω(Ω0,P )

(4.44)
= ‖[x̄k+1]‖

2
Ω0

+ J∗
k+1. (4.45)Now µF

k+1, as in (4.28), 
an be used to derive a bound for V ∗
k+1. Sin
e

V F
k+1 , V

(
x̄k+1, µ

F
)

=

∥
∥
∥
∥

[
x̄k+1

F1x̄k + F2µk

]∥
∥
∥
∥

2

Ω(Ω0,P )

(4.46)
= ‖x̄k+1‖

2
Ω0

+
∥
∥
[
x̂rk+1

, UF
k+1, ǫ

F
k+1, e

F
k+1

]∥
∥

2

P
(4.47)
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ed-Order Modelsand
V ∗

k+1 =
∥
∥
[
xk+1, x̂rk+1

]∥
∥2

Ω0
+ J∗

k+1, (4.48)we have that
(δV )k+1 , V (x̄k+1, µk+1)− V

(
x̄k+1, µ

F
k+1

) (4.49)
= ‖x̄k+1‖

2
Ω0

+ J∗
k+1 − ‖x̄k+1‖

2
Ω0

(4.50)
−

∥
∥
[
x̂rk+1

, UF
k+1, ǫ

F
k+1, e

F
k+1

]∥
∥

2

P

= J∗
k+1 −

∥
∥
[
x̂rk+1

, UF
k+1, ǫ

F
k+1, e

F
k+1

]∥
∥

2

P
, (4.51)and it follows that

(δV )k+1 ≤ 0, (4.52)sin
e µF
k+1 is feasible and

Jk+1

(
µF

k+1

)
≥ J∗

k+1.Obviously, this implies
V ∗

k+1 ≤ V F
k+1. (4.53)Now, it remains to show that

V F
k+1 − V ∗

k ≤ α‖x̄k‖
2, (4.54)for (some arbitrarily small) s
alar α > 0. For that purpose, we use theproperty (4.38b). At time step k, we have

[
x̄k

µk

]T

Φ (Ω0, P )

[
x̄k

µk

] (4.55)
=

[
x̄k

µk

]T [
Ā B̄
F1 F2

]T

Ω (Ω0, P )

[
Ā B̄
F1 F2

] [
x̄k

µk

]

− V ∗
k . (4.56)Now, note that

[
Ā B̄
F1 F2

] [
x̄k

µk

]

=

[
Āx̄k + B̄µk

F1x̄k + F2µk

] (4.57)
=

[
x̄k+1

µF
k+1

]

, (4.58)
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k+1 is the feasible solution, as de�ned in equation (4.28). By insert-ing (4.58) into (4.56), we have that

[
x̄k

µk

]T

Φ (Ω0, P )

[
x̄k

µk

] (4.59)
=

[
x̄k+1

µF
k+1

]T

Ω (Ω0, P )

[
x̄k+1

µF
k+1

]

− V ∗
k (4.60)

=

∥
∥
∥
∥

[
x̄k+1

µF
k+1

]∥
∥
∥
∥

Ω(Ω0,P )

− V ∗
k (4.61)

= V F
k+1 − V ∗

k (4.62)Sin
e the inequality (4.38b) is stri
t it then follows that (4.54) holds forsome α > 0. �4.6 Robust DesignNote that, given P , it is a standard LMI feasibility problem to sear
h for Ω0that satis�es (4.38), thereby 
he
king robust stability of a parti
ular design.Su
h a P is, however, likely to give a 
onservative design. We next proposea semi-de�nite program (SDP) that may be used to 
ompute a matrix Pthat satis�es the stability 
riterion (4.38), thereby guaranteeing 
losed-loopstability in the presen
e of model approximation errors, and is as 
lose aspossible to the nominal 
ost fun
tion matrix P0.Su
h an SDP 
an be formulated e.g. as
inf

P1,P2,Ω0

trace (P1) + qtrace (P2) (4.63a)s.t.


P = diag{P1, P2}
Σ{Q,R,S} (P ) ≤ 0

Φ (Ω0, P ) < 0
Ω (Ω0, P ) > 0

(4.63b)where q > 0 is a s
alar, and where we have also added the stru
tural 
on-straint P = diag{P1, P2}, su
h that the 
ost (4.5) takes the form J (x,U, ε, e) =
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ed-Order Models
‖[x,U ]‖2P1

+ ‖[ε, e]‖2P2
. Regarding the feasibility of the above SDP, we havethe following strong result:Theorem 6. If the matri
es, A and Ar − LCr, are both stable, then theproblem (4.63) is feasible.Proof. To 
onstru
t a feasible solution and thereby prove Theorem 6, wewill adapt the arguments used to prove Theorem 4.5 in Løvaas (2008). Tothis end, let Ω̂ be a �Lyapunov matrix� satisfying

ĀTΩ̂Ā− Ω̂ < 0.Note that, using Ω̂, any s
alar ǫ1 > 0 and some su�
iently large s
alar
α1 > 0, the following inequality holds:

[
Ā B̄

]T
Ω̂

[
Ā B̄

]
−

[
I 0

]T
Ω̂

[
I 0

]

− diag{0, α1D
T
1 D1 + ǫ1I} < 0. (4.64)Also, de�ne matri
es, H1 and H2, satisfying the following two Lyapunovinequalities:

ΓT(Nu, nu)H1Γ(Nu, nu)−H1 < −α1D
T
1 D1,

[
Γ(Nǫ, nh) H̄

0 Ar

]T

H2

[
Γ(Nǫ, nh) H̄

0 Ar

]

−H2 < 0.Here, the various matri
es are as in the de�nition of F2 in (4.27), and thes
alar α1 > 0 is as in (4.64). From the stri
t inequalities above and fromthe stru
ture of the matrix F2, we note that the following inequality holds
[
F1 F2

]T
diag{H1, ǫ2H2}

[
F1 F2

]

−
[
0 I

]T
diag{H1, ǫ2H2}

[
0 I

]

+ diag{−ǫ2α2I, α1D
T
1 D1 + ǫ2I} ≤ 0, (4.65)using some su�
iently large s
alar α2 > 0 and any su�
iently small s
alar

ǫ2 > 0. By 
hoosing ǫ2 = ǫ1 > 0 small enough and adding (4.64) to (4.65)
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Φ

(

Ω̂, P̂
)

< 0, P̂ , diag{0,H1, ǫ2H2}. (4.66)It 
an then be veri�ed that the following is a feasible solution to (4.63):
P = diag{P1, P2} = P0 + cP̂ , Ω0 = cΩ̂, (4.67)where c > 0 is some su�
iently large s
alar. To see this, note from (4.18)and the de�nitions of H1, H2, that Σ{Q,R,S}(P0 + cP̂ ) ≤ 0, for any c > 0.Furthermore, using (4.67), we have

Φ(Ω0, P ) = cΦ(Ω̂, P̂ ) + Φ(0, P0).

�In the sequel, we denote by P ∗ a feasible and (near) optimal solution to(4.63).Remark 10. Sin
e Σ{Q,R,S} (P ∗) ≤ 0, we have that P ∗ ≥ P0, where P0 isas in (4.18).By use of P = P ∗ we obtain the following robust design.Algorithm 4. Robust Output-Feedba
k Redu
ed-Order MPCO�ine:1. Choose any integers N , Nu and Nǫ satisfying N ≥ Nu ≥ 1, N ≥ Nǫ ≥
1.2. Generate a redu
ed-order model.3. Choose any T and t su
h that the set XF = {xr|Txr ≤ t} satis�es(4.13).4. Choose any observer gain su
h that Ar − LCr is stable.5. Choose any matri
es Q ≥ 0, R > 0 and S > 0 and determine P = P ∗by solving (4.63).
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ed-Order ModelsOnline: At ea
h time step k ≥ 0, solve [
PN,Nε

] using xr = x̂rk
, then apply

uk =
[
I 0 · · · 0

]
U∗ (x̂rk

) to (4.1).We next address the important question of 
onservatism of the aboverobust redu
ed-order design. Spe
i�
ally, we show that, under a reasonableassumption, the proposed design is non-
onservative in the sense that P ∗ ≈
P0 provided that the negle
ted dynami
s ∆(z) , Cp(zI−Ap)

−1Bp−C(zI−
A)−1B are su�
iently small.Consider the following assumption whi
h relates the plant model to theredu
ed order model:Assumption 1. We have

A =

[
Ar A12

A21 A22

]

, B =

[
Br

B2

]

, C =
[
Cr C2

]
.Furthermore, the matrix A22 is stable.Remark 11. Note that Ar 
an be pla
ed in the upper left 
orner of A byusing a balan
ed realization of the plant model. Furthermore, the require-ment that A22 is stable, is always satis�ed when the redu
ed order model isobtained using, for example, balan
ed trun
ation.Under the above assumption, we will show that Algorithm 4 
onvergesto the asso
iated nominal design obtained using P = P0 as the negle
teddynami
s goes to zero ∆(z) , C(zI − A)−1B − Cr(zI − Ar)
−1Br. To thisend, note that, repla
ing the matri
es A21, B2 in Assumption 1 by δA21,

δB2 using some s
alar δ (and thereby 
hanging the plant model) amountsto shrinking the negle
ted dynami
s by a fa
tor to obtain ∆(z) ← δ∆(z).Thus we shall be 
on
erned with establishing the following theorem, whi
hshows that: if the matri
es A21, B2 are �small�, then P ≈ P0.Theorem 7. Suppose Assumption 1 holds. For any given ǫ > 0, there existsa δ > 0, su
h that, if we make the assignments A21 ← δA21, B2 ← δB2,then
Trace (P ∗ − P0) ≤ ǫ.



4.6 Robust Design 77Proof. Let PI be the solution to Σ{0,0,0} (PI) + I = 0. For any given ǫ > 0,
onsider
P = P0 + αPI , α =

ǫq̃

θ (PI)
> 0, (4.68)where q̃ , min{1, q} > 0 and where θ (diag{P1, P2}) , Trace (P1)+qTrace (P2)[see (4.63)℄. In view of (near) optimality of P ∗, it su�
es to show that thereexists a δ > 0 su
h that P in (4.68) is feasible provided we make the assign-ments A21 ← δA21, B2 ← δB2. Moreover, sin
e the inequality Φ (Ω0, P ) < 0in (4.63b) is stri
t, it su�
es, by 
ontinuity arguments, to show that P isfeasible when A21 = 0, B2 = 0 (i.e., using δ = 0). To this end, let A21 ← 0,

B2 ← 0 and 
onsider the following matrix whi
h is similar to
[

Ā B̄
F1 F2

](when A21 = 0, B2 = 0):
Υ , [diag{T, I}]

[
Ā B̄
F1 F2

]

[diag{T, I}]−1

=







Ar − LCr A12 − LC2 0 0
0 A22 0 0

LCr LC2 Ar BrD1

KF LCr KF LC2 0 F2







, (4.69)where
T ,





Inx 0 −Inx

0 I(n−nx) 0

0 0 Inx



 , (4.70)and where have made use Assumption 1. Sin
e the matri
es, Ar−LCr, A22,are stable and Σ{Q,R,S} (P ) < 0, it follows by the stru
ture of the matrix Υthat there exist some positive de�nite symmetri
 matrix X ∈ R
n su
h that

ΥT diag{X,P}Υ − diag{X,P} < 0. (4.71)



78 Stability of MPC Based on Redu
ed-Order ModelsSin
e the above inequality is equivalent to Φ (Ω0, P ) < 0 with Ω0 = TTXT ,the result follows. That is, 
hoosing Ω0 = TTXT and diag{P1, P2} =
P = P0 + αPI yields a feasible solution provided we make the assignments
A21 ← δA21, B2 ← δB2, using some su�
iently small, but positive, s
alar
δ. �Theorem 7 suggests that Algorithm 4 
onverges to a 
ertainty equiva-len
e implementation of the design of S
okaert and Rawlings (1999) as themodel un
ertainty tends to zero, provided that we make suitable 
hoi
es for
T , t, N and Nǫ.4.7 Numeri
al ExamplesIn this se
tion we will 
onsider two di�erent systems. The �rst is a randomnon-minimum phase 6th order plant with os
illatory dynami
s that we willuse to illustrate the pro
edure. Sin
e this system is non-minimum phase,whi
h leads to a 
hallenging 
ontrol task, the example suggests that ourpro
edure 
an be used on systems that 
ontain 
omplex dynami
s. These
ond example is a CFD model des
ribing the motion in a building, whi
hwill demonstrate the usefulness of the pro
edure in real-world problems.4.7.1 Random 6th-Order SystemWe 
onsider a 6th order plant given by

A =











0.2809 0.2505 −0.1990 −0.2232 0.0321 −0.5003
0.2505 −0.4756 0.3022 0.1714 −0.1126 −0.1190
−0.1990 0.3022 0.4621 0.0965 −0.0284 −0.0891
−0.2232 0.1714 0.0965 0.6050 −0.0633 0.1457
0.0321 −0.1126 −0.0284 −0.0633 0.4647 −0.1332
−0.5003 −0.1190 −0.0891 0.1457 −0.1332 −0.2399











,

B =
[
1.0159 0 0.5988 1.8641 0 −1.2155

]T
,and

C =
[
1.2920 0 0 0.2361 0.8428 0

]
.



4.7 Numeri
al Examples 79The system has a zero at z = 6.83, outside the unit 
ir
le, and is 
onse-quently non-minimum phase. The output yk is subje
t to soft unit bound
onstraints, and the input uk is subje
t to hard unit bound 
onstraints. We
hoose Nu = N = 10, Nǫ = 2, Q = I, R = 0.1 and S = 1000I.First, we redu
e the system order from n = 6 to r = 5 and r = 4 usingbalan
ed redu
tion (although other model redu
tion methods 
ould havebeen used), and we impose the same 
onstraints on the redu
ed-order mod-els. Redu
ed-order models with r = 5 and r = 4 leads to model redu
tionerrors ‖∆(z)‖∞ = 6.9885 × 10−6 and ‖∆(z)‖∞ = 0.0221, respe
tively. Theplant is initialized at
x0 = [−0.9044, −9.1380, −2.5036, 0.6696, −0.0821, −4.0350]while the observer is initialized at x̂r0

= C+
r y0, where C+ denotes theMoore-Penrose pseudoinverse of Cr, and y0 is the initial plant output. TheSDP (4.63) is solved using MATLAB with YALMIP (Löfberg, 2004), Se-DuMi (Sturm, 1999) and Matlab Invariant Set Toolbox (Kerrigan, 2005).Figure 4.1 
ompares the 
losed-loop responses of di�erent robust MPCdesigns 
omputed using Algorithm 4. The �gure also shows the responsewhen using the asso
iated nominal design (NMPC), whi
h is algorithm 4but using P = P0 as in (4.18).For this initial 
ondition, the open-loop response overshoots the upperoutput 
onstraint signi�
antly, and so the robust design is good at keepingits soft 
onstraints. Figure 4.1 suggests that the robust MPC is not overly
onservative when the model un
ertainty is relatively small.If we pro
eed by trun
ating to r = 3, the model redu
tion error in-
reases by an order of magnitude to ‖∆(z)‖∞ = 0.1373. In this 
ase, thenominal MPC design fails severely, as illustrated in Figure 4.2. In fa
t, theoutput for the nominal design os
illates between its soft 
onstraints. Onthe other hand, the �robusti�ed" design obtained by applying Algorithm 4still performs well.
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Figure 4.1: Top: NMPC using the plant as the nominal model. Center:NMPC (dotted) and robust MPC (solid) using a ROM with r = 5. Bottom:NMPC (dotted) and robust MPC (solid) using a ROM with r = 4.
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Figure 4.2: NMPC (dotted) and robust MPC (solid) using a ROM with
r = 3.4.7.2 Vibration Control of Hospital BuildingTo investigate the potential of using the design pro
edure for 
ontrol of CFDmodels, we 
onsider a model of the Los Angeles University Hospital building(Chahlaoui and van Dooren, 2002). The building has 8 �oors, ea
h with 3degrees of freedom; verti
al and horizontal displa
ements, and rotation. TheCFD model of the building is given as an LTI, whi
h has 48 states, one inputand one output. The system is lightly damped, with long lasting os
illationsin response to an impulse input (representing the building's response to, forexample, an earthquake).The relatively large number of states in this CFD model, 
ombined



82 Stability of MPC Based on Redu
ed-Order Modelswith the need for a fast 
ontroller in order to e�e
tively 
ountera
t thevibrations, would rule out an MPC design based on the model with 48states. To generate redu
ed-order models for this problem, we use balan
edtrun
ation, and �rst obtain a model with 8 states, for whi
h the modelredu
tion error ‖∆(z)‖∞ = 0.0755.Based on the redu
ed-order model, model predi
tive 
ontrollers are de-signed. The 
ontroller obje
tive is to redu
e the magnitude and the du-rations of the os
illations. In open loop, the building keeps os
illating forup to 15 se
onds, as shown in Figure 4.3. The 
ontroller parameters are
hosen as Nu = N = 10, Nǫ = 4, Q = 108Cr
T C, R = 0.001 and S = 1000I.From Figure 4.3 it 
an be seen that both the robust MPC and the nominal
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Figure 4.3: Performan
e with robust MPC (top) and NMPC (bottom) Theopen loop response is shown as the red, dashed line.
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al Examples 83MPC are able to signi�
antly redu
e the os
illations present in the openloop response. The robust MPC is slightly 
onservative in this simulation.Now, we pro
eed by using 6, 5 and 4 states in the redu
ed-order models.The impulse responses of the CFD model and the redu
ed-order models inopen loop are 
ompared in Figure 4.4.
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Figure 4.4: Impulse response from redu
ed-order models.Figure 4.5 shows the 
losed-loop performan
e of the di�erent 
ontrollers,where it 
an be seen that the nominal design fails for r = 5 and r = 4, whilethe robust design is still stable.
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Figure 4.5: Closed-loop impulse response using NMPC (dotted) and robustMPC (solid).



4.8 Con
luding Remarks 854.8 Con
luding RemarksIn this 
hapter we have developed a pro
edure for obtaining 
losed-loopstability of output-feedba
k MPC based on redu
ed-order models. Thepro
edure uses the information available in the original plant model in theo�ine phase of determining the 
ost fun
tion parameters. Sin
e our mainobje
tive is to design an e�
ient online 
ontroller, it is reasonable to putextra work into the o�ine stage.For large-s
ale systems, this pro
edure may be too 
omputationally de-manding, sin
e we require solving LMIs involving the CFD system matri
es.It seems feasible to further develop the pro
edure des
ribed here by treatingparts of the dynami
s as model un
ertainty.





Chapter 5Expli
it MPC for Large-S
aleSystems
In this 
hapter we present a framework for a
hieving 
onstrained opti-mal real-time 
ontrol for large-s
ale systems with fast dynami
s. Themethodology uses the expli
it solution of the model predi
tive 
ontrol prob-lem 
ombined with model redu
tion, in an output-feedba
k implementa-tion. Redu
ed-order models are derived using the goal-oriented, model-
onstrained optimization formulation from Se
tion 2.3.5, that yields e�
ientmodels tailored to the 
ontrol appli
ation at hand. The approa
h is illus-trated on a simple example for a 1D heat equation, and for a 
hallenginglarge-s
ale �ow problem that aims to 
ontrol the sho
k position in a super-soni
 di�user. We 
ompare the results with 
ontrol based on redu
ed-ordermodels using POD. This 
hapter is based on Hovland et al. (2006, 2008b).5.1 Introdu
tionWith the in
reasing interest in �uid �ow 
ontrol over the last de
ade, therearises a need for 
ontrol methodology that 
an a
hieve 
onstrained opti-mal real-time 
ontrol of distributed systems with fast dynami
s, su
h ase.g. in me
hatroni
s, MEMS, rotating ma
hinery and a
ousti
s. Model87



88 Expli
it MPC for Large-S
ale Systemsredu
tion 
ombined with MPC has been applied in pro
ess 
ontrol sys-tems, su
h as in Astrid and Weiland (2005), where the authors use PODto generate a redu
ed-order model that is used to 
ontrol an industrialglass feeder. eMPC, however, has several advantages for implementationin real-time systems: 1) The online 
omputational time 
an be redu
edto the mi
rose
ond�millise
ond range, and 2) 
onstrained, optimal 
ontrolis a
hieved with low 
omplexity, easily veri�able real-time 
ode, justifyingthe employment of eMPC in embedded and safety-
riti
al systems. How-ever, the use of eMPC is 
riti
ally dependent on having a system modelof low order, typi
ally with a maximum of ten states. For CFD appli
a-tions, this motivates use of model order redu
tion methodology appli
ablefor large-s
ale systems, that 
an provide redu
ed models of very low order,that at the same time are suitable for 
ontrol. CFD models of systems su
has those mentioned above, typi
ally have state dimensions ex
eeding 104,whi
h is prohibitive for model-based 
ontroller design. In order to a
hievereal-time 
ontrol, the 
ontrol stru
ture must be 
apable of 
omputing the
ontrol input faster than the sampling rate of the system. Therefore, weneed approximate simulation models that are of su�
iently low order for
ontrol design, and a framework for 
oupling the 
ontroller with the plantbased on the approximate models, while a

ounting for the error inherentin the approximate model. Su
h designs were also 
onsidered in Chapter3 and 4, but here we extend the methodology to large-s
ale systems, forwhi
h the model redu
tion methods from Chapter 3 and 4 are too 
ompu-tationally demanding. We present a new framework for a
hieving real-time
onstrained optimal 
ontrol for large-s
ale systems with fast dynami
s thatexploits re
ent advan
es in a goal-oriented model redu
tion methodologyand eMPC.The 
ontribution of this 
hapter is twofold: 1) We propose an approa
hfor a
hieving 
onstrained optimal 
ontrol in appli
ations that are des
ribedby models of high order, while being 
hara
terized by fast sampling rates,by 
ombining a goal-oriented model redu
tion method with the expli
itsolution to the MPC problem. We atta
h the 
ontrol stru
ture to the plantwith a Kalman �lter that a

ounts for the error introdu
ed in the modelapproximation pro
ess. 2) We demonstrate the performan
e of redu
ed



5.2 Redu
ed-Order MPC 89models obtained by goal-oriented optimization in 
ontrol system design.Demonstrating the feasibility of a
hieving real-time 
onstrained optimal
ontrol for large-s
ale systems with fast dynami
s is essential if redu
ed-order modeling methods are to be adopted in appli
ations, su
h as onboarda
tual aerospa
e systems. Even with the 
onsiderable re
ent progress inmodel redu
tion to enable �ow 
ontrol, a
hieving real-time 
ontrol in a 
on-strained setting has not previously been possible. It is only the appli
ationof the re
ently developed model redu
tion methodology, whi
h targets the
ontrol problem to give models of very low dimension, that makes expli
itMPC a feasible approa
h in this setting. To our knowledge, this is the �rsttime that model redu
tion has been used in an expli
it MPC setting toaddress the issue of 
onstraints.
5.2 Redu
ed-Order MPCWe use the 
ontrol stru
ture of Figure 2.4, and a Kalman �lter as in (3.1) toestimate the redu
ed-order states based on the output of the CFD model,and we denote by x̂r the resulting estimate of the redu
ed state xr.The framework for guaranteeing robust stability of redu
ed-order MPCdes
ribed in Chapter 4 relies on solving LMIs that are of the same dimensionas the number of states in the CFD model. For large-s
ale systems su
h asthose 
onsidered in this 
hapter, this is not feasible with the 
urrent setup,due to the large 
omputational requirements involved when solving LMIs.We therefore use the nominal model (the redu
ed model) for 
ontrollerdesign, and address 
ertain robustness issues during the design stage.Given the un
ertainty introdu
ed through the model redu
tion pro
ess,one 
annot guarantee that feasibility of the underlying optimization problemis maintained and that the 
onstraints on the states/outputs are ful�lled.This problem is handled through the use of soft 
onstraints. Relaxing thestate 
onstraints in e�e
t removes the feasibility problem, at least for stablesystems (Bemporad and Morari, 1999).



90 Expli
it MPC for Large-S
ale Systems5.2.1 Implementation of Model-Constrained Redu
tionWe will use the model-
onstrained optimization approa
h des
ribed in Se
-tion 2.3.5 to derive redu
ed-order models.In pra
ti
e, the optimization problem (2.21) may not be tra
table forlarge-s
ale problems. In a 
omputationally e�
ient implementation of themethod (Bui-Thanh et al., 2007), the basis fun
tions are assumed to be alinear 
ombination of a �nite 
olle
tion of full-state snapshots X :
Φr = XΞ, (5.1)where Ξ ∈ R

M×r, M is the number of snapshots and r is the dimension of theredu
ed state. Then, the elements of the matrix Ξ be
ome the optimizationvariables, and the number of optimization variables be
omes is redu
ed from
r×n to M×r. As a 
onsequen
e, neither the gradient 
omputation nor theoptimization step 
omputation (whi
h dominate the 
ost of an optimizationiteration) s
ale with the full system size n.If the model redu
tion pro
edure is to be implemented on a 
omputerfor a parti
ular problem, a dis
rete formulation is required. Consequently,the integrals in equation (2.21a) are repla
ed by summation, whi
h leads tothe following formulation of the optimization problem:

min
Φr ,xr

1

2

S∑

ℓ=1

M∑

k=1

(

yℓ
k − yℓ

rk

)T (

yℓ
k − yℓ

rk

)

+
β

2





r∑

j=1

(
1− φT

j φj

)2
+

r∑

i,j=1,i6=j

(
φT

i φj

)2



 (5.2a)subje
t to:
ΦT

r EΦrx
ℓ
rk+1

= ΦT
r AℓΦrx

ℓ
rk

+ ΦT
r Bℓuℓ

k, ℓ = 1, . . . ,S, k = 1, . . . ,M(5.2b)
Φrx

ℓ
r1

= xℓ
0, ℓ = 1, . . . ,S, (5.2
)

yℓ
rk

= CℓΦrx
ℓ
rk

, ℓ = 1, . . . ,S, k = 1, . . . ,M, (5.2d)where the system matri
es E, A, B and C 
orrespond to the dis
rete-timestate-spa
e model.



5.2 Redu
ed-Order MPC 91To solve the 
onstrained optimization problem (5.2), we 
hoose to elim-inate the state variables xr and state equations (5.2b)-(5.2d) and solve anequivalent un
onstrained optimization problem in the Ξ-variables. The an-alyti
 gradient 
an be found through basi
 
al
ulus of variations and use ofadjoint variables, and an un
onstrained optimization algorithm that uses atrust-region-based Newton method (Coleman and Li, 1996) 
an be used todetermine the optimal basis. Sin
e the optimization problem is nonlinearand non
onvex, it is important to generate a good initial guess. One possi-bility is to pi
k the POD basis as an initial guess. Alternatively, the initialguess for the 
ase of r basis ve
tors 
an be 
hosen to be the solution of theoptimization problem for r − 1 basis ve
tors plus an arbitrary rth ve
tor.This iterative pro
edure 
an be initialized at any value r ≥ 1 with the PODbasis ve
tors as an initial guess on the �rst iteration.5.2.2 ComplexityThe 
omplexity of the proposed 
ontrol s
heme is given by the o�ine modelredu
tion 
ost plus the 
ost of solving the eMPC problem o�ine for theredu
ed model. The former is determined by the number of optimizationvariables in the optimization problem (5.2), whi
h is Mr, as well as the 
ostof solving the high-�delity model (to generate the snapshots and to 
omputethe gradient information required by the optimizer). The 
ost of solvingthe eMPC problem is problem dependent, but in
reases rapidly with thenumber of parameters, the number of input steps to be optimized and thenumber of 
onstraints in the mpQP. For problems whose solutions 
onsist ofa large number of regions, one 
an easily run into numeri
al problems. Also,the memory required to store the eMPC solution online in
reases rapidlyas the size of the solution grows. A large number of polyhedra in theonline solution requires a large sear
h tree with many nodes, whi
h entailsa longer sear
hing pro
ess whi
h might 
ompromise real-time requirements.The s
heme is therefore limited to 
ases where the redu
ed models 
an bemade reasonably small, typi
ally with around ten states.Further 
omplexity redu
tion te
hniques, su
h as input blo
king, 
anbe used to make the eMPC pro
edure more tra
table in 
ases where the
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ale Systemsproblem is large.In the next two se
tions, we will study in detail both model redu
tionand 
losed-loop results for two spe
i�
 model redu
tion ben
hmarks.5.3 Case Study: Heat Di�usionTo investigate the implementation of the redu
ed-order 
ontrol setup de-s
ribed above, we 
onsider a ben
hmark des
ribed in Chahlaoui and van Dooren(2002), des
ribing heat di�usion in a one-dimensional rod. In this ben
h-mark, dis
retization of the one-dimensional heat di�usion equation leads toa single-input single-output LTI of the form (2.1) with E = I. The modelhas 200 states, whi
h are the temperatures at di�erent lo
ations in the rod.The input u is a heat sour
e lo
ated at 1/3 of the rod length, and the output
y is the temperature re
orded at 2/3 of the length.5.3.1 Model Redu
tionWe will 
ompare results using both POD and model redu
tion by model
onstrained optimization. First, we dis
uss how to sele
t the snapshots forthe model redu
tion pro
edure.Snapshot sele
tionDe
iding how, how many and how often to pi
k snapshots is non-trivialin snapshot-based model redu
tion s
hemes. Colle
ting a large number ofsnapshots for the method in Se
tion 2.3.5 leads to a large number of opti-mization variables, whi
h in turn in
reases the 
omplexity of the optimiza-tion problem.Instead, we propose to use non-uniform time grids for the snapshots. Msnapshots 
an found in the interval t ∈ [0, T ], with the kth snapshot time
tk as

tk =
T (sk−1 − 1)

sM−1 − 1
, k = 1, 2, . . . ,M (5.3)



5.3 Case Study: Heat Di�usion 93where s > 0 is a 
onstant stret
hing fa
tor. T 
an be 
hosen by the user,for example based on the step response settling time, or the time to rea
hsteady-state, for the high-�delity model. While an in
rease in M is expe
tedto in
rease the quality of the redu
ed-order models, it also leads to anin
rease in the size of the optimization problem that must be solved todetermine the basis Φr. The 
hoi
e of M must re�e
t this trade-o� betweenredu
ed model quality and redu
tion 
ost. The e�e
t of s is to ensure thatthe snapshots are 
olle
ted more frequently when the response is 
hangingmore rapidly, and it 
an be tuned for the appli
ation at hand. The snapshotdistribution is more dense in the beginning of the interval t ∈ [0, T ] if s is
hosen so that s > 1, and more dense at the end of the interval if s < 1.By tuning s, the user may pi
k snapshots to better �t the nature of theresponse for the appli
ation at hand.If we 
hoose M = 20 snapshots distributed uniformly in the interval t ∈
〈0, 60], the steady-state approximation is good, but the transient responseis ina

urate, as shown in Figure 5.1.To further illustrate the di�eren
e in approximation quality with di�er-ent snapshot sele
tions, 
onsider Figure 5.2, where the redu
ed-order modelsare derived using the optimization framework.The �gure 
ompares the step responses for two di�erent redu
ed-ordermodels with the step response of the high-�delity model. The redu
edmodel in the upper plot was found by solving the problem (5.2) for M = 20snapshots 
hosen uniformly over the interval t ∈ 〈0, 5] for a step input tothe large-s
ale model. The redu
ed-order model approximates the transientresponse quite well, but there is evidently a steady-state error.For the heat di�usion example in Case 1, 
olle
ting snapshots the waydes
ribed above gave better results than uniform time grids while at thesame time keeping the number of snapshots low, whi
h is illustrated in thelower plot of Figure 5.2. The �gure also visualizes the non-uniform timegrid used to generate the redu
ed-order model. The approximation qualityis obviously higher than for the model in the upper plot, using the samenumber of snapshots..
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Figure 5.1: Step response of high-�delity model and redu
ed-order model oforder r = 4, generated using 20 snapshots uniformly distributed between 0and 60 s. The transient error is emphasized by zooming in the bottom plot.
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ale SystemsModel Redu
tion ResultsRedu
ed-order models of order 1 to 10 are 
ompared in Table 5.1 in termsof the relative H2 norm of the 
orresponding error systems, de�ned as
He

2 ,
‖G (s)− Gr (s)‖H2

‖G (s)‖H2

. (5.4)The redu
ed-order models are generated by 
omparing snapshots of the stepresponse of the high-�delity model at 20 time instants. It is seen that thegoal-oriented model based redu
tion algorithm (labeled GOMBR in Table5.1) leads to a signi�
ant in
rease in approximation quality from POD inmost 
ases for this metri
, espe
ially for low r.
r He

2 for GOMBR He
2 for POD1 0.6213 0.79592 0.0647 0.50233 0.0230 0.06924 0.0217 0.06275 0.02087 0.08416 0.02085 0.07427 0.0207 0.04688 0.0020 0.00209 0.0012 0.001210 8.6236 × 10−4 38× 10−4Table 5.1: Assessment of redu
ed-order models of order 1 to 10. Theredu
ed-order models with the optimized basis give a signi�
ant redu
tionin the relative 2-norm of the error system, espe
ially for low orders.5.3.2 Closed-Loop ResultsTo 
ompare the performan
e of the redu
ed-order models in 
losed loop,we �rst implement an output-feedba
k in�nite horizon LQ-regulator based
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ed-order models. We 
onsider the obje
tive of regulating theoutput of the large-s
ale system to zero based on the redu
ed-order models.The 
ontroller weights are 
hosen to re�e
t this obje
tive, by setting Q =
CT Q̃C, where Q̃ ∈ R

p×p is the weight on the output. The input 
omputedby the LQ regulator is given by u = −Kx̂r, where K is a 
onstant feedba
kmatrix, and x̂r is the estimated redu
ed state. The results are shown inFigure 5.3 and 5.4 for simulation of an optimized and a POD redu
ed-ordermodel, respe
tively, with the same weights and r = 3. The �gures 
learlyillustrate that the redu
ed-order model obtained with an optimized basisperforms mu
h better in 
losed loop than the one with a POD basis, andemphasizes the observation from Table 5.1, that the optimized redu
ed-order models give a better approximation, parti
ularly for small r.In real-world 
ontrol problems there will always be some 
onstraints onthe state, input and/or output variables. To handle this, eMPC is a better
hoi
e than the un
onstrained LQ regulator. To illustrate and visualize thesetup, we �rst 
onsider the 
ase where r = 2, that is we have only 2 statesin the redu
ed-order model. We set the predi
tion (and 
ontrol) horizon
N = 2. To demonstrate the 
ontroller's ability to enfor
e 
onstraints, we
onstrain the 
ontrol input su
h that |u| < 1000. First, the expli
it solutionto the MPC problem is solved in an o�ine phase for the relevant area of theredu
ed-order state spa
e. This solution is used to 
ontrol the high-�delitymodel in an output-feedba
k setup. The system is initialized with a non-zero output. The resulting response is shown in Figure 5.5 for an optimizedbasis, where it is seen that the bound 
onstraint on the 
ontrol input isa
tive during the �rst half se
ond. It 
an also be observed that the outputfrom the redu
ed-order model 
onverges relatively slowly to the output ofthe high-�delity model, after about 0.5 s. The partition of the state spa
einto regions with 
onstant (Ki, ki) is shown in Figure 5.6, with the phaseplane traje
tory of the redu
ed state x̂r for the simulation in Figure 5.5indi
ated by the dotted line.Based on simulations, the redu
ed-order models generated with the op-timized basis perform better in 
losed loop than the POD models. For thisben
hmark, they are able to handle higher 
ontroller gains, the output isregulated faster to the origin and the 
ontrol a
tion is smoother. This is il-
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k LQ regulator for the high-�delity model basedon a redu
ed-order model with optimized basis for r = 3. Top: Estimatedoutput from the redu
ed-order model ŷr vs output from the high-�delitymodel y. Bottom: Control input.
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ale Systemslustrated by Figure 5.7. The di�eren
e in performan
e may be attributed tothe way in whi
h the goal-oriented models are targeted to give an a

urateapproximation of the output. For r = 5 it is also observed that the out-put from the redu
ed-order models 
onverge to the true output an order ofmagnitude faster than for r = 2, resulting in a better 
losed-loop response.This is what one would expe
t; adding more states to the redu
ed-ordermodel leads to better approximations.
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Figure 5.7: Performan
e 
omparison for r = 5 with eMPC horizon N =
10. Top: Output of the full model using redu
ed-order 
ontrol based onoptimized- and POD basis. Bottom: Control input for the two di�erent
ases.
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ale Systems5.4 Case Study: Supersoni
 Di�userThis example is a 
hallenging model redu
tion problem where the obje
tiveis to 
ontrol the position of a sho
k in a supersoni
 inlet. The problem isbased on an unsteady CFD formulation to simulate subsoni
 and supersoni
�ows through a jet engine inlet that is designed to provide a 
ompressorwith air at the required 
onditions (Will
ox and Lassaux, 2005). Figure 5.8shows ma
h 
ontours in the di�user at nominal operation.
Figure 5.8: Steady-state ma
h 
ontours in di�user. A sho
k sits downstreamof the throat.The 
ase 
onsidered has a steady-state Ma
h number of 2.2. The �owis assumed invis
id and is modeled by the Euler equations. The underlyingCFD 
ode is nonlinear, and the model is linearized about a steady-statesolution, giving a stable 
ontinuous-time model of the form (2.1), where the
ontinuous-time state x(t) 
ontains the n = 11, 730 unknown perturbation�ow quantities at ea
h point in the 
omputational grid, and the matri
es A,
B, C and E result from the CFD spatial dis
retization of the Euler equa-tions1. The ve
tor u ∈ R

2 
ontains the inputs to the system and y ∈ R
ontains the system output. In this 
ase, the �ow state quantities are den-sity, �ow velo
ity 
omponents and enthalpy, and the output y is the averageMa
h number at the throat. There are 3, 078 grid points in the 
omputa-tional domain, giving a total of n = 11, 730 unknowns. The des
riptormatrix E is sparse, and some rows 
ontain only zeros; 
onsequently, E issingular and the inlet model represents a general di�erential algebrai
 equa-1The system matri
es are available in the Oberwolfa
h Model Redu
tion Ben
hmarkColle
tion; http://www.imtek.uni-freiburg.de/simulation/ben
hmark/.

http://www.imtek.uni-freiburg.de/simulation/benchmark/
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 Di�user 105tion system. The input u 
ontains bleed a
tuation b (manipulated variable)and an in
oming density disturban
e d, i.e.
u ,

[
b
d

]

. (5.5)A dis
rete-time system is obtaining by applying a ba
kward Euler timeintegration method.5.4.1 Model Redu
tionRedu
ed-order models of order 1 to 10 are 
ompared in Table 5.2 in termsof the metri
 (5.4). The redu
ed-order models are generated by 
ompar-ing snapshots of the step response of the high-�delity model at 20 timeinstants. It is seen that the goal-oriented model based redu
tion algorithm(labeled GOMBR in Table 5.2) leads to a signi�
ant in
rease in approxima-tion quality from POD in most 
ases for this metri
, espe
ially for low r.The goal-oriented basis is optimized with the POD basis as the initial guess.In all these 
ases, the redu
ed-order model obtained by POD is unstable,while the optimized redu
ed-order models are not.In order to better evaluate the redu
ed-order models, we 
ompare time-domain and frequen
y-domain responses for the CFD model of a supersoni
inlet with models of redu
ed order obtained from an optimized basis. We
onsider a redu
ed model with 10 states, whi
h was the lowest order thatgave satisfa
tory approximation quality. The optimized basis is found byminimizing the output error for 200 samples in the interval t ∈ (0, 2) s inresponse to a step in ea
h of the two inputs. That is, �rst we set b ≡ 1 and
d ≡ 0 and 
olle
t 200 samples in the time interval, and then we re-initializethe model, set b ≡ 0 and d ≡ 1 and 
olle
t another 200 samples in the sametime interval. We use the POD basis ve
tors generated from the snapshotdata as an initial guess for the optimization algorithm.The transfer fun
tion

G1 =
y

b
, (5.6)from bleed b to output y, is shown in Figure 5.9 for the CFD model and theredu
ed model obtained with an optimized basis. Figure 5.10 illustrates the
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r He

2 for GOMBR He
2 for POD1 0.6213 0.79592 0.0647 0.50233 0.0230 0.06924 0.0217 0.06275 0.02087 0.08416 0.02085 0.07427 0.0207 0.04688 0.0020 0.00209 0.0012 0.001210 8.6236 × 10−4 38× 10−4Table 5.2: Assessment of redu
ed-order models of order 1 to 10. Theredu
ed-order models with the optimized basis give a signi�
ant redu
tionin the relative 2-norm of the error system, espe
ially for low orders.same 
omparison for the transfer fun
tion

G2 =
y

d
, (5.7)from the disturban
e input d to output y. The transfer fun
tion from thedisturban
e to the output 
ontain a delay, and are 
onsequently more di�-
ult for the redu
ed-order model to approximate. The redu
ed-order modelis a

urate for lower frequen
ies, but does not 
apture the disturban
e re-sponse at higher frequen
ies. However, these higher frequen
ies are un-likely to o

ur in typi
al atmospheri
 disturban
es (Will
ox and Megretski,2005); thus, the redu
ed model performan
e shown in Figures 5.9 and 5.10 isdeemed a

eptable for the purposes of 
ontroller design. Figure 5.11 showsthe time-domain responses to a step in bleed a
tuation and a Gaussian den-sity disturban
e input. The frequen
y 
ontent of this disturban
e input isrepresentative of that expe
ted in pra
ti
al �ight 
onditions. It 
an be seenthat the redu
ed model obtained by optimization a

urately predi
ts thetime-domain response, 
on�rming its suitability for 
onditions of pra
ti
alinterest. It is interesting to note that the redu
ed-order model obtained
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h the snapshotswere 
olle
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onds. After that, the output of thePOD ROM diverges, illustrating the instability of the model.
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it MPC for Large-S
ale Systems5.4.2 Closed-Loop ResultsImplementing MPC or eMPC dire
tly on the high-�delity model is infeasiblein large-s
ale settings, for instan
e when working with models obtainedfrom CFD analysis. We therefore use redu
ed-order 
ontrol, where redu
ed-order models are used to design output-feedba
k expli
it model predi
tive
ontrollers for the high-�delity model.The eMPC framework that uses the redu
ed-order model was illustratedin Figure 2.4.The 
ontrol is implemented as shown in Figure 5.12. In nominal �ow
onditions, a strong sho
k sits downstream of the inlet throat. In order tostabilize the sho
k position in the presen
e of in
oming �ow disturban
es,and thus prevent engine unstart, a
tive �ow 
ontrol is e�e
ted through �owbleeding upstream of the throat.
Figure 5.12: A
tive �ow 
ontrol setup for the supersoni
 inlet(Will
ox and Lassaux, 2005).The high order of the inlet model is prohibitive for optimal and model-based 
ontrol, whi
h motivates the use of model redu
tion. It should benoted that this ben
hmark is relatively di�
ult to approximate. Variousmodel redu
tion methods have been applied to this problem with varyingdegrees of su

ess. As shown in Will
ox and Megretski (2005), POD andKrylov-based methods yield redu
ed models that are unstable, unless great
are is taken during the model redu
tion pro
ess. One reason for this maybe that there are inverse responses from the inputs to the output, suggestingnon-minimum phase. Non-minimum phase systems are harder to approxi-
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 Di�user 111mate than minimum phase systems (Antoulas et al., 2002). Balan
ed trun-
ation is guaranteed to produ
e stable models, but is di�
ult to apply in this
ase due to the singular des
riptor matrix E. Good results were shown us-ing the Fourier model redu
tion approa
h in Will
ox and Megretski (2005);however, that method is appli
able only to linear models, in 
ontrast to theoptimized-basis algorithm that we are using.The eMPC framework 
an be extended naturally to handle disturban
essu
h as the density disturban
e. In the 
ontroller, we obtain a redu
ed-orderpredi
tion model of the form
x̂rk+i+1

= Arx̂rk+i
+ Bb

rbk+i + Bd
r dk+i|k + L

(
y − ŷrk+i

) (5.8a)
ŷrk+i

= Crx̂rk+i
; i ≥ 0, (5.8b)where Bb

r and Bd
r are the 
olumns of Br 
orresponding to the inputs b and

d, respe
tively, and i = 1, . . . ,N is the ith step on the predi
tion horizon.We assume that the disturban
e dk is measured, and we use the notation
dk+i|k to emphasize that the disturban
e dk+i, given the measured value attime step k, is predi
ted based on an assumption on the future behaviorof the disturban
e. If we assume that the disturban
e is 
onstant over thepredi
tion horizon, one straightforward way to implement the predi
tionmodel (5.8) is to augment the state ve
tor and the system matri
es asfollows:

x̂a
rk

=

[
x̂rk

dk

]

, (5.9)
Aa

r =

[
Ar Bd

r

0 1

]

, (5.10)and
Ca

r =
[
Cr 0

]
. (5.11)To avoid numeri
al di�
ulties (the augmented system is marginally stableif we set dk+1 = dk), we repla
e the 1 in equation (5.10) with a s
alar δ,and typi
ally 
hoose δ = 0.99.Now, the 
ontrol stru
ture 
an be summarized as follows:
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• The Ma
h number is measured using the output equation

yk = Cxk. (5.12)
• The redu
ed state is estimated using a Kalman �lter based on theredu
ed-order model and the output of the CFD model.
• The redu
ed state estimate is fed to the expli
it model predi
tive
ontroller along with the measured disturban
e, where the bleed input

bk is found as an expli
it fun
tion of the augmented state (5.9).
• Control is e�e
ted through upstream bleed.For all results presented in the following, the inlet model is dis
retizedwith a time step of ∆t = 0.025 s. The 
ontrollers are veri�ed to be su�-
iently fast for this example.The disturban
e input is set to be a Gaussian distribution, whi
h isdes
ribed by its amplitude Λ, rise time α and peak time tp through therelation

d = ρ (t) = −Λρ0e
−α(t−tp)2. (5.13)In the following, we address the 
ontroller robustness by tuning its per-forman
e for a set of disturban
es for whi
h the linear model is a goodrepresentation of the nonlinear CFD model. (Note that the linearized CFDmodel is only valid for small perturbations from steady-state 
onditions.)Subsequently, we add measurement noise to a

ount for errors in the Ma
hnumber measurements. The parameter values for the disturban
e inputsare shown in Table 5.3, and the di�erent disturban
e 
ases are shown inFigure 5.13.The 
omputed 
ontrol input bk is in fa
t a perturbation about the nom-inal steady state bleed bss of 1% of the inlet mass �ow,

btotal = bss + bk. (5.14)We therefore require that the total bleed btotal is non-negative, i.e.
bk+i ≥ −0.01; i ≥ 0. (5.15)
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 Di�user 113Case Λ α tp
1 0.01 2f2

0 5
2 0.02 2f2

0 5
3 0.04 2f2

0 5Table 5.3: Disturban
e parameter values for di�erent simulation 
ases.
f0 = 3.426 is related to the steady-state for whi
h the nonlinear modelis linearized.
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PSfrag repla
ements |ρ
|

t[s]Figure 5.13: Magnitude of disturban
e inputs used in Cases 1-3.We also put an upper bound on the 
ontrol a
tion,
bk+i < bmax; i ≥ 0, (5.16)and we bound the Ma
h number at the throat

ymin < yrk+i
< ymax; i ≥ 0. (5.17)Sin
e our obje
tive is to prevent the sho
k from moving upstream 
ausingengine unstart, we will set ymin > 1, e.g. ymin = 1.1. The 
ontroller tun-ing parameters are the weighting matri
es, the predi
tion horizon, and the
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ontrol horizon in the MPC formulation. Good performan
e is obtained bysetting M = N = 10, Q = CT
r Cr, R = 0.05 and P to the solution to thealgebrai
 Ri

ati equation. The resulting 
losed-loop performan
e is shownfor the di�erent disturban
e 
ases in Figure 5.14. It is seen that the 
on-
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Figure 5.14: Un
ontrolled (dashed) and 
ontrolled (solid) Ma
h number forCase 1 (top), Case 2 (middle) and Case 3 (bottom).
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 Di�user 115troller gives good performan
e in all three 
ases. There are, however, someminor os
illations in the 
losed-loop response, whi
h are attributed to fullmodel/redu
ed model mismat
h and inexa
t modeling of the disturban
ein the predi
tion model. Re
all that we assume that the disturban
e is
onstant over the predi
tion horizon, while it in fa
t in
reases or de
reases,
orresponding to the shape of the Gaussian distribution. Also, the hori-zon M = N = 10 is somewhat short, espe
ially sin
e there is an inverseresponse from inputs to output.In order to guarantee feasibility of the MPC problem, we soften the
onstraints on the outputs.If we again 
onsider disturban
e Case 3, we see from Figure 5.14 thatthe 
ontrolled Ma
h number falls below 1.36. Now, we set ymin = 1.36 asa soft 
onstraint, and penalize 
onstraint violation with an exa
t penaltyfun
tion. The resulting Ma
h number is 
ompared to the simulation fromFigure 5.14 whi
h has a hard 
onstraint ymin = 1.1 in Figure 5.15. The
orresponding 
ontrol inputs are shown in Figure 5.16.To further address the question of robustness, we add noise to the mea-sured Ma
h number y. For that purpose we add Gaussian white noise ofdi�erent intensities to the output of the CFD model during the simulation,and study the e�e
t in 
losed loop.Figure 5.17 shows a simulation run without noise, 
ompared to threesimulation runs with Gaussian white noise. It 
an be seen that in the pres-en
e of noise, parti
ularly at the two lower levels, the 
ontroller performan
eremains good.



116 Expli
it MPC for Large-S
ale Systems

0 5 10 15
1.355

1.36

1.365

 

 

min
 = 1.36

min
 = 1.1PSfrag repla
ements y

y

y

t[s]Figure 5.15: Ma
h number at inlet throat for two simulations with distur-ban
e Case 3, with a soft 
onstraint yk+i > 1.36 and a hard 
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yk+i > 1.1. The horizontal line indi
ates the soft lower bound for the soft-
onstrained 
ase.
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orresponding to Ma
h number measurement a

ura
ywithin ±0.01M .



5.5 Con
luding Remarks 1195.5 Con
luding RemarksThis 
hapter presented a new framework for 
onstrained optimal 
ontrolof fast, large-s
ale systems, su
h as those arising in aerospa
e �ow 
ontrolappli
ations. This is an important step towards a
hieving and a
tuallyimplementing real-time, 
onstrained optimal, 
ontrol for su
h systems. Themethodology, whi
h 
ombines eMPC with model redu
tion, is demonstratedfor an example that 
onsiders 
ontrol of a supersoni
 inlet. This examplepresents a signi�
ant 
hallenge to model redu
tion methods. First, PODredu
ed models su�er from instability and thus 
annot be used in a 
ontrolsetting. Further, obtaining models of very low dimensional is 
riti
al inorder for the eMPC s
heme to be viable for real-time 
ontrol. Using a goal-oriented redu
tion methodology, we were able to derive a redu
ed modelwith ten states that yields a

eptable approximation quality and is withinthe 
apa
ity of the eMPC s
heme.The proposed methodology is also appli
able for more 
ompli
ated 
on-trol tasks, su
h as nonlinear MPC and referen
e tra
king, for whi
h theexpli
it solution of the MPC problem 
an still be found, although approxi-mately, in some 
ases.





Chapter 6Con
lusions and Further WorkThe results presented in this thesis are a step towards a
hieving advan
edmodel-based real-time 
ontrol for systems des
ribed by CFD-models. Aframework is established for a
hieving 
onstrained optimal 
ontrol for large-s
ale systems with fast dynami
s, through the use of model redu
tion, stateestimation and low order 
ontroller design. Even with the 
onsiderablere
ent progress in model redu
tion to enable �ow 
ontrol, a
hieving real-time 
ontrol in a 
onstrained setting�whi
h is 
ru
ial if these methods areto be adopted in a
tual systems�has not previously been possible. It is onlythe 
ombination of re
ently developed model redu
tion methodology, alongwith state estimation and expli
it model predi
tive 
ontrol, that makes theapproa
h feasible in this setting. To our knowledge, this is the �rst timethat model redu
tion has been used in an expli
it MPC setting to addressthe issue of 
onstraints.Moreover, it is demonstrated how model redu
tion te
hniques 
an sig-ni�
antly redu
e the 
omplexity of expli
it model predi
tive 
ontrol. This isessential, sin
e it allows the 
ontrol methodology to be applied for a largernumber of systems, and for a wider range of 
ontroller parameters.We develop a novel robust model predi
tive 
ontrol design pro
edurewhi
h fa
ilitates the design of model predi
tive 
ontrol based on redu
ed-order models. The pro
edure guarantees 
losed-loop stability when the121
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lusions and Further Workredu
ed-order model predi
tive 
ontroller is atta
hed to the high-�delitymodel, and relies on solving a semi-de�nite program. The design uses theoriginal plant model in an o�ine phase of determining 
ost fun
tion param-eters, thereby making use of both the redu
ed-order model and the originalmodel in the design. Sin
e the main obje
tive is to design an e�
ient on-line 
ontroller, it is reasonable to put some extra work in the o�ine phase.For large-s
ale systems, however, this pro
edure is too 
omputationally de-manding. Future work should investigate the possibility of treating partsof the dynami
s as model un
ertainty, or other ways to make the designappli
able to larger systems.More general stability analysis of 
losed-loop systems 
onsisting of 
on-trollers based on redu
ed-order models of CFD-models should also be 
on-sidered. In parti
ular, stability of expli
it MPC based on redu
ed-ordermodels would be an interesting result. Moreover, development of model-based redu
tion methodology targeted at 
ontrol appli
ations for large-s
alesystems is needed. Many of the model redu
tion methods that are used fre-quently to design low order 
ontrollers, do not take into a

ount the outputsof the system, but 
onsiders all states in the state spa
e.Further, model redu
tion of nonlinear systems entailed by redu
ed-order
ontrol is still very mu
h an open resear
h �eld. More rigorous methods areneeded that are appli
able to large-s
ale systems, and do not require anex
essive amount of 
omputations. Nonlinear 
ontrol theory should thenbe applied, to a
hieve robust nonlinear 
ontrol with low-order 
ontrollers.
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