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Summary

This thesis addresses modeling and active surge control of a simple compres-
sion system, using only the drive system of the compressor for actuation.
Theoretical results are validated by experiments on a test rig that was built
as a part of this work. Control laws are derived in two stages. First all
system states, such as pressure mass �ow and impeller speed, are assumed
as available signals. All the resulting control laws require feedback from
mass �ow. However, transient measurement of this variable is not available.
Observers are therefore developed for this purpose.
The laboratory that was build and from which experimental data are

gathered, consists of a compressor, plenum volume, control valve, in between
ducting and drive system. The centrifugal compressor stage compresses air
from ambient conditions, discharging into a duct connecting compressor and
plenum. The plenum discharges over the valve. The drive system consists
of a electric motor and drive.
Controllers and observers are derived on the basis of the so-called variable

speed Greitzer model. This model contains the compressor map, which in
many cases involves some uncertainty. Uncertainty can be caused by varying
ambient conditions and change of map due to wear and tear. For this reason
it was investigated whether it was possible to express the compressor map
by measurements. It is shown that this can be done if one has a su¢ cient
length of duct upstream or downstream the compressor.
Two control strategies are presented. One considers the impeller speed

and the other considers applied torque as control variable. As previously
mentioned, all control laws require feedback from mass �ow, and must be
combined with an observer for implementation. Furthermore, torque control
laws involve the compressor map. In view of modeling results, this map can
be implemented by a model or a measurement in the case of su¢ cient duct
lengths. Experimental validation of control laws indicate that torque control
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vi SUMMARY

is better than speed control for the setup in question, in terms of it ability to
stabilize surge. The reason for this can be explained by the internal loop of
the drive system, o¤ering a faster response for torque than for speed control.
It is shown by experiments that torque control can extend mass �ow range
of the machine by more than 15 to 20 percent relative to the point for which
surge occurs for the open loop system. These numbers corresponds to two
di¤erent impeller speeds, where 20 percent increase was achieved at a lower
impeller speed than that of 15 percent. It is also shown experimentally that
speed control is able to stabilize a operating point for which surge occurs for
the open loop. However, this strategy was not able to considerably increase
the operating range
Three type of observes are derived. These are reduced order observers

for mass �ow, pressure and mass �ow observers, and pressure, mass �ow and
impeller speed observers. Furthermore, the observers vary among themselves
in the way one compensates for the compressor map, model or measurement.
The main purpose of these observes is to o¤er a estimate of mass �ow, so
that the derived control laws can be implemented. However, these observers
can also o¤er disturbance rejection for pressure and impeller speed measure-
ments. Reduced order observers for mass �ow and observers for pressure and
mass �ow are validated experimentally. It is shown that the mass �ow esti-
mates are within an accuracy of 10 percent compared to measured mass �ow,
and that the pressure estimates o¤ers disturbance rejection. The observers
are derived on the basis of the compression system model, not taking the
speci�c control law into account, and can therefore be used for any control
law derived on the basis of the Greitzer model.
Contributions in work leading to this thesis are considered to be:

� Planning and building of a compression system laboratory for active
surge control by means of drive system.

� Extending the Greitzer model by introducing a measurement for the
compressor map. Theoretical derivation and experimental validation.

� Extending a previously presented active surge control law, when con-
sidering impeller speed as control variable. Theoretical derivation,
stability analysis and experimental validation.

� Deriving novel control laws for active surge control when considering



vii

impeller drive torque as control variable. Theoretical derivation, sta-
bility analysis and experimental validation.

� Deriving novel observers for variable speed Greitzer model. Theoretical
derivation, stability analysis and experimental validation.

The work contained in this thesis has partially been published in six
papers:

� Bøhagen B. and J.T. Gravdahl, Control laws for active surge control
of centrifugal compressors using drive torque, accepted for publication
in Automatica, May 2007

� Bøhagen B. and J.T. Gravdahl, Circle criterion observer for a compres-
sion system, to appear in Proceedings of the 2007 American Control
Conference, New York, July 2007

� Bøhagen B. and J.T. Gravdahl, Active surge control using drive torque:
dynamic control laws, Proceedings of the 45th IEEE Conference on
Decision and Control, San Diego, December 2006

� Bøhagen B. and J.T. Gravdahl, Active control of compression systems
using drive torque; a backstepping approach, Proceedings of the 44th
IEEE Conference on Decision and Control, Seville, December 2005

� Bøhagen, B., O. Stene and J.T. Gravdahl, A GES mass �ow observer
for compression systems: Design and experiments, Proceedings of the
2004 American Control Conference, Boston, June 2004

� Bøhagen, B. and J.T. Gravdahl, On active surge control of compressors
using a mass �ow observer, Proceedings of the 41st IEEE Conference
on Decision and Control, Las Vegas, December 2002
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Chapter 1

Introduction

Gas compressors are explained as follows in the encyclopedia Britannica:

A compressor is device for increasing the pressure of a gas by
mechanically decreasing its volume. Air is the most frequently
compressed gas but natural gas, oxygen, nitrogen, and other in-
dustrially important gases are also compressed ...

This explanation can be further detailed by evaluating the ideal gas law

p = �RT

where p is pressure, � is density, R is the gas constant and T is temperature.
Density can be expressed as � = m

V
, where m is mass and V is volume,

and it follows that a reduction of volume is equivalent with an increase of
density for a given amount of mass. Hence, a compressor can alternatively
be de�ned as a devise that increases pressure by increasing density.
Several types of compressors exists, where their di¤erences lies in how

compression for a gas is achieved. Some examples include centrifugal com-
pressors, axial compressors, reciprocating compressors, scroll compressors
and diaphragm compressors. The three latter compressors work by reducing
the physical volume occupied by the gas. An application of the recipro-
cating compressor, familiar to most people, is found in the car combustion
engine. The majority of these engines use a cylinder and piston to reduces
the volume of a �xed amount of mass prior to the cylinder ignition.

1



2 CHAPTER 1. INTRODUCTION

Centrifugal and axial compressors, collectively called turbo compressors,
works by a fundamentally di¤erent principle than the other mentioned ex-
amples. The compression from these machines can be considered as a result
of two steps. First the �uid velocity is increased, and then the �uid kinetic
energy is converted to pressure by reducing velocity. The second step can
be illustrated by the Bernoulli equation

p1 +
1

2
�v21 = p2 +

1

2
�v22

for steady frictionless incompressible �ow along streamline.1 Let the sub-
script 1 refer to the state of high �uid velocity and subscript 2 to the state
of low �uid velocity. It then follows from the relation that p2 is larger than
p1. The energy consuming part of turbo compressors is that of increasing
�uid velocity, when the machine needs some drive unit for this task. Fluid
deceleration is achieved by means of redirecting and/or diverging �uid �ow
using the mechanical construction of the compressor.
Turbo compressors are sometimes also called continuous �ow compres-

sors. These compressors supply a steady mass �ow and pressure, in contrast
to e.g. the reciprocating compressor which supplies mass �ow and pressure
in a more pulsating fashion.
Compression systems using turbo compressors are subject to the phe-

nomena of surge and rotating stall. Surge is characterized by oscillations
of mass �ow and pressure. These oscillations can be observed in any part
of the system, such as upstream and downstream ducting as well as in the
compressor itself. Stall is characterized by locally reduced or blocked �ow
in the compressor. This phenomenon is only observed only in the compres-
sor, meaning that �ow upstream and downstream the compressor can be
steady even though the compressor is stalling. Hence, surge can be regarded
a system phenomenon whereas stall is a phenomenon restricted to the com-
pressor itself. Both of these phenomena constitute undesirable operation
for the compressor and compression system. For large machinery the surge
oscillations can be violent enough to damage upstream and downstream
components. Furthermore, the reduced e¢ ciency resulting from these in-
stabilities can result in temperatures high enough to seriously alter or even
melt mechanical compressor components.

1Assuming incompressible �ow violates the previously stated properties of gas com-
pression, but is made to illustrate conversion to pressure by means of a simple expression.
Furthermore, this assumption is valid for relatively low �uid velocities.
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Control of surge and rotating stall can be divided in two main approaches:
avoidance and active control. Avoidance control ensures that the system
only operates in regions for which the instabilities do not occur. This is the
industrial standard. Active control, on the other hand, aims at stabilizing
these phenomenons. In terms of control terminology, surge and rotating stall
are observed for the open loop system. The avoidance approach use feedback
in order to ensure operation in the open loop stable region, whereas the
active control uses feedback in order to stabilize open loop unstable operating
points in addition to ensure stability of the open loop stable region.

1.1 The centrifugal compressor

The centrifugal compressor consists of mainly three parts: impeller, di¤user
and volute/collector. Figure 1.1 shows a picture of such a compressor, where
part of the casing has been cut away. The impeller, which can be recognized
as the bladed wheel, increases the �uid velocity by spinning at a relatively
high speed. Note that �uid enters the impeller axially, with respect to the
shaft driving it, and leaves radially. This gives rise to the name radial
compressor, also used for the centrifugal compressor. There is no dedicated
di¤user in this example. However, when �uid �ows in the collector, from
impeller exit to compressor exit (open pipe in top of picture), this forms a
diverging channel. Hence, the casing serves as both di¤user and collector in
this case. An integrated gear box, placed between the impeller and the black
driving wheel, can also be recognized for this unit. The compressor in Figure
1.1 is called a single stage centrifugal compressor, which comes from using
one impeller. Multi stage compressors can be considered as several single
stage compressors mounted in series, sharing one drive shaft. The collector
from the �rst stage then guides the �uid to the impeller of the second stage
and so forth.
A principal sketch of various de�nitions related to the compressor is

shown in Figure 1.2, accompanied by a picture of the impeller. Fluid enters
the compressor through the inducer, also called impeller eye. The inducer is
a region restricted by the compressor inlet radius and hub radius, for which
the entering �uid is exposed to the impeller blades. The hub is simply a
region of the impeller wheel dedicated to the shaft driving it. When leaving
the impeller, the �uid enters the di¤user. The task of this component is
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Figure 1.1: Single stage centrifugal compressor (Photo: Vortech,
www.vortechsuperchargers.com)



1.1. THE CENTRIFUGAL COMPRESSOR 5

ω

ω

collector

diffuser

impellerinducer
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Figure 1.2: Components of the centrifugal compressor

to reduce the �uid velocity in order to gain pressure. Finally, the �ow
is gathered by the collector and guided to the compressor exit. As was
commented in discussion of Figure 1.1, the collector can also serve as a
di¤user.

Centrifugal compressors have had and still have a wide-spread area of
application, [1]. Two examples include turbocharger/supercharger for the
combustion engine and transportation of gas in pipelines. Figure 1.3 shows
pictures of a turbocharger and a general purpose multi stage centrifugal com-
pressor, left and right respectively. Turbochargers can generally be divided
in three parts: a �lter at compressor inlet, a compressor and a gas turbine
which is driving the compressor. For the turbocharger in Figure 1.3, an air
�lter can be identi�ed to the far left. The compressor can be identi�ed as
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Figure 1.3: Turbocharger and general purpose three stage centrifugal com-
pressor (Photo left: ABB, www.ABB.com and Photo right: MAN TURBO,
www.manturbo.com)

the component below the man in dark blue T-shirt. This is a centrifugal
compressor similar to that of Figure 1.1, with inlet at the left, through the
air �lter, and outlet through the circular pipe facing the reader. The gas
turbine can be identi�ed as the component below the man in light blue T-
shirt. The multi stage centrifugal compressor of Figure 1.3 consists of three
impellers mounted on one shaft, giving it the name three stage centrifugal
compressor. Gas enters the compressor from the right, or more speci�cally
it enters the compressor from below and is guided to the inducer of the
impeller to the right. Here it traverses the �rst impeller and the diverging
cannel connecting the �rst and second impeller, which completes the �rst
stage. Then this procedure is simply repeated two more times before the gas
leaves the compressor. It follows that a multi stage compressor is a series
of single stage compressors. The motivation for this is simply found in that
with a higher inlet pressure, the single stage compressor is able to produce a
higher outlet pressure. Also, the pressure levels reached with a single stage
relatively large impeller can also be produced with a few stages of smaller
impellers.
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recirculation

blow off
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compressor
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Figure 1.4: Principal sketch of some surge control approaches

1.2 Motivation

Figure 1.4 illustrates two of the approaches used for surge control, in ad-
dition to drive control. Controlling surge by a recirculation loop involves
feeding compressed gas from downstream the compressor back to upstream
compressor. The major disadvantage of this approach is that "the same gas"
is compressed several times, consuming energy from the driving unit each
time it is compressed. Controlling surge by blow o¤ involves, as the name
indicates, blowing o¤ compressed gas downstream the compressor and into
the surroundings of the compression system. Since the compressed gas is
blown into the surroundings, this approach is �rst and foremost restricted
to applications of air compression. The major disadvantage of this approach
is that the compressed gas, which has consumed energy from the driving
unit, is completely wasted.
Using the drive unit to control surge in the compression system has

potentially several advantages. First of all, the drive unit is already present
in the system and must be so in order to drive the impeller. This implies
that no additional components are needed for this approach. In the ideal
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case one can consider the drive unit being able to control/stabilize the entire
operating range of the compression system. In which case the recirculation
loop and blow o¤ branch can be removed, being present in the compression
system for the objective of control only. However, a more realistic scenario
would be that the drive unit is able to control/stabilize parts of the open
loop unstable region for the compression system. By then combining drive
control and the other approaches, the amount of gas recycled and/or blown
o¤ can possibly be reduced compared to the situation where the drive is not
used for active surge control.
This approach is probably most relevant when the compressor is driven

by an electric motor. Electric motors are relatively fast and easy to control in
comparison to e.g. a gas turbine, often used as drive unit for the compressor.

1.3 Approach

This thesis is divided into two parts. The �rst part consists of theoretical
considerations on modeling and control of a simple compression system,
whereas the second parts seek to evaluate the theoretical �ndings in of the
�rst part by means of experiments.
Chapter 2 introduces the so-called variable speed Greitzer model, which

is a widely used dynamic model of a simple compression system using turbo
compressors. In order to form a richer fundament for feedback control, this
model is extended by introducing pressure measurements to the model.
Chapter 3 derives control laws for active surge control of the Greitzer

model by considering impeller speed or impeller torque as the only control
input for the system.
Chapter 4 derives observers for the Greitzer model. The main objective

of this chapter is to derive observers for mass �ow, since this variable is
needed in control laws and can not be measured. Reduced order observers
for mass �ow are derived as well as observers for mass �ow, pressure and
impeller speed.
Chapter 5 brie�y presents the laboratory used for experimental validation

of theory.
Chapter 6 describes model identi�cation, static and dynamic, of the lab-

oratory in view of the theoretical considerations in Chapter 2.
Chapter 7 evaluates the observers from Chapter 4 experimentally.
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Chapter 8 evaluates some of the control laws from Chapter 3 experimen-
tally.
Chapter 9 gives some concluding remarks as well as suggestions for fur-

ther work.
This thesis do not contain simulations of control laws or observers. The

reason for this is the rather extensive use of experimental data, which is con-
sidered to a better means of evaluating theory than simulations. However,
not all observers and control laws are experimentally tested. For simulation
of these, the reader is referred to the related published papers.



10 CHAPTER 1. INTRODUCTION



Part I

Theory

11





Chapter 2

Mathematical model

2.1 Introduction

The literature reports a rather extensive amount of work published on com-
pressor and compression system modeling, [2], [3], [4] and [5]. Modeling
of compression systems can be divided in two categories; those that cap-
ture the phenomenon of surge and those that captures the phenomena of
both surge and rotating stall. As discussed Chapter 1, surge is a system
phenomenon resulting in all system states entering a limit cycle. A model
for this phenomenon can in general be described by a set of ordinary dif-
ferential equations of various system states, where it is required from the
model that it can reproduce both steady and transient behavior for states,
such as pressure and �ow, in accordance with that of the experimentally
observed. Rotating stall is fundamentally di¤erent from surge in the sense
that this is a phenomenon appearing locally in the compressor and is not
necessarily re�ected through system states. To illustrate this point one can
consider �ow through the compressor to be a system state. Assume that
the compressor initially is operating un-stalled with a given through �ow.
Assume then that the compressor enters stall for some reason. If �ow in the
un-stalled impeller passages now increases, the overall compressor �ow can
appear to be the same as in the un-stalled case. Hence, the very nature of
compressor stall implies hat this phenomenon should be modeled using par-
tial di¤erential equations. Models including rotating stall will not be further
commented on when this work is limited to control of surge. For extensive
studies on this topic the reader is referred to the famous Moore and Greitzer

13
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model [6] and [7], and the more resent results reported in [8] and [9].

An early result on compression system surge model was reported in [10].
Due to its linear nature this model is limited to simulating relatively small
surge oscillations. A model extensively used for surge analysis and control
is the so-called Greitzer model, giving dynamic equations for mass �ows and
pressure in a compression system. The theoretical derivation is reported in
[11] and experimental validation is given in [12]. The Greitzer model was
originally derived for axial compressors, but shown to also be applicable for
the centrifugal compressor in [13] by theoretical and experimental studies.
In [14] the model of Greitzer was extended to include also a dynamic equa-
tion for compressor rotor speed, originally derived for impeller speed of a
centrifugal compressor, where both theory end experiments was presented.
The variable speed compression system model was also extensively discussed
in [2], with a more theoretical approach of describing both compressor char-
acteristic and torque set up by the spinning impeller.

This chapter starts by introducing dynamic equations for the variable
speed Greitzer model in Section 2.2. The material presented in this section is
a brief summary of previous work, for which the interested reader is referred
to the already referred literature and references therein for a more detailed
description. Section 2.3 discusses in some more detail the compressor stage
and its model. In Section 2.4 the original Greitzer model is extended to in-
clude pressure measurements at well de�ned locations. Section 2.5 discusses
and states model properties for the compression system. Equilibrium points
and open loop stability of the compression system is discussed in Section
2.6.

2.2 Compression system dynamic model

A compression system for which the main components are a compressor, a
plenum volume and a throttle is considered. The compressor and throttle
are placed in upstream and downstream ducts of the plenum respectively.
Furthermore, inlet conditions for the duct containing the compressor and
outlet conditions for the duct containing the throttle are assumed to be that
of a ambient pressure reservoir. This system is illustrated in Figure 2.1.
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Compressor

Plenum

Throttle

pa wc pp wt pa

Figure 2.1: Simple compression system

2.2.1 Plenum pressure dynamics

The dynamic equation for plenum pressure is derived by evaluating the mass
balance. By considering a �xed control volume and assuming uniform den-
sity, the volume integral of the mass balance is rewritten

d

dt

Z
Vp(t)

�pdV =
d�p
dt

Z
Vp

dV = Vp
d�p
dt
,

where the subscript p refers to plenum. By further assuming ideal gas and
isentropic process in the plenum results in the relation dpp = c2pd�p, where
cp =

p
�pRTp is the speed of sound in plenum. Plenum pressure can now be

expressed as

_pp =
c2p
Vp
(wc � wt) (2.1)

where wc is the mass �ow entering the plenum from the duct containing the
compressor and wt is the mass �ow leaving plenum into the duct containing
the throttle.

2.2.2 Duct mass �ow dynamics

The dynamic equations for duct mass �ows are derived by evaluating the
linear momentum balance. By considering a �xed control volume and mod-
eling the �ow as incompressible and one dimensional for a constant area
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duct, constant density and uniform axisymmetric �uid velocity, the volume
integral of the linear momentum balance is rewritten

d

dt

Z
Vc(t)

�cvcdV = �cAc
dvc
dt

Z
Lc

dl =
dwc
dt

Lc,

where the subscript c refers to the duct containing the compressor. The
momentum �ux of this system equals zero,

P
in=out �cv

2
cAc = 0, due to the

stated assumptions of one dimensional and incompressible �ow. The forces
acting on this system is modeled by surface pressure forces and a resultant
force of which the compressor can be considered the main contributor

P
F =

paAc � ppAc + F
0
c, where the subscript a refers to ambient conditions. Mass

�ow in the duct containing the compressor can now be expressed as

_wc =
Ac
Lc
(pa � pp + Fc) (2.2)

where Fc = 1
Ac
F 0c is de�ned for notational convenience. Note that this de�-

nition of Fc gives it the SI unit Pascal, N=m2 = Pa. Mass �ow in the duct
containing the throttling device is modeled in the same manner, resulting in

_wt =
At
Lt
(pp � pa � Ft) (2.3)

where the subscript t referees to the duct containing the throttle. The
sign convention of the forces considers Fc working along the �ow direction
whereas Ft is working against it. To this end it can be noted that �ow
in the duct containing the compressor is considered is de�ned positive when
�owing from ambient to plenum and positive �ow in duct containing throttle
is considered positive when �owing from plenum to ambient.

2.2.3 Impeller speed dynamics

The dynamic equation for impeller speed is derived by evaluating the angular
momentum balance for the spinning shaft. This is given by

_! =
1

J
(� d � � l) (2.4)

where ! is the impeller speed, J is the moment of inertia of rotating parts,
� d is the torque applied to the impeller by the driving unit and � l is the
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load torque due to �uid �ow in impeller and friction of rotating mechanical
parts. The load torque resulting from �uid �ow in impeller is approximated
by the Euler pump equation and the friction is modeled as a linear term of
impeller speed

� l (wc; !) = � c (wc; !) + � f (!) (2.5)

� c (wc; !) = kc jwcj! (2.6)

� f (!) = kf! (2.7)

where kc = �r2i and kf is a friction constant. The slip factor, �, is a parame-
ter between zero and one, commonly taken as a value close to one, describing
to which extent the �uid leaves the impeller in the same angle as the impeller
blade. The impeller radius, ri, is the radius of the impeller wheel. The term
(2.7) represents the simplest form of viscous friction. More sophisticated
models are � f (!) = kf j!j�f sgn (!) or the Stribeck e¤ect, [15].

2.2.4 Comments to model

For the plenum it is assumed that the thermodynamic properties are uniform
over the volume. There will be regions of the inlet and outlet for which the
�uid velocities are decelerating and accelerating due to the inn and out �ows.
Hence, the plenum should be large enough such that these regions can be
ignored. Moreover, the plenum should be of much larger diameter than the
ducts so that �uid velocity is converted to pressure. Furthermore, isentropic
process is assumed for the plenum which in essence means no heat losses.
Hence, the heat loss should be low relative to the overall energy related to
the plenum.
Flows in the ducts are assumed one dimensional and incompressible. For

the incompressible assumption to hold, velocities in ducts should be rela-
tively small. A commonly accepted parameter for this is a su¢ ciently small
Mach number, Ma � 0:3. Furthermore, �ows in ducts are not necessarily
one dimensional. This is especially the case for the duct containing the com-
pressor, where the very nature of the machine imposes rotational velocity to
the �uid. However, this condition can be considered valid if the connecting
systems experience the duct �ow to be one dimensional. One way of satis-
fying this is to introduce su¢ cient duct length upstream and downstream
compressor and throttle, such that the �ows at system boundaries are nearly
one dimensional. Alternatively one can introduce �ow straighteners.
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The fraction A
L
appearing in duct mass �ow equations is related to the

actual �ow path and not necessarily the physical length and cross section
of the duct. Recall that these parameters where introduced to the model
by assuming one dimensional �ow in a constant area duct which especially
for the duct containing the compressor is not the case. Hence, the fraction
should be chosen so that the model complies with observed transient data,
rather than the actual measures of length and cross section of ducts.
For the remaining of this thesis, a system where the throttling device is

placed immediately downstream the plenum without any considerable duct-
ing related to it is considered. By recasting (2.3) into

Lt
At

dwt
dt

= (pp � pa � Ft)

and using Lt � 0, it can be seen that Ft � pp�pa. In essence, this states that
dynamics of the throttle duct is so fast relative to other system dynamics so
that throttle mass �ow can be considered as a static mapping in terms of
other system states. A model for the throttle mass �ow will be taken as

wt (pp) = ktsgn (pp � pa)
q
jpp � paj (2.8)

where the sign and absolute value have been introduced for simulation pur-
poses of the model wt (pp) = kt

p
pp � pa, when surge can result in pp < pa.

To this end the throttle mass �ow is assumed symmetric in terms of posi-
tive and negative �ow as a function of pressure di¤erence across the devise.
Throttle through �ow area is re�ected through the constant kt. In the case
of a variable area throttling devise, e.g. control valve, this constant then
becomes a function of the through �ow area and can be modeled as

kt = kt (At%) , (2.9)

where At% represents the percentage opening.

2.3 Compressor map

The forcing term, Fc, was introduced as resultant forces acting on the �uid by
the compressor. The assumption of one dimensional and incompressible �ow
in this duct does not hold locally in the compressor where both density and
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�uid velocity will vary along the �ow path, but should rather be the behavior
experienced by connecting systems. Locally in the compressor the �uid �rst
experiences acceleration, both linear as well as rotational, when traversing
the impeller. Then the �uid experiences a deceleration in the di¤user and/or
volute. Motivated by Newton�s second law of motion, the acceleration of �uid
in impeller can be considered as a result of body forces set up by the impeller
speed. The �uid also experiences friction/surface forces when traversing the
compressor stage. Body forces acts on �uid density whereas friction forces
are related to �uid velocity and surface area. All this suggests that the
forcing term should be a function of density, �uid velocity and impeller
speed, Fc (�c; vc; !), expressed in terms of volume and surface integrals for
time varying and nonuniform density and velocity. However, the overall
model assumes incompressible �ow which makes �c constant and vc uniform.
Therefore the model is assumed to be a function of compressor mass �ow
and impeller speed,

Fc = Fc (wc; !) , (2.10)

with compressor mass �ow re�ecting both �uid velocity and mass.
The forcing term is usually found experimentally as a nonlinear mapping

of compressor mass �ow and impeller speed, based on steady state data.
From (2.2) it can be recognized that this steady state relation is given in
terms of pressures, Fc (wc; !) = pp � pa. Dynamic behavior has also been
suggested in the form � _Fc = (Fc;ss (wc; !)� Fc), e.g. [11] and [13], with
varying motivation. In the following, it is assumed that the forcing term can
be represented as a pure static mapping of mass �ow and impeller speed.
This assumption requires that potential dynamic e¤ects related to the forcing
term, e.g. mass conservation for compressor stage, are fast relative to the
duct mass �ow and impeller speed dynamics.
Compressor performance is commonly described with a compressor char-

acteristic,  c. This characteristic relates the steady state compressor pres-
sure ratio as a function of compressor mass �ow and impeller speed. The
compressor characteristic for the current model is then de�ned by  c =

pp
pa
,

and can be related to the forcing term by

 c = 1 +
Fc (wc; !)

pa
. (2.11)

Compressor characteristic is typically visualized with a compressor map,
such as shown in Figure 2.2. This map consists of a collection of constant
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0
1

wc

ψ
c

ω

Figure 2.2: Compressor map

speed lines for which the pressure ratio is shown as a function of mass �ow.
In order for simulation and possibly implementation, when a compressor

characteristic is required for a control algorithm, one needs a mathematical
model. In the case of variable speed applications this needs to be a func-
tion of mass �ow as well as impeller speed. One way of retrieving such a
characteristic is to use polynomial �t on experimental data. The polynomial

 c (wc; !) = c3 (!)w
3
c + c2 (!)w

2
c + c0 (!) ; wc > 0 (2.12)

ci (!) = ci2!
2 + ci1! + ci0 (2.13)

was used in [16] for variable speed applications, inspired by the polynomial
for the constant speed case suggested in [6]. Theoretical approaches for ex-
pressing the compressor characteristics are also reported [17]. Identi�cation
by experimental data can be problematic for the region of the characteristic
for which instabilities occur, when this requires control to retrieve steady
state data. However, by reducing the duct length between compressor and
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plenum in the identifying process one can extend the region for which steady
experimental data can be retrieved, [14]. For identi�cation of negative mass
�ow, a device that can enforce this �ow on the compressor is needed. In
[13] this approach was taken and it was shown that the steady state char-
acteristics for constant speed negative mass �ow could be approximated by
 c (wc; !)j! constant = c4w

2
c +c5. Following the approach taken by [16] for the

open loop stable region, the coe¢ cients can be made functions of impeller
speed

 c (wc; !) = c4 (!)w
2
c + c5 (!) ; wc < 0 (2.14)

in which case c5 (!) will represent the compressor characteristics at zero
mass �ow for a given speed. Note that combining (2.12)-(2.13) and (2.14)
requires c0 (!) = c5 (!) in order for the characteristics to be continuous at
zero mass �ow.

2.4 Pressure measurements in duct

There might be a relatively high uncertainty involved with a model of the
compressor characteristic, especially in the region of the map for which it
is open loop unstable. Combining this with the general desire for more
system information in form of measurements to form a richer feedback basis
for control motivates the introduction of a pressure measurement that can
replace compressor characteristic model when required for implementation.

2.4.1 Upstream compressor

Consider the con�guration shown in Figure 2.3, where a pressure measure-
ment now divides the upstream plenum duct in two control volumes. It is
still assumed that �ow in the entire duct is one dimensional, incompressible
and constant area. It is also assumed that the �ow in the duct upstream the
compressor is inviscid, implying that no forces other than boundary pres-
sures are acting on this �ow. Following the previous derivation of duct mass
�ow (2.2) then gives

_wcu =
Ac
Lcu

(pa � pcu) (2.15)

_wc =
Ac
Lc
(pcu � pp + Fc (w; !)) (2.16)
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Compressor

Plenum

pa wc ppwcu pcu

Figure 2.3: Pressure measurement upstream compressor

where the subscript cu refers to upstream compressor duct. Furthermore,
the mass �ows are related by wc = wcu due to the �ow assumptions. By now
comparing _wc = _wcu it is possible to derive an explicit expression

Fc (w; !) =
Lc
Lcu

pa + pp �
Lc + Lcu
Lcu

pcu (2.17)

relating Fc (w; !) and well de�ned measurable signals. Note that this relation
holds for transients as well as steady state.

The forcing term and pressures in steady state are related by pcu = pa
and Fc (wc; !) = pp � pcu, which gives Fc (wc; !) = pp � pa. The compressor
characteristic is in this con�guration de�ned by  c =

pp
pcu
, which in steady

state gives  c = 1 +
Fc(w;!)
pa

. This is identical to the characteristic found in
(2.11).

By using (2.17) in (2.16) to substitute for pcu it can be shown that

_wc =
Ac

Lc + Lcu

0B@Fc (wc; !) + pa| {z }
pc(wc;!)

�pp

1CA (2.18)
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and by using (2.17) in (2.16) to substitute for Fc (w; !) it can be shown that

_wc =
Ac

Lc + Lcu

0BBB@
�
1 +

Lc
Lcu

�
(pa � pcu) + pp| {z }
pc(t)

�pp

1CCCA . (2.19)

Hence, the dynamics describing mass �ow in the upstream ducting of the
plenum takes on the structure _wc = kcu1 (pc � pp) where pc is either a mea-
surement

pc (t) = kcu2 (pa � pcu (t))� pp (t)

of known and well de�ned signals or a function of mass �ow and impeller
speed

pc (wc; !) = Fc (wc; !) + pa.

The structure of the dynamics is identical to that of the original Greitzer
model when using pc (wc; !), but the signal pc (t) = pc (wc; !) is now also
available as a measurement.

2.4.2 Downstream compressor

Following the previous approach, equations for the case when a pressure
measurement is installed downstream the compressor is derived. Consider
the con�guration shown in Figure 2.4, where a pressure measurement divides
the upstream plenum duct in two control volumes of which the unforced part,
not containing the compressor, now is downstream the compressor. It is still
assumed that �ow in the entire duct is one dimensional, incompressible and
constant area. It is also assumed that the �ow in the duct downstream the
compressor is inviscid, implying that no forces other than boundary pressures
are acting on this �ow. Following the previous derivation of duct mass �ow
then gives

_wc =
Ac
Lc
(pa � pcd + Fc (w; !)) (2.20)

_wcd =
Ac
Lcd

(pcd � pp) (2.21)

where the subscript cd refers to downstream compressor duct. Furthermore,
the mass �ows are related by wc = wcd due to the �ow assumptions. By now
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Compressor

Plenum

pa wc ppwcdpcd

Figure 2.4: Pressure measurement downstream compressor

comparing _wc = _wcd it is possible to derive an explicit expression

Fc (w; !) =
Lc
Lcd

(pcd � pp) + pcd � pa (2.22)

relating Fc (w; !) and well de�ned measurable signals. Note that this relation
holds for transients as well as steady state.
The pressures and forcing term in steady state are related by pcd = pp

and Fc (wc; !) = pcd � pa, which gives Fc (wc; !) = pp � pa. The compressor
characteristic is in this con�guration de�ned by  c =

pcd
pa
, which in steady

state gives  c = 1 +
Fc(w;!)
pa

. This is identical to that found in (2.11).
By inserting (2.22) in (2.20) to substitute for pcd it can be shown that

_wc =
Ac

Lc + Lcd

0B@pa + Fc (w; !)| {z }
pc(wc;!)

�pp

1CA (2.23)

and by using (2.22) in (2.20) to substitute for Fc (w; !) it can be shown that

_wc =
Ac

Lc + Lcd

0BBB@
�
1 +

Lc
Lcd

�
pcd �

Lc
Lcd

pp| {z }
pc(t)

�pp

1CCCA . (2.24)



2.4. PRESSURE MEASUREMENTS IN DUCT 25

Hence, the dynamics describing mass �ow in the upstream ducting of the
plenum takes on the structure _wc = kcd1 (pc � pp) where pc is either a mea-
surement

pc (t) = (1 + kcd2) pcd (t)� kcd2pp (t)

of known and well de�ned signals or a function of mass �ow and impeller
speed

pc (wc; !) = Fc (wc; !) + pa.

The structure of the dynamics is identical to that of the Greitzer model
when using pc (wc; !), but the signal pc (t) = pc (wc; !) is now also available
as a measurement.

2.4.3 Comments

The dynamic dimension of the overall compression system model is not in-
creased by de�ning the new control volumes, these new volumes simply
introduce measurements at well de�ned locations for an already present dy-
namic equation. Note that in order to simulate the compression system, one
need to use a model of the compressor characteristic to generate wc. How-
ever, in control or observer design and implementation the signal pc is also
available as a measurement.
From (2.2), (2.18) and (2.23) it can be seen that the structure

_wc =
Ac
L0c
(pc (wc; !)� pp) (2.25)

is preserved for the various divisions of the duct, where L0c varies among
the divisions. Furthermore, for all three con�gurations the relation (2.11)
is preserved. This gives an opportunity to formulate pc in terms of the
compressor characteristic

pc (wc; !) = pa + Fc (w; !) =  c (wc; !) pa, (2.26)

which might be convenient when compressors are often described in terms
of the characteristic from a supplier.
When splitting up the control volumes, the boundaries should be chosen

such that the assumptions of the individual systems hold. This implies that
measurements �rst and foremost should be placed at locations where the
�ow is fairly one dimensional, which involves having su¢ cient length of duct
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upstream and/or downstream the compressor. Furthermore, �ow in ducts
divisions should appear incompressible both to each other and to plenum.

The discussed division of the compressor ducts can alternatively appear
in a combination, both upstream and downstream. The various relations
are then given by combining the equations already derived for the individual
cases. The throttle duct can be approached in the same manner as was done
for the compressor duct. Deriving the various equations will then consist of
the exact same exercise as was done for the compressor duct.

2.5 Model properties

The following chapters will use the model described by (2.1), (2.4), (2.5),
(2.8) and (2.25) in derivation of control laws and observers. When applying
Lyapunov methods for this purpose it is required that system dynamics is
locally Lipschitz, that is f (x) of _x = f (x) being locally Lipschitz, in order
to guarantee existence and uniqueness of a solution x (t) for a given initial
condition x (t0). A su¢ cient condition for this is for f (x) to be continuous
di¤erentiable, [18]. The models for throttle mass �ow (2.8) and load torque
(2.5) involves absolute values and sign functions, which are not continuously
di¤erentiable. However, by using the approximation sign (a) � tanh (�a)
and jaj = sign (a) a � a tanh (�a), these functions also becomes continuously
di¤erentiable. The error made by these approximations becomes smaller
when � increases, as can be seen from lim�!1 tanh (�a) ! sign (a). Note
that these approximations are active when the mass �ows are close to zero,
both for compressor and throttle mass �ow. Models for compressor torque
and throttle mass �ow are expected to be somewhat inaccurate for relatively
small mass �ows. Hence, the errors introduced by these approximations are
considered to be more of a mathematical detail than a source for model
error. For mathematical completeness it is also assumed that the compressor
characteristic is continuously di¤erentiable.

The compressor characteristic is strictly increasing with increasing im-
peller speed, shown theoretically in [19]. Combining this with (2.5)-(2.8)
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and (2.26) it can be seen that

(a� b) (wt (a)� wt (b)) > 0 (2.27)

(a� b) (pc (c; a)� pc (c; b)) > 0 (2.28)

(a� b) (� l (c; a)� � l (c; b)) > 0 (2.29)

(a� b) (� c (c; a)� � c (c; b)) > 0 (2.30)

(a� b) (� f (a)� � f (b)) > 0 (2.31)

where a, b, and c are some arbitrary parameters, which in view of the discus-
sion on continuously di¤erentiable system dynamic implies that @wt(a)

@a
> 0,

@pc(c;a)
@a

> 0, @� l(c;a)
@a

> 0 and @�f (a)

@a
> 0. These are so called sector proper-

ties that will be utilized in the control and observer design of subsequent
chapters. Furthermore, it is known from (2.26) that

pc (wc; !) � pa (2.32)

since  c (wc; !) � 0. This latter inequality follows from the fact that pressure
downstream the compressor always will be larger than or equal to pressure
upstream the compressor. Another way of viewing this is that the forcing
term, Fc (wc; !), always will be positive, at least as long as the impeller is
rotating in its design direction. In other words, the resultant force imposed
by the impeller on the �uid is acting along the positive �uid �ow direction.

2.6 System equilibrium and open loop sta-
bility

Let the equilibrium values for system states and input be denoted by (�)e.
From (2.25) the relation

pep = pc (w
e
c ; !

e) (2.33)

can be recognized for system equilibrium, which in view of (2.32) implies
that

pep � pa. (2.34)

From (2.1) and (2.8) the relation wec = ktsgn
�
pep � pa

�q��pep � pa
�� is found,

which in combination with (2.34) implies that

wec � 0 (2.35)
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and gives the relation
wec = kt

p
pep � pa. (2.36)

Using (2.3) and (2.5)-(2.7) gives the relation � ed = kc jwec j!e + kf!
e, and

� ed = kcw
e
c!

e + kf!
e (2.37)

follows from (2.35).
For dimensional simplicity, open loop stability is evaluated by consider-

ing the system (2.1) and (2.25) for a constant speed !e, the so called con-
stant/�xed speed compression system. Deviation from equilibrium is de�ned
by x =

�
pp � pep; wc � wec

�T
, resulting in the dynamic equation _x = f (x)

where

f (x) =

"
c2p
Vp

�
x2 � wt

�
x1 + pep

�
+ wec

�
Ac
L0c

�
pc (x2 + wec ; !

e)� x1 � pep
� # . (2.38)

The Jacobian of (2.38) evaluated at equilibrium is then given by

A =

"
� c2p
Vp

@wt(x1+pep)
@x1

c2p
Vp

�Ac
L0c

Ac
L0c

@pc(x2+wec ;!
e)

@x2

#�����
x=0

=

"
� c2p
Vp

@wt(pp)

@pp

c2p
Vp

�Ac
L0c

Ac
L0c

@pc(wc;!e)
@wc

#����� pp=pep
wc=wec

, (2.39)

which can be shown to have eigenvalues

�1;2 (A) =
1

2
�
�
pep; w

e
c

�
�

s
�
c2p
Vp

Ac
L0c
�2
�
pep; w

e
c

�
(2.40)

�
�
pep; w

e
c

�
=

Ac
L0c

@pc (wc; !
e)

@wc

����
wc=wec

�
c2p
Vp

@wt (pp)

@pp

����
pp=pep

. (2.41)

From (2.40) it can be seen that the square root results in complex conjugated
values or zero, since all the constants involved are positive and � is squared.
This implies that Re (� (A)) = 1

2
�
�
pep; w

e
c

�
. From (2.41) and (2.26) it can

then be recognized that Re (� (A)) < 0 when

@ c (wc; !
e)

@wc

����
wc=wec

<
L0cc

2
p

paAcVp

@wt (pp)

@pp

����
pp=pep

(2.42)

holds and Re (� (A)) > 0 when (2.42) with the inequality changed holds.
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Lemma 2.1 An equilibrium for the system (2.1), (2.8) and (2.25) is as-
ymptotically stable if (2.42) is satis�ed. The equilibrium point is unstable if
(2.42) is satis�ed with the inequality changed.

Proof. The proof follows from (2.38)-(2.42) and Theorem 4.7 of [18].

Remark 2.1 From (2.27) it is known that @wt(pp)

@pp

���
pp=pep

> 0. Hence, every

equilibrium for which the compressor characteristic has a negative gradient
with respect to mass �ow is a stable equilibrium.

The relation (2.42) forms a boundary in the compressor map, called the
surge line. This is shown in Figure 2.5, among other things, as the line
passing through peaks of constant speed lines. Operating points to the
right and left of the surge line constitutes open loop stable and unstable
respectively. This can be veri�ed by evaluating the mass �ow gradient of
the compressor characteristic in these regions. Negative gradient can be
recognized for relatively high mass �ows as well as for negative mass �ow.
However, it has been shown there is no negative mass �ow equilibrium for
this system, and stability of such points are of no practical interest.
By using (2.26), (2.33) and (2.36) it can be shown that

 c (w
e
c ; !

e) =
wec
k2t pa

+ 1, (2.43)

which expresses possible equilibrium points in the compressor map in terms
of the throttle model. Figure 2.5 shows this relation for two di¤erent values
of the throttle gain kt. As can be seen from the �gure, these two throttle
gains correspond to two fundamentally di¤erent sets of equilibrium points.
One is con�ned to the left and the other to the right of the surge line,
constituting open loop unstable and stable equilibria respectively. Hence,
the throttle gain determines to a large extent whether the equilibrium point
is open loop stable or unstable. In the case of a variable area throttle,
reducing the opening will move the throttle characteristic towards the left
in the compressor map and visa versa.
For a constant speed compression system, the equilibrium will be given

by the intersection of the throttle characteristic and the speed line corre-
sponding to !e. In the variable speed case (2.37) is used to rewrite

 c (w
e
c ; !

e) =  c

�
wec ;

� ed
kcwec + kf

�
=  c

��
� ed
!e
� kf

�
1

kc
; !e
�
, (2.44)
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Figure 2.5: Equilibrium and surge line in compressor map

relating compressor torque to the compressor map. In contrast to (2.43) this
requires a model of the compressor characteristic. If this is not available,
(2.37) can be combined with (2.43) to substitute for wec ,

 c (w
e
c ; !

e) =

�
� ed
!e
� kf

�
1

k2t kcpa
+ 1. (2.45)

The di¤erence of (2.44) and (2.45) is that (2.44) is based purely on the torque
equilibrium relations, whereas (2.45) combines torque and throttle mass �ow
equilibrium. Figure 2.5 illustrates the relation (2.44) for two di¤erent con-
stant torque inputs � ed, where the highest value of �

e
d corresponds to the

upper line. An equilibrium point for the variable speed compression system
is then given by the intersection of the throttle and torque characteristic.
Consider now a situation in which a control law has been developed for

drive torque, able of stabilizing any desirable operating point. Furthermore,
this control law requires information of the desired equilibrium values, sys-
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tem states and inputs, in order for implementation. In view of the previous
discussion it follows that both kt and � ed must be chosen in order to reach
any point in the compressor map. However, in practice one generally wishes
to specify the operating point in terms of system states and derive system
input on the basis of this choice. At least two system states are needed to
uniquely describe a desired equilibrium. Consider �rst the case when pep and
wec are speci�ed. This gives the opportunity to determine kt from (2.36) and
!e from (2.33) by evaluating the inverse function of pc (wec ; !

e). The input � ed
can now be found by (2.37). This procedure involves evaluating the inverse
of pc (wc; !), requiring an analytical function of this mapping. Note that
a unique !e should result from evaluation of the inverse function since the
mapping pc (wc; !) is strictly positive in !. It can also be recognized from
the compressor map that for some given pep and w

e
c , a unique !

e is related.
Consider next the case when pep and !

e are speci�ed. The parameter wec must
now be determined before kt and � ed can be evaluated. This must be deter-
mined from (2.33) by evaluating the inverse function of pc (wec ; !

e). However,
a solution of this inverse function can result in as many as three solutions
for wec (negative, in open loop unstable region or in open loop stable region).
This can also be recognized by inspection of the compressor map. Hence, the
mass �ow must also be chosen. Finally, consider the case when wec and !

e

are speci�ed. This gives the opportunity to determine pep from (2.33) and �
e
d

from (2.37). The parameter kt can now be found by (2.36). This procedure
also involves the use of a compressor map. However, the inverse function is
not needed. This is an advantage since models of compressor maps can be
composed of several functions, where each function describes some region
of the compressor characteristic. The related algorithm for evaluating the
compressor characteristic for some given inputs, e.g. mass �ow and impeller
speed, uses some clever lookup to decide which function/region to be evalu-
ated. Hence, the calculation of an inverse function in such situations can be
troublesome.
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Chapter 3

Control laws

3.1 Introduction

Active surge control was �rst introduced in [20]. Since then a vast amount
of results have been published on the topic, and for a comprehensive de-
scription of di¤erent approaches the reader is referred to [2], [3], [4] and [5].
Much of the literature is devoted to using the throttle downstream plenum
for actuation. A more resent result for this approach is given in [21] and
[22]. Theoretical and experimental studies are carried out by using pres-
sure upstream the compressor as feedback to a variable area throttle. Other
examples of actuators involve a closed coupled valve (CCV), recirculation
valve, blow o¤or bleed valves and impeller speed or torque. A detailed study
of actuator and sensing for surge control is o¤ered in [23] and [24].
Results on using the drive unit for surge control are, however, limited. In

[25] a control law using CCV and impeller torque as actuators was reported.
In this scheme the CCV actuation can be considered to achieve active surge
control, whereas the torque actuation gives the desired speed. In [26] a
control law using throttle downstream plenum and torque as actuators was
presented. Also here the torque control was used to achieve desired speed,
whereas the throttle was used for active surge control. Similar results re-
garding CCV and throttle actuation can be found in [27], where the drive
torque is used to compensate for model uncertainty.
Active surge control using only the compressor drive unit was �rst intro-

duced in [19]. A control law for impeller speed was presented, which could
stabilize any point in the compressor map. Furthermore, a control law for

33
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drive torque was presented. This control ensured convergence to some region
enclosing the desired operating point, but could not guarantee convergence
to the operating point itself.
In this chapter control laws for stabilization of any desired equilibrium

point of the model presented in Chapter 2, using either impeller speed or
torque as control input to the system, are derived. Throughout this chapter
a variables deviation from a desired equilibrium point is de�ned as (��) =
(�)� (�)e, with (�)e denoting the desired equilibrium.
This chapter starts by presenting a surge control law for impeller speed

in Section 3.2. This is an extensions of the proportional feedback from mass
�ow presented [19], introducing integral e¤ect and a nonlinear gain.
Section 3.3 presents novel active surge control laws for drive torque. Some

basic control structures are derived in Section 3.3.1 and Section 3.3.2. Sec-
tion 3.3.3 shows that these basic control laws can be extended with a passive
part. Adaptive versions of basic control laws, alternatively also including the
passive part, are presented in Section 3.3.4. The adaptive laws addresses
model parameters appearing in the control law, making it completely in-
dependent of these constants. Section 3.3.5 shows how the basic control
laws, possibly also including passive part, can be extended with nonlinear
damping to reduce e¤ects of model structural uncertainties. Finally, some
comments are o¤ered in Section 3.4.
This chapter is more or less a summary of results presented in [28], [29]

and [30]. These articles, however, also contains some simulations. Further-
more, alternative variants/formulation of adaptive control laws and nonlin-
ear damping can be found in these.

3.2 Impeller speed as control input

When considering the impeller speed as control input for the compression
system, the dynamic model is given by (2.1), (2.8) and (2.25). Impeller
speed, entering the system through pc, is now the control input to be de-
signed. This means that dynamics related to the impeller speed, (2.4),
should be fast. More speci�cally, the impeller speed dynamics should be
fast relative to duct mass �ow and plenum pressure dynamics, in the sense
that it appears to take on a desired value instantaneously.
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Proposition 3.1 The control law

! = � �wc� ( �wc; �pp; wi) + sat (wi) + !e

_wi = �ci �wc

where � (�) is some function satisfying

@ ( �wc� ( �wc; �pp; wi))

@ �wc
�

@pc(wec ;!
e)

@wec
+ �

@pc(wec ;!
e)

@!e

,

sat (wi) has arbitrary limits, ci � 0 and � > 0, leaves the desired equilibrium
asymptotically stable.

Proof. Deviation from desired equilibrium is de�ned as

x =
�
pp � pep wc � wec ci

R
(wc � wec) dt

�T
, u = ! � !e (3.1)

for notational convenience. The dynamic model (2.1), (2.25) and _wi of
Proposition 3.1 can be rewritten in terms of error variables

_x1 = k1 (x2 � f1 (x1)) (3.2)

_x2 = k2 (f2 (x2; u)� x1) (3.3)

_x3 = �cix2 (3.4)

using (3.1), where k1 =
c2p
Vp
, k2 = Ac

L0c
and the functions

f1 (x1) = wt
�
x1 + pep

�
� wt

�
pep
�

(3.5)

f2 (x2; u) = pc (x2 + we; u+ !e)� pc (w
e; !e) (3.6)

is found by using (2.33) and (2.36). These functions satis�es f1 (0) =
f2 (0; 0) = 0. Furthermore, from (3.5), (3.6) and (2.27)-(2.28) it can be
recognized that

(a� b) (f1 (a)� f1 (b)) > 0 (3.7)

(a� b) (f2 (c; a)� f2 (c; a)) > 0. (3.8)

Consider now the function

V (x) =
1

2k1
x21 +

1

2k2
x22 +

1

ci

Z x3

0

f2 (0; sat (�)) d� (3.9)
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which is positive de�nite and radially unbounded in x due to (3.8). The
time derivative along the solutions of (3.2)-(3.4) is found as

_V (x) = �
�
x1f1 (x1) + �x22

�| {z }
W (x)

+x2 (f2 (x2; u (x)) + �x2 � f2 (0; sat (x3)))| {z }
f(x)

(3.10)
for some � > 0, where W (x) is positive semi de�nite in x and the control
input has been de�ned explicitly as a function of system states.
Following [19], the objective is now to design u (x) such that f (x)jx2=0 =

0 and @f(x)
@x2

� 0. This will place f (x) in a sector such that x2f (x) � 0.
De�ning

u (x) = �x2� (x) + sat (x3) (3.11)

guarantees f (x)jx2=0 = 0. Furthermore, this de�nition leaves � (x) to be
chosen such that the gradient requirement

0 � @f (x)

@x2
=
@f2 (x2; u (x))

@x2
+
@f2 (x2; u (x))

@u (x)

@u (x)

@x2
m

@ (x2� (x))

@x2
�

�
@f2 (x2; u (x))

@u (x)

��1�
@f2 (x2; u (x))

@x2
+ �

�
(3.12)

is satis�ed, where it has been used that (3.8) ensures @f2(x2;u(x))
@u(x)

> 0. An
upper bound on (3.10) is now found as

_V (x) � �W (x) 8x 2 D (3.13)

where D describes the domain for which (3.12) holds, and Proposition 3.1
guarantees that D contains the origin. This implies that x = 0 is stable,
[18]. Furthermore, by de�ning the set

S =
n
x 2 Dj _V (x) = 0

o
= fx 2 Djx1 = x2 = 0g (3.14)

it can be seen that no solution can stay identical in (3.14) other than x = 0,

x1 � 0
x2 � 0

�
) f2 (0; sat (x3)) � 0) x3 � 0, (3.15)

where the last implication follows from (3.8). This implies that the origin of
(3.2)-(3.4) is asymptotically stable, [18].
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Corollary 3.1 By choosing � ( �wc; �pp; wi) = cs and setting the saturation
limits for wi to zero, the control law becomes identical to that reported in
[19].

Proof. With � ( �wc; �pp; wi) = cs it follows that

@ ( �wc� ( �wc; �pp; wi))

@ �wc
= cs

where cs � (@pc(w
e
c ;!

e)
@wec

+ �)=(@pc(w
e
c ;!

e)
@!e

) is required in order to satisfy the
requirements of Proposition 3.1. Furthermore, setting saturation limits to
zero results in the control law

! = � �wc� ( �wc; �pp; wi) + sat (wi) + !e

= �cs �wc + !e.

Proposition 3.1 can be considered a PI type control law, where �wc� ( �wc; �pp; wi)
represents a nonlinear gain, sat (wi) represents the integral e¤ect on mass
�ow deviation and !e is a reference feed forward term. As discussed in
Chapter 2, it might be challenging to �nd the corresponding equilibrium
values for all system states. The errors made when choosing inconsistent
equilibrium point might now be corrected by the introduced integrating ef-
fect, eventually taking the system towards the mass �ow equilibrium. This
is especially expected to be the case when � is chosen as a function of mass
�ow only, in which case the only uncertainty related to equilibrium values is
in the constant feed forward term !e.
The region of attraction for this control law is limited by some domain

D, for which both the model is valid and

@ ( �wc� ( �wc; �pp; wi))

@ �wc
�

@pc( �wc+wec ;�!+!
e)

@( �wc+wec)
+ �

@pc( �wc+wec ;�!+!
e)

@(�!+!e)

(3.16)

holds. The model is for one thing con�ned to positive impeller speeds, which
will restrict the magnitude of the control action from below. From (3.16) it
can be seen that requirements for the nonlinear control gain, �wc� ( �wc; �pp; wi),
is dictated by the compressor map gradients. In this sense, the success of
this control law depends largely on the speci�cs of the compressor. Section



38 CHAPTER 3. CONTROL LAWS

3.3.1 discusses the domain D and its implication on the region of attraction
in more detail.
The saturated integrator was introduced to the system on the basis

of passivity of the integrator itself and (2.28). This can be seen from
the proof, in the way this control part was introduced to the Lyapunov
function. A similar approach can possibly be used for other passive con-
trol parts. To illustrate this, consider a low pass �ltered and saturated
gain. Following the notation of the proof, a passive �rst order �lter can
be formulated by a _x4 = �x4 + cz and y = sat (x4). Here z is �lter in-
put, y is �lter output, a > 0 is �lter time constant and c > 0 is �l-
ter gain. By considering V (x4) = a

c

R x4
0
f2 (0; sat (�)) d�, the time deriv-

ative is found as _V (x4) = �1
c
x4f2 (0; sat (x4)) + zf2 (0; sat (x4)). Due to

(3.8) the term x4f2 (0; sat (x4)) is positive de�nite in x4. Furthermore,
by de�ning the �lter input, z = �x2, the term x2f2 (0; sat (x4)) can be
handled in the same manner as the saturated integrator (including it in
f (x) of (3.10)). This would rewrite the control input of Proposition 3.1 as
u (x) = �x2� (x) + sat (x3) + sat (x4). Note that this extension does not
in�uence the requirement (3.16) explicitly, but will in�uence the magnitude
of !. However, this e¤ect can be limited by the saturation.

3.3 Drive torque as control input

In this section backstepping is applied to design an input � d to asymptoti-
cally stabilize a desired equilibrium of (2.1), (2.4)-(2.8) and (2.25). To this
end it is assumed that dynamics related to the driving unit for generating
a desired torque is fast relative to plenum pressure, duct mass �ow and
impeller speed dynamics.
By closer inspection of the model it is clear that it is in a pure-feedback

form [31]. The only reason for it not to be in a strict-feedback form can
be found in the mass �ow dynamics, where ! does not appear a¢ ne, but
through a nonlinear mapping pc (w; !). The practical implication of this is
that stepping back on ! becomes somewhat more complicated, especially
since only qualitative properties of this function is assumed known.
Using backstepping to stabilize the compression system was also done in

[32], where �ow through the throttle was used to manipulate system dynam-
ics of a model capturing the phenomenons of both surge and rotating stall.
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Since then, a number of publications reports control laws for compression
systems based on backstepping design.

3.3.1 Basic control law

Proposition 3.2 Either of the control laws

� d = �c1 (�! + c2 �wc)� c2
JAc
L0c

(pc (w; !)� pp) + � l (wc; !)

� d = �c1 (�! + c2 �wc)� c2
JAc
L0c

(pc (w; !)� pp)� c2kc jwcj �wc � c2kf �wc + � ed

where

c2 �
@pc(wec ;!

e)
@wec

+ �

@pc(wec ;!
e)

@!e

,

c1 > 0 and � > 0, will make the desired equilibrium asymptotically stable.

Proof. For notational convenience the notations

x =
�
pp � pep wc � wec ! � !e

�T
, u = � d � � ed (3.17)

are introduced. Using these de�nitions rewrites the system (2.1), (2.4)-(2.8)
and (2.25) can be rewritten in terms of error variables as

_x1 = k1 (x2 � f1 (x1)) (3.18)

_x2 = k2 (f2 (x2; x3)� x1) (3.19)

_x3 = k3 (u� f3 (x2; x3)) (3.20)

where k1 =
c2p
Vp
, k2 = Ac

L0c
, k3 = 1

J
and the functions

f1 (x1) = wt
�
x1 + pep

�
� wt

�
pep
�

(3.21)

f2 (x2; x3) = pc (x2 + we; x3 + !e)� pc (w
e
c ; !

e) (3.22)

f3 (x2; x3) = � l (x2 + we; x3 + !e)� � l (w
e; !e) . (3.23)

is found by using (2.33), (2.36) and (2.37). From (3.21)-(3.23) it can be seen
that f1 (0) = f2 (0; 0) = f3 (0; 0) = 0. Furthermore, from (3.21)-(3.23) and
(2.27)-(2.29) it follows that

(a� b) (f1 (a)� f1 (b)) > 0 (3.24)

(a� b) (f2 (c; a)� f2 (c; b)) > 0 (3.25)

(a� b) (f3 (c; a)� f3 (c; b)) > 0. (3.26)
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The backstepping design is started by de�ning

z1 = x1 (3.27)

as the �rst backstepping variable. In the z1 dynamics, x2 is considered as
virtual control. This introduces the second backstepping variable

z2 = x2 � �2 (z1) (3.28)

where �2 is the related stabilizing function. Considering the function V1 (z1) =
1
2
d1z

2
1 for some constant d1 > 0, it can be seen from (3.18), (3.27) and (3.28)

that _V1 (z1) = d1k1z1f1 (z1) + d1k1z1z2 + d1k1z1�2 (z1). The term z1f1 (z1) is
negative de�nite in z1 due to (3.24). This implies that �2 is not absolutely
needed to render _V1 negative de�nite in z1. Even if a choice di¤erent from

�2 (z1) = 0 (3.29)

could give freedom later in the design, it is preferred to keep the structural
complexity of the controller low.
From (3.28) and (3.29) it follows that z2 = x2. In the related dynamics,

x3 is considered as virtual control. This introduces the third backstepping
variable

z3 = x3 � �3 (z1; z2) (3.30)

where �3 is the related stabilizing function. Considering the function

V2 (z1; z2) =
1

2
d1z

2
1 +

1

2
d2z

2
2 (3.31)

for some constant d2 > 0 it can be seen from (3.18), (3.19) and (3.27)-(3.30)
that

_V2 (z1; z2) = �d1k1z1f1 (z1)� �d2k2z
2
2 � d2

�
k2 �

k1d1
d2

�
z1z2

+d2k2z2 (f2 (z2; �3 (z1; z2)) + �z2)

+d2k2z2 (f2 (z2; z3 + �3 (z1; z2))� f2 (z2; �3 (z1; z2)))| {z }
f 02(z1;z2;z3)

(3.32)

for some constant � > 0. The cross term in z1z2 can be cancelled by an
appropriate choice of d1. Furthermore, the term z2 (f2 (z2; �3 (z1; z2)) + �z2)
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is handled in the same manner as in [19]

�3 (z1; z2) = �c2z2 (3.33)

c2 �
@f2(z2;�3)

@z2
+ �

@f2(z2;�3)
@�3

(3.34)

resulting in z2 (f2 (z2; �3 (z1; z2)) + �z2) � 0. Using (3.33)-(3.34) and choos-
ing d1 = k2d2

k1
bounds (3.32) from above according to

_V2 (z1; z2) � �k2d2z1f1 (z1)� d2k2�z
2
2 + d2k2z2f

0
2 (z1; z2; z3) (3.35)

on a domain for which (3.34) is satis�ed.
From (3.30) and (3.33) it follows that z3 = x3 + c2z2. Considering the

function
V3 (z1; z2; z3) = V2 (z1; z2) +

1

2
d3z

2
3 (3.36)

for some constant d3 > 0, an upper bound

_V3 (z1; z2; z3) � d2k2z1f1 (z1)� d2k2�z
2
2

+d2k2z2f
0
2 (z1; z2; z3)

+d3k3z3(� d � f3 (z2; z3 + �3 (z2))

+c2
k2
k3
(f2 (z2; z3 + �3 (z2))� z1)� � ed) (3.37)

is found by using (3.17), (3.19), (3.20), (3.28)-(3.30), (3.33) and (3.35). Note
that the control input � d is now available in (3.37). Before choosing this,
the sign inde�nite term z2f

0
2 (z1; z2; z3) needs attention. Applying the mean

value theorem it can be recognized that

z2f
0
2 (z1; z2; z3) = z2 (f2 (z2; z3 + �3 (z1; z2))� f2 (z2; �3 (z1; z2)))

=
@f2 (r1; r2)

@r2

����
L1;2

z2z3, (3.38)

where r1 and r2 are found as

L1;2
1

��
z2
�3

�
;

�
z2

z3 + �3

��
=

�
r1j r1 = z2
r2j r2 = �c2z2 + (1� �) z3; 0 < � < 1

�
(3.39)
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by using (3.33). The resulting cross term z2z3 is now dominated by using
the already present quadratic term �d2k2�z22 in (3.37) and a quadratic term
z23 resulting from the choice

� d = �c1z3| {z }
�d1

+� d2. (3.40)

Rede�ning the constants � = �1 + �2 and c1 = c11 + c12 for notational
convenience, (3.37) is now rewritten using (3.38) and (3.40)

_V3 (z) � �
�
d2k1z2f1 (z1) + d2k2�1z

2
2 + d3k3c11z

2
3

�| {z }
W (z)

�d3k3zT2;3Q (t) z2;3

+d3k3z3(� d2 � f3 (z2; z3 + �3)

+c2
k2
k3
(f2 (z2; z3 + �3)� z1)� � ed) (3.41)

where

Q (t) =

"
d2k2
d3k3

�2 �1
2
d2k2
d3k3

@f2(r1;r2)
@r2

�1
2
d2k2
d3k3

@f2(r1;r2)
@r2

c12

#
, (3.42)

z =
�
z1 z2 z3

�T
and z2;3 =

�
z2 z3

�T
. Note that the matrix (3.42) is

considered as a function of time due to the term @f2(r1;r2)
@r2

, where r1 = z2 and
r2 is some point on a line segment.
The upper left determinants of (3.42) are calculated as( d2k2

d3k3
�2;

d2k2
d3k3

�2c12 � 1
4
d2k2
d3k3

�
@f2(r1;r2)

@r2

�2 ) , (3.43)

showing that the matrix is positive de�nite in t if the fraction d2
d3
is chosen

su¢ ciently small as to suppress the e¤ect of @f2(r1;r2)
@r2

for all t. From (3.39)
it is seen that r1 and r2 is de�ned by a linear combinations of z2 and z3. As
discussed in Chapter 2, @f2(r1;r2)

@r2
(de�ned in terms of @pc(a;b)

@b
) is continuous

in its arguments. Hence, @f2(r1;r2)
@r2

is bounded for bounded z2;3 and (3.42) is
made positive de�nite in z2;3 semi globally by choosing d2

d3
su¢ ciently small.

Various control laws can now de derived, depending on how the terms in
the same bracket as � d2 of (3.41) are handled. One approach is to cancel all
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terms, as is done with the �rst control law of Proposition 3.2. This rewrites
(3.41) as

_V3 (z) � �W (z) 8z 2 D (3.44)

where it follows from (3.41) that W (z) is positive de�nite in z. The domain
D is described by the region for which the model is valid, (3.34) holds and
(3.42) is positive de�nite. Since (3.42) is positive de�nite in z2;3 semi globally,
the domain D is in essence described by model validity and (3.34). The
domain is guaranteed to contain z = 0 by the requirement for c2 made in
Proposition 3.2. It then follows from (3.36) and (3.44) that V3 is positive
de�nite and radially unbounded on D and _V3 is negative de�nite on D.
Hence, z = 0 is asymptotically stable.
The expression for compressor torque in (3.41) can be rewritten using

(2.5)-(2.7) and (3.23)

f3 (z2; z3 + �3) = f3 (z2; z3) + kc jz2 + wej�3 + kf�3| {z }
f3(z2;z3+�3)�f3(z2;z3)

. (3.45)

From (3.23) and (3.26) it is known that

z3f3 (z2; z3) = (z3 � 0) (f3 (z2; z3)� f3 (z2; 0)) > 0. (3.46)

Control law two of Proposition 3.2 is now given by letting � d2 in (3.41) only
cancel the kc jz2 + wej�3+ kf�3 of (3.45), rewriting the upper bound (3.41)

_V3 (z) � �W (z)� d3k3z3f3 (z2; z3) 8z 2 D (3.47)

where D is as discussed for (3.44). Note that even though z3f3 (z2; z3) is
positive de�nite and radially unbounded in z3, c1 > 0 is still needed to
guarantee (3.42) positive de�nite on D.
It follows from the control synthesis that the region of attraction for

these control laws is limited to some region within a domain D for which
j �wcj <1, j�! + c2 �wcj <1 and

c2 �
@pc(a;b)
@a

@pc(a;b)
@b

����� a= �wc+wec
b=�c2 �wc+!e

. (3.48)

From (2.28) it is known that pc is strictly increasing in impeller speed, which
suggests that there exists some positive constant g! such that

@pc(a;b)
@b

�
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g!8 (a; b). From Figure 2.2 it can be seen that the mass �ow gradient is
positive between zero mass �ow and the surge line, and negative for other
ranges. One imitate consequence of this is that the gain c2 must be positive
in order to stabilize equilibrium points in the open loop unstable regime. It is
reasonable to assume that @pc(a;b)

@b
is continuous in this region, which suggests

that there exists some positive constant gw such that
@pc(a;b)
@b

� gw 8 (a; b)
(since @pc(a;b)

@b
< 0 outside this region). Combining these bounds on gradients,

the region of attraction can be chosen arbitrary large by choosing c2 � gw
g!
.

However, as discussed in Chapter 2 the model is only valid for positive
impeller speed. Hence, the term c2 �wc is restricted to b = !e � c2 �wc being
positive. Furthermore, in practical applications this control gain will be
upper bounded due to measurement noise and actuator saturation. The
domain for which the stability analysis holds,

D =
�
(�pp; �wc; �!) 2 R3

�� �pp � �pep; �1 < c2 �wc � !e; � !e � �! <1
	
,

(3.49)
is de�ned for mathematical rigor. In addition to the discussed criteria, a
condition guaranteeing pp > 0 has been included in D. Note that D is not
the region of attraction, but a domain for which the region of attraction
must be a subset of. For a more detailed discussion of estimating a region
of attraction, the interested reader can consult [18].

Control laws of Proposition 3.2 involves direct cancellations of system
models in the control synthesis. Both the forcing term pc and compressor
load torque � l can be found in the expressions for � d. The di¤erences of the
control laws are found in the way compressor torque is handled. The �rst law
directly cancels the model for compressor torque, whereas the second cancels
parts of it. Control law two has an additional stabilizing term, z3f3 (z2; z3),
in the derivative of the Lyapunov function used for analysis, compared with
control law one. Comparing one and two is seems like the cancellation done
in two is more robust since it leaves an additional stabilizing term. This claim
has no rigorous justi�cation in mathematics, but is based the observation
that the time derivative of the Lyapunov function becomes "more negative"
for control law two than for one.
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3.3.2 Avoiding cancellations

The basic control laws presented in Section 3.3.1 can be divided into two
parts, � d = � d1 + � d2. These are � d1 = �c1 (�! + c2 �wc) and � d2 is di¤erent
for the two control laws. The �rst part of the control laws can be thought
of as dealing with the e¤ect of using impeller speed as virtual control in
the backstepping procedure, it is introduced to handle a "residue function"
resulting from this step, whereas the second term contains the cancellations
done in the �nal step. These cancellations involve models of compressor
torque and possibly compressor characteristic, if not measurement is used.
In the following propositions it is investigated whether one can avoid

compensating for impeller torque, compressor characteristics or both. The
motivation for this is to make the control law independent of models for
which uncertainty can be related. It turns out that this can be done if the
gain c1 is chosen su¢ ciently large. Moreover, from the control laws point of
view, the region of attraction can be chosen arbitrary large by choosing c1
su¢ ciently large. However, as already discussed the region of attraction will
be limited and must be contained in a domain for which the model is valid.

Avoiding compressor torque in the control law

Proposition 3.3 The control law

� d = �c1 (�! + c2 �wc)� c2
JAc
L0c

(pc (w; !)� pp) + � ed

where

c2 �
@pc(wec ;!

e)
@wec

+ �

@pc(wec ;!
e)

@!e

,

c1 > 0 su¢ ciently large and � > 0, will make the desired equilibrium as-
ymptotically stable.

Proof. Using the control law from Proposition 3.3 in (3.37) and the deriva-
tion leading to (3.47) gives an upper bound

_V3 (z) � �W (z)� d3k3z3f3 (z2; z3)

+d3k3 (c2kc jz2 + wej+ c2kf ) z2z3 � d3k3z
T
2;3Q (t) z2;3 (3.50)

� �W (z)� d3k3z
T
2;3Q

0 (t; z2) z2;3 (3.51)
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where

Q0 (t; z2) =

�
d2k2
d3k3

�2 q012
q021 c12

�
(3.52)

q012 = q021 = �
1

2

�
d2k2
d3k3

@f2 (r1; r2)

@r2
+ c2kc jz2 + wej+ c2kf

�
.(3.53)

The upper left determinants of (3.52) are8<:
d2k2
d3k3

�2;

d2k2
d3k3

�
�2c12 � 1

4

�q
d2k2
d3k3

@f2(r1;r2)
@r2

+
q

d3k3
d2k2

(kc jz2 + wej+ kf ) c2

�2� 9=;
(3.54)

which results in competing arguments in trying to suppress the e¤ect of both
@f2(r1;r2)

@r2
and c2 (kc jz2 + wej+ kf ) using d2

d3
. This implies that c12 also must

be used to suppress the sign inde�nite terms.

Avoiding compressor characteristic in the control law

Proposition 3.4 Either of the control laws

� d = �c1 (�! + c2 �wc) + c2
JAc
L0c

�pp + � l (wc; !)

� d = �c1 (�! + c2 �wc) + c2
JAc
L0c

�pp � c2kc jwcj �wc � c2kf �wc + � ed

where

c2 �
@pc(wec ;!

e)
@wec

+ �

@pc(wec ;!
e)

@!e

,

c1 > 0 su¢ ciently large and � > 0, will make the desired equilibrium as-
ymptotically stable.

Proof. Using either control law one or two from Proposition 3.4 in (3.37)
and following the derivation leading to (3.44) or (3.47) respectively, gives an
upper bound

_V3 (z) � �W (z)� d3k3z
T
2;3Q (t) z2;3 + d3k3z3c2

k2
k3
f2 (z2; z3 + �3) (3.55)
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leaving a cross term z3f2 (z2; z3 + �3). This term can be reformulated

z3f2 (z2; z3 + �3) = (z3 � 0) (f2 (z2; z3 + �3)� f2 (0; 0))

=

 
@f2 (r3; r4)

@r3

����
L3;4

� c2
@f2 (r3; r4)

@r4

����
L3;4

!
z2z3

+
@f2 (r3; r4)

@r4

����
L3;4

z23 (3.56)

using the mean value theorem, where
�
r3 r4

�T
is some point on the line

segment

L3;4

��
0 0

�T
;
�
z2 z3 + �3

�T�
. (3.57)

The upper bound (3.55) is now rewritten using (3.56)

_V3 (z) � �W (z)� d3k3z
T
2;3Q

0 (t) z2;3 (3.58)

where

Q0 (t) =

"
d2k2
d3k3

�2 q012
q021 c12 � c2

k2
k3

@f2(r3;r4)
@r4

#
(3.59)

q012 = q021

= �1
2

�
d2k2
d3k3

@f2 (r1; r2)

@r2

�c2
k2
k3

�
@f2 (r3; r4)

@r3
� c2

@f2 (r3; r4)

@r4

��
(3.60)

The upper left determinants of (3.59) are8>>><>>>:
d2k2
d3k3

�2;
d2k2
d3k3

�
�2

�
c12 � c2

k2
k3

@f2(r3;r4)
@r4

�
�1
4

�q
d2k2
d3k3

�
@f2(r1;r2)

@r2
� d3

d2
c2
@f2(r3;r4)

@r3
+ d3

d2
c2
@f2(r3;r4)

@r4

��2�
9>>>=>>>;
(3.61)

where it can be recognized that c2 must be chosen su¢ ciently large in order
to guarantee Q0 (t) positive de�nite.
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Compressor torque and pressure downstream the compressor

Proposition 3.5 The control law

� d = �c1 (�! + c2 �wc) + c2
JAc
L0c

pp + � ed

where

c2 �
@pc(wec ;!

e)
@wec

+ �

@pc(wec ;!
e)

@!e

,

c1 > 0 su¢ ciently large and � > 0, will make the desired equilibrium asymp-
totically stable.

Proof. The proof follows by combining the proof of Proposition 3.4 and
Proposition 3.5.

3.3.3 Passive extension

In the following it is shown that the control laws from Section 3.3.1 and
Section 3.3.2 can be extended with a passive control part. Before the passive
control part is introduced, some preliminary passive properties are derived
for the closed loop system with previously proposed control laws.

Lemma 3.1 Let
� d = � s + � p

where � s is any of the control inputs from Proposition 3.2 - Proposition 3.5,
then the system is strictly passive � p ! (�! + c2 �wc).

Proof. De�ne the storage function

Vs (z) =
1

d3k3
V3 (z) (3.62)

where V3 (z) is equal to that of (3.36). It then follows from the proofs of the
propositions that

_Vs (z) � �
1

d3k3
W (z)| {z }

Ws(z)

�zT2;3Q0 (t) z2;3 + z3� p (3.63)



3.3. DRIVE TORQUE AS CONTROL INPUT 49

with W (z) as in (3.41) and Q0 (t) varying for the various propositions. As
shown in proofs of these propositions, this matrix is made positive de�nite
semi globally (by increasing the gain c1 in the case of not cancelling terms).
Hence,

z3� p � _Vs (z) +Ws (z) 8z 2 D (3.64)

where Ws is positive de�nite and D is given by (3.49). It follows that z3� p
is a strictly passive pair, [18].

Lemma 3.2 Let
� d = � s + � p

where � s is any of the control inputs from Proposition 3.2 - Proposition 3.5,
then the system is output strictly passive and �nite gain L2 stable � p !
(�! + c2 �wc). Moreover, the L2 gain decreases when c1 increases beyond what
is required from the proposition in question.

Proof. The lower bound (3.64) is rewritten

z3� p � _Vs (z) + c11z
2
3 8z 2 D (3.65)

extracting c11z23 from Ws. Since the system is output strictly passive of the
given form, it is also �nite gain L2 stable with L2 gain less than or equal
1
c11
, [18].
The input � p is at disposal and can be chosen freely. This motivates the

investigation of extending the existing control laws by a passive part. It is
known from the general theory of passivity that a strictly passive system in
feedback interconnection with a strictly passive or a output strictly passive
and zero state observable system gives asymptotic stability of the overall
system. Let �s : � p ! (�! + c2 �wc) denote the closed loop system from previ-
ous propositions, where the subscript s refers to the use of � s for this system
(the "stabilizing" control law). The task now is to chose some passive system
�p : (�! + c2 �wc)! �� p, where this de�nition of input and output will result
in the standard feedback interconnection of passive system for �s and �p.
Notice that �p input is a linear combination of equilibrium error variables
for compressor mass �ow and impeller speed, and system output is our "free
to choose" control input � p. Hence, the system �p can be chosen under
restriction of a given input and output pair, meaning that dynamics of the
system can be chosen freely. Choosing it to comply with the properties of
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strictly passive or output strictly passive and zero state observable will guar-
antee asymptotic stability for overall feedback interconnection, [18]. Such
a dynamic system can for instance be a PID type control law, [33]. Other
examples involves saturated integrator and saturated low pass �ltered gain,
[18]. Furthermore, the passive system need not be dynamic. It can also be
a static feedback, a so called passive memoryless function. Moreover, the
overall � p can be composed of several of these alternatives in parallel, sum
of passive systems, when passive systems in parallel preserves their passive
properties, [18].
It is believed that best results for the overall control law is obtained

by choosing c1 and c2 of the basic control law as small as possible so that
stability is achieved, and then tune the passive part of the controller for
performance. The motivation for this is found in measurement noise and
actuator saturation, since a passive controller can o¤er low pass �ltering
and saturation in addition to gain. Furthermore, a dynamic control law can
also o¤er integrating e¤ect on its error variable to improve possible steady
state error.
For Proposition 3.2, where c1 can be chosen arbitrary small, the term

�c1 (�! + c2 �wc) can be replaced by a saturated version. Let �p contain the
passive relation yp = sat (c01up), which rewrites in terms of error variables
as �� p = sat (c01 (�! + c2 �wc)). By now choosing c1 vanishingly small in the
sense that the e¤ect of �c1 (�! + c2 �wc) on � d can be ignored, replaces this
term with the saturated version o¤ered by � p.

Proposition 3.6 Let
� d = � s + � p

where � s is any of the control inputs from Proposition 3.2 - Proposition 3.5
and � p is generated by some passive system �p : (�! + c2 �wc) ! �� p for
which a positive de�nite and radially unbounded storage function is related.
Then the desired equilibrium will be stable. Furthermore, pp, wc and ! will
converge to the desired equilibrium when initial values are su¢ ciently close.

Proof. Consider the function

V (z; zp) = Vs (z) + Vp (zp) (3.66)

where zp represent states of the passive system, Vs is as in (3.62) and Vp is a
storage function for the passive dynamics. It follows from the assumption for
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Vp and (3.62) that V is positive de�nite and radially unbounded in (z; zp).
Furthermore, the upper bound

�� pz3 � _Vp (zp) (3.67)

follows from the passive properties of �p. Combing this with the upper
bound (3.64) of Lemma 3.1 gives

_V (z; zp) = _Vs (z) + _Vp (zp)

� �Ws (z) 8 (z; zp) 2 D0 (3.68)

where D0 = f(z; zp) 2 Rnj z 2 Dg, n = 3 + dim (zp) and D is identical to
(3.49) and Ws as in (3.64). Since Ws is positive semi de�nite in (z; zp), it
follows that (z; zp) = (0; 0) is stable.
Let 
c be a compact positively invariant set de�ned by


c = f(z; zp) 2 RnjV (z; zp) � cg � D0 (3.69)

for some constant c. The existence of such a set follows from V being positive
de�nite and radially unbounded, [18]. By de�ning

E =
n
(z; zp) 2 
cj _V = 0

o
= f(z; zp) 2 
cj z = 0g , (3.70)

it follows by invariance arguments that every solution starting in 
c ap-
proaches z = 0 as t!1, [18].
The region of attraction for this control law will not only depend on the

gains of � s, but also on speci�cs of the passive system such as storage func-
tion and saturation of states. Whether or not states of the passive system
converges to some equilibrium point depends in large on type of passivity.
As already mentioned, convergence for these states can be guaranteed if �p
satis�es the property of strictly passive or output strictly passive and zero
state observable. On the other hand, if �p only satisfy the somewhat less re-
strictive property of passive one can only guarantee that these system states
are bounded.

3.3.4 Adaptive extension

The state feedback backstepping procedure in Section 3.3.1 and Section 3.3.2
resulted in some basic control laws, where their di¤erences lies in how they
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compensate for compressor torque and the compressor characteristic. It
has also been shown in Section 3.3.3 that these basic control laws can be
extended with a passive part (static or dynamic) � d = � s + � p, where � s is
one of the basic control laws that must be present to ensure stability and � p
is the passive component. Furthermore, the stabilizing part can be divided
in two, � s = � s1+ � s2, where � s1 = �c1 (�! + c2 �wc) and � s2 varies among the
di¤erent implementation.
Uncertainties involved in cancelling terms are sought improved by para-

meter estimation. More speci�cally, constant parameters appearing a¢ ne in
the cancelling terms will be addressed. This turns out to be rather straight
forward since all cancellations comply with the so called matching condition,
meaning that the cancelled terms are in the span of the control variable.
More speci�cally, all cancellations are done in �nial step of procedure by
� s2.
Three di¤erent constants (treating JAc

L0c
as one constant only) appears

a¢ ne in the control laws of Proposition 3.2 - Proposition 3.5. The parameter
JAc
L0c

appears in all implementations, whereas kc and kf appears in some of
them. Parameter estimators are derived by certainty equivalence. This
involves replacing constants in the control law by their parameter estimates,
and then do design to derive the dynamic part of estimators. Estimates
will generally be denoted by �, with subscript 1 referring to JAc

L0c
, subscript 2

referring to kc and subscript 3 referring to kf . To cover the most general case,
the adaptive version of Proposition 3.2 is derived for the case when a passive
control law of Proposition 3.6 is included. Deriving the adaptive version of
Proposition 3.3-Proposition 3.5 will consist of the exact same exercise, and
is therefore omitted.

Proposition 3.7 Let

� d = � s + � p; � s = � s1 + � s2; � s1 = �c1 (�! + c2 �wc)

then both

� s2 = �2 jwcj! + �3! � c2�1 (pc (wc; !)� pp)
_�1 = c�1c2 (�! + c2 �wc) (pc (wc; !)� pp)
_�2 = �c�2 (�! + c2 �wc) jwcj!
_�3 = �c�3 (�! + c2 �wc)!
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and

� s2 = �c2�2 jwcj �wc + c2�3 �wc � c2�1 (pc (wc; !)� pp) + � ed
_�1 = c�1c2 (�! + c2 �wc) (pc (wc; !)� pp)
_�2 = c2c�2 (�! + c2 �wc) jwcj �wc
_�3 = �c2c�3 (�! + c2 �wc) �wc

ensures a stable desired equilibrium. Furthermore, pp, wc and ! will converge
to the desired equilibrium when starting su¢ ciently close.

Proof. Deviation of parameter estimates from their actual value is denoted
z�i = k�i � �i, with k�i referring to the actual and unknown constant. Con-
sider the function

V� (z; zp; z�) = Vs (z) + Vp (zp) +
1

2c�1
z2�1 +

1

2c�2
z2�2 +

1

2c�3
z2�3 (3.71)

where Vs is given in (3.62) and Vp is as in Proposition 3.6. The time derivative
of this function is found as

_V� (z; zp; z�) � �Ws (z) + z3(� s2 � f3 (z2; z3 + �3)

+c2
k2
k3
(f2 (z2; z3 + �3)� z1)� � ed)

+
1

c�1
_z�1z�1 +

1

c�2
_z�2z�2 +

1

c�3
_z�3z�3 (3.72)

using � d of Proposition 3.7, analysis leading to (3.41), the de�nition of Ws

in (3.63) and �� pz3 � _Vp (zp). This upper bound is rewritten

_V� (z; zp; z�) � �Ws (z)

+z3(� s2 � �2 jz2 + wej (z3 + �3 + !e)� �3 (z3 + �3 + !e)

+�1c2 (f2 (z2; z3 + �3)� z1))

+z�1

�
1

c�1
_z�1 + c2z3 (f2 (z2; z3 + �3)� z1)

�
+z�2

�
1

c�2
_z�2 � z3 jz2 + wej (z3 + �3 + !e)

�
+z�3

�
1

c�3
_z�3 � z3 (z3 + �3 + !e)

�
(3.73)



54 CHAPTER 3. CONTROL LAWS

using (2.5)-(2.7), (3.23) and the de�nition for z�. The �rst control law of
Proposition 3.7 is now given by using � s2, _z�1, _z�2, and _z�3 to cancel the
content of their brackets in (3.73), resulting in the upper bound

_V� (z; zp; z�) � �Ws (z)8 (z; zp; z�) 2 D0 (3.74)

where D0 = f(z; zp; z�) 2 Rnj z 2 Dg, n = 6 + dim (zp) and D is identical
to (3.49). Since Ws is positive semi de�nite in (z; zp; z�) it follows that
(z; zp; z�) = (0; 0; 0) is stable.
Let 
c be a compact positively invariant set de�ned by


c = f(z; zp; z�) 2 RnjV� ((z; zp; z�)) � cg � D0 (3.75)

for some constant c. The existence of such a set follows from V� being
positive de�nite and radially unbounded, [18]. By de�ning

E =
n
(z; zp; z�) 2 
cj _V = 0

o
= f(z; zp; z�) 2 
cj z = 0g , (3.76)

it follows by invariance arguments that every solution starting in 
c ap-
proaches z = 0 as t!1, [18].
Using (3.45) the upper bound (3.72) is rewritten

_V� (z; zp; z�) � �Ws (z)� z3f3 (z2; z3)

+z3(� s2 � kc jz2 + wej�3 + kf�3

+c2
k2
k3
(f2 (z2; z3 + �3)� z1)� � ed)

+
1

c�1
_z�1z�1 +

1

c�2
_z�2z�2 +

1

c�3
_z�3z�3 (3.77)

which in terms of z� and � is

_V� (z; zp; z�) � �Ws (z)� z3f3 (z2; z3)

+z3(� s2 � �2 jz2 + wej�3 + �3�3

+�1c2 (f2 (z2; z3 + �3)� z1)� � ed)

+z�1

�
1

c�1
_z�1 + z3c2 (f2 (z2; z3 + �3)� z1)

�
+z�2

�
1

c�2
_z�2 � z3 jz2 + wej�3

�
+z�3

�
1

c�3
_z�3 + z3�3

�
. (3.78)
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The second control law of Proposition 3.7 is now given by using � s2, _z�1,
_z�2, and _z�3 to cancel the content of their brackets in (3.78), resulting in the
upper bound

_V� (z; zp; z�) � �
1

d3k3
W (z) 2 D0 (3.79)

where D0 = f(z; zp; z�) 2 Rnj z 2 Dg, n = 6 + dim (zp) and D is identical
to (3.49). Following the same arguments as for (3.74), it is concluded that
(z; zp; z�) = (0; 0; 0) is stable and every solution starting in 
c approaches
z = 0 as t!1
The constant � ed is used by the second control law of Proposition 3.7.

From (2.37) it is known that this constant can be expressed as � ed = kcw
e
c!

e+
kf!

e, where the uncertain parameters kc and kf appears. It is a simple
exercise to also include these in the parameter estimate, which will rewrite
� ed = �2 jwec j!e + �3!

e and add some term to the dynamics of �2 and �3.
Alternatively � ed can be considered as an unknown constant altogether.
Proposition 3.7 is an adaptive extension of Proposition 3.2, but the con-

trol laws of Proposition 3.3 - Proposition 3.5 can also relatively simply be
extended with adaptive gains in the same manner. In the case of not com-
pensating for compressor torque, the update law for �1 will remain exactly
the same as presented here. The estimates �2 and �3 are not needed in this
case, unless one wishes to replace kc and kf of � ed. In the case of not com-
pensating for pressure downstream the compressor, the estimates �2 and �3
will remain exactly the same as presented, while the update law for �1 will
change slightly ( _�1 = �c�1c2 (�! + c2 �wc) �pp). In the case of not compensating
for compressor torque nor pressure downstream the compressor, the update
laws will be as in the individual aforementioned cases.
It is considered a design choice whether c2 is included as part of the

uncertain parameter k�1 or not. This control gain can be de�ned as being
part of the unknown parameter, in which case it will completely disappear
from � s2. An alternative formulation to the one presented can be made by
splitting up the brackets enclosing pc and pp, and then treat the constant
appearing a¢ ne in these variables as two di¤erent constants. Treating them
as di¤erent constants has no root in physics, but might have an in�uence on
overall system dynamics.
As was discussed for the passive extension for the control law, the region

of attraction will now depend on the overall system dynamics.
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3.3.5 Nonlinear damping

An alternative approach to adaptive control in order to reduce the e¤ect of
model uncertainties is to introduce nonlinear damping. This will give the
opportunity to reduce the e¤ect of structural as well as parameter errors
introduced by the model, in contrast to the adaptive part that addressed
parameters appearing a¢ ne in cancelled terms only, [31]. As discussed in
Section 3.3.4, these cancellations can be found in � s2 and are done in the
�nal step of the design procedure. Since the terms implemented in � s2 are
only models, these cancellation will involve some uncertainty with respect
to the actual value.
A relationship between model and actual value will generally be modeled

as

f� = f�f (t) (3.80)

�f (t) = 1 + �(t) (3.81)

for each cancellation, where f� represents the actual value of the phenomena
modeled by f and �(t) is bounded. From this it can be recognized that
�(t) represents the models deviation from its real value, with �(t) = 0
implying perfect match of model and actual value. Model error increases as
�(t) deviates away from zero.
In order to limit the e¤ect of errors introduced by uncertainty in can-

celling model terms, the control law is extended with a nonlinear damping
part ��. This is not introduced to achieve asymptotic stability in the pres-
ence of uncertainty, but rather limit the e¤ect of these and to guarantee
bounded of solutions in presence of uncertainty. Furthermore, it is assumed
that the uncertainties related to the various models do not corrupt the prop-
erties stated by (2.27)-(2.31).

Proposition 3.8 Let

� d = � s + � p + ��

� s = � s1 + � s2; � s1 = �c1 (�! + c2 �wc)

�� = ��1 + ��2; ��1 = �c�1c22 (�! + c2 �wc)

�
JAc
L0c

(pc (w; !)� pp)

�2
where � p is generated by a strictly passive system for which a positive de�nite
and radially unbounded storage function is related. Then either of the control
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laws

� s2 = �c2
JAc
L0c

(pc (w; !)� pp) + � l (wc; !)

��2 = �c�2 (�! + c2 �wc) (� l (wc; !))
2

or

� s2 = �c2
JAc
L0c

(pc (w; !)� pp)� c2kc jwcj �wc � c2kf �wc + � ed

��2 = �c�2 (�! + c2 �wc) (�
e
d � c2kc jwcj �wc � c2kf �wc)

2

will guarantee convergence to a set containing the desired equilibrium in
presence of model uncertainty related to JAc

L0c
(pc (w; !)� pp) and � l (wc; !).

Proof. Consider the function

V� (z; zp) = Vs (z) + Vp (zp) (3.82)

where Vs is given by (3.62) and Vp is as in Proposition 3.8. The time deriva-
tive of this function is upper bounded by _V� (z; zp) = 1

d3k3
_V3 (z) + _Vp (zp) �

1
d3k3

_V3 (z)�Wp (zp)�� pz3, using the assumptions related to the passive part.
Substituting � d of Proposition 3.8 for � d of Proposition 3.2 in the derivation
leading to (3.41) results in

_V� (z; zp) � �
�
1

d3k3
W (z) +Wp (zp)

�
| {z }

W�(z;zp)

+z3(� s2 + �� � f3� (z2; z3 + �3)

+c2
k2�
k3�

(f2� (z2; z3 + �3)� z1)� � ed�) (3.83)

where it has been used that Q (t) is positive de�nite semi globally. In this re-
lation f3� (z2; z3 + �3), k2�k3� (f2� (z2; z3 + �3)� z1) and � ed� are actual values,
previously cancelled by � s2 under assumption of accurate models. Recalling
that

f3� (z2; z3 + �3) = � l� (z2 + we; z3 + �3 + !e)� � l� (w
e; !e) (3.84)
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and � l� (we; !e) = � ed�, leaves � l� (z2 + we; z3 + �3 + !e) as a resultant for
f3� and � ed� in (3.83). By now using (3.80), (3.81), and the �rst � s2 of
Proposition 3.8 rewrites (3.83)

_V� (z; zp) � �W� (z; zp)

+z3(�� � � l (z2 + we; z3 + �3 + !e)| {z }
f 02

�2 (t)

+c2
k2
k3
(f2 (z2; z3 + �3)� z1)| {z }

f 01

�1 (t)). (3.85)

where W� (z; zp) is positive de�nite and the f 0�s are models. Inserting �� =
��1+ ��2 = �c�1c22z3f 021 � c�2z3f 022 and the �rst ��2 of Proposition 3.8, this
inequality can now be upper bounded as

_V� (z; zp) � �W� (z; zp)

�c�1c22
�
z3f

0
1 �

1

2c2c�1
�1 (t)

�2
+
�2
1 (t)

4c�1

�c�2
�
z3f

0
2 +

1

2c�2
�2 (t)

�2
+
�2
2 (t)

4c�2

� �W� (z; zp) +
�2
1 (t)

4c�1
+
�2
2 (t)

4c�2
. (3.86)

This inequality is the basis of discussion related to the �rst control law of
Proposition 3.8, which is shortly detailed.
Proceeding now to the second control law of Proposition 3.8, the term

f3� (z2; z3 + �3) in (3.83) is expressed as in (3.45)

f3� (z2; z3 + �3) = f3� (z2; z3) + f3� (z2; z3 + �3)� f3� (z2; z3)| {z }
f 03�

(3.87)

which rewrites (3.83)

_V� (z; zp) � �W� (z; zp) + z3(� s2 + �� � (f 03� (z2; z3) + � ed�)| {z }
f 003�

+c2
k2�
k3�

(f2� (z2; z3 + �3)� z1)) (3.88)
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where it has been used that z3f3� (z2; z3) > 0. By now using (3.80), (3.81),
and the second � s2 of Proposition 3.8 gives the upper bound

_V� (z; zp) � �W� (z; zp)

+z3(�� � (f3 (z2; z3 + �3)� f3 (z2; z3) + � ed)| {z }
f 02

�2 (t)

+c2
k2
k3
(f2 (z2; z3 + �3)� z1)| {z }

f 01

�1 (t)) (3.89)

for (3.88), where f 02 has changed relative to (3.85). By now choosing �� =
��1 + ��2 = �c�1c22z3f 021 � c�2z3f

02
2 and the second ��2 of Proposition 3.8

then results in an identical upper bound as (3.86).
Common for both control laws is that they use V� (z; zp) = Vs (z)+Vp (zp)

which is positive de�nite and radially unbounded in (z; zp). An upper bound
on the time derivative of this is found as _V� (z; zp) � �W� (z; zp) + � (t),
where W� (z; zp) is positive de�nite and radially unbounded and

�(t) =
�2
1 (t)

4c�1
+
�2
2 (t)

4c�2
(3.90)

is bounded and decreases with increasing control gains. As discussed pre-
viously, the upper bound (3.86) is valid on D0 = f(z; zp) 2 Rnj z 2 Dg,
n = 3+dim (zp), where D is identical to (3.49) due to validity of the model.
Since V� (z; zp) and W� (z; zp) are positive de�nite and radially unbounded,
there exists class K1 functions 
1, 
1 and 
3 such that 
1 (k(z; zp)k) �
V� (z; zp) � 
2 (k(z; zp)k) and 
3 (k(z; zp)k) � W� (z; zp). This implies that

_V� (z; zp) � �W� (z; zp) + � (t)

� � (1� �)W� (z; zp)� �
3 (k(z; zp)k) + � (t)

� � (1� �)W� (z; zp) 8 k(z; zp)k � 
�13

�
�(t)

�

�
(3.91)

8t � 0 and 8 (z; zp) 2 D0, where 
�13 is the inverse function of 
3 and � some
scalar 0 < � < 1. Let Br = f(z; zp) 2 Rnj kz; zpk � rg � D0. For su¢ ciently
small �i�s or equivalently su¢ ciently large c�i�s, the inequality


�13

�
�(t)

�

�
< 
�12 (
1 (r)) (3.92)
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holds. Hence, the overall system is uniformly ultimately bounded (for su¢ -
ciently small �i�s or equivalently su¢ ciently large c�i�s), [18].
The control parts ��1 and ��2 acts on uncertainties related to mass �ow

dynamic equation and compressor torque respectively. The collected e¤ect of
uncertainties can be formulated �(t) = �21(t)

4c�1
+

�22(t)

4c�2
, where subscript 1 and

2 refers to mass �ow dynamic and compressor torque models respectively.
Alternative formulations can be made by splitting up the terms/functions.
For the mass �ow dynamics one could e.g. consider Ac

L0c
pc (wc; !) and �Ac

L0c
pp

as separate functions, rather than one function, Ac
L0c
(pc (wc; !)� pp), as was

done in the derivation of this control law. For the compressor torque one
could e.g. consider � c (wc; !) and � f (!) as separate functions, rather than
one function � l (wc; !).
As already mentioned, these results hold whether or not the passive

control part is used. The practical di¤erence lies in the estimates of the
global bound, since the function used to analyze the system will be di¤erent
for the two cases. However, �(t) will be the same whether or not the
passive part is included. Furthermore, these results also give a estimate on
bounds of solutions, including e¤ect of initial conditions. This can be used
to estimate a less restrictive (smaller) bound on gains, by restricting the
region of attraction to some subset of the possible operating regime.
Nonlinear damping was introduced to guarantee bounded solutions in

presence of uncertainty in cancelled dynamics. The results show that so-
lutions are bounded by the collected e¤ect of uncertainty �(t). Using the
de�nition of�(t), it can be recognized that this is a positive valued function.
Moreover, it can be seen that increasing the gains c�i will reduce the mag-
nitude of �(t). Furthermore, it can be seen from the proof that �(t) = 0
results in an asymptotically stable equilibrium. Tuning of control gains will
be depend both on system parameters and the passive part of the controller,
since these factors in�uence region of attraction and the ultimate bound.

3.4 Comments

None of the derived control laws, neither speed nor torque, are based on an
explicit analytical expression for the compressor characteristic, but rather
on an overall property related to mass �ow and impeller speed gradients.
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More speci�cally, the relation

@pc(wc;!)
@wc

@pc(wc;!)
@!

(3.93)

appears in all of the control laws, where some control gain is required larger
than the magnitude of this fraction in the region of interest. For implemen-
tation, on the other hand, the compressor characteristic is required for some
of the control laws. As discussed in Chapter 2 this can be implemented by
either a model, or a measurement in the case of su¢ cient length of upstream
and/or downstream ducts for the compressor.
A model for throttle mass �ow does not appear in any of the control

laws. Furthermore, an explicit expression for throttle mass �ow is not used
in analysis leading to the control laws. The analysis only rely on the strictly
passive property stated in (2.27). Hence, the control laws will be valid for
any throttling devise satisfying this property.
All stability results are derived using a quadratic Lyapunov function

from which asymptotic convergence to a desired equilibrium, or a set con-
taining desired equilibrium in the case of nonlinear damping, is guaran-
teed by initial conditions su¢ ciently close to this equilibrium. Recalling
the proofs it can be seen that exponential convergence can be concluded
if ��pp

�
wt
�
�pp + pep

�
� wp

�
pep
��
� ��p�p2p. This is equivalent with

@wt(pp)

@pp
�

�ppp, which can be seen to be the case for (2.8), semi globally in pp. Since
none of the control laws presented concludes with global or semi global sta-
bility, due to model limitations, this introduces no restriction on the domain
for which convergence will be exponential.
When evaluating how system parameters in�uences the control laws, it

can be recognized that the fraction (3.93) appears in both speed and torque
control algorithms. For the speed control it gives a lower bound for the
mass �ow gradient of the nonlinear gain, �wc� ( �wc; �pp; wi), whereas it gives
a lower bound for the gain c2 in the case of torque control. In general it
is desirable with this bound low, that is (3.93) small, giving grater freedom
for tuning. This parameter is associated with the compressor stage only, or
more precisely the forcing term of the compressor stage, and the upstream
ambient pressure (where it is reasonable to assume that pa of (2.26) has no
e¤ect on the relation (3.93)). An illustration of this fraction is shown in
Figure 3.1 for the same compressor map as shown in Figure 2.2, based on
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Figure 3.1: Fraction of compressor map gradients

data from a real compressor. Furthermore, the parameters Ac, L0c and J
can be recognized for the torque control laws in the con�guration JAc

L0c
. This

parameter is multiplied by c2 and pressure equilibrium deviation. Hence, if
the system is designed such that JAc

L0c
is relatively small, this will reduce the

magnitudes required by � d in transients.
All the control laws presented in this chapter uses mass �ow in feedback.

Measurement of mass �ow is, however, not available for transient behavior.
This implies that the control laws must be integrated with a mass �ow
estimate before implementation is possible.



Chapter 4

Observers for mass �ow

4.1 Introduction

As was pointed out in the discussion of control laws in Chapter 3, there is a
need for feedback from mass �ow. However, this measurement is not easily
obtained. To overcome this problem, observers for mass �ow are derived
based on the dynamic model of the compression system. This gives a module
based design, by which it is meant that control laws are derived assuming
access to mass �ow and observers are derived without taking the speci�c
control law into account. For implementation one then follows the so-called
certainty of equivalence, and replaces the assumed measured mass �ow in
the control law by its estimate. For linear system the separation principal
ensures that this interconnected system, of control and observer, preserves
the stability results achieved for the individual cases. For nonlinear system,
on the other hand, this principle does not generally hold.
Compared with the vast amount of literature on control and the repeat-

edly appearing mass �ow as feedback, relatively little is found on observers
for this variable. Some early results are reported in [34], based on the pres-
sure mass �ow dynamics of the compression system. However, this result
does not investigate the stability of the observer itself, but presents an inte-
grated observer control design for the system. This integrated design starts
with de�ning an observer for the system, which is used as the basis for con-
trol synthesis (fundamentally di¤erent approach compared with the module
based). Reduced order observer design for the somewhat more complicated
compression system model of Moore and Greitzer, [6] and [7], is evaluated

63
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as a case study in [35] for integrated design. Some references to other high-
gain observers for this system are also given. A more recent reduced order
observer for this system can be found in [36].
This chapter starts by introducing a general observer from the literature

in Section 4.2, used by later sections to derive observers for the compression
system presented Chapter 2. In Section 4.3 two reduced order observers for
mass �ow are derived. Their di¤erences lie in whether the compressor map
is implemented as a model or measurement. In Section 4.4 two observers
for mass �ow and pressure are derived, based on the observer in Section 4.2,
where their di¤erences lies in whether the compressor map is implemented as
a model or measurement. In Section 4.5 two observers for mass �ow, pressure
and impeller speed are derived, based on the observer in Section 4.2, where
their di¤erences lies in whether the compressor map is implemented as a
model or measurement. Section 4.6 gives some comments to the derived
observers.
The reduced order observes from Section 4.3 can also be found in [37]

and [38], accompanied by simulations. In addition to simulations, [37] also
o¤ers a detailed analysis on how measurement noise in�uences the observer.
Furthermore, a separation principle is discussed for the situation in which a
mass �ow estimate is used in control laws of the compression system. One of
the full order observers in Section 4.5 and an accompanying reduced order
observer for mass �ow is presented in [39], where simulations are o¤ered.

4.2 Theoretical background

The general observer proposed by Murat Arcak and coauthors will be the
basis for this chapter and is now brie�y presented for completeness. A
comprehensive description of the observer can be found in [40], [35], [41],
[42] and references therein. The model used for observer design is given by

_x = Ax+G
(Hx|{z}
v

) + % (u; y) (4.1)

y =
�
y1 y2

�T
=
�
Cx h (u; x)

�T
(4.2)

where x 2 Rn, u 2 Rm, y1 2 Rr1, y2 2 Rr2 and 
 : Rp ! Rp. In this struc-
ture the unmeasured states enters the dynamics through the linear mapping
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Ax and the nonlinear mapping 
 (Hx). Furthermore, the mapping 
 is as-
sumed to satisfy the sector property

(v � w)T (
 (v)� 
 (w)) � 08v; w 2 Rp (4.3)

or some decoupled version of it1. Notice that (4.3) is equivalent to

@
 (a)

a
+

�
@
 (a)

a

�T
� 08a 2 Rp (4.4)

when 
 is di¤erentiable. The observer

_̂x = Ax̂+G
(Hx̂+K2 (Cx̂� y1)| {z }
w

) + % (u; y) +K1 (Cx̂� y1) (4.5)

is proposed the system (4.1)-(4.2). By de�ning e = x � x̂ and considering
the Lyapunov function

V (e) = eTPe (4.6)

where P = P T is positive de�nite, it can be shown that

_V (t; e) � �2eTQ1e� 2 (v � w)T Q2 (
 (v)� 
 (w)) (4.7)

if the linear matrix inequality (LMI)�
(A+K1C)

T P + P (A+K1C) +Q1 PG+ (H +K2C)
T Q2

GTP +Q2 (H +K2C) 0

�
� 0 (4.8)

is satis�ed2. Note that this is an LMI in P , Q1, Q2, PK1 and Q2K2. The
stability properties are now given by the matrixes Q1 and Q2. By requiring
Q1 positive de�nite and choosing Q2 as the identity matrix, it follows from
(4.6), (4.7) and (4.4) or (4.5) that e = 0 is exponentially stable. In this case
the observer gain K2 follows directly from the solution of the LMI, and K1

can be calculated using P�1 (which exists since P > 0). The structure of

Q2 can vary with the structure of 
. Let 
 (v) =
�

T[1]
�
v[1]
�
� � � 
T[l]

�
v[l]
��T

and Q2 = diag
�
q21I[1]; : : : ; q2lI[l]

	
. Here 
[i] are vectors, q2i are positive

scalars and I[i] is an identity matrix of same dimension as 
[i]. The last term

of (4.7) can then be expressed �2
P

i q2i
�
v[i] � w[i]

�T �

[i]
�
v[i]
�
� 
[i]

�
w[i]
��
,

which is negative if the individual 
[i]
�
v[i]
�
�s satis�es (4.3) or (4.4). The

resulting Q2 will relax the LMI relative to Q2 = I.
1The variable w is used to keep with the notation of referred publications, and should

not be confused with mass �ow.
2See Appendix B.1
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4.3 Reduced order observer for mass �ow

In this section reduced order observers for mass �ow in the compression
system presented in Chapter 2 are derived. From (2.1), (2.4)-(2.8) and
(2.25) it can be recognized that mass �ow appears linearly in the pressure
dynamics, through pc in the mass �ow dynamics and through � c in the
impeller speed dynamics. Note that more information of system mass �ow
is re�ected through the pressure dynamics than impeller speed dynamics,
since the impeller speed dynamics does not re�ect the sign of the mass �ow.
Based on these simple considerations, a reduced order observer based on
mass �ow and plenum pressure dynamics is investigated. Furthermore, it is
reasonable to assume that plenum pressure and impeller speed measurements
are available. Whether or not a measurement of compressor characteristic
can be used, depends on su¢ cient upstream and/or downstream compressor
ducting as discussed in Chapter 2.

4.3.1 Measurement of compressor pressure

Proposition 4.1 The observer

_̂� = co
c2p
Vp
�̂+

Ac
L0c
pc (t)�

�
Ac
L0c
+
c2p
Vp
c2o

�
pp (t)� co

c2p
Vp
wt (pp (t))

ŵc = �̂� copp

where co < 0 is exponentially stable.

Proof. The measurements y = fpp; !; pcg are assumed available. De�ne

� = wc + copp (4.9)

which by using (2.1), (2.8), (4.9) and (2.25) results in the dynamic equation

_� = co
c2p
Vp
�+

Ac
L0c
pc (�� copp (t) ; ! (t))

+

�
�Ac
L0c
�
c2p
Vp
c2o

�
pp (t)� co

c2p
Vp
wt (pp (t))| {z }

%(t)

(4.10)
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where measured signals are indicated by being explicit dependent on time.
An observer for this dynamic equation can be taken as

_̂� = co
c2p
Vp
�̂+ % (t) + g (�̂; y) (4.11)

where g is a function of available signals. By de�ning

e� = �� �̂, (4.12)

it follows from (4.10) and (4.11) that

_e� = co
c2p
Vp
e� +

Ac
L0c
pc (�� copp (t) ; ! (t))� g (�̂; y) . (4.13)

Notice that pc (�� copp (t) ; ! (t)) = pc (wc; ! (t)) = pc (t). Hence, by choos-
ing

g (�̂; y) =
Ac
L0c
pc (t) (4.14)

(4.13) can be rewritten as _e� = co
c2p
Vp
e�. It follows that e� = 0 is exponentially

stable if co < 0. De�ning the mass �ow estimate ŵc as in Proposition 4.1
and using (4.9) it can be recognized that

ewc = wc � ŵc = �� copp � �̂+ copp = e� (4.15)

from which it is concluded that ewc = 0 is exponentially stable if co < 0.

4.3.2 Model of compressor pressure

Proposition 4.2 The observer

_̂� = co
c2p
Vp
�̂+

Ac
L0c
pc (�̂� copp (t) ; ! (t))

�
�
Ac
L0c
+
c2p
Vp
c2o

�
pp (t)� co

c2p
Vp
wt (pp (t))

ŵc = �̂� copp

where co < 0 is su¢ ciently negative, is exponentially stable.
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Proof. The measurements y = fpp; !g are assumed available. Follow
the proof of Proposition 4.1 leading to (4.13). In contrast to the previous
proposition, the measurement pc is not available. Consider now

g (�̂; y) =
Ac
L0c
pc (�̂� copp (t) ; ! (t)) (4.16)

which by using (4.12) rewrites (4.13)

_e� = co
c2p
Vp
e� +

Ac
L0c
(pc (�� copp (t) ; ! (t))� pc (�� e� � copp (t) ; ! (t))) .

(4.17)
The time derivative of

V (e�) =
1

2
e2� (4.18)

along the solution of (4.17) is found as

_V (t; e�) = ��e2� +
Ac
L0c
e�((� + co

L0cc
2
p

AcVp
)e�

+(pc (�� copp (t) ; ! (t))� pc (�� e� � copp (t) ; ! (t)))| {z }
�(t;e�)

)(4.19)

for some � > 0. Applying the mean value theorem on � of (4.19) results in

pc (�� copp (t) ; ! (t))� pc (�� e� � copp (t) ; ! (t)) =
@pc (a; ! (t))

@a

����
L

e�

(4.20)
where a is some point on the line segment joining �� copp (t) and �� e� �
copp (t). Notice that this is equivalent with the line segment joining wc and
ŵc. Inserting (4.20) in (4.19) gives

_V (t; e�) = ��e2� +
Ac
L0c
e2�

��
� + co

L0cc
2
p

AcVp

�
+
@pc (a; ! (t))

@a

����
L

�
(4.21)

which shows that _V (t; e�) � ��e2� by choosing co su¢ ciently negative. Sta-
bility of ewc = wc � ŵc = 0 follows from the same arguments as in the proof
of Proposition 4.1.
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4.4 Observer for pressure and mass �ow

The reduced order observer is highly dependent on plenum pressure dynamic
model. In an attempt to make the observer more robust, an observer for
both plenum pressure and duct mass �ow is investigated. In doing so, the
observer will contain more model information in the sense that both pressure
as well as mass �ow dynamics is explicitly incorporated. This con�guration
allows for feedback to compensate for model uncertainties in both of these
equations. Note also that this dynamic system is highly coupled.

4.4.1 Measurement of compressor pressure

Proposition 4.3 The observer

A =

"
0

c2p
Vp

�Ac
L0c

�c2

#
; G =

�
�1 0
0 1

�
; H =

�
1 0
0 1

�
; C =

�
1 0

�
;


 =

"
c2p
Vp
wt (w1)

c2w2

#
; % =

�
0

Ac
L0c
pc (t)

�

where c2 � 0, is exponentially stable if the LMI is solvable with Q2 =
diag fq21; q22g > 0.

Proof. The pressure mass �ow dynamic model is given by (2.1), (2.8) and
(2.25). The de�nitions

x1 = pp; x2 = wc; x3 = !; u = � d (4.22)

k1 =
c2p
Vp
; k2 =

Ac
L0c
; k3 =

1
J
; k4 = kt; k5 = pa; k6 = kc; k7 = kf (4.23)

f1 (x1) = sgn (x1 � k5)
p
jx1 � k5j (4.24)

f2 (x2; x3) = pc (x2; x3) (4.25)

f3 (x2; x3) = jx2jx3 (4.26)

are introduced for notational convenience. Variables, constants and func-
tions related to impeller speed dynamics (2.4) are included for later use.
The available measurements are y = fx1; x3; f2g. Using (4.22)-(4.25), the
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dynamic model (2.1), (2.8) and (2.25) is expressed�
_x1
_x2

�
=

�
0 k1
�k2 0

� �
x1
x2

�
+

�
�k1k4f1 (x1)

0

�
+

�
0

k2f2 (x2; x3)

�
=

�
0 k1
�k2 �c2

� �
x1
x2

�
+

�
�k1k4f1 (x1)

c2x2

�
+

�
0

k2f2 (x2; x3)

�
=

�
0 k1
�k2 �c2

�
| {z }

A

�
x1
x2

�
+

�
�1 0
0 1

�
| {z }

G

�
k1k4f1 (x1)

c2x2

�
| {z }




+

�
0

k2f2 (x2; x3)

�
| {z }

%

(4.27)

y1 =
�
1 0

�| {z }
C

�
x1
x2

�
(4.28)

where c2 � 0 is a design constant to be chosen, 
 (v1; v2) =
�

1 (v1) 
2 (v2)

�T
and v =

�
x1 x2

�T
. From (4.24) and (2.27) it can be recognized that (4.3)

holds for 
1 (v1), and since c2 � 0 it follows that (4.3) holds for 
2 (v2). This
allows for Q2 = diag fq21; q22g due to the decomposition of 
.

Remark 4.1 The observer

A =

"
0

c2p
Vp

�Ac
L0c

0

#
; G =

�
�1
0

�
; H =

�
1 0

�
; C =

�
1 0

�
;


 =
c2p
Vp
wt (w1) ; % =

�
0

Ac
L0c
pc (t)

�
is exponentially stable if the LMI is solvable with the scalar Q2 > 0.

Proof. For c2 = 0 the system (4.27) can be expressed�
_x1
_x2

�
=

�
0 k1
�k2 0

� �
x1
x2

�
+

�
�k1k4f1 (x1)

0

�
+

�
0

k2f2 (x2; x3)

�
=

�
0 k1
�k2 0

�
| {z }

A

�
x1
x2

�
+

�
�1
0

�
| {z }
G

k1k4f1 (x1)| {z }



+

�
0

k2f2 (x2; x3)

�
| {z }

%

. (4.29)

From (4.24) and (2.27) it can be recognized that (4.3) holds for 
 (v). Fur-
thermore, since 
 is scalar it follows that Q2 is scalar.
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4.4.2 Model of compressor pressure

Proposition 4.4 The observer

A =

"
0

c2p
Vp

�Ac
L0c

�c2

#
; G =

�
�1 0
0 1

�
; H =

�
1 0
0 1

�
; C =

�
1 0

�
;


 =

"
c2p
Vp
wt (w1)

Ac
L0c
pc (w2; !) + c2w2

#
; % =

�
0
0

�

where c2 > 0 is su¢ ciently large, is exponentially stable if the LMI is solvable
with Q2 = diag fq21; q22g > 0.

Proof. The available measurements are y = fx1; x3g. Using (4.22)-(4.25),
the dynamic model (2.1), (2.8) and (2.25) is expressed

�
_x1
_x2

�
=

�
0 k1
�k2 0

� �
x1
x2

�
+

�
�k1k4f1 (x1)
k2f2 (x2; x3)

�
+

�
0
0

�
=

�
0 k1
�k2 �c2

� �
x1
x2

�
+

�
�k1k4f1 (x1)

k2f2 (x2; x3) + c2x2

�
+

�
0
0

�
=

�
0 k1
�k2 �c2

�
| {z }

A

�
x1
x2

�
+

�
�1 0
0 1

�
| {z }

G

�
k1k4f1 (x1)

k2f2 (x2; x3) + c2x2

�
| {z }




+

�
0
0

�
|{z}
%

(4.30)

y1 =
�
1 0

�| {z }
C

�
x1
x2

�
(4.31)

where c2 is a design constant to be chosen, 
 (t; v1; v2) =
�

1 (v1) 
2 (t; v2)

�T
and v =

�
x1 x2

�T
. The function 
 is di¤erent from that discussed for (4.1)

in the sense that it is now also a function of time. This comes from the
appearance of x3 (impeller speed), which is not a system state in this model
con�guration. However, this signal is assumed available as a measurement
and can be related to the model (4.1)-(4.2) by considering x3 as a system
input. From (4.24) and (2.27) it can be recognized that (4.3) holds for
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1 (v1). It follows from the mean value theorem that

(v2 � w2) (
2 (t; v2)� 
2 (t; w2))

= (v2 � w2) (k2f2 (v2; x3) + c2v2 � k2f2 (w2; x3)� c2w2)

= (v2 � w2) (k2 (f2 (v2; x3)� f2 (w2; x3)) + c2 (v2 � w2))

= (v2 � w2)
�
k2

@f2(a;x3)
@a

���
L
(v2 � w2) + c2 (v2 � w2)

�
= (v2 � w2)

2
�
k2

@f2(a;x3)
@a

���
L
+ c2

�
(4.32)

where a is evaluated at some point on the line segment L joining v2 and w2.
Hence, for (4.32) to be positive semi de�nite it is required that

k2
@f2 (a; x3)

@a

����
L

+ c2 � 0)
@f2 (a; x3)

@a

����
L

� � c2
k2

(4.33)

which is guaranteed for c2 su¢ ciently large. This allows forQ2 = diag fq21; q22g
due to the decomposition of 
.

4.5 Full order observer

In the same spirit as the previous section, more model information is included
by also using impeller speed dynamics in the observer. The introduction of
impeller speed does not add any new relations for plenum pressure. In fact,
plenum pressure and impeller mass �ow are completely decoupled dynamic
equations. However, compressor mass �ow and impeller speed are coupled
equations.

4.5.1 Measurement of compressor pressure

Proposition 4.5 The observer

A =

264 0
c2p
Vp

0

�Ac
L0c

�c2 0

0 �c3 �kf
J

375 ; G =
24�1 0 0
0 1 0
0 0 �1

35 ; H =

241 0 0
0 1 0
0 0 1

35 ;
C =

�
1 0 0
0 0 1

�
; % =

24 0
Ac
L0c
pc (t)� c3!
1
J
u+ c4!

3

35 ; 
 =
264 c2p

Vp
wt (w1)

c2w2 + c3w3
1
J
� c (w2; w3)� c3w2 + c4w

3
3

375
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where c2 > 0, c3 2 R, c2c4 >
k2c
J212

, is exponentially stable if the LMI is
solvable with Q2 = diag fq21; q22; q22g > 0.

Proof. Using the notation (4.22)-(4.26), available measurements are y =
fx1; x3; f2g. The dynamic model (2.1), (2.4)-(2.8) and (2.25) is expressed24 _x1_x2
_x3

35 =

24 0 k1 0
�k2 0 0
0 0 �k3k7

3524x1x2
x3

35+
24 �k1k4f1 (x1)

0
�k3k6f3 (x2; x3)

35+
24 0
k2f2 (x2; x3)

k3u

35
=

24 0 k1 0
�k2 �c2 0
0 �c3 �k3k7

3524x1x2
x3

35+
24 �k1k4f1 (x1)

c2x2 + �2 (y)
�k3k6f3 (x2; x3) + c3x2 + �3 (y)

35
+

24 0
k2f2 (x2; x3)� �2 (y)

k3u� �3 (y)

35
=

24 0 k1 0
�k2 �c2 0
0 �c3 �k3k7

35
| {z }

A

24x1x2
x3

35+
24 0
k2f2 (x2; x3)� �2 (y)

k3u� �3 (y)

35
| {z }

%

+

24�1 0 0
0 1 0
0 0 �1

35
| {z }

G

24 k1k4f1 (x1)
c2x2 + �2 (y)

k3k6f3 (x2; x3)� c3x2 � �3 (y)

35
| {z }




(4.34)

y1 =

�
1 0 0
0 0 1

�
| {z }

C

24x1x2
x3

35 (4.35)

where c2x2, c3x2, �2 (y) and �3 (y) has been added and subtracted for design
freedom. The term (v � w)T (
 (v)� 
 (w)) can be expressed

(v � w)T (
 (v)� 
 (w)) = (v1 � w1) (
1 (v1)� 
1 (w1))

+ (v0 � w0)
T
(
0 (v0)� 
0 (w0)) (4.36)

where v = (x1; x2; x3),


1 (v1) = k1k4f1 (v1) (4.37)


0 (v0) =

�
c2v2 + �2 (v3)

k3k6f3 (v2; v3)� c3v2 � �3 (v3)

�
(4.38)
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which de�nes v0 =
�
v2 v3

�T
and the ��s has been chosen as functions of

v3. From the (4.24) and (2.27) it follows that (4.3) holds for (4.37). The
multivariable sector property (4.4) is evaluated for (4.38)

@
0 (v0)

@v0
+

�
@
0 (v0)

@v0

�T
=

"
2c2 k3k6

@f3(v2;v3)
@v2

+ @�2(v3)
@v3

� c3

k3k6
@f3(v2;v3)

@v2
+ @�2(v3)

@v3
� c3 2

�
k3k6

@f3(v2;v3)
@v3

� @�3(v3)
@v3

�# .(4.39)
Recalling the discussion of compressor torque model in Chapter 2, the func-
tion (4.26) is approximated by

f3 (x2; x3) � tanh (�x2)x2x3 (4.40)

when evaluating @f3(v2;v3)
@v2

for (4.39). From (4.40) it follows that

@f3 (x2; x3)

x2
= x3

�
�x2

�
1� tanh2 (�x2)

�
+ tanh (�x2)

�| {z }
k8(t)

(4.41)

where k8 (t) is in the range of �1 to 1, resulting in @f3(v2;v3)
@v2

= k8 (t) v3 and
@f3(v2;v3)

@v3
= jv2j, where @f3(v2;v3)

@v3
is derived without the approximation. This

rewrites (4.39)

@
0 (v0)

@v0
+

�
@
0 (v0)

@v0

�T
=

"
2c2 k3k6k8 (t) v3 +

@�2(v3)
@v3

� c3

k3k6k8 (t) v3 +
@�2(v3)
@v3

� c3 2
�
k3k6 jv2j � @�3(v3)

@v3

� #
(4.42)

which is positive de�nite by requiring

0 < 2c2 (4.43)

0 < 4c2

�
k3k6 jv2j �

@�3 (v3)

@v3

�
�
�
@�2 (v3)

@v3
+ k3k6k8 (t) v3 � c3

�2
(4.44)

for the upper left determinants. From the (4.43) it is clear that

c2 > 0 (4.45)
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is required. Furthermore, by choosing

�2 (v3) = c3v3 (4.46)

�3 (v3) = �c4v33 (4.47)

the inequality (4.44) is rewritten 4c2k3k6 jv2j + (12c2c4 � k23k
2
6k
2
8 (t)) v

2
3 > 0.

Since k8 (t) is in the range of �1 to 1 this inequality is formulated as

c2c4 >
k23k

2
6

12
(4.48)

where it follows from (4.45) that c4 > 0. Furthermore, this observer intro-
duces a optional constant c3 in the linear part of the system which can be
chosen positive, negative or even zero. Note that choosing c3 = 0 results in
�2 = 0. Finally, the decomposition of 
 allows for Q2 = fq21; q22; q22g.

4.5.2 Model of compressor pressure

Two observers will now be derived for the case of which a measurement of
the compressor map is unavailable. Even though the two observers estimate
the same system states, their dynamics di¤ers.

Proposition 4.6 The observer

A =

264 0
c2p
Vp

0

�Ac
L0c

�c2 0

0 �c3 �kf
J

375 ; G =
24�1 0 0 0
0 1 1 0
0 0 0 �1

35 ; H =

2664
1 0 0
0 1 0
0 1 0
0 0 1

3775 ;

C =

�
1 0 0
0 0 1

�
; % =

24 0
�c3!

1
J
u+ c4!

3

35 ; 
 =
26664

c2p
Vp
wt (w1)

Ac
L0c
pc (w2; !) + c21w2
c22w3 + c3w4

1
J
� c (w3; w4)� c3w3 + c4w

3
4

37775 ;
c2 = c21 + c22; c22c4 >

k2c
J212

;

and c21 su¢ ciently large, is exponentially stable if the LMI is solvable with
Q2 = diag fq21; q22; q22; q23g > 0.
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Proof. Using the notation (4.22)-(4.26), available measurements are y =
fx1; x3; f2g. The dynamic model (2.1), (2.4)-(2.8) and (2.25) is now ex-
pressed

24 _x1_x2
_x3

35 =

24 0 k1 0
�k2 0 0
0 0 �k3k7

3524x1x2
x3

35+
24 �k1k4f1 (x1)

k2f2 (x2; x3)
�k3k6f3 (x2; x3)

35+
24 0
0
k3u

35
=

24 0 k1 0
�k2 �c2 0
0 �c3 �k3k7

3524x1x2
x3

35+
24 �k1k4f1 (x1)

k2f2 (x2; x3) + c2x2 + �2 (y)
�k3k6f3 (x2; x3) + c3x2 + �3 (y)

35
+

24 0
��2 (y)

k3u� �3 (y)

35
=

24 0 k1 0
�k2 �c2 0
0 �c3 �k3k7

35
| {z }

A

24x1x2
x3

35+
24 0

��2 (y)
k3u� �3 (y)

35
| {z }

%

+

24�1 0 0 0
0 1 1 0
0 0 0 �1

35
| {z }

G

2664
k1k4f1 (x1)

k2f2 (x2; x3) + c21x2
c22x2 + �2 (y)

k3k6f3 (x2; x3)� c3x2 � �3 (y)

3775
| {z }




(4.49)

y1 =

�
1 0 0
0 0 1

�
| {z }

C

24x1x2
x3

35 (4.50)

where c2x2, c3x2, �2 (y) and �3 (y) has been added and subtracted for de-
sign freedom and c2 = c21 + c22. The term (v � w)T (
 (v)� 
 (w)) can be
expressed

(v � w)T (
 (v)� 
 (w)) = (v1 � w1) (
1 (v1)� 
1 (w1))

+ (v0 � w0)
T
(
0 (v0)� 
0 (w0))

+ (v00 � w00)
T
(
00 (v00)� 
00 (w00)) (4.51)
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where


1 (v1) = k1k4f1 (x1) , (4.52)


0 (t; v0) = k2f2 (x2; x3) + c21x2, (4.53)


00 (v00) =

�
c22x2 + �2 (y)

k3k6f3 (x2; x3)� c3x2 � �3 (y)

�
, (4.54)

v1 = x1, v0 = x2, v00 =
�
x2 x3

�T
. This results in

v =
�
v1 v0T v00T

�T
=
�
v1 v2 v3 v4

�T
=
�
x1 x2 x2 x3

�
(4.55)

which de�nes H. As in the proof of Proposition 4.4, the function 
0 has a
time argument. From the (4.24) and (2.27) it follows that (4.3) holds for
(4.52). The term (4.53) is identical to that analyzed for Proposition 4.4, and
it follows from (4.33) that

c21 > 0 (4.56)

su¢ ciently large guarantees (4.4) for (4.53). Furthermore, the term (4.54) is
identical to (4.39) analyzed for Proposition 4.5, and it follows from (4.45)-
(4.48) that

c22 > 0 (4.57)

�2 (y) = c3x3 (4.58)

�3 (y) = �c4x33 (4.59)

c22c4 >
k23k

2
6

12
(4.60)

guarantees (4.4) for (4.54). Finally, the decomposition of 
 allows for Q2 =
fq21; q22; q23; q23g.
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Proposition 4.7 The observer

A =

264 0
c2p
Vp

0

�Ac
L0c

�c2 0

0 �c3 �kf
J

375 ; G =
24�1 0 0 0 0
0 1 0 1 0
0 0 1 0 �1

35 ; H =

266664
1 0 0
0 0 1
0 1 0
0 1 0
0 0 1

377775 ;

C =

�
1 0 0
0 0 1

�
; % =

24 0
��2 (!)

1
J
u� �3 (!)

35 ; 
 =
2666664

c2p
Vp
wt (w1)

Ac
L0c
pc (w3; w2) + c21w3 + �21 (w2)

c31w3 + �31 (w2)
c22w4 + �22 (w5)

1
J
� c (w4; w5)� c32w4 � �32 (w5)

3777775 ;
�2 (z) = �21 (z) + �22 (z) ; �3 (z) = �31 (z) + �32 (z) ;
�21 (z) = c5z; �22 (z) = c32z; �31 (z) = �c21z; �32 (z) = �c4z3;
c2 = c21 + c22; c3 = c31 + c32;

c31 > 0; c22 > 0; c22c4 >
k2c
J212

; c32 2 R

and c5c31 su¢ ciently large, is exponentially stable if the LMI is solvable with
Q2 = diag fq21; q22; q22; q23; q23g > 0.
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Proof. Using the notation (4.22)-(4.26), available measurements are y =
fx1; x3; f2g. The dynamic model (2.1), (2.4)-(2.8) and (2.25) is now ex-
pressed24 _x1_x2
_x3

35 =

24 0 k1 0
�k2 0 0
0 0 �k3k7

3524x1x2
x3

35+
24 �k1k4f1 (x1)

k2f2 (x2; x3)
�k3k6f3 (x2; x3)

35+
24 0
0
k3u

35
=

24 0 k1 0
�k2 �c2 0
0 �c3 �k3k7

3524x1x2
x3

35+
24 �k1k4f1 (x1)

k2f2 (x2; x3) + c2x2 + �2 (y)
�k3k6f3 (x2; x3) + c2x2 + �3 (y)

35
+

24 0
��2 (y)

k3u� �3 (y)

35
=

24 0 k1 0
�k2 �c2 0
0 �c3 �k3k7

35
| {z }

A

24x1x2
x3

35+
24 0

��2 (y)
k3u� �3 (y)

35
| {z }

%

+

24�1 0 0 0 0
0 1 0 1 0
0 0 1 0 �1

35
| {z }

G

266664
k1k4f1 (x1)

k2f2 (x2; x3) + c21x2 + �21 (y)
c31x2 + �31 (y)
c22x2 + �22 (y)

k3k6f3 (x2; x3)� c32x2 � �32 (y)

377775
| {z }




(4.61)

y1 =

�
1 0 0
0 0 1

�
| {z }

C

24x1x2
x3

35 (4.62)

where c2x2, c3x2, �2 (y) and �3 (y) has been added and subtracted for design
freedom, and

c2 = c21 + c22 (4.63)

c3 = c31 + c32 (4.64)

�2 (y) = �21 (y) + �22 (y) (4.65)

�3 (y) = �31 (y) + �32 (y) . (4.66)
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The term (v � w)T (
 (v)� 
 (w)) can be expressed

(v � w)T (
 (v)� 
 (w)) = (v1 � w1) (
1 (v1)� 
1 (w1)) (4.67)

+(v0 � w0)
T
(
0 (v0)� 
0 (w0)) (4.68)

+(v00 � w00)
T
(
00 (v00)� 
00 (w00)) (4.69)

where


1 (v1) = k4f1 (x1) , (4.70)


0 (v0) =

�
k2f2 (x2; x3) + c21x2 + �21 (y)

c31x2 + �31 (y)

�
, (4.71)


00 (v00) =

�
c22x2 + �22 (y)

k3k6f3 (x2; x3)� c32x2 � �32 (y)

�
, (4.72)

v1 = x1, v0 =
�
x3 x2

�T
, v00 =

�
x2 x3

�T
. This results in

v =
�
v1 v0T v00T

�T
=
�
v1 v2 v3 v4 v5

�T
=
�
x1 x3 x2 x2 x3

�T
(4.73)

which de�nes H. From the (4.24) and (2.27) it follows that (4.3) holds for
(4.70). The term (4.72) is identical to (4.39) analyzed in proof of Proposition
4.5, and it follows from (4.45)-(4.48) that

�22 (y) = c32v5 = c32x3 (4.74)

�32 (y) = �c4v35 = �c4x33 (4.75)

c22 > 0; c22c4 >
k23k

2
6

12
; c32 2 R (4.76)

guarantees (4.4) for (4.72). Considering �21 and �31 as functions of x3, the
condition (4.4) is evaluated for (4.71)

@
0 (v0)

@v0
+

�
@
0 (v0)

@v0

�T
=

"
2
�
k2

@f2(v3;v2)
@v2

+ @�21(v2)
@v2

�
k2

@f2(v3;v2)
@v3

+ c21 +
@�31(v2)
@v2

k2
@f2(v3;v2)

@v3
+ c21 +

@�31(v2)
@v2

2c31

#
(4.77)



4.6. COMMENTS 81

where by requiring

0 < 2

�
k2
@f2 (v3; v2)

@v2
+
@�21 (v2)

@v2

�
(4.78)

0 < 4

�
k2
@f2 (v3; v2)

@v2
+
@�21 (v2)

@v2

�
c31

�
�
k2
@f2 (v3; v2)

@v3
+ c21 +

@�31 (v2)

@v2

�2
(4.79)

for the upper left determinants will guarantee (4.4) for (4.77). For (4.78) it
is su¢ cient to require

@�21 (v2)

@v2
� 0 (4.80)

since @f2(v3;v2)
@v2

> 0 by (4.25) and (2.28). Using this same property in (4.79)
along with

�21 (v2) = c5v2 = c5x3

�31 (v2) = �c21v2 = �c21x3
c31 > 0,

rewrites this inequality as

4c5c31 �
�
k2
@f2 (v3; v2)

@v3

�2
> 0) c5c31 >

k22
4

�
@f2 (v3; v2)

@v3

�2
.

It follows that (4.4) hold for (4.77) by choosing c5c31 > 0 su¢ ciently large.

4.6 Comments

As already commented on in Chapter 2 and Chapter 3, the model is only
valid in a limited domain of the state space. More speci�cally, the impeller
speed and plenum pressure is limited to being positive. This implies that the
region of attraction for the observer will be limited. Whether or not this has
any practical implication will, among other things, depend on control gains.
For some of the proposed observers the function 
 (Hx̂+K2 (Cx̂� y1)) con-
tains the compressor map taking on arguments of estimated speed. A rela-
tively high gain compared to magnitudes expected from ŷ1 � y could cause
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the estimated speed to be negative, being an unde�ned situation for the
compressor map model. The same can be argued for the throttle model and
plenum pressure estimate. Especially in transients, e.g. if the observer is
initiated with initial values relatively far from the actual values, this might
cause problems.

Several observers have been derived. Their di¤erences can be divided in
how they compensate for compressor pressure, measurement or model, and
which dynamic equations it is derived on behalf of. When using a model
of the compressor characteristic it is required that some observer gain is
su¢ ciently large, as opposed to the case when the compressor map is imple-
mented by a measurement. Three di¤erent dynamic models can be identi�ed
for the derivation of the observers. The �rst is the reduced order observer.
In this case a dynamic relation is derived on the basis of plenum pressure
and duct mass �ow dynamics to generate an estimate of duct mass �ow only.
These observers are highly dependent on the accuracy of the plenum pres-
sure and compressor mass �ow dynamics, when no feedback is available to
explicitly correct potential inaccuracy for these models. The second dynamic
system for which observers are derived is composed by plenum pressure and
duct mass �ow. In this con�guration, more model information is given to
the observer and estimates of both pressure and mass �ow are generated.
Inaccuracy in the individual dynamic models can now be compensated by
feedback. This is also the case for the third con�guration, which extends
the second con�guration by including the impeller speed dynamics. It is
believed that the best con�guration for observers it that of which corre-
sponds best with experimental data. This argument follows from the fact
that the derived observers are model based. Furthermore, if it is possible to
use a measurement to represent the compressor characteristic, this relaxes
the conditions for the observers when it is not necessary to chose parameters
su¢ ciently large.

All observers derived on the basis of that presented in Section 4.2 exploits
(2.27) for wt (pp). Moreover, this mapping is modeled as wt (pp) = ktw

0
t (pp)

and it is used that kt � 0 and w0t (pp) is passive. Hence, the throttle device for
which the derived observers are valid is not restricted to (2.8), but any device
that satis�es the mentioned conditions. As commented upon in Chapter
2, the throttle might be a variable area device. In this case the variable
area is considered as a system input and throttle mass �ow is modeled as
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wt (pp) = kt (At;%)w
0
t (pp). It follows from

(v � w) (wt (v)� wt (w)) = (v � w) (kt (At;%)w
0
t (v)� kt (At;%)w

0
t (w))

= kt (At;%) (v � w) (w0t (v)� w0t (w)) � 0

that the observers are also valid for variable area throttles by changing the
implementation from wt (pp) = ktw

0
t (pp) to wt (pp) = kt (At;%)w

0
t (pp).

The inequality (4.8) is an LMI in P , Q1, Q2 R1 = PK1 and R2 = Q2K2,
where R1 and R2 are de�ned to solve (4.8) as an LMI. Hence, the control
gains are calculated by K1 = P�1R1 and K2 = Q�12 R2 after solving the
LMI, and no explicit criteria can be posted for these gains when the LMI is
solved.3

Tuning of the observer gains was therefore done in several steps. The gain
K1 was derived by pole placement for A +K1C. The gain K2 was derived
by a matrix structure multiplied by a scalar, where the structure was chosen
such that the components of K2;structurey

e
1 would be in the same order of

magnitude as Hxe (where the superscript e refers to system equilibrium).
The resulting K1 and K2 were then checked with (4.8) to see if they where
possible solutions. Note that choosing K2 = 0 will reduce the observer to
be a copy of the model, in terms of estimated states, with a linear injection
term added. However, it is shown in [35] that (4.18) might be unsolvable for
K = 0 whereas being solvable for K 6= 0.
Reduced order observers for mass �ow can be derived based on the higher

order observers for (4.1). It is shown in [35] that a solution for the reduced
order observer exists if and only if a solution for the full order observer exists.
Hence, any of the observers in Proposition 4.3 through Proposition 4.7 can
be used to generate a reduced order observer for mass �ow only if the LMI
is solvable for the higher order observers.

3Note that requiring Q2 > 0 rather than Q2 � 0 in the proposed observers is done in
order to guarantee the existence of Q�12 rather than being a necessity for stability.
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Part II

Experiments
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Chapter 5

Laboratory

To evaluate theoretical results, a compression system laboratory was planned
and built. Inspired by that of reported in [43] and [14], the main components
of this laboratory can be considered as compressor, plenum volume, duct
connecting compressor and plenum, a valve downstream plenum, driving
system for compressor (electric motor, drive and gear) and controller board.
In addition to these components the setup consists of several sensors, a
computer to develop and compile applications to the controller board and
signal converters to interface signals between controller board and process. A
sketch of the setup is shown in Figure 5, where signals enclosed by a circle are
measured signals whereas signals enclosed by a square represents reference
signals to the unit. These signals are summarized in Table 5. Furthermore,
the �gure indicates dimensions of ducting and plenum1 in millimeters. A
picture of the setup is shown in Figure 5.1.
The drive is an ABB 11kW ACS800. More speci�cally ACS800-01-0016-

2+D150+L500+L503. This drive gives the opportunity to control the motor
by either speed or torque. That is, the drive accepts either speed or torque
as reference inputs. Furthermore, both motor speed and torque are available
as measurements from this unit. These are estimated values generated from
knowledge of voltages, currents and temperatures of the drive in addition to
the knowledge of the electric motor connected to the drive. The inputs to
this unit (A/D converter) operates on an 6ms update cycle, whereas the the
output (D/A converter) operates on an 24ms cycle.
The electric motor is an ABB 11kW M3A squirrel cage induction ma-

1Circular vessel where 380 refers to the diameter.
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Figure 5.1: Overview of laboratory

chine. More speci�cally, M3AA 160MA 3GAA 161 101-ASC 445. The nom-
inal speed for this machine is approximately 3000rpm, with maximum rec-
ommended speed limited to 4500rpm. The nominal torque is 36Nm, with
maximal torque of approximately 2:5 times the nominal torque. For the
laboratory setup, ranges of 0� 4500rpm and 0� 36Nm were chosen as the
ranges for motor speed and torque. Simultaneous values for these variables
will be limited by a maximum of 11kW .

The gear between motor and impeller shaft can de divided in two. The
�rst is a gear manufactured by the in house workshop and the second is a
gear contained in the compressor unit. The in house produced gear has a
ratio of 60

24
whereas the internal gear of the compressor has a ratio of 3:45,

resulting in a total gear ratio of 8:625 between motor and impeller shaft.
In view of motor speed and torque ranges, this implies that the impeller
can take on speeds in the range 0 � 38800rpm and torques in the range
0�4:2Nm. As for the motor, simultaneous values for these variables will be
limited by a maximum of 11kW (minus the energy dissipated by the drive
system).

The compressor is a Vortech V-1 S-Trim Race M. This is a supercharger,
single stage centrifugal compressor, intended for the automobile industry.
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Figure 5.2: Compressor and related connections

The unit accepts speeds in the range 0� 50000rpm, giving the possibility to
produce mass �ow in the range 0� 0:6kg=s and pressure ratios in the range
0 � 2:4. However, due to power and speed limitation of the driving system
as well as e¢ ciency for the compressor itself, this unit will only be run in
the lower speed regions. Upstream connection external diameter is 89mm,
upstream connection inner diameter is 79mm (same as inducer) downstream
connection external diameter is 70mm and downstream connection inner
diameter is 60mm. A picture of the compressor and connecting ducts is
shown in Figure 5.2. The electric motor and external gear can also be seen
in this picture.

The compressor was �tted with an oil loop for lubrication and cooling
of rotating parts. This loop consists of a small oil reservoir, an oil pump, a
manual valve and piping, where the valve is used to control oil pressure over
the compressor. This system was manufactured by the in house workshop,
using a oil cooling pump from Mocal intended for automobile applications.
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Parts of the oil lubrication loop can be seen below the compressor in Figure
5.2.
The control valve is a Ficher Design GX Control Valve. More speci�cally,

3 inch GX Valve & Actuator; Type DVC2000 67CFR; DVC2000 FIELD-
VUE. Process connection port size is 70mm. The control unit of this valve
accepts a reference input as well as providing a measurement of the actual
valve opening. Furthermore, the valve was set up with equal percentage
characteristic.
The plenum volume was manufactured at the in house workshop. The

volume of this cylindrical vessel is approximately 0:1m3. Pressure and
temperature measurements were �tted with the plenum. These where all
mounted mid way along the length of the vessel, with pressure measure-
ments 180� relative to each other.
Polypropylene (PP) piping was chosen to connect various components

involving �uid �ow. This material was chosen since it allows for easy and
fast re-con�guration of the setup, as well as being easily available with a
vast specter of accessories such as bends, branches, sockets, t-pieces and so
on. The dimensions of these pipes are 75mm and 70mm for external and
inner diameter respectively.
The controller board is a DS1103 PPC from dSPACE. The CPU on

this board is a PowerPC750GX running at 1GHz with 32MB application
memory. This board has 32 bit-I/O channels, 20 A/D channels and 8 D/A
channels. The A/D channels are built up of 16 multiplexed channels using
4 sample and hold A/D converters and 4 parallel channels, each of which
uses a dedicated sample and hold. Conversion times for these converters
are 1�s and 800ns for the multiplexed and parallel channels respectively.
Settling time for the D/A channels are 5�s. Both A/D and D/A converters
have a resolution of 16-bit and accepts signals in the range �10V . However,
these converters where set up with 16-bit resolution for the range 0� 10V .
This was done to reduce noise for signals in mid range, when this would
correspond to 0V . The board has the possibility to use 50 bit-I/O and 36
A/D channels by utilizing the slave DSP, but this was not necessary for the
current setup.
The computer is a standard Dell desktop computer. This is used to

develop and compile programs to be run at the controller board, as well as
an interface to the controller board when this is running some application.
This can e.g. be setting some reference, readout of some measurement or
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changing some control parameter.
All analogous signals in the process, the various measurements and ref-

erence signals, communicates on the 4� 20mA protocol. Hence, signal con-
verters are needed to interface process analogous signals with the 0 � 10V
controller board analogous signals. The Nokeval signal converter 641 was
chosen for this purpose. These converters are relatively versatile with re-
spect to conversion ranges and con�guration as well as giving possibility
to chose between several time constants for a low pass �ler embedded in
the unit (anti aliasing �lter). The lowest possible time constant for the 1.
order low pass �lter is 50�s, which is the setting chosen for the setup. Fur-
thermore, these converters are claimed to respond well for frequencies up to
5000Hz. Digital communication with the drive is necessary in order to start
and stop the motor, as well as choosing between speed and torque reference.
The controller board operates with voltages at TTL levels for digital com-
munication, whereas the drive communicates with 0V and 24V as low and
high bit. An optocoupler form Phenix Contact was used to interface these
signals. More speci�cally, the unit EMG 17-OV-TTL/ 60DC/3 was used.
Figure 5.3 shows a picture of analog interface connections between process
and controller board, as well as the controller board and its signal interface.
The pressure transmitters are Druck PTX 610 units. These are high per-

formance pressure transmitters intended for research and critical industrial
applications, and o¤er a bandwidth of better than 1kHz. The range for
these transmitters is 0:9 � 1:6 bara. This range was chosen to get a good
resolution for the measured values, since the setup is limited to relatively
low pressures due to limitation in speed and power. The output of these
transmitters will not deviate from the straight line connecting zero and full
scale by more than 0:15% of full scale.
Temperature transmitters are Endress+Hauser Easytemp TMR31. More

speci�cally, TMR31-A1XBBAAB1AAA. These are Pt100 elements with a
measurement range of �50 � 150 �C. The range of these devises can be
con�gured, and was set to 0 � 100�C to give relatively good resolution for
temperatures encountered in the laboratory. Measurement error of these
transmitters is less than 0:27�C for the chosen range, and response times
are given as t50 � 2s and t90 � 4s.
The mass �ow transmitter is a Endress+Hauser t-mass 65F80. More

speci�cally, 65F80-AE2AG1AAAAAA. This is a thermal mass �ow meter,
where the transmitter itself is mounted approximately midway along a duct
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Figure 5.3: Signal interface. Signal interface between process and controller
board to rthe right, and the controller board and its signal interface to the
left.

of diameter 80mm and length 630mm, as illustrated in Figure 5 with the
shaded length of duct upstream and downstream Ft. This transmitter is
able to measure mass �ows in the range 0:003 � 0:56kg=s. The range can
be con�gured by the device, and a range of 0� 0:26kg=s was chosen on the
background of mass �ows encountered in the setup. The measurement error
of this transmitter is less than 2% of measured value, and response time is
typically t63 � 2s.
The Pitot tubes is a Endress+Hauser deltaset DPP 50. More speci�-

cally, DPP50-A1F2A11Y. This is a devise originally intended for mass �ow
measurements, when �tted with a tailored di¤erential pressure transmitter.
However, its purpose for the current setup will be to measure total as well as
static pressure. The Pitot tube o¤ers pressure taps for both upstream and
downstream pressure, for which pressure transmitters are mounted in order
to measure total and static pressure respectively.

The mass �ow transmitter and temperature transmitters are not used in
implementation of control laws and observers. The mass �ow transmitter
was installed for system identi�cation and evaluation of observers for steady
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state. Temperature measurements are installed so that a complete picture
of thermodynamic properties can be established at these points.
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Chapter 6

Model validation

6.1 Introduction

This chapter aims at identifying a model for the laboratory setup described
in Chapter 5. To this end, both static and dynamic identi�cation is per-
formed. In order to apply the controllers and observers presented in Chapter
3 and Chapter 4, the identi�cation process is constantly compared with the
model of Chapter 2 to evaluate whether the performance of the setup can
be formulated in this structure. Also important is whether the compressor
map can be formulated as a measurement or not.
Control validation of transient response involves plots of both measured

and simulated data. For all plots of this type, measured data are represented
by black lines whereas simulations are represented by lighter lines.

6.2 Steady sate model identi�cation

6.2.1 Measurement data

Data used for steady state analysis represent 10 di¤erent valve openings for
7 di¤erent constant speeds, in addition to a measurement when the valve is
completely removed. Therefore, for each of the seven speeds there are 11 data
points. A 30 seconds recording was conducted for each point and �ltered
with MATLAB�s filtfilt. Data corresponding to highest speed and valve
removed was not carried out due to limitation of motor power. Furthermore,
data corresponding to lowest speed and throttle opening was corrupted.
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Symbol Impeller speed

 10300[rpm]
� 12800[rpm]
+ 15300[rpm]
� 17900[rpm]
� 20400[rpm]
� 22900[rpm]
O 25400[rpm]

Table 6.1: Constant speeds and corresponding symbols used in �gures
throughout this chapter

While conducting experiments the ambient pressure was pa = 1:011� 1:012
bar, according to Trondheim weather station. Temperature in the laboratory
varied noticeable during experiments. The reason for this is due to the
relatively small facility of the laboratory compared to the amount of heated
air discharged from the compression system.
Table 6.1 shows symbols used in �gures throughout this chapter for var-

ious impeller speeds. These �gures generally show some property, such as
pressure, plotted as a function of valve opening. The eleven data points
related to each constant speed does not necessarily correspond in terms of
valve opening. Increasing valve opening is therefore represented in terms of
indexes reaching from one to eleven in plots. However, index ten and eleven
corresponds to 100% open and valve completely removed for all speeds. Fur-
thermore, all variables are in SI units unless otherwise is speci�ed.

Pressure measurements

Pressure upstream the compressor, pcu, was measured with two sensors
mounted 90 degrees relative to each other in the piping wall. A plot of
their readings is shown in Figure C.1. From this �gure it can be seen that
steady state pressures decreases with increasing impeller speed and increas-
ing valve opening, which implies the clear tendency of pressure decrease with
increasing mass �ow.
Analogous to the pressure sensors upstream the compressor, two sensors

where mounted downstream the compressor 180 degrees relative to each
other in the piping wall. A plot of their reading is shown in Figure C.2.
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From this �gure it can be seen that pressure downstream the compressor,
pcd, generally increases with increasing impeller speed and decreases with
increasing valve opening. This is as expected from the characteristics for
a turbo compressor. When the valve is removed, a dramatic change in
pressures can be observed. This is not surprising, since removing the valve
can be considered a dramatic change in valve opening, and the absence of a
restriction at system termination prevents pressure build up. Furthermore,
it can be seen that deviation of the two sensors increases with increasing
pressure. This implies that the sensor scaling parameter was slightly o¤.
A Pitot tube was mounted downstream of the compressor, with pressure

taps for both �ow directions. A plot of their reading is shown in Figure C.3.
From this plot it can be seen that the deviation of total and static pressure
increases with increasing valve opening. This is as expected from Bernoulli�s
equation for incompressible �ow

pt = ps +
1

2
�v2 (6.1)

since higher valve opening implies higher mass �ow and therefore higher �uid
velocity when considering incompressible �ow. Readouts of pressure when
the valve is removed shows same tendency for ps as for pcd, clustering at
relatively low pressure, and pt � ps increases with increasing impeller speed
which implies that �uid velocity increases with impeller speed. However,
some inconsistency can be recognized when comparing ps and pcd in the
sense that ps clusters with a smaller distribution than pcd.
Plenum pressure was also measured using two sensors, mounted 90 de-

grees relative to each other midway along the circular vessel. A plot of their
reading is shown in Figure C.4. Same comments hold for these readings as
for the pressure sensors downstream the compressor, except that the two
sensors shows identical readouts.

Temperature measurements

Temperatures where measured upstream, Tcu, and downstream, Tcd, the
compressor, as well as in plenum, Tp. In general, the measurements where
conducted before temperatures where completely settled. However, tem-
perature downstream the compressor changed rather quickly when a new
operating point was selected, in contrast to temperature in plenum.
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A plot of temperatures upstream the compressor is shown in Figure C.5.
This plot shows little, if any, tendency. If any conclusion can be drawn,
it seems like temperature increases with increasing impeller speed. The
inconsistency is probably caused by varying temperature in the facility, as
temperature in the laboratory varied considerably with various operating
points.
A plot of the temperatures downstream the compressor is shown in Figure

C.6. This plot shows the tendency of increasing temperature with increasing
impeller speed and decreasing temperature with increasing valve opening.
This observation is consistent with pressure observations downstream the
compressor, Figure C.2, when evaluating the ideal gas low for incompressible
�ow

p = �RT , (6.2)

showing that temperature decreases with decreasing pressure.
A plot of the temperatures in plenum is shown in Figure C.7. The same

comments hold for this plot as for the plot of downstream compressor tem-
peratures.
From the plots of temperature downstream the compressor and plenum,

which are the plots showing some consistency, it can be seen that data for
the case when the valve was removed is not consistent with the other data
in the plots. This is probably due to turning the system o¤ and back on
after a while, in order to remove the valve. However, it can be seen that data
becomes more consistent when reducing the impeller speed. This is probably
due to starting measurements at the highest speed, and then stepping down.
This results in the system being heated back up when reaching the lower
speeds.

Mass �ow measurements

A mass �ow measurement was mounted upstream the plenum, wcd, to mea-
sure steady sate mass �ow in ducts. A plot of its reading is shown in Figure
C.8. From the plot it can be seen that mass �ow increases with increasing
impeller speed and valve opening. Furthermore, it can be seen that mass
�ow increases considerably when removing the valve. This is as expected
when considering a standard compressor map.
Mass �ow can also be estimated using the Pitot pressure measurements,
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total and static, downstream the compressor. The total pressure is given by

pt = ps + pv (6.3)

where ps is the static pressure and pv is pressure component due to �uid
velocity. These pressures give �rst and foremost an estimate of the �uid
velocity. However, this velocity can be used together with density and duct
area to estimate the mass �ow. For incompressible �ow, the velocity pressure
component is given by pv = 1

2
�v2, and �uid velocity can then be expressed

by

v =

s
2 (pt � ps)

�
. (6.4)

This relation gives an estimate of �uid velocity, from which duct volume and
mass �ow can be expressed

q = vA (6.5)

w = �q = �Av (6.6)

in the case of one dimensional �ow. For incompressible �ow, the density is
constant and approximated by that of ambient conditions, � � 1:2 kg

m3 . It
follows from (6.4) and (6.6) that

w = A
p
2� (pt � ps). (6.7)

The relation in (6.7) results in relatively large errors for the data at
hand. However, by introducing a scaling factor to this equation, west =
�A
p
2�
p
pt � ps, the estimate is signi�cantly improved. Note that this scal-

ing factor has no root in physics, but was introduced and tuned to better
�t west with measured data. Estimated mass �ows for A calculated from
a circular duct diameter of 70 � 10�3m and � = 0:63 are shown in Figure
6.1. These estimates are represented by deviation relative to measured value
divided by measured value. From the �gure it can be seen that this esti-
mate for the most part is con�ned to a region of 10% accuracy relative to
actual mass �ow measurement. The inaccuracies can probably be explained
by assumptions of incompressible and one dimensional �ow. Even though
these assumptions appear to hold relative to connecting systems, this is not
necessity the case locally in the �ow. Whether or not the compressibility
e¤ect can be ignored when calculating the estimated mass �ow depends,
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among other things, on how sensitive (6.7) is to variations in �. Another
source of error might be that the Pitot tube is mounted relatively close to
the compressor exit, which might result in the �ow pattern e¤ects di¤erent
from one dimensional. For compressible �ow the relation

v =

vuut2� �

�� 1

��
ps
�s

� �
1 +

(pt � ps)

ps

�(��1� )
� 1
!

(6.8)

is suggested [44], where �s is the static density and � is the ratio of speci�c
heats. By now assuming ideal gas, (6.2), the density can be calculated
using measurement of temperature and pressure. Furthermore, assumption
of ideal gas makes the ratio of speci�c heats, �, a function of temperature
only. Moreover, this parameter can be taken as a constant for relatively
low variations in temperature (typically � = 1:4 for ambient conditions).
Estimating mass �ow using the relations (6.6) and (6.8) gave better results
than (6.7), but not so signi�cantly that the somewhat more complicated
(6.8) is discussed further.

6.2.2 Reynolds and Mach number for duct

The Reynolds number for �ow in a circular pipe is given by

ReD =
�vD

�
(6.9)

where D is the diameter of the pipe and � is the dynamic viscosity of the
�uid. The relation (6.6) can be used to rewrite (6.9) as

ReD =
4w

��D
(6.10)

for a circular pipe. Furthermore, the dynamic viscosity is approximated by
the Power law

� = �0

�
T

T0

�0:7
(6.11)

where �0 = 1:71 � 10�5kg=(m � s) and T0 = 273K [45].
Mach number for pipe �ow is given by

Ma =
v

c
(6.12)
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Figure 6.1: Aproximated mass �ow from Pitot tube

where v is �uid velocity and c is speed of sound. Speed of sound for an ideal
gas is given by

c =
p
�RT . (6.13)

Using (6.2), (6.6) and (6.13), (6.12) can be rewritten as

Ma =
w

pA

r
RT

�
(6.14)

and the Mach number can now be calculated from measurements of pressure,
temperature and mass �ow.
The entrance length for turbulent �ow is approximated as

Le = 4:4 � Re
1
6
D �D (6.15)

and describes the distance needed for developing a constant velocity pro�le
when �uid enters a duct, [45].
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Figure 6.2: Characteristic values for �ow

Figure 6.2 shows plots of the Reynolds numbers, Mach numbers and
entrance lengths. All these properties increases with increasing impeller
speed and mass �ow. From the plot of Reynolds numbers it can be seen
that these are well above 2300. This indicates that �ow in ducts is turbulent,
since the accepted value for separating laminar and turbulent �ow is 2300,
[45]. From the plot of Mach numbers it can be seen that these are below 0:3.
This implies that �ow in ducts can be considered incompressible, since the
accepted boundary for this approximately 0:3, [45]. The entrance length is
between 2 and 2:5 meters. This is well above the length related to upstream
compressor duct, implying that the �ow pro�le in this duct will never be fully
developed. Hence, e¤ects of �ow entering a duct and developing towards a
�ow pro�le will be dominant, [45].
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6.2.3 Duct �ow considerations

By temporarily violating the notation of Chapter 2, consider the one dimen-
sional momentum equations for incompressible �ow

_wcu =
A

Lcu
(pa + Fcu � pcu) (6.16)

_wc =
A

Lc
(pcu + Fc � pcd) (6.17)

_wcd =
A

Lcd
(pcd + Fcd � pp) (6.18)

describing mass �ow dynamics for duct upstream compressor, duct contain-
ing the compressor and duct downstream the compressor respectively. These
equations take on a general form of pressure di¤erence across the duct and
some forcing term (e.g. compressor, friction, �ow pro�le), where the forcing
terms are used to capture un-modeled dynamics. In contrast to the equa-
tions presented in Chapter 2, these include forcing terms in the compressor
upstream and downstream ducts. Note that the sign convention is such that
a positive force works along the positive �ow direction, where positive direc-
tion is de�ned from ambient to plenum. In steady state these forcing terms
are given by

Fcu = pcu � pa (6.19)

Fc = pcd � pcu (6.20)

Fcd = pp � pcd. (6.21)

Figure 6.3 shows plots of the various forcing terms as a functions of
mass �ow and impeller speed for the steady state data. In addition to
the terms (6.19)-(6.21), this �gure also shows the di¤erence of plenum and
ambient pressure. Pressure di¤erence in upstream compressor duct, Fcu, is
completely described by duct mass �ow since all impeller speeds collapses
into one line. Pressure di¤erence in the duct containing the compressor, Fc,
is seen to be a function of both mass �ow and impeller speed. Pressure
di¤erence in downstream compressor duct, Fcd, has the same qualitative
behavior as compressor stage pressure di¤erence (not shown by this plot),
but the overall values are vanishingly small relative to that of the compressor
duct. Moreover, Fcd is vanishingly small relative to any of the other pressure
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Figure 6.3: Forcing terms in steady state

di¤erences. The pressure di¤erences of plenum and ambient shows the same
qualitative behavior as Fc.
From these consideration the approximations

Fcu � Fcu (w) (6.22)

Fcd � 0 (6.23)

seems reasonable, which indicates that �ow in duct upstream the compressor
is not explicitly dependent on the compressor and that �ow in duct down-
stream of compressor is inviscid. Furthermore, from (6.19)-(6.23) it follows
that

pp � pa � Fc � Fcu. (6.24)
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6.2.4 Valve characteristic

Following (2.8)-(2.9) the characteristic is assumed to be of the form

wt (At%; pp) = kt (At%)
p
pp � pa (6.25)

for positive �ow, where At% = 0 and At% = 100 for completely closed and
fully open valve respectively. Since steady state data are available for wt,
At%, pp and pa, the unknown function kt of (6.25) is determined from

wt (At%; pp)p
pp � pa

= kt (At%) . (6.26)

The plots of Figure 6.4 shows the steady state data for this equation, where
wt(At%;p)p
pp�pa = kt (At%) is plotted as a function of At%. From the �gure it can be

seen that data for various speeds and valve openings collapses to one line,
making the given structure of (6.25) a reasonable model. Note that when
the actual �tting is carried out, points are added to represent the origin of
the �gure. This is done to incorporate zero mass �ow through the valve
when it is completely closed.
Inspired by the structure of data in Figure 6.4, a 2. order polynomial

kt (At%) = k1A
2
t% + k2At% + k3 (6.27)

was �tted using MATLAB�s polyfit. This resulted in

k1 = 0:0203 � 10�5 (6.28)

k2 = �0:0691 � 10�5 (6.29)

k3 = �0:1718 � 10�5 (6.30)

for the various coe¢ cients. The approximation (6.27)-(6.30) is shown in the
upper plot of Figure 6.5.
In order to see if a simpler structure for kt (At%) could describe the data

su¢ ciently,
kt (At%) = kA2t% (6.31)

was investigated. Least squares method was used for the �t, resulting in

k = 1:9259 � 10�7. (6.32)

The approximations (6.31) and(6.32) is shown in the lower plot of Figure 6.5.
Little di¤erence can be seen by comparing the two approximations. Hence,
the somewhat simpler function (6.31) is used hereafter.
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Figure 6.4: Valve characteristic

6.2.5 Compressor characteristic

The compressor characteristic for this system is �rst and foremost described
by the steady state pressure, mass �ow and impeller speed relations of Fc,
when this is the forcing term for the duct containing the compressor. The
discussion in Section 6.2.3 showed that also Fcu had an considerable e¤ect,
whereas Fcd had relatively small amplitudes. In addition to identify Fcu and
Fc, it is interesting to evaluate

F 0c = pp � pa (6.33)

which represents a forcing term in a momentum equation from ambient to
plenum, entire duct upstream plenum. Note that in view of (6.23), pcd � pp,
this term can also be though of as representing the forcing for a momentum
equation reaching from ambient to compressor downstream pressure. From
(6.23) it follows that

F 0c � Fcu + Fc. (6.34)
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Figure 6.5: Compressor characteristic for open loop stable region. Solid
and dashed lines correspond to 2. order polynomial and Moore-Greitzer
polynomial respectively.

Based on the upper left plot of Figure 6.3, a model for the upstream
forcing term is taken as

Fcu = �kcuw2. (6.35)

where the gain

kcu = 1:0109 � 105 (6.36)

was found when �tting the data using least squares method. The approxi-
mation (6.35)-(6.36) is shown in the upper left plot of Figure 6.5.
From the upper right plot of Figure 6.3 it can be seen that Fc is a

function of both mass �ow and impeller speed. Fitting this characteristic
for the open loop stable region was therefore done in several steps, following
the approach described in [16]. First each individual speed line was �tted
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with a polynomial of mass �ow. Two polynomials

Fc = kc1w
2 + kc2w + kc3 (6.37)

Fc = kc1w
3 + kc2w

2 + kc3 (6.38)

were investigated for the �t. These represent a standard 2. order polynomial
and a so called Moore-Greitzer polynomial respectively. The resulting coef-
�cients of these polynomials where made functions of impeller speed. This
was done by �tting each of the coe¢ cients with a second order polynomial
in speed, making the various coe¢ cients of (6.37) and (6.38) functions of im-
peller speed. The resulting compressor characteristic is therefore continuous
in both mass �ow and impeller speed. The upper right plot of Figure 6.5
shows the resulting approximation. From this plot it can be seen that the
Moore-Greitzer polynomial has a steeper mass �ow gradient for higher mass
�ows than the 2. order polynomial. Furthermore, a closer inspection shows
that the Moore and Greitzer polynomial has negative mass �ow gradients at
the surge line, while the 2. order polynomial has positive or zero gradients.
Based on (6.34), a model for F 0c is simply taken as the sum of (6.35) and

(6.37) or (6.38). This approximation is shown in the lower left plot of Figure
6.5.
Based on Figure 6.3, the surge line was modeled as

Fsl = ksl1w
2 + ksl2w + ksl3. (6.39)

The coe¢ cients of this polynomial was evaluated with MATLAB�s polyfit
based on data for each speed lines lowest throttle opening, and resulted in

ksl1 = 21:89 � 105 (6.40)

ksl2 = 52:18 � 103 (6.41)

ksl3 = �17:56 � 10. (6.42)

The approximation (6.39)-(6.42) is shown in the lower right plot of Figure
6.5 with steady data for both Fc and F 0c. As can be seen from this plot, the
surge line holds for both of these forcing terms, even though it is derived
from data for Fc.

6.2.6 Torque characteristic

As discussed in Chapter 2, the Euler pump equation gives the structure
� c (w; !) = k1 jwj! for torque on impeller due to �uid �ow. Furthermore,
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Figure 6.6: Torque characeristic

due to friction of rotating parts (motor drive shaft and gears) it is reasonable
to expect a torque characteristic of the form � l (w; !) = k1 jwj! + � f (!),
where � f (!) represents a friction term. Since steady state data is available
for � l, w and !, the unknown parameter k1 and function � f is determined
from

� l (w;N)

N
= k1 jwj+

� f (N)

N
, (6.43)

now expressed in terms of N [rpm] rather than ![rad=s] to be consistent with
variables used in plots. The upper left plot of Figure 6.6 shows steady state
data for this equation, where (6.43) is plotted for the individual speeds as a
function of w. From this plot it can be seen that data for individual speeds
are nearly straight lines, making the given structure of k1 jwj a reasonable
model. Furthermore, it can be seen that �f (N)

N
decreases with increasing

speed. However, it is seen that the highest speeds form a cluster where
speed di¤erences are not that signi�cant.
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Based on this last observation, one possible approximation is

� f (N) = k2N (6.44)

which gives � l (w;N) = k1 jwjN + k2N . Note that this structure is identical
to that given by (2.5)-(2.7). This is most valid for the higher speeds, since
these forms more or less a cluster. The constants where calculated as

k1 = 4:0046 � 10�4 (6.45)

k2 = 3:9662 � 10�5 (6.46)

using the four highest speeds, and

k1 = 4:0325 � 10�4 (6.47)

k2 = 3:6494 � 10�5 (6.48)

using the three highest speeds. These calculations where done in two steps.
First k1 and k2 where calculated from (6.43) for each speed using MATLAB�s
polyfit. Then these constants where averaged for the speeds in question.
The result is shown in the upper right and lower left plot of Figure 6.6 for
the four and three highest speeds respectively.
From the plot of (6.43) it seems like the various speed curves have approx-

imately the same slope, but that the o¤set varies with speed. The parameter
k2 is therefore modeled as a linear function of speed, k2; modified = k21N+k22,
resulting in

� f (N) = k21N
2 + k22N . (6.49)

Various constants where found in the same manner as for (6.44), except that
1. order polynomial �t of k2�s from the individual speed lines was performed
rather than averaging. This procedure resulted in

k1 = 4:2170 � 10�4 (6.50)

k21 = �2:8340 � 10�9 (6.51)

k22 = 1:0145 � 10�4 (6.52)

and the approximation (6.43) and (6.49)-(6.52) is shown in the lower right
plot of Figure 6.6.
When working in the laboratory it was noticed that load torque readings

where unreliable and inconsistent for lower speeds whereas more consistent
and repeatable for higher speeds. An explanation for this might be that the
drive system requires a minimum speed to heat up the various parts and
lubrication system to a point where speed variations have little e¤ect.
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Step Description
1 � d = 1:420 to � d = 1:475 for At% = 90 (N=12600-13000)
2 � d = 1:475 to � d = 1:420 for At% = 90 (N=13000-12600)
3 � d = 2:025 to � d = 2:080 for At% = 66 (N=23700-24100)
4 � d = 2:080 to � d = 2:025 for At% = 66 (N=24100-23700)

Table 6.2: Torque step data

6.2.7 Comments

Steady state analysis indicated that duct downstream the compressor can be
used to implement a measurement of pc, according to the model discussed
in Chapter 2. This is not the case for duct upstream of the compressor.
Steady state analysis showed that the 2. order polynomial had positive

or zero mass �ow gradients at the surge line, while the related to the Moore -
Greitzer polynomial was negative. It is widely accepted that surge occurs for
positive sloped operating points, indicating that the second order polynomial
is a better �t in this respect. However, the Moore-Greitzer polynomial had
a steeper mass �ow gradient for higher mass �ows than the second order
polynomial. This agrees better with the stone wall, or choking, phenomena.

6.3 Transient model identi�cation

Transient analysis considers both steps in torque as well as surge data. Step
data is described in Table 6.2. Each of the step responses were gathered ten
times with same initial conditions. These time series where den averaged for
the individual steps. Surge data for constant impeller speed was gathered
for each of the speeds of Table 6.1 by throttling into the open loop unstable
region.

6.3.1 Pressures for constant speed surge

Figure 6.7 shows all pressures during a surge cycle for N = 22891rpm, which
corresponds to the second highest impeller speed for surge data. Surge
frequency is approximately 4:55Hz. Pressure downstream compressor is
available from both duct wall and a Pitot tube. This gives the possibility
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Figure 6.7: Pressures for constant speed surge, N = 22891rpm.

to evaluate the �ow in some more detail at this point. The �ow behavior of
these data can be divided in four regions:

� The region between point 1 and 2 corresponds to zero mass �ow, go-
ing into negative mass �ow. This can be seen by evaluating the Pitot
tube pressures, since downstream pressure goes from being smaller to
larger than upstream pressure in this region (the velocity component
is switching side). Downstream compressor pressure and both Pitot
tube pressures are approximately equal in this region, since all these
represent the static pressure due to the absence of a velocity compo-
nent. Furthermore, it can be seen that compressor upstream pressure
goes from being smaller to larger than ambient pressure in this region.
This agrees with entering negative mass �ow, since upstream pressure
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must be larger than ambient pressure to set up negative mass �ow in
this force free upstream duct.

� The region between point 2 and 3 corresponds to negative mass �ow.
Also this is seen by evaluating Pitot tube pressures, where the up-
stream pressure is smaller than the downstream pressure in this region
(the velocity component acts on the downstream side). This suggests
that Pitot tube upstream pressure should be equal to compressor down-
stream pressure, which is practically the case, since both these repre-
sent the static pressure. Furthermore, it can be seen that upstream
compressor pressure is larger than ambient pressure in this region, re-
sulting in a pressure gradient along the negative �ow direction for the
upstream duct.

� The region between point 3 and 4 corresponds to zero mass �ow, going
into positive mass �ow. This can be seen by evaluating the Pitot tube
pressures, since upstream pressure goes from being smaller to larger
than downstream pressure in this region (due to the velocity compo-
nent changing side). Downstream compressor pressure and Pitot tube
pressures are approximately equal in this region since they all represent
static pressure. Furthermore, it can be seen that upstream compres-
sor pressure has become slightly smaller than ambient, setting up a
positive pressure gradient with respect to �ow.

� The region between point 4 and 1 corresponds to positive mass �ow.
Again, this is seen from Pitot tube pressures since upstream is larger
than downstream pressure. It was expect that downstream Pitot tube
pressure and downstream compressor pressure to be equal in this re-
gion, which only is the case in the beginning and towards the end of the
region. This inconsistency can have several reasons such as calibration
inaccuracy, internal �ow phenomena, Pitot tube related properties or
a combination of these. The local �ow in combination with Pitot tube
properties is believed to be the most likely reason, since the calibration
seems to be relatively good for the other regions.

It is also worth noticing that intermediate pressure peeks in compressor
downstream pressure follows a change in �ow direction. Furthermore, change
in �ow direction downstream compressor occurs approximately at the same
time as upstream and ambient pressures intersect.
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Figure 6.8: Pressures for constant speed surge, N = 10283rpm.

Figure 6.8 shows a surge cycle for the lowest speed line. From this �gure
it can be seen that the intermediate pressure peeks are almost completely
removed. Furthermore, from upstream compressor and ambient pressure it
seems like this surge cycle do not posses negative mass �ow. However, by
evaluating the Pitot pressure, analogous the previous discussion, one comes
to the conclusion that also this constitutes a deep surge cycle. By further
investigation, it can be seen that a small o¤set change of Pitot pressures gives
conclusion of only positive mass �ow, and a small o¤set change of upstream
compressor and ambient pressures gives the possibility of negative mass �ow.
Yet another explanation might be that we have negative mass �ow locally
downstream of the compressor, which never reaches the upstream duct.
A mass �ow estimate for surge data is generated using (6.7) with a scal-

ing of 0:63. This is done in order to get an indication of the relation of
pressure di¤erences and mass �ow, analogous to that of the steady state
analysis. Figure 6.9 shows pressure di¤erences versus estimated mass �ow
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Figure 6.9: Pressure diferences for constant speed surge, N = 22891rpm.

in surge for the second highest impeller speed. Investigating the di¤erence
of compressor upstream and ambient pressures shows that this lies strictly
on the characteristic derived for the steady state (for positive �ow), which is
not the case for the other pressure di¤erences. This indicates that dynam-
ics related to the upstream duct mass �ow can be neglected, in which case
(6.16) reduces to

pcu = pa + Fcu (wcu)8t. (6.53)

This is not surprising, since the upstream duct is relatively short with respect
to the other ducts (duct containing compressor is almost twice as long and
downstream compressor duct is almost twelve times longer).
Combining this, no dynamics in upstream duct, with the �ndings of up-

stream and ambient pressures crossing each other approximately the same
instance as �ow downstream compressor changes sign, indicates that up-
stream compressor duct and compressor duct has the instantaneously same
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mass �ow value. All this rewrites the dynamic equations (6.16)-(6.18) as

_wc =
A

Lc

0B@pa + Fcu (wc) + Fc (wc; !)| {z }
F 0c

�pcd

1CA (6.54)

_wcd =
A

Lcd
(pcd � pp) (6.55)

where (6.16) now is incorporated in (6.54). From evaluation of the Mach
number in Section 6.2.2 it is known that �ow in ducts are incompressible,
indicating that wc = wcd. This implies that (6.54)-(6.55) comply with the
structure and assumptions of (2.20)-(2.21), leading to the relation (2.23) and
(2.24) for duct mass �ow.

6.3.2 Mass �ow and pressure dynamics

Downstream compressor duct

In Chapter 2 the pressure and mass �ow dynamics is derived as

_pp =
c2p
Vp
(wcd � wt (At% (t) ; pp)) (6.56)

_wcd =
Ac
Lcd

(pcd (t)� pp) (6.57)

where explicit time notation indicates that these signals are now considered
system inputs available as measurements. The valve characteristic (2.8)-
(2.9) and (6.31)-(6.32) will be used for (6.56). Furthermore, the speed of
sound is evaluated by cp =

p
�pRTp. Various constants are taken as

�p = 1:4 [1] (6.58)

R =
8:314 � 103
28:97

[
J

kg �K ] (6.59)

Vp = 0:1 [m3] (6.60)

Ac = � � (0:5 � 70 � 10�3)2 [m2] (6.61)

Lcd = 280 � 10�2 [m] (6.62)

and Tp as the average of the measurement time series in question. Since the
compressor is not included in this system, these parameters are from physical
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length, area and volume. Recall that when the compressor is included, this
involves a model for which L (or similarly A=L) represents some equivalent
length.

The second order system (6.56)-(6.57) is simulated with At% (t) and
pcd (t) as input time series from the torque step data in Table 6.2. The
result of the simulation is shown in Figure C.9 through Figure C.12. These
�gures show a comparison of measured and simulated plenum pressure and
duct mass �ow. For transient evaluation, only the pressure is interesting due
to the poor dynamic capabilities of the mass �ow measurements. However,
they will still be used to evaluate steady state values. Each �gure shows two
plots of the same data. Left column presents the actual response, whereas
the simulated response is shifted in the right column to better compare the
dynamic performance. The steady state di¤erences are due to inaccuracies
in the static mapping wt, which gives a slightly di¤erent equilibrium. Fur-
thermore, the simulated responses can be seen to have a transient response
in the very beginning (settling after approximately one to three seconds).
This is caused by the initial conditions of the simulations, when these are
taken identical to those of the measured values. From the �gures it can be
seen that the dynamic response of the simulated pressure is in good accor-
dance with the measured pressure. Furthermore, the steady state responses
are within reasonable accuracy. Plenum temperature varies between 314 and
337, which implies a variation of approximately �3:5% relative to 326.

The second order system (6.56)-(6.57) is simulated with At% (t) and
pcd (t) as inputs when undergoing surge in constant speed. The results are
shown in Figure C.13 through Figure C.19 for seven di¤erent speeds, equal
to those in Table 6.1. The �gures show good agreement for measured and
simulated plenum pressure, with respect to both frequency and amplitude.
Unfortunately, no measurements are available to evaluate transient mass
�ow. Simulated mass �ow is therefore compared with the somewhat uncer-
tain and inaccurate estimate (6.7) using a scaling of 0:63. However, since the
dynamic equations are highly correlated (since At% (t) is practically constant
one can consider pcd as only input), the simulated mass �ow is assumed to
be in good agreement with the actual when pressures shows good results.
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Compressor characteristic

From (2.23)-(2.24) and (6.17)-(6.18), (6.23), (6.53) and (6.33) it follows that

F 0c (wc; !) =

�
1 +

Lc
Lcd

�
pcd (t)�

Lc
Lcd

pp (t)� pa (6.63)

where pcd (t), pp (t) and pa are available and Lcd has been established as
(6.62) by simulations. Hence, the only unknown parameter in (6.63) is Lc.
This is considered a tuning parameter for the model, and will be chosen
such (6.63) holds.1 Furthermore, the steady part of F 0c (wc; !) has been
established in Section 6.2.5. The open loop unstable and negative mass �ow
region for this characteristic will in large be determined from its zero mass
�ow value as well as a quali�ed guess of the negative mass �ow quadratic
characteristic gain, both of which is determined from the right hand side of
(6.63) for surge data.
When tuning Lc for the right hand side of (6.63) there is a couple of

criteria that should be satis�ed. First of all, when representing (6.63) with
corresponding mass �ow in a compressor map, this plot should coincide with
steady state data. Second, the value of F 0c (wc; !) should be the same for a
given wc throughout the surge cycle (independent on whether the mass �ow
is increasing or decreasing).
Tuning of Lc was done in several steps. First the two dimensional model

(6.56)-(6.57) is simulated to generate wc (t) for the surge cycle in question.
Then the right hand side of (6.63) is plotted with wc (t) in the compressor
map for evaluation. The parameter

Lc = 180 � 10�2 (6.64)

was chosen such that wc (t) = 0 gave the same value F 0c (wc; !) for both
decreasing and increasing wc. The plots used for evaluation are shown in
Figure C.20 through Figure C.26.
Based on responses shown in Figure C.20 through Figure C.26, estimates

on forcing term value for zero mass �ow was retrieved. A �rst order polyno-
mial �t was evaluated for these data using MATLAB�s polyfit in order to

1As commented upon in Chapter 2.2, Ac=Lc should be regarded as a tuning parameter
for the model. The parameter Ac is often chosen as some "reference/characteristic" area
corresponding to inducer or connecting duct diameter, leaving Lc for tuning. A more
comprehensive description and an alternative approach to �nding this tuning parameter
is given in [46].
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arrive at an expression being continuous in !. The approximation resulted
in

F 0c;w=0 = 1:0236N � 8:4541 � 103 (6.65)

where F 0c is expressed in terms of N rather than !.
From Figure C.20 through Figure C.26 it can be seen that the mass

�ow gradient at zero mass �ow is approximately zero. This is as expected
from theory, since the compressor represents a restriction for negative mass
�ow. The region between zero mass �ow and open loop stable region (zero
mass �ow and surge line) is now �tted using a cubic polynomial of given
boundary conditions. For zero mass �ow it is required that the mass �ow
gradient of this polynomial is zero. At the surge line it is required that
the mass �ow gradient is equal to that of the connecting open loop stable
speed line. Note that these restrictions on boundary gradients make the
characteristic continuously di¤erentiable.
Based on Figure C.20 through Figure C.26 the coe¢ cient for negative

mass �ow is determined. This is assumed the same for each speed line,
resulting in

F 0c;w<0 = F 0c;w=0 + 0:8 � 106w2c (6.66)

for negative mass �ow, where F 0c;w=0 is included to incorporate the speed
line.
For simulation, the evaluation of the compressor characteristic will now

be an algorithm consisting of essentially two steps. First the region for
evaluation is decided (negative mass �ow, positive mass �ow and open loop
unstable or positive mass �ow and open loop unstable). Then the appro-
priate F 0c is evaluated and combined with pa to generate pc (wc; !). The
resulting compressor characteristic, represented in terms of the forcing term
F 0c (wc; !), is shown in Figure 6.10 for (2.37) along with steady state data
and zero mass �ow points.
Simulations of (6.56) and (6.57) are shown in Figure C.27 through Figure

C.33 for all constant speed surge data using a model pc (wc; !). In this case
the system inputs are given byAt% and !, being constant for each simulation.
Recall from Chapter 2 that this implementation yields a duct length L0 =
Lc + Lcd. The simulations shows reasonably good �t to experimental data
in terms of frequency and amplitude. The phase deviation of simulated and
measured response observed in plots is due to inaccuracy of frequency for
the simulated response.
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Figure 6.10: Compressor characteristic, F 0c for laboratory.

6.3.3 Impeller speed

The speed dynamics is on the form _! = 1
J
(� d � � l (w; !)), where the com-

pressor load torque characteristic is discussed in Section 6.2.6. This dis-
cussion presented two structures for the characteristic, one for higher speed
and one that aimed at �tting the characteristic for all speeds. It was also
commented upon that torque data for lower speeds was somewhat hampered
with uncertainty.
Step data described in Table 6.2 will be used to identify the time constant

of the impeller dynamics. Data 1 and 2 corresponds to impeller speeds in
the lower range, whereas data 3 and 4 corresponds to impeller speeds in the
higher range. Hence, for torque steps in 1 and 2 the model (6.49)-(6.52) will
be used, whereas (6.44) and (6.47)-(6.48) is used for steps 3 and 4. In order
to identify the parameter k, that is, the inertia J of rotating parts,

_N = k (� d � � l (w;N)) (6.67)
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was simulated using � d and w as system input. The simulation was an
iterative process of tuning k until the simulated N was reasonable close to
the measured response for N . The following discussion considers

k = 104 (6.68)

for various methods of generating w. All the �gures presented shows the
actual response in the upper plot, whereas the simulated response is shifted
in the lover plot to better compare the responses. The deviation shown
in the upper plot comes from model uncertainty of � l resulting in slightly
di¤erent steady state values.
First the simulation was carried out using the measurement of mass �ow.

As already pointed out, this measurement yields poor dynamic performance.
The result is shown in Figure C.34 through Figure C.37. All of these �gures
involve overshoot for simulated response. This can be explained by the
slow response of mass �ow measurement, when a deviation of measured and
actual mass �ow results in an incorrect value for � l in simulation. This is also
supported by the observation that the overshoot settles at the same time as
mass �ow measurement converged to steady state value. Furthermore, for
the lower speed responses it can be seen that measurement and simulation
generates approximately the same change in speed whereas more or less the
exact same change in speed is observed from the higher speed response. This
is as expected since the model for � l is better for high speeds than for low
speeds, as discussed in Section 6.2.6. Due to the overshoot it is di¢ cult to
evaluate the dynamic performance for these simulations.
The step response poses a relatively small change in mass �ow. Therefore

a simulation was carried out for constant mass �ow input, where the mass
�ow was derived by averaging over the time series in question. The result is
shown in Figure C.38 through Figure C.41. Common for all these responses
is that speed change observed by measurement di¤ers from those found by
simulation. This comes from using averaged mass �ow since this results in
an incorrect value for � l in steady state. The dynamic response seems to be
within reasonable accuracy.
Finally the system was simulated with mass �ow estimated from Pitot

tube pressures, (2.7) using a correction factor of 0:63. The results are shown
in Figure C.42 through Figure C.45. These �gures show no overshoot and
produce more or less the same speed change as that observed by the measure-
ments, especially for higher speeds. The deviations can be explained from



124 CHAPTER 6. MODEL VALIDATION

the inaccuracy of this estimate, as discussed in Section 6.2.1. Furthermore,
the dynamic response is within reasonable accuracy.



Chapter 7

Observer validation

7.1 Introduction

Some of the observers from Chapter 4 will now be evaluated for data from
the setup described in Chapter 5 and Chapter 6. More speci�cally, the
observers from Proposition 4.1 through Proposition 4.4 are investigated.
These yield observers based on the dynamic model of plenum pressure and
duct mass �ow. Chapter 6 showed that this model was in reasonably good
agreement with experimental data. For the impeller speed dynamics, on
the other hand, there was some model uncertainty/inaccuracy for the lower
speed regime. Hence, to provide the model based observer with as accurate
model as possible, the model is restricted to pressure and mass �ow. Keep
in mind that the main purpose of these observers is to generate a mass �ow
estimate needed as feedback to the control laws.
The observers from Proposition 4.1 through Proposition 4.4 represents

two reduced order observers for mass �ow and two observers estimating both
pressure and mass �ow. As pointed out in Chapter 4, the di¤erences lies in
whether the compressor characteristic pc of (2.25) is implemented as a model
or a measurement. Furthermore, as discussed in Chapter 2 the implemen-
tation as measurement is only possible if there is a su¢ cient length of duct
upstream or downstream the compressor. It was concluded in Chapter 6 that
the current setup had su¢ cient length downstream duct to introduce this
measurement. This chapter also gave indications that wc � wcd, which com-
pletes the assumptions made to arrive at (2.25). Recall that L0c = Lc + Lcd

and that pc (t) =
�
1 + Lc

Lcd

�
pcd +

Lc
Lcd
pp in case of measurement, where Lc is
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Observer Description
1 Proposition 4.1
1b Proposition 4.1 using Lcd and pcd
2 Proposition 4.2
3 Proposition 4.3
3b Proposition 4.3 using Lcd and pcd
4 Proposition 4.4

Table 7.1: Observers to be tested with experimentally data

a parameter tuned to best �t the experimental data whereas Lcd is a physi-
cal parameter. These considerations rise the question of whether (2.21) is a
better model of mass �ow than (2.25) for the observer, in the case when a
measurement of pc is used. Therefore, observers involving implementations
of pc as a measurement were also implemented using (2.21). It can easily be
veri�ed from Chapter 4 that this involves replacing L0c by Lcd and pc (t) by
pcd (t) for the propositions in question. For convenience of later reference,
the various observers to be tested are now summarized in Table 7.1.
The observer gain

co = �10�5 (7.1)

was chosen for the reduced order observers. This gain was motivated by the
equation ŵc = �̂� copp, to limit the e¤ect of measurement noise from pp on
ŵc, since pp is in the order of 105 � 106 larger than wc. The observers for
pressure and mass �ow was implemented with

K1 =

�
�50

�1:25 � 10�3
�
; K2 =

�
0
0

�
. (7.2)

Investigating the LMI (4.8) with MATLAB�s feasp resulted in the conclu-
sion that the LMI might be feasible, but not strictly feasible (recall that
the LMI need only be feasible, and can not be strict feasible due to the
zeros in lower right block of matrix). Note that this choice of K2 implies
that c2 vanishes from the implementation, since in this case one has that
w2 = ŵc and w1 = p̂p. Hence, these observers represent a copy of the model
in terms of estimated states and measured signals with a linear injection
term comparing estimated and measured plenum pressure.
Initial conditions for estimated states, �̂ or p̂p and ŵc, are set to zero.
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Step Description
1 N = 12500 to N = 22500 at At% = 100
2 At% = 100 to At% = 60 at N = 22500
3 N = 22500 to N = 12500 at At% = 60
4 At% = 60 to At% = 100 at N = 12500

Table 7.2: Step data for observer validation

7.2 Data

The aforementioned observers were tested for several sets of data. These
data can be divided in two:

� step in speed and valve references for the open loop stable regime

� surge data for constant speed, that is, surge data when the drive is
feed with a constant speed reference

Step data was conducted �rst and foremost to evaluate the steady state
performance of the mass �ow estimate, since measurement of mass �ow only
is available for steady state. However, the transient performance of pressure
estimate can also be evaluated from these data. The surge experiments were
conducted to evaluate the transient performance of the observers. Due to
the absence of a reliable transient mass �ow measurement, the estimated
mass �ows were compared with the approximated mass �ow calculated from
Pitot tube pressures, as described in Chapter 2. Due to the inaccuracy of
this approximation, evaluation of transient mass �ow estimates will only give
qualitative results.
Step data aimed at covering the entire range of the open loop stable

region. To this end, operating points for low speed near surge line, low speed
for fully open throttle, high speed for fully open throttle and high speed near
surge line were evaluated. The step data is summarized for convenience of
later reference in Table 7.2.
Constant impeller speed surge data for seven di¤erent speeds, similar to

those in Table 6.1, were investigated. These form a relatively good resolution
with respect to available speeds in the setup. Surge data is summarized for
convenience of later reference in Table 7.3.
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Surge Description
1 N = 10000 and At% = 48
2 N = 12500 and At% = 50
3 N = 15000 and At% = 51
4 N = 17500 and At% = 52
5 N = 20000 and At% = 53
6 N = 22500 and At% = 53
7 N = 25000 and At% = 54

Table 7.3: Surge data for observer validation

Step data was sampled at 1000Hz whereas surge data was sampled at
5000Hz. This implies that the surge data are hampered with somewhat more
noise than the step data. Furthermore, during step 3 the system encountered
surge in transition from one operating point to the other.

7.3 Result

Observer validation involves plots of both measured and simulated data. For
all plots of this type, measured data are represented by black lines whereas
estimated states are represented by lighter lines.

7.3.1 Step data

The result of step data is presented Figure D.1 through Figure D.4 in Ap-
pendix D, corresponding to data of Table 7.2 respectively. These �gures
consists of six rows and two columns, where the rows correspond to the
observers described in Table 7.1 respectively. The �st column shows mass
�ow estimate and measured mass �ow, whereas the second column shows
the observer error relative to measured mass �ow.
Common for all plots of measured and estimated mass �ow is that the

measured mass �ow converges much slower to the new operating point. This
is due to the poor dynamic performance of the measurement. From Figure
D.2 it can be seen that the mass �ow estimate for observer 2 does not follow
the actual mass �ow. This agrees with theoretical �ndings in the sense that
co must be chosen su¢ ciently small in order to guarantee convergence for this
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observer. By reducing the gain to co = �2:3�10�5, also this observer converge
for step data 2. However, this magnitude of the observer gain increases the
noise of the estimate to a level of which it it completely useless. Observer
1 and 1b shows no noticeable di¤erence for the data sets. The same holds
for 3 and 3b. Comparing the reduced order observers and observers for
both mass �ow and pressure, it can be seen that the observers 3 through 4
yields slightly better accuracy and noise levels. Furthermore, it seems like
observer 4 on average gives slightly better accuracy and lower noise levels
than observer 3 and 3b. It should be noted that the noise levels represented
by the relative error plots are in the range of the noise level related to the
mass �ow estimate.
Performance of pressure estimates are not represented by these �gures,

but will be visualized when discussing the surge data. However, these es-
timates showed good performance for the step data. Their relative error
was in the range of �1% (mostly within �0:5%) of measured value, both
in steady state and transient. Furthermore, the noise level of the estimates
where reduced by a factor of 0:001 relative to noise on measured signals.

7.3.2 Surge data

The result of surge experiments shown in Figure D.5 through Figure D.11,
corresponding to data of Table 7.3 respectively. Analogous to the step data,
these �gures consists of six rows corresponding to the observers in Table 7.1
respectively. Furthermore, the three columns represent mass �ow pressure
and pressure relative error. The mass �ow estimate is compared with the
mass �ow approximation from Pitot tube pressures. Since this approxima-
tion involves uncertainty, it makes no sense to evaluate the mass �ow relative
error in this case.
First it can be noted that observer 2 performs poorer than other ob-

servers for lower impeller speeds. This is probably due to insu¢ cient mag-
nitude of the observer gain, which is required for this observer. It can also
be noted that the reduced order observers are subject to some noise which
is not present in the smoother mass �ow estimates generated from observer
3 through 4. This is not easily seen by the presented �gures, but was estab-
lished when investigating the �gures in MATLAB. For observer 3 through
4 it can be seen that relative pressure error is con�ned to �1% of the mea-
sured value. Investigating pressure estimate and measured value in detail
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reveals that the estimated value is smooth, whereas the measured value is
hampered with noise in the same order of magnitude as the relative error.
It follows that the noise seen in the plots of relative error is due to the
measurement and not the estimate. Removing the noise from these plots,
consider a smooth line in the center of the noise, it can be recognized that
the pressure estimates oscillate about the actual value with relatively small
amplitude. Furthermore, it is noted that these oscillations in general are
larger for observer 4 than for 3 and 3b. Finally it is noted that the mass
�ow estimate generated by observer 1, 1b, 3 through 4 are consistent with
respect to amplitude and frequency, and qualitatively in agreement with the
approximated mass �ow.
Comments regarding pressure estimate and noise levels is illustrated by

Figure 7.1, showing a plots of measured and estimated pressure. The left
plot shows convergence of the pressure estimate, whereas the right plot shows
a surge cycle corresponding to the box in the left plot. It is seen that the
estimate poses a much smoother, and nose free, signal than that of the
measured.

7.4 Comments

From both step and surge data it can be concluded that observer 2 performs
poorly for the gain (7.1). This is especially the case for lower speeds. Step
and surge data show consistency with respect to disturbance rejection, in
the sense that mass �ow estimate generated with observers for both plenum
pressure and duct mass �ow yields better disturbance rejection than the
reduced order observers. Furthermore, pressure estimates are quite good for
both disturbance rejection and accuracy. Moreover, observers 3 and 3b seem
to perform slightly better than observer 4 when evaluating the estimated
pressure.
It is di¢ cult to evaluate the performance of the mass �ow estimate in

transients. The various observers show consistency in both frequency and
amplitude for the estimated mass �ow. Also, these estimates show relatively
good qualitative agreement with the Pitot tube pressures approximated mass
�ow. Combining these observations with the accuracy of the pressure esti-
mate and the highly correlated dynamic model for pressure and mass �ow,
it is believed that the transient performance for mass �ow estimates of ob-



7.4. COMMENTS 131

0 0.2 0.4 0.6
0

2

4

6

8

10

12

14

16

18
x 10 4

time, [s]

pr
es

su
re

, [
Pa

]

0.4 0.5 0.6
1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28
x 10 5

time, [s]

Figure 7.1: Pressures for observer 3b of Table 7.1 applied on surge data 7 of
Table 7.3

server 3 and 3b perform reasonably good. However, the step data indicates
that mass �ow estimate can deviate from the measured with as much as
10%.
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Chapter 8

Control validation

8.1 Introduction

This chapter evaluates two of the control laws presented in Chapter 3 on
the setup described in Chapter 5 and 6. As pointed out in Chapter 3, an
observer for mass �ow is needed in order to implement these control laws.
Based on the results from Chapter 7, the observer from Proposition 4.3 will
be used for this purpose. This observer is implemented with the same gains
as used for observer 3b of Table 7.1, from which it is more similar to that of
Remark 4.1 than Proposition 4.3. Even though this observer o¤ers estimates
of both mass �ow and plenum pressure, o¤ering considerable noise rejection
for plenum pressure, only the mass �ow estimate will be used in the control
law.

Figures used for evaluating control laws are found in Appendix E. These
�gures show various system states, estimated mass �ow, actual control input
and commanded control input. System states and actual control inputs are
shown as solid black lines, whereas commanded control inputs are shown by
lighter solid lines.

All plots of torque and speed contain a noise burst appearing with a
frequency of approximately 10 seconds. This phenomenon only appears
for measurements coming from the drive. Hence, it is believed that this
component itself causes these noise burst.

Implementation of the control presented in [19] is reported in [47].

133



134 CHAPTER 8. CONTROL VALIDATION

8.2 Speed control

The control law of Proposition 3.3 was implemented with � ( �wc; �pp; wi) = cs,
resulting in

! = �cs �wc + sat (wi) + !e (8.1)

_wi = �ci �wc (8.2)

It follows from (2.16) and the related discussion that choosing the positive
constant ca su¢ ciently large ensures asymptotic stability of the desired equi-
librium. Based on relative orders of magnitude for ! and !c, the stabilizing
control gain was chosen as cs = �4 � 104. Furthermore, the integrator gain
was chosen as ci = 5 � 104 and a saturation of �4000 for the integrator term
was set. Note that the stabilizing gain has opposite sign of that derived in
theory. During experiments it turned out that a positive valued stabiliz-
ing gain resulted in instability. This was the case for some regions of the
open loop stable as well as for the open loop unstable region. For the open
loop stable region, equilibrium points became unstable when approaching
the surge line. Furthermore, a higher gain resulted in an earlier encounter
with instability when approaching surge line. For the open loop unstable
regime, any positive valued cs resulted in instability.
The �rst experiment, presented in Figure E.1, aims at illustrating the ef-

fect of integral control. To this end, the controller is provided with incorrect
equilibrium information. More speci�cally, wec = 0:09 and N e = 12000 is
used for At% = 70. This can be regarded as an incorrect feed forward value,
since the given value of mass �ow equilibrium corresponds to N e = 20000
for the throttle opening in question. Figure E.1 shows a scenario for which
the integrator term in (8.1) is initially turned o¤. Then the integrator is
turned on after approximately 10 seconds, before being turned back o¤ after
approximately 25 seconds. Equilibrium values to the controller are shown
by dash dotted lines. Steady state error can be recognized from the �gure
when the integrator is turned o¤, whereas mass �ow converges to the desired
equilibrium in presence of the integrator.
The remaining of this section will evaluate active surge control for oper-

ating points on N = 15000. It is therefore interesting to establish for which
throttle opening the system enters surge on this speed line. Figure E.2 shows
that valve openings of At% = 56 and below corresponds to open loop un-
stable operating points for which surge will occur. This point was found by
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throttling down at constant speed until reaching audible surge. The capture
shown in Figure E.2 was started when the valve opening had settled at the
given throttle value, and no audible surge was identi�ed until some time
into the recording. However, from the �gure it can be seen that surge is
present throughout the entire time series. It starts out with relatively low
amplitudes, going into amplitudes of negative mass �ow. The audible surge
experienced in the laboratory is therefore probably deep surge.

Figure E.3 to Figure E.6 show active surge control for a selection of
throttle openings. As discussed in Chapter 2 it is a challenge to �nd corre-
sponding equilibrium points for this region of the compressor map. This was
solved for the experiments in question by setting N e = 15000 for (8.1), and
then tune we until N was approximately 15000 (or equivalently wi � 0).
Figure E.3 shows active surge control for At% = 52. The amplitudes for
the uncontrolled case are in the range of that in Figure E.2. Active surge
control reduces the amplitude of oscillations for this operating point, but
is unable to completely remove surge cycles. The same comments can be
made for operating points At% = 53 and At% = 54, shown in Figure E.4
and Figure E.5 respectively. However, it should be noted that amplitudes
decreases considerably with increasing valve opening. Figure E.6 shows that
surge is stabilized for At% = 56, being the throttle opening for which deep
surge was �rst encountered at this speed line.

Figure E.7 shows that the controller is able to take the system out of
surge. This �gure shows a scenario in which the stem is initially operated
at constant speed for At% = 56. The control law is activated after approxi-
mately 11 seconds, resulting in system stated converging to the desired value.
Figure E.8 shows a same type scenario for At% = 54, where the control law
is turned on and o¤. Initially the control is on. Then it is turned o¤ after
approximately 10 seconds, before being turned back on after approximately
18 seconds. It can be recognized that the control reduces amplitudes of the
surge cycle considerably. The controlled case results in mild surge, whereas
the uncontrolled case constitutes deep surge. Note that amplitudes for the
controlled case in Figure E.8 is larger than that presented in Figure E.5, even
though the throttle opening is the same. This can be explained from the way
in which these operating points are reached. Data represented in Figure E.3
through Figure E.5 are results of throttling in step wise from At% = 56 with
the control law active, and no deep surge cycles are encountered during the
transition into the throttle opening in question. Data presented in Figure
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E.8, on the other hand, is a result of turning on and o¤ the controller (also
prior to the time series presented). Hence, the control tries to recover from
deep surge in this case rather than stable operation or mild surge.

8.3 Torque control

The control law

� d = �c1 (�! + c2 �wc)� c2
JAc
L0c

(pc (t)� pp) + � ed (8.3)

of Proposition 3.3 was implemented to evaluate torque control, where the
time argument indicates that a measurement was used rather than a model.
This was chosen, among many possibilities o¤ered by Chapter 3.3, due to
its simplicity. Furthermore, simulations indicate that this implementation
works just as well as control laws of Proposition 3.2. In fact, it was shown in
[29] that the control law of Proposition 3.3 performs better than control laws
of Proposition 3.2 in terms of convergence, even for relatively small values
of c1.
Several of the experimental data for torque control is carried out for

impeller speeds in the vicinity of N = 20000, which is a considerably higher
speed than that associated with speed control. It follows from Figure 3.1 that
this higher speed is more challenging to stabilize in terms of the requirements
related to (3.93), when mass �ows as low as the intersection of low and high
speeds in this �gure will not be reached.
Figure E.9 through Figure E.12 presents experimental data for c1 = 10�6

and c2 in the order of 103, which practically means that

� d = �c1 (�! + c2 �wc)� c2
JAc
L0c

(pc (t)� pp) + � ed

� �c2
JAc
L0c

(pc (t)� pp) + � ed. (8.4)

This allows for a convenient way of reaching the desired speed or mass �ow
for a given throttle opening, even when equilibrium values are uncertain.
Increasing � ed will increase impeller speed as well as mass �ow, and reducing
� ed will reduce speed and mass �ow. This can be seen from Figure 2.5 and
the related discussion.
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In contrast to speed control, saturation of the control action had to be
implemented for torque control. This was needed in order to keep torque and
power within allowable ranges for the drive system, especially for situation
in which the controller tried to recover from surge. The explanation for this
can be found in the term c2

JAc
L0c
(pc (t)� pp) of (8.4). In surge, pc (t)�pp 6= 0,

the large order of magnitudes for pressures resulted in large amplitudes for
this term relative to reasonable/available control inputs � d. Pressures are
in order of 105 and available torques are in order of 100. Furthermore, the
constant c2 JAcL0c

was not small enough as to reduce the amplitude of pressures
to those of torques in this application.

Audible surge was �rst encountered at At% = 57 for N = 20000. Figure
E.9 shows active surge control of this operating point, where the system
is initially operating at constant speed. After approximately 3 second the
control is turned on, resulting in stabilization of the desired equilibrium. The
control is turned o¤ again after approximately 7 seconds, and the system
enters surge. Finally the control is turned back on after approximately 15
seconds, and the desired equilibrium is again stabilized. Actuator saturation
was set at � d;max = 3 Nm and the stabilizing gain was chosen as c2 = 103

for this experiment. Close inspection reveals that the control saturates once
or twice in taking the system out of surge. Figure E.10 and Figure E.11
shows a similar scenario for At% = 55 and At% = 53 respectively. The
stabilizing gain used for these experiments was chosen as c2 = 3 � 103, and
the saturation was set to � d;max = 3 Nm and � d;max = 4 Nm respectively.
From Figure E.10 it can be recognized that this control saturates during the
entire stabilization period, whereas the control in Figure E.11 only saturates
once or twice when taking the system out of surge.

The experiment shown in Figure E.12 di¤ers from previous in the way
the equilibrium was reached. In this scenario the control was activated at
N = 10000 and At% = 50, with a stabilizing gain of c2 = 2 � 103. Then � ed
was increased step wise to investigate which speeds that could be reached
before going into surge. Impeller speed of approximately N = 18000 was
reached before audible surge occurred. Plots shown in Figure E.12 does not
report this result, but shows stable operation at N = 15000 for the valve
opening in question. Control was turned o¤ after approximately 16 seconds,
and it is seen that the constant speed resulted in surge. Furthermore, the
controller was unable to take the system out of surge when turning it back
on after at approximately 18 seconds. It can be recognized that commanded
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control more or less bounces between its saturations of zero and � d;max = 2.
Figure E.13 and Figure E.14 uses (8.1) for the same operating points as

in experiments of Figure E.10 and Figure E.11 respectively, with c1 = 2�10�3
and c2 as previously. The term �c1 (�! + c2 �wc) is now a considerable contrib-
utor for the control. Furthermore, equilibrium values for wec , !

e and � ed are
taken equal to those of the corresponding previously stabilized equilibriums.
Figure E.13 shows that this control is able of taking the system in and out
of surge. However, steady state errors can be recognized for the controlled
part of the time series. From Figure E.14 it can be seen the equilibrium can
be stabilized. However, the controller is not able to recover from surge at
constant speed.
Figure 8.1 shows the last 10 seconds of the same data as Figure E.11

in a compressor map. These are experimental data for At% = 53 and N =
20000, where the controller takes the system out of surge. Experimental
data are plotted using plenum pressure measurement and estimated mass
�ow. As can be seen from the �gure, experimental data does not settle
at the theoretically expected equilibrium, being the intersection of throttle
and constant speed line. Furthermore, there is a di¤erence between data
equilibrium and the actual equilibrium reached. This can be explained by
inaccuracy of mass �ow estimate, when the actual equilibrium is found using
mass �ow measurement for steady state and data equilibrium uses the mass
�ow estimate. As can be seen from the �gure, pressures are equal whereas
mass �ow di¤ers for these equilibria. This is in accordance to discussions of
Chapter 7, showing steady state deviation of measured and estimated mass
�ow. The deviation of actual and theoretical equilibrium can be explained
by model inaccuracy.

8.4 Comments

Experiments of speed control required a stabilizing control gain of opposite
sign compared to that expected from theory. Recall that speed control
assumed the internal speed control loop of drive and electric motor was so
fast as it appear to take on the reference speed instantaneously, relative to
dynamics of mass �ow and pressure. Violation of this assumption is believed
to be the most likely explanation for inconsistency with theory. Comparing
experiment of Figure E.12 with those of Figure E.1 through Figure E.8
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Figure 8.1: Stabilization of surge presented in a compressor map

suggests that torque control works better than speed control. Furthermore,
torque control agrees better with theory than speed control.

As pointed out several times throughout the thesis, �nding corresponding
equilibrium points for this system is challenging. The e¤ect of this can be
seen when comparing the experiments of Figure E.10 and Figure E.11 with
those of Figure E.13 and Figure E.14. The �rst two experiments, not using
equilibrium values, were able to stabilize the desired equilibrium as well as
taking it in and out of surge. When implementing with equilibrium values,
on the other hand, experiments showed steady state error and for the �rst
case and not being able to take system out of surge in the second case.

When implementing (8.4) it was noted that � ed had to be chosen consid-
erably higher than that of measured torque, but still within the same order
of magnitude. Furthermore, a higher � ed was required when increasing c2.
This indicates that the term c2

JAc
L0c
(pc (t)� pp) takes on a positive value, or
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in other words
pc > pp (8.5)

in steady state. This can be explained by related to (6.18), (6.21) and (6.23),
concluding that the downstream compressor forcing term, Fcd, could be ig-
nored. However, from the lower left plot of Figure 6.3 it can be recognized
that this terms takes on negative values (relatively small compared with
other forcing terms). The steady state relation pc = pp � Fcd of (6.18) then
explains (8.5).
It is common in compressor literature to evaluate the active surge con-

trollers by the reduction in mass �ow that can be achieved for a constant
speed line, relative the mass �ow for which surge occurs. For this pur-
pose, the measured mass �ow at steady state is used. Two impeller speeds,
N = 15000 and N = 20000, has been investigated for active surge control.
For N = 15000 the throttle opening At% = 56 resulted in surge after having
operating in mild surge for some time. For the controlled case, the mass �ow
for this operating point was found as w = 0:053 kg=s. Speed control was not
able to signi�cantly decrease this mass �ow. For torque control, however,
the throttle could be reduced to At% = 50. Mass �ow for this operating
point was 0:042 kg=s. This implies that a relative reduction of more than 20
percent, since surge is encountered at a higher valve opening than At% = 56.
ForN = 20000 deep surge was encountered at At% = 57, implying that surge
occurs for a somewhat higher valve opening. Mass �ow for the controlled
case of At% = 57 was w = 0:07 kg=s. Torque control was able to stabilize
At% = 53 at N = 20000, for which the mass �ow was w = 0:059 kg=s. This
implies that a relative reduction of more than 15 percent was achieved for
this speed line.



Chapter 9

Further work

It was shown in Chapter 7 that the mass �ow estimates are subject to some
steady state error. One approach to improve on this error might be to tune
observers di¤erently. One could e.g. investigate if using the gain K2 of (4.5)
would improve the mass �ow estimate of Proposition 4.3 and/or Proposition
4.4. Alternatively one could investigate if the use of full order observers,
including also impeller speed, could improve the steady state deviation.
An other approach to improve observers is to use the measurement pc (t)

more actively. The observers of Chapter 4 use this measurement to cancel or
copy dynamics only. One could consider this signal used to compare correct-
ness of estimated states, e.g. as linear injection terms k (pc (ŵc; !)� pc (t))
or k (pc (ŵc; !̂)� pc (t)), in order to improve observer performance. This
approach is, however, not easily implemented using the system structure
and properties of the observer in Chapter 4.2. An Extended Kalman Filter
(EKF), on the other hand, gives the opportunity and framework to follow
this approach. However, some preliminary studies indicated that the EKF
did not signi�cantly improve steady state performance of the mass �ow es-
timate. Furthermore, this approach is dependent on an accurate model for
pc to guarantee that ŵc = wc implies pc (ŵc; !)� pc (t) = 0.
Yet another approach to improve mass �ow estimate, which is believed

to be the most promising, is to model the mass �ow sensor with a dynamic
equation. One could e.g. consider

_xwc;m = fwc
�
t; xwc;m

�
wc;m = hwc

�
t; xwc;m

�
141
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where wc;m represents the actual measurement of some sensor, and incorpo-
rate this dynamic relation in the observer. This will give a framework in
which the mass �ow estimate can be compared with the actual mass �ow.
It was shown in Chapter 8 that speed control, for the current setup, works

in the open loop stable region and at the surge line. The control law (8.1)
o¤ers convergence to a desired mass �ow equilibrium, also in presence of an
incorrect value for the impeller speed equilibrium. In view of discussions
for mass �ow estimate steady state deviation and the use of this state in
feedback, the system converges to a state for which the estimated mass �ow
equals the desired equilibrium. Hence, the actual mass �ow for which the
system converges to can deviate somewhat from that of the desired mass
�ow. Speed control results are based on experimental results rather than
theory. The reason for this is that the stabilizing gain for this controller had
to be implemented with opposite sign of what was expected from theory.
Torque control, on the other hand, works as expected from theory and was
able to extend the operating range of the machine considerably. It is believed
that torque control works better than speed control since the internal loop
drive and electric motor is much faster for torque than for speed. This
fact is supported by the manufacturer of the drive. When deriving control
laws, the drive system loop was ignored and it was assumed that this acted
instantaneously to a reference signal. Hence, a relatively slow drive system
loop violates this assumption.
To improve speed control one can consider extending the model by

_x! = f! (t; x!; !r)

! = h! (t; x!; !r) ,

where ! is impeller speed and !r is a reference signal fed to the drive, in
order to capture dynamics of drive and motor loop. This will alter the
dynamic dimension and structure for the dynamic model used to derive
speed control, and new analysis and control synthesis must be performed.
However, this approach will eliminate the assumption and requirement of a
fast actuator dynamic. The same approach can be used to model dynamic
e¤ects of the actuator torque control loop, in an attempt to improve results
for this scheme.
Only the very simplest structure of the torque control scheme was ex-

perimentally validated. Further work on this scheme should therefore start
with experimental testing of more complex structures for control algorithms,
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such as using the passive part for integral e¤ect, models for compressor
load torque, nonlinear damping and adaptive schemes. Adaptive schemes
are especially interesting when implementing models for load torque, since
Chapter 6 revealed that there is some uncertainty related to the friction
parameter kf of (2.7). Furthermore, the e¤ect discussed for (8.5) indicates
that the controller should be implemented with integral e¤ect. However, be-
fore implementing more sophisticated schemes it is believed that especially
one issue needs some further attention. This is, as commented upon several
times throughout the thesis, the problem of corresponding equilibriums. The
most critical variable in this respect is believed to be �! � c2 �wc, since this is
used as input to the passive control part as well as appearing repeatedly in
nonlinear damping and adaptive control schemes.
The performance of speed and torque measurements provided by the

drive turned out to be rather poor during transients. This was noticed
during active surge control, when audible speed and torque changes were
not re�ected by measurements. Speed measurement is required by torque
control and observers implementing pc (ŵc; ! (t)). Furthermore, observers
incorporating speed dynamics assume access to both speed and torque mea-
surements. The assumption of instantaneous torque control for the drive
system loop indicates that observers can be implemented with torque com-
manded by the control algorithm, but this is an ideal case and the observer
should preferably be implemented with a measurement of drive toque. Since
speed measurements are cheap and easy to install, it is highly recommended
to install such a transmitter in the laboratory setup.
An un-modeled e¤ect not taken into account in theory is that of backlash

and �exibility of the gear stage. The supercharger internal gear consists
of cog wheels, whereas the external gear uses driving belt. It is believed
that the e¤ect of these was observed when trying to stabilize surge for very
low mass �ow, far below that of reported in Chapter 8. In some of these
experiments an audible high frequency component, much higher than that
of the surge frequency, was observed for the drive system. Since these e¤ect
where encountered for relatively small throttle opening compared to those
of which surge could be stabilized, it is considered a more important task
to widen the stable operating range of the system before these e¤ects are
further pursued.
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Appendix A

Physics

A.1 Conservation Laws

The material presented here is taken from [15] and [45], adopting the nota-
tion used in [15].

A.1.1 Integral form

Consider a control volume Vc (t) with a surface @Vc (t). Let ~vc (t) be the
velocity of the surface at some speci�ed point, with ~n being normal vector
of dA pointing outwards at this location. The integral balance laws are then
given by

d

dt

Z
Vc(t)

�dV = �
Z
@Vc(t)

� ((~v � ~vc) � ~n) dA

d

dt

Z
Vc(t)

�~vdV =
X

~F �
Z
@Vc(t)

�~v ((~v � ~vc) � ~n) dA

d

dt

Z
Vc(t)

� (~r � ~v) dV =
X

~N0 �
Z
@Vc(t)

� (~r � ~v) ((~v � ~vc) � ~n) dA

d

dt

Z
Vc(t)

e�dV = _Q+ _Ws + _Wp + _W� �
Z
@Vc(t)

e� ((~v � ~vc) � ~n) dA

where ~v is the �uid velocity, � is the �uid density, ~F is the a force acting on
the system, ~r is a distance, M0 a moment about a point 0, e is the speci�c
energy (per unit mass), _Q is heat into the volume, _Ws is shaft work, _Wp is
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pressure work, _W� is viscous stress work (in interaction with control surface),
speci�c internal energy. Furthermore, the relations

~Fpressure =

Z
@Vc(t)

�p~ndA

~Fbody =

Z
Vc(t)

�~fdV

~N0 =
�
~r � ~F

�
0

_Q = �
Z
@Vc(t)

~jQ � ~ndA

_Wp = �
Z
@Vc(t)

p (~v � ~n) dA

_W� =

Z
@Vc(t)

~v � (~n � ~�) dA

For a �xed control volume, the derivative can be moved inside the volume
integral d

dt

�R
Vc(t)

�dV
�
=
R
Vc

@�
@t
dV .

A.1.2 Di¤erential form

In local form the balance equations are given by

D�

Dt
= ��~r � ~v

�
D~v

Dt
= �~rp+ �~f + ~r � ~�

�
Du

Dt
= �p~r � ~v + ~� : ~r~v � ~r �~jQ

whereD(�)
Dt
= @(�)

@t
+ ~v � ~r (�), ~� is the viscous stress tensor, ~jQ is the heat �ux

into the volume and ~� : ~r~v = ~r � (~� � ~v) � ~v � ~r � ~� . From Fourier�s law
we have that ~jQ = ��~r (�cpT ), where � is the thermal di¤usivity. For a
Newtonian �uid the viscous stress tensor is given by

~� = �
�
~r � ~v

�
~I + 2�~E

where � and � are the Lame coe¢ cients, and ~E is the rate of strain tensor.
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A.1.3 Local form

In local form the balance equations are given by

D�

Dt
= ��~r � ~v

�
D~v

Dt
= �~rp+ �~f + ~r � ~�

�
Du

Dt
= �p~r � ~v + ~� : ~r~v � ~r �~jQ

whereD(�)
Dt
= @(�)

@t
+ ~v � ~r (�), ~� is the viscous stress tensor, ~jQ is the heat �ux

into the volume and ~� : ~r~v = ~r � (~� � ~v) � ~v � ~r � ~� . From Fourier�s law
we have that ~jQ = ��~r (�cpT ), where � is the thermal di¤usivity. For a
Newtonian �uid the viscous stress tensor is given by

~� = �
�
~r � ~v

�
~I + 2�~E

where � and � are the Lame coe¢ cients, and ~E is the rate of strain tensor.

A.2 Type of �ow

A.2.1 Incompressible �ow

The �ow is said to be incompressible if density is constant in time and space,

D�

Dt
= 0.

From the local form of the mass conservation it can be seen that this implies

~r � ~v = 0.

A commonly accepted criterion for this summation is relatively low �uid
speed, Ma � 0:3.

A.2.2 Inviscid �ow

The �ow is said to be inviscid if it is frictionless. This implies that the stress
tensor is zero,

~� = 0.
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A.2.3 One dimensional

One dimensional �ow can be de�ned as �uid with only one velocity compo-
nent �owing along some path of given cross-section. Moreover, the intensive
properties are assumed to be uniform over the cross section at any point
along the path. This implies that three dimensional volume integrals col-
lapses to scalars with dV = A (�) d�, where � parameterize the path.

A.3 Thermodynamics

The material here is taken from [48] and [15].

A.3.1 Thermodynamic property data

Properties are macroscopic characteristics of a system such as mass, volume,
energy, pressure and temperature, to which numerical values can be assigned
at a given time without knowledge of the history of the system. Enthalpy is
de�ned on mass basis as

h = u+ p��1

where u is speci�c internal energy, p is pressure and � is density. The SI
unit for h and u is [J=kgK]
The speci�c heats cv and cp for pure simple compressible substances are

intensive properties de�ned by

cv =
@u (T; �)

@T

����
�

cp =
@h (T; p)

@T

����
p

where the subscripts denotes which parameter that are hold �xed during
di¤erentiation. For the speci�c heats we have cp > cv. The SI units for cv
and cp are [J=kgK] for mass basis. The speci�c heat ratio is de�ned as

k =
cp
cv

and is simply a dimensionless number.
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A.3.2 p-v-T relation for gases

The universal gas constant is de�ned as �R = 8:314 [kJ=kmol �K], whereas
the gas constant for a speci�c gas is de�ned by

R =
�R

M

where M is the molecular weight. For air M = 28:99 [kg=kmol]. The com-
pressibility factor is de�ned as

Z =
p

�RT

A.3.3 Ideal gas model

The ideal gas low is when the compressibility factor is assumed unity, which
gives pV = mRTorp = �RT . Any gas that satisfying the equation p = �RT ,
has speci�c internal energy function which is only variable in temperature,
T . This gives the following for internal energy and enthalpy for an ideal
gas u (T; v) = u (T ) and h (u; p; v) = h (T ) = u (T ) + RT . The preceding
properties are summarized as the ideal gas model

pv = �RT

u (T; �) = u (T )

h (u; p; �) = h (T ) = u (T ) +RT

From the de�nition of speci�c heats and the fact that u and h are
functions of temperature only for an ideal gas, we have the relationships
du (T ) = cv (T ) dT and dh (T ) = cp (T ) dT . This leads to the equations

u (T2)� u (T1) =

Z T2

T1

cv (T ) dT

h (T2)� h (T1) =

Z T2

T1

cp (T ) dT

giving the relation of two di¤erent system states. Furthermore, we have

cp (T ) = cv (T ) +R

cp (T ) =
k (T )

k (T )� 1R

cv (T ) =
1

k (T )� 1R
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where k > 1 since cp > cv. The foregoing expressions require the speci�c
heats as function of temperature. These relations are available as graphs,
tables and equations.



Appendix B

Calculations

B.1 Circle criterion observer

B.1.1 Error dynamics

Let

e = x� x̂

v = Hx

w = Hx̂+K2 (Cx̂� y)

z = v � w

 (t; z) = 
 (v)� 
 (w) = 
 (v (t))� 
 (v (t)� z)

where time dependence is expressed explicitly to indicate which signals are
regarded as time signals. The error dynamics is found as

_e = (A+K1C) e+G (t; z)

z = (H +K2C) e

which can be reformulated

_e = Aee+Be (t; z)

z = Cee

by de�ning Ae = (A+K1C), Be = G and Ce = (H +K2C).
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B.1.2 Lyapunov analysis

Consider the function
V (e) = eTPe

where P = P T > 0. The time derivative of V along the solution of the error
system is given by

_V (t; e) = 2eTPAee+ 2e
TPBe (t; z)

= 2eTPAee+ 2e
TPBe (t; z) + eTQ1e+ 2z

TQ2 (t; z)

�eTQ1e� 2zTQ2 (t; z)
= 2eTPAee+ eTQ1e+ 2e

T
�
PBe + CTe Q2

�
 (t; z)

�eTQ1e� 2zTQ2 (t; z)
= eT

�
ATe P + PAe +Q1

�
e+ 2eT

�
PBe + CTe Q2

�
 (t; z)

�eTQ1e� 2zTQ2 (t; z)

=

�
e

 (t; z)

�T �
ATe P + PAe +Q1 PBe + CTe Q2
BT
e P +Q2Ce 0

� �
e

 (t; z)

�
�2eTQ1e� 2zTQ2 (t; z)

where Q1 = QT1 and Q2 = QT2 . By requiring�
ATe P + PAe +Q1 PBe + CTe Q2
BT
e P +Q2Ce 0

�
� 0

the time derivative of V is upper bounded by

_V (t; e) � �2eTQ1e� 2zTQ2 (t; z) .



Appendix C

Figures for model validation

C.1 Steady state data

C.1.1 Pressures
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Figure C.1: Compressor upstream pressure
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Figure C.2: Compressor downstream pressure
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Figure C.3: Pitot tube pressures
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Figure C.4: Plenum pressure

C.1.2 Temperatures
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Figure C.5: Compressor upstream temperature
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Figure C.6: Compressor downstream temperature

0 2 4 6 8 10 12
310

315

320

325

330

335

340

Valve opening number, [1]

T p, [
K

]

Figure C.7: Plenum temperature
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C.1.3 Mass �ow
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Figure C.8: Compressor downstream mass �ow
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C.2 Transient data

C.2.1 Pressure and mass �ow from step in torque
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Figure C.9: Step 1 of Table 6.2
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Figure C.10: Step 2 of Table 6.2
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Figure C.11: Step 3 of Table 6.2
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Figure C.12: Step 4 of Table 6.2

C.2.2 Pressure and mass �ow from constant speed
surge
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Figure C.13: N = 10300[rpm]
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Figure C.14: N = 12800[rpm]
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Figure C.15: N = 15300[rpm]
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Figure C.16: N = 17900[rpm]
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Figure C.17: N = 20400[rpm]
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Figure C.18: N = 22900[rpm]
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Figure C.19: N = 25400[rpm]
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C.2.3 Compressor characteristic from constant speed
surge
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Figure C.20: N = 10300[rpm]
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Figure C.21: N = 12800[rpm]
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Figure C.22: N = 15300[rpm]

­0.1 0 0.1 0.2 0.3 0.4
0

0.5

1

1.5

2

2.5

3
x 10 4

F'
c, [

Pa
]

wcd, [kg/s]

Figure C.23: N = 17900[rpm]
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Figure C.24: N = 20400[rpm]
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Figure C.25: N = 22900[rpm]
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Figure C.26: N = 25400[rpm]
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Figure C.27: N = 10300[rpm]
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Figure C.28: N = 12800[rpm]
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Figure C.29: N = 15300[rpm]
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Figure C.30: N = 17900[rpm]
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Figure C.31: N = 20400[rpm]
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Figure C.32: N = 22900[rpm]
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Figure C.33: N = 25400[rpm]
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Figure C.34: Step 1 of Table 6.2
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Figure C.35: Step 2 of Table 6.2



172 APPENDIX C. FIGURES FOR MODEL VALIDATION

2.35

2.4

2.45

2.5
x 10 4

N
, [

rp
m

]

0 5 10 15 20 25 30 35 40
2.36

2.38

2.4

2.42

2.44
x 10 4

N
, [

rp
m

]

time, [s]

Figure C.36: Step 3 of Table 6.2
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Figure C.37: Step 4 of Table 6.2
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Figure C.38: Step 1 of Table 6.2
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Figure C.39: Step 2 of Table 6.2
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Figure C.40: Step 3 of Table 6.2
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Figure C.41: Step 4 of Table 6.2
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Figure C.42: Step 1 of Table 6.2
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Figure C.43: Step 2 of Table 6.2
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Figure C.44: Step 3 of Table 6.2
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Figure C.45: Step 4 of Table 6.2
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D.1 Step data
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Figure D.1: Step data 1 of Table 7.2
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Figure D.2: Step data 2 of Table 7.2
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Figure D.3: Step data 3 of Table 7.2
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Figure D.4: Step data 4 of Table 7.2
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D.2 Surge data

­0.1
0

0.1
0.2

ob
se

rv
er

 1

mass flow, [kg/s] pressure, [Pa] relative error, [1]

­0.1
0

0.1
0.2

ob
se

rv
er

 1
b

­0.1
0

0.1
0.2

ob
se

rv
er

 2

­0.1
0

0.1
0.2

ob
se

rv
er

 3

1
1.1
1.2
1.3

x 105

­0.01

0

0.01

­0.1
0

0.1
0.2

ob
se

rv
er

 3
b

1
1.1
1.2
1.3

x 105

­0.01

0

0.01

0 0.5
­0.1

0
0.1
0.2

ob
se

rv
er

 4

0 0.5
1

1.1
1.2
1.3

x 105

0 0.5
­0.01

0

0.01

Figure D.5: Surge data 1 of Table 7.3
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Figure D.6: Surge data 2 of Table 7.3
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Figure D.7: Surge data 3 of Table 7.3
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Figure D.8: Surge data 4 of Table 7.3
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Figure D.9: Surge data 5 of Table 7.3
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Figure D.10: Surge data 6 of Table 7.3
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Figure D.11: Surge data 7 of Table 7.3



Appendix E

Figures for control validation

E.1 Speed control
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Figure E.1: Integral e¤ect for At% = 70
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E.2 Torque control
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Figure E.9: Surge control for At% = 57
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