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Preface

This report is the written result of the subject ”TTK4920 - Teknisk Kybernetikk,

masteroppgave”. The subject is a 30 study point effort compulsory for graduate stu-

dents at the Department of Engineering Cybernetics at NTNU. The project report

at hand is written as a part of the Student Space Engineering Technology Initiative

hosted by the European Space Association on the topic of attitude determination

of a small satellite. The satellite in question is named European Student Moon

Orbiter, and is planned for launch in 2011. It is currently undergoing a Phase A

feasibility study, in which this report tries to play a part as background research for

the design of the control system.

One of the fascinating aspects with cybernetics as a field of study is the variety

of situations and environments where it can be applied. The author has appreciated

the opportunity to work in the borderline between more familiar subjects and that

of spacecraft design. Satellite control is somewhat related to marine vessel control,

which is the main area of application in the master program, but the environment

is different to the degree that it seems at first a new direction of study. The heart

of the work did evolve around the study of separation principles, which is in its

basic form purely abstract mathematics. Taking this highly theoretical approach

to cybernetics turned out to be very rewarding, at least on a personal level, as it

showed how many of the techniques and concepts of control engineering thaught

in earlier courses have a sound foundation in mathematics.

Well-earned thanks go to supervisor J. Tommy Gravdahl for being the ESA

contact at NTNU and thus providing interesting projects, and to the master students

at GG48 for a good and productive atmosphere during our final six months as

students.

Ivar-Kristian Waarum, Trondheim, June 4, 2007
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Abstract

This report describes the modelling and performance of an attitude determination

and control system (ADCS) for a small satellite in lunar orbit. The focus is on

stability analyses of each of the components in the system, and of the system as

a whole. In connection to this, the separation principle for nonlinear systems is

investigated.

Central background information is presented, covering necessary rigid body

dynamics and stability properties. Three different controller types are analysed

and compared herein, namely a model-dependent linearizing controller, a robust

controller and a standard PD-controller. An observer is chosen based on earlier

work, but some detail modifications are made to its structure. A state-space model

of the satellite and environment is derived and implemented in Matlab, along with

the observer and controllers. The observer and all three controllers are shown to be

stable with Lyapunov analysis. The total ADCS including the observer is shown

to have a cascaded structure, on which theory of nonlinear separation principles is

used to establish stability properties of the total system. Finally, the ADCS is put

to simulation tests imitating real-life scenarios and the performance of the different

controllers are compared.

The PD-controller shows the best performance, both in speed of convergence

and robustness to model errors. While not completely satisfactory, the results give

a basis on which to perform further work.
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Chapter 1

Introduction

1.1 ESA and SSETI

As a mean to step out of its American and Russian competitors’ shadows, the

European collaborative space programme efforts were in 1973 gathered under one

organization, named the European Space Agency (ESA). This establishment made

European countries able to expand their frontiers in space and develop independent

communication, infrastructure and surveillance capabilities. ESA was originally

constituted by eleven member countries, and the association now has near to twenty

countries as full time members and even more as associated members. Its record

of space missions consists of over seventy successful and independent missions,

in addition to over fifty done in collaboration with NASA or the Russian Space

Agency. Of the most significant milestones are the first Ariane launch in 1979, the

Mars Express orbiter in 2003 and the landing of the Huygens probe on Saturn’s

moon Titan in 2005.

ESA’s Education Office started the Student Space Exploration and Technology

Initiative (SSETI) in 2000 to stimulate the future generation of scientists and en-

gineers to pursue a career in space-related fields. SSETI connects students from

over fifteen universities in European countries and provides resources and an en-

vironment allowing them to cooperate and learn from each other during projects.

The Norwegian participants have formed the Attitude Determination and Control

Systems (ADCS) group, consisting of students from NTNU and Narvik University

College.

1.2 ESMO

This section is based on information on the SSETI Homepage (2007). From the

start SSETI had a list of goals, successive space missions where the large part of

the work should be done by students from the member countries:

• Mission 0: SSETI Express - launched in 2005
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Figure 1.1: Simple overview of the ESMO trajectories

• Mission 1: ESEO - Earth Orbiter - planned for launch in 2008

• Mission 2: ESMO - Moon Orbiter - possible launch in 2011

• Mission 3: Moon Rover - no date fixed

This thesis is a part of the European Student Moon Orbiter project, which started

in March 2006. The ”Phase A” feasibility study of the project will be carried out

until July 2007 after which the project will receive a go/no-go decision. The ADCS

group has handed in a ’Call for Proposals’ paper (ADCS group Narvik 2006) as a

tentative outline of the work to be done during Phase A.

The ESMO mission objectives are summarised as follows:

Education: Prepare students for careers in future projects of the European space
exploration and space science programmes by providing valuable hands-on
experience on a relevant and demanding project.

Outreach: Acquire images of the Moon and transmit them back to Earth for public
relations and education outreach purposes.

Science: Perform new scientific measurements relevant to lunar science and the
future human exploration of the Moon, in complement with past, present and
future lunar missions.

Engineering: Provide flight demonstration of innovative space technologies de-
veloped under university research activities.
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The ESMO benefits from the research done on the ESEO project, and is a

natural step towards a Moon Rover expedition. From a piggy-back launch in a

geostationary orbit, the satellite will make a self-propelled lunar transfer before

adjusting to a low altitude orbit around the moon, see Figure 1.1. As of May 1st

2006 the core payload is meant to be a high-resolution CCD camera, and possibly

infra-red imaging devices, radars and equipment for gravity field measurements.

The satellite propulsion system is to be decided. Options include a solid/liquid

”conventional” thruster system and a solar powered electric system. Dependant on

the choice, the lunar transfer can be performed in respectively a few days or almost

a year. This project is concerned with the part of the mission where the satellite is

already in lunar orbit.

1.3 ADCS design outline

The attitude of a body, it being a robot, boat or satellite, can be as important to

control as its position. At any time during space flight, transfer or orbit, one must

be able to orientate the satellite body exactly to take advantage of its cameras and

instruments, solar panels etc. As the accuracy of such instruments have increased

over the years, so has the demand of more precise positioning systems. A satellite

needs a motion control system to position and orientate itself correctly. The work

in this project focuses primarily on attitude control, leaving the integration of a

position controller for future work. The attitude determination and control system

consists of two parts; The attitude determination system includes sensors and noise

filters for acquiring the orientation of the satellite, whereas the control system is

made up by a control algorithm, actuators and thrusters. The term attitude of a

satellite refers to the angular deviation between reference frames, usually the body

deviation from the orbit frame. Chapter 2 introduces the reference frames used

in the project, along with some mathematical definitions and techniques used in

modelling and stability analysis.

The basis for the ADCS is the model of the ESMO satellite attitude, which is

worked out in Chapter 3.

An important factor in the attitude determination system is the measurement

hardware. Acquisition of orientation and angular velocity data can be done with

various sensor configurations. During simulations and analysis the hardware must

be modelled and integrated with the total system to clarify how different configu-

rations and changes in sensor parameters will impact performance. The ’Call for

proposals’ paper from the ADCS group suggested a configuration of star trackers,

sun sensors and inertia sensors. As a pre-study for this thesis, different sensors

were modelled and a configuration was suggested in Waarum (2006).

Sensor measurements will often suffer from noise pollution, drift errors and

slow sample rates. Some systems may have states impossible to measure. Numer-

ical differentiation can not be used to compute missing states, since the differenti-

ation will add noise to a signal. To obtain signals that are of sufficient quality to
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be fed to a controller, filtering techniques have been developed that removes noise.

One of the tools that can be used is an observer, which will also estimate states that

can not be measured. The observer is a mathematical model of the system, which

based on input of some system states can estimate the overall system behaviour.

The most important pre-study results on observers are included and elaborated in

Chapter 4.

Various control algorithms are discussed in Chapter 5. Different approaches

are taken. Some algorithms are model dependant, while some are more robust. All

are analysed with regards to stability as if they had direct access to the necessary

system states.

In a controller/observer system the control law is based on state estimates, i.e.

the output from the observer instead of the true states. This may alter the sta-

bility properties so that the properties of the total system are not the sum of the

properties of the stand-alone controller and observer. To establish stability for

the controller/observer system, a separation principle must be present. Chapter 6

tries to explain what the presence of a separation principle actually means, starting

with a set of generally interdependent differential equations and ending with a con-

troller/observer configuration. The main contribution of the thesis can be found in

Chapter 7, where the presence of such a separation principle is proven for a chosen

observer and control law.

The performance of the different controllers are presented in Chapter 8. The

methods of testing are chosen based on possible real-life scenarios. Finally, some

conclusions are made along with a few proposals for further work.

1.4 Previous work

Former NTNU students have written diplomas which has been information re-

sources for this project. Kyrkjebø (2000) wrote on satellite attitude determination

using a magnetometer/star tracker sensor configuration, and has been extensively

referenced in other diplomas. Sunde (2005) modelled sensors and made both an

Extended Kalman filter and an observer for a micro-satellite. The observer used for

analysis in this project is based on the work of Salcudean (1990). The model has

later been extended with sensor error models by Vik (2000) and Thienel & Sanner

(2001).

A huge amount of work exists on attitude controllers for satellites, boats and

robot manipulators. The most obvious to mention are the works of Egeland &

Godhavn (1994) and Josh et al. (1995) which is treated in detail in the chapter on

controllers. Other notable works used as background are Wen & Kreutz-Delgado

(1991), which considers the attitude control problem thoroughly and compares the

performance of different controller types. Adaptive controllers similar to that of

Egeland & Godhavn (1994) can be found in Slotine & Li (1988) and Thienel &

Sanner (2001).

The presentation of the separation principle herein is based on works by Michel
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et al. (1978), Vidyasagar (1980a), Vidyasagar (1980b) and Panteley & Loria (1997).

Other good sources to understand what a separation principle means are Jankovic

et al. (1996), Saberi et al. (1989) and Atassi & Khalil (1999). Related areas include

theory of complete systems and input-to-state stability, of which Angeli & Sontag

(1999) and Sontag (1989) are good readings.

An example of showing the cascaded form of an observer/controller system and

then proving stability can be found in Loria et al. (2000). More general background

on the same topic are the lecture notes of Loria (2004).

These and other authors are referenced throughout the report.

1.5 Contributions of this thesis

The work presented in this thesis leans heavily on the earlier mentioned books

and articles. However, some new results are made. The observer from Vik (2000)

was simplified and the stability proof was done with basis in the original proof.

The linearizing controller was derived from the adaptive controller of Egeland &

Godhavn (1994), and the stability proof was done based on the original proof and

the one found in Thienel & Sanner (2001). Both the control law and the stability

proof of the PD-controller is based on the work of Wen & Kreutz-Delgado (1991).

The presentation of the nonlinear separation principle is solely based on previ-

ous works of distinguished authors, but the presentation herein tries to show how

the problem arises in the first place by starting with a general set of differential

equations and then gradually transforming the problem to a set of equations corre-

sponding to a cascaded controller/observer system. The most original work of the

thesis is, along with the linearizing controller, the proofs of total stability and the

existence of separation principles for the cascaded system. This is, however, based

on the theorems of Panteley & Loria (1997) and the method in Loria et al. (2000).
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Chapter 2

Mathematical Background

The attitude motion of a satellite can be described as a set of differential equations.

The motion is given by the satellite body rotation with respect to different frames

of motion. Which frames of motion that are practical depends on the satellite’s area

of use. Body rotation is usually presented with vector notation. The first part of this

chapter presents some useful theory and properties of vectors and rotation matrices

as well as the convenient frames of motion for a moon orbiting satellite. To signify

vectors and matrices, non-scalar attributes are written in bold letters throughout the

report. The second part presents stability theory, in particular the direct method of

Lyapunov.

2.1 Vectors

Fjellstad (1994) stated how a rigid body in n-dimensional space has n(n + 1)/2
degrees of freedom (DOF). A satellite in R3 has six DOF, which can be described

with a position vector η = [ x y z ϕ θ ψ ]T , where [ x y z ]T are

the positions in the orthogonal Euler space R3 and [ ϕ θ ψ ]T are the Eu-

ler angles of the satellite body relative to the xyz reference frame. The satel-

lite velocities in the respective directions are then given by the vector ν = η̇ =
[ v1 v2 v3 w1 w2 w3 ]T . The following theory is based on Egeland &

Gravdahl (2002), in which more detailed explanations can be found.

If r is a general vector in reference frame Fσ , it can be written on component

form as

rσ =
[
r1 r2 r3

]T
,

where rσ = r1σ1 + r2σ2 + r3σ3 and σi are the unit vectors of the orthogonal

system Fσ. The cross product t of two vectors r and s in the frame Fσ can be

found from

t = r×s =

∣∣∣∣∣∣
σ1 σ2 σ3

r1 r2 r3
s1 s2 s3

∣∣∣∣∣∣ = (r2s3−r3s2)σ1−(r1s3−r3s1)σ2+(r1s2−r2s1)σ3,
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which corresponds to the vector

⎡
⎣ r2s3 − r3s2
r3s1 − r1s3
r1s2 − r2s1

⎤
⎦ . (2.1)

To easily compute the cross product, the skew-symmetric form of a vector is intro-

duced as

S(r) =

⎡
⎣ 0 −r3 r2

r3 0 −r1
−r2 r1 0

⎤
⎦

such that

S(r)s =

⎡
⎣ 0 −r3 r2

r3 0 −r1
−r2 r1 0

⎤
⎦

⎡
⎣ s1
s2
s3

⎤
⎦ = r × s

which computes to the same result as in Equation 2.1. Some useful properties of

the skew-symmetric matrix which will be used in this report:

S(−r) = −S(r) = S(r)T (2.2)

rS(r) = 0 (2.3)

2.2 Rotation matrices

To transform a vector between reference frames, some information regarding the

relative orientation of the frames is necessary. Unless otherwise stated, the fol-

lowing theory is based on Sciavicco & Siciliano (1996) in which a more detailed

explanation can be found. A matrix R is a rotation matrix if and only if R ∈
R3×3,RTR = I and det(R) = 1 (Egeland & Gravdahl 2002). R has two inter-

pretations;

1. It rotates a vector inside a reference frame: x′ = Rx.

2. It gives the rotation between two reference frames: rρ = Rρ
σr

σ.

A rotation between two reference frames in R3 is given by the composite rotation

Rρ
σ = Rz,ψRy,θRx,φ where xyz are the orthogonal axes, ψθφ are the correspond-

ing Euler angles and the matrices Rr,ϑ are shown in 2.4.
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Rx,φ =

⎡
⎣ 1 0 0

0 cosφ − sinφ
0 sinφ cosφ

⎤
⎦

Ry,φ =

⎡
⎣ cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤
⎦ (2.4)

Rz,ψ =

⎡
⎣ cosψ − sinψ 0

sinψ cosψ 0
0 0 1

⎤
⎦

Rρ
σ =

⎡
⎣ c(φ)c(θ) c(φ)s(θ)s(ψ) − s(φ)c(ψ) c(φ)s(θ)c(ψ) + s(φ)s(ψ)
s(φ)c(θ) s(φ)s(θ)s(ψ) + c(φ)c(ψ) s(φ)s(θ)c(ψ) − c(φ)s(ψ)
−s(θ) c(θ)s(ψ) c(θ)c(ψ)

⎤
⎦

The general rotation matrix for a rotation ϑ about a vector r = [ rx ry rz ]
can be written as 2.5, from which one findsR1,R2 andR3 by inserting respectively

r = [ r1 0 0 ], r = [ 0 r2 0 ] and r = [ 0 0 r3 ]. Sciavicco & Siciliano

(1996) gives the general rotation matrix as

Rr,ϑ =

⎡
⎣ r2xd+ cϑ rxryd− rzsϑ rxrzd+ rysϑ
rxryd+ rzsϑ r2yd+ cϑ ryrzd− rxsϑ
rxrzd− rysϑ ryrzd+ rxsϑ r2zd+ cϑ

⎤
⎦ , (2.5)

where d = (1 − cosϑ).
Due attention must be paid to the order of multiplication. Postmultiplication

corresponds to rotation around the rotated system, i.e. the current frame, whereas

premultiplication implies rotation around a fixed system. The different approaches

are shown in Equations 2.6 (postmultiplication) and 2.7 (premultiplication).

r1 =R1
2r

2

r0 =R0
1r

1 (2.6)

r0 =R0
1R

1
2r

2

r0 =R0
1r

1

r1 =R1
0R

1
2R

0
1r

2 (2.7)

r0 =R0
1R

1
0R

1
2R

0
1r

2 = R1
2R

0
1r

2

The first approach is common in robot technique, where joints rotate relative to

each other, while the fixed frame method is standard in navigation.

Rotation matrices using Euler angles is a well-known tool in robot technique,

vessel control and navigation. The technique does, however, have a problem with

singularities. For instance, Equation 2.5 is singular for ϑ = ±π/2, and is therefore

impractical when modelling a satellite that can make 360◦ rotations.
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2.3 Euler parameters

As a solution to the singularity problems with Euler angle rotation matrices, Euler

presented the Euler parameters in 1770. Combined, they consitute the unit quater-

nion q = [ η ε1 ε2 ε3 ]T . This presentation of Euler parameters is based on

Egeland & Gravdahl (2002), where their definition is given as

η = cos
ϑ

2
ε = k sin

ϑ

2
(2.8)

η2 + εT ε = cos2
ϑ

2
+ sin2 ϑ

2
= 1, (2.9)

which proves boundedness and the unit property. A rotation of 0◦ corresponds to

the identity quaternion qid = [ 1 0 0 0 ]T . The inverse of a quaternion is

q−1 = [ η −ε ]T . The general rotation matrix corresponding to Equation 2.5 is

given by:

Rη,ε =I + 2ηS(ε) + 2S(ε)S(ε) (2.10)

=

⎡
⎣ η2 + ε21 − ε22 − ε23 2(ε1ε2 − ηε3) 2(ε1ε3 + ηε2)

2(ε1ε2 + ηε3) η2 − ε21 + ε22 − ε23 2(ε2ε3 − ηε1)
2(ε1ε3 − ηε2) 2(ε2ε3 + ηε1) η2 − ε21 − ε22 + ε23

⎤
⎦

Rotating a vector with quaternion rotation matrices is written as

r′ =
[

0
Rη,εr

]
= q

[
0
r

]
q−1.

A successive rotation by Rη1,ε1 and Rη2,ε2 is thus written as:

r′′ = q2 ⊗ q1

[
0
r

]
q−1

1 ⊗ q−1
2

The introduced operator denotes the quaternion product:

q2 ⊗ q1 =
[

η2η1 − εT2 ε1

η2ε1 + η1ε2 + S(ε2)ε1

]
(2.11)

From Equation 2.11 it can be seen that q ⊗ q−1 = qid, which in turn gives q =
qid ⊗ q.

The use of four parameters instead of three avoids singularities. However, it

also introduces some redundancy in the attitude representation. As stated, the vec-

tor q = [ 1 0 0 0 ]T correspons to a rotation of 0◦. But the vector q =
[ −1 0 0 0 ]T corresponds to a rotation of 360◦, i.e. the same physical atti-

tude.

10



2.4 Kinematics

Fundamental to the construction of a differential kinematic model is differentiation

of vectors, matrices and Euler parameters. Regular vectors and matrices are dif-

ferentiated by the basic rules where for instance acceleration is computed from a

velocity vector as a = v̇ = [ v̇1 v̇2 v̇3 ]T . Kinematics for the rotation matrix

R = Rρ
σ is given by

d

dt
R = lim

�t→0

R(t+ �t) − R(t)
�t , (2.12)

where R(t + �t) can be written as the composite rotation between the general

rotation R�θ,r and R(t) such that

d

dt
R = lim

�t→0

(R�ϑ,r − I3×3)R(t)
�t .

Inserting �ϑ and r into Equation 2.5 and using sin�ϑ = �ϑ and cos�ϑ = 1
gives

R�ϑ,r =

⎡
⎣ 1 −rz�ϑ ry�ϑ

rz�ϑ 1 −rx�ϑ
−ry�ϑ rx�ϑ 1

⎤
⎦ ,

from which it can be seen that

d

dt
R =

⎡
⎣ 0 −rzϑ̇ ryϑ̇

rzϑ̇ 0 −rxϑ̇
−ryϑ̇ rxϑ̇ 0

⎤
⎦ .

Since riϑ̇ denotes the angular velocity ωσ
σρ between Fσ and Fρ, Equation 2.12

may be written as

Ṙ
ρ
σ = S(ωσ

σρ)R
ρ
σ = Rρ

σS(ωρ
σρ).

Derivation of the differentiated Euler parameters is somewhat lengthy, a de-

tailed explanation can be found in Egeland & Gravdahl (2002). The resulting

equations are given as:

q̇ =
1
2
q ⊗

[
0

ωσ

]
[
η̇
ε̇

]
=

[ −1
2εTωσ

1
2 (ηI3×3 − S(ε)) ωσ

]
=

1
2
Q(q)ωσ (2.13)

2.5 Frames of motion

Newton’s laws are only applicable when all motion is described in a common

frame. For all practical purpose most systems can be described in the Earth-

Centered Inertial frame. When treating the entire ESMO mission, including the

11



Index Frame of motion

e Earth Centered Inertial

m Moon Centered

o Orbit Centered

b Body

Table 2.1: Indexed frames of motion

lunar transfer, the sun might suit better as inertial frame. In lunar orbit, the moon

may be regarded as the inertial frame. Motion relative to other frames has to be

translated to the inertial frame. Using different frames is practical in describing the

relative motion of objects, and considering a satellite system the different frames

of motion are listed in Table 2.1. Common for these frames is that they are right-

handed and that their axes are orthogonal, both properties simplifying the transla-

tion between the frames.

Earth-Centered Inertial frame

The ECI frame has its origo at the center of the Earth, its z-axis pointing upwards

through the North Pole. The x-axis points in the vernal equinox direction, which

is the direction of the vector from the center of the Sun to the center of the Earth

during spring equinox on the northern hemisphere. The direction of the y-axis then

follows from the frame being an orthogonal right-hand frame. So the ECI frame

does not follow Earth’s rotation. Whenever something is described relative to the

ECI-frame it is in this report indicated by the subscript e.

Moon-fixed reference frame

Treating satellites in lunar orbit is somewhat complicated by the introduction of a

new reference frame. However, it simplifies the description of the relative motion

of the moon and the satellite. As for the earth frame, the z-axis points from the

origo in the moon centre and upwards through the north pole. The x-axis is parallel

with the vector between the origo of the moon-fixed and the the earth-fixed frame.

The moon-fixed reference frame is denoted by the subscript m.

Orbit-fixed reference frame

This frame has its origin in a mean orbit trajectory. The origin moves along this

trajectory as the satellite travels in orbit. The z-axis points toward the mass centre

of the encircled object, the x-axis points in the direction of motion, tangentially to

the orbit. When the orbit is around Earth, it is denoted by the subscript t, around

the Moon the subscript is o.

12



Body-fixed reference frame

With origin in the satellite’s centre of mass, it coincides with the origin of the

orbit frame whenever the satellite orbit coincides with the mean (non-perturbed)

orbit. The two frames are aligned if the satellite has an attitude of 0◦ in roll, pitch

and yaw. Whenever satellite attitude is mentioned in this report, it is meant the

deviation between the body frame and the orbit frame. The body frame is denoted

b.

Frame translation

With the reference frames defined, Equation 2.13 can be used to describe the satel-

lite body attitude relative to the orbit frame:

q̇ =
[
η̇
ε̇

]
=

1
2

[ −εT
ηI + S(ε)

]
ωbob

However, the internal gyros and sensors of the satellite measures motion rela-

tive to the inertial frame. Translating between frames of motion, ωbob can be found

from Equation 2.14 which will be used in the satellite model.

ωbob = ωbeb − ωbeo = ωbeb − (ωbem + ωbmo) (2.14)

2.6 Stability preliminaries

Some concepts used extensively throughout the thesis are norms and Lp spaces.

They are introduced here, along with some function properties that applies to the

Lyapunov function theorems in the next subchapter. |r| denotes the absolute value

of a scalar r. ||r|| denotes the norm of a vector r.

2.6.1 Norms and Lp-spaces

Definition 2.1 (Ioannou & Sun 1996) pp 68. The norm ||r|| of a vector r is a real
valued function with the following properties:

i) ||r|| ≥ 0 with ||r|| = 0 if and only if r = 0

ii) ||αr|| = |α|||r|| for any scalar α

iii) ||r + s|| ≤ ||r|| + ||s|| (triangle inequality)

Inequality iii) above is a special case of the Cauchy-Schwarz inequality, which

treats the relationship between two vectors in the same real or complex inner prod-

uct space1:

| < r, s > | ≤ < r, r > · < s, s > . (2.15)

1For more theory on inner product spaces, consult e.g. Young (1988)
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The two sides of Equation 2.15 are equal only if the vectors r and s are linearly

independent, or if one or both vectors are equal to zero. The triangle inequality is

a consequence of the Cauchy-Schwarz inequality. Consider

||r + s||2 = < r + s, r + s >

=||r||2+ < r, s > + < s, r > +||s||2
≤||r2 + 2| < r, s > | + ||s||2
≤||r2 + 2||r||||s|| + ||s||2
=(||r|| + ||s||)2,

which gives ||r + s|| ≤ (||r|| + ||s||).
A matrix Am×n represents a mapping from the space Rn to the space Rm.

The induced norm of a matrix is defined as:

Definition 2.2 (Ioannou & Sun 1996) pp 68. Let || · || be a given vector norm.
Then for each matrix A ∈ Rm×n, the quantity ||A|| defined by

||A|| � sup
x�=0,x∈Rn

||Ax||
||x|| = sup

||x||≤1
||Ax|| = sup

||x||=1
||Ax||

is called the induced (matrix) norm of A corresponding to the vector norm || · ||.
Some properties of the induced norm:

i) ||Ax|| ≤ ||A||||x||, ∀x ∈ R
ii) ||A + B|| ≤ ||A|| + ||B||

iii) ||AB|| ≤ ||A||||B||.
The induced matrix norm also satisfies properties i) through iii) of Definition 2.1.

The Lp norm is defined as

Definition 2.3 (Ioannou & Sun 1996) pp. 69.

||r||p = (
∫ ∞

0
|r(t)|pdt)1/p

for p ∈ [1,∞), and say that r ∈ Lp when ||r||p <∞.

The two function spaces used in this thesis are the L∞ and L2 spaces.

The L∞ norm is defined as

||r||∞ = sup
t≥0

|r(t)|

and r ∈ L∞ whenever ||r||∞ exists. In short, the function space L∞ consists of all

functions that satisfies |f(·, t)| <∞ for all t.
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From Definition 2.3 the L2 (Euclidian) norm becomes

∫ ∞

0

√
f(t)2dt, (2.16)

and the function space L2 consists of all functions f(t) with properties such that

the integral in Equation 2.16 exists for all t. In short,
∫ T
0 f(t) must be finite for all

T ∈ [0,∞).
Throughout the thesis, || · || denotes the Euclidian norm of vectors and the

induced norm of matrices.

2.6.2 Function properties

Definition 2.4 A function f(x,t) is said to be Lipschitz if it satisfies the inequality

||f(x, t) − f(y, t)|| ≤ L||x− y||

∀(x, t), (y, t) in some neighbourhood of (x0, t0).

For a function to be considered continuous in a domain, it must be possible to find

a Lipschitz constant L which is valid in the entire domain.

Definition 2.5 (Khalil 2000) pp. 144. A continuous function α : [0, a) → [0,∞)
is said to belong to class K if it is strictly increasing and α(0) = 0. It is said to
belong to class K∞ if a = ∞ and α(r) → ∞ as r → ∞.

A special case of class K∞ functions is the continuous time variable t.

Definition 2.6 (Khalil 2000) pp. 144. A continuous function β : [0, a)× [0,∞) →
[0,∞) is said to belong to class KL if, for each fixed s, the mapping β(r, s) is
decreasing with respect to s and β(r, s) → 0 as s→ ∞.

2.7 Stability theory

To prove functionality of observers or controllers, it must be shown that the ob-

server or controller error diminishes with time. The main tool used to that end is in

this thesis Lyapunov stability theory, as presented in Khalil (2000). The stability

property describes whether and how a system converges to an equilibrium state.

Using the direct method of Lyapunov, stability can be analysed without solving the

differential equations of a system. The main theorems and necessary definitions

are included here for convenience.

Lyapunov function candidates must be class KL if Theorems 2.1 to 2.3 are

to be used. They give sufficient conditions for stability, asymptotic stability and

exponential stability respectively, and are increasingly strict: Exp.stable systems

⊂ Asymp.stable systems ⊂ Stable systems.
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Definition 2.7 (Ioannou & Sun 1996), pp. 105. A state xe is said to be an equilib-
rium state of the system described by ẋ = f(x, t), x(t0) = x0 if

f(xe, t) ≡ 0, ∀t ≥ t0

Theorem 2.1 (Khalil 2000) pp. 151. Let x = 0 be an equilibrium point for ẋ =
f(x, t) and D ⊂ Rn be a domain containing x = 0. Let V : [0,∞) ×D → R be
a continuously differentiable function such that

W1(x) ≤ V (x, t) ≤W2(x)

δV

δt
+
δV

δx
f(x, t) ≤ 0 (2.17)

∀t ≥ 0 and ∀x ∈ D, where W1(x) and W2(x) are continuous positive definite
functions on D. Then, x = 0 is uniformly stable.

Theorem 2.2 (Khalil 2000) pp. 152. Suppose the assumptions of Theorem 2.1 are
satisfied with inequality 2.17 strengthened to

δV

δt
+
δV

δx
f(x, t) ≤ −W3(x)

∀t ≥ 0 and ∀x ∈ D, where W3(x) is a continuous positive definite function on D.
Then, x = 0 is uniformly asymptotically stable. Moreover, if r and c are chosen
such that Br = {||x|| ≤ r} ⊂ D and c < min||x||=rW1(x), then every trajectory
starting in {x ∈ Br|w2(x) ≤ c} satisfies

||x(t)|| ≤ β(||x(t0)||, t− t0), ∀t ≥ t0 ≥ 0

for some class KL function β. Finally, if D = Rn and W1(x) is radially un-
bounded, then x = 0 is globally uniformly asymptotically stable.

Theorem 2.3 (Khalil 2000) pp. 154. Let x = 0 be an equilibrium point for ẋ =
f(x, t) and D ⊂ Rn be a domain containing x = 0. Let V : [0,∞) ×D → R be
a continuously differentiable function such that

k1||x||a ≤ V (x, t) ≤ k2||x||a

δV

δt
+
δV

δx
f(x, t) ≤ −k3||x||a

∀t ≥ 0 and ∀x ∈ D, where k1, k2, k3 and a are positive constants. Then, x = 0
is exponentially stable. If the assumption hold globally, then x = 0 is globally
exponentially stable.

Some Lyapunov functions may fail to satisfy Theorems 2.1 to 2.3 because V̇ (·)
is only negative semidefinite. It may still be possible to show asymptotical or

exponential stability by employing the theorem of LaSalle and a corollary:
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Theorem 2.4 (Khalil 2000) pp. 128. Let Ω ⊂ D be a compact set that is positively
invariant with respect to ẋ = f(x, t). Let V : D → R be a continuously differen-
tiable function such that V̇ (x) ≤ 0 in Ω. Let E be the set of all points in Ω where
V̇ (x) = 0. Let M be the largest invariant set in E. Then every solution starting in
Ω approaches M as t→ ∞.

When the interest is to show that x(t) → 0 as t → ∞, the origin must be estab-

lished as the largest invariant set in E. This is done by showing that the trivial

solution x(t) ≡ 0 is the only solution that can stay in E for all time. Theorem 2.4

can be specialized to this case. Corollaries 2.1 and 2.2 shows asymptotical and

global asymptotical stability.

Corollary 2.1 (Khalil 2000) pp. 128. Let x = 0 be an equilibrium point for ẋ =
f(x, t). Let V : D → R be a continuously differentiable positive definite function
on a domain D containing the origin x = 0, such that V̇ (x) ≤ 0 in D. Let
S = {x ∈ D|V̇ (x) = 0} and suppose that no solution can stay identically in S,
other than the trivial solution x(t) ≡ 0. Then, the origin is asymptotically stable.

Corollary 2.2 (Khalil 2000) pp. 129. Let x = 0 be an equilibrium point for ẋ =
f(x, t). Let V : Rn → R be a continuously differentiable, radially unbounded,
positive definite function, such that V̇ (x) ≤ 0 for all x ∈ Rn. Let S = {x ∈
Rn|V̇ (x) = 0} and suppose that no solution can stay identically in S, other than
the trivial solution x(t) ≡ 0. Then, the origin is globally asymptotically stable.

In the case of autonomous systems, the set E may be difficult to define, since

V̇ (·) is a function of both x and t. Another way to show stability of a function is to

consider its integral, as in Barbalat’s lemma:

Lemma 2.1 (Khalil 2000) pp. 323. Let φ : R → R be a uniformly continuous
function on [0,∞). Suppose that limt→∞

∫ t
0 φ(τ)dτ exists and is finite. Then,

φ(t) → 0 as t→ ∞.

A corollary of Barbalat’s lemma reformulates the square-integrability condition

into consideration of the Lp-belonging of the signals involved. The result is, how-

ever, less general:

Corollary 2.3 (Ioannou & Sun 1996) pp. 76. If f , ḟ ∈ L∞ and f ∈ Lp for some
p ∈ [1,∞), then f(t) → 0 as t→ ∞.

As seen with the Lyapunov stability theorems, it is sometimes more useful to

compute bounds on the solution of the state equation ẋ = f(x, t) than to compute

the exact solution. A tool to do this, is the comparison lemma. This may be applied

to situations where the inequality ẋ ≤ f(x, t) is satisfied.

Lemma 2.2 (Khalil 2000) pp. 102. Consider the scalar differential equation

u̇ = f(u, t), u(t0) = u0
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where f(u, t) is continuous in t and locally Lipschitz in u, for all t ≥ 0 and all
u ∈ J ⊂ R. Let [t0, T ) (T could be infinity) be the maximal interval of existence
of the solution u(t), and suppose u(t) ∈ J for all ∈ [t0, T ). Let v(t) be a contin-
uous function whose upper right-hand derivative D+v(t) satisfies the differential
inequality

D+v(t) ≤ f(v(t), t), v(t0) ≤ u0

with v(t) ∈ J for all t ∈ [t0, T ). Then, v(t) ≤ u(t) for all t ∈ [t0, T ).

The comparison lemma can also be used to prove exponential stability of an equa-

tion. Consider the case where the Lyapunov function candidate V satisfies the

inequality V̇ ≤ −kV . Then, by the comparison lemma, there exist constants k2

and k3 such that

V (x(t), t) ≤ V (x(t0), t0)e−(k3/k2)(t−t0).

Finally, a definition concerning the passivity of interconnected (closed-loop)

systems.

Definition 2.8 (Khalil 2000) pp. 236. The system

ẋ =f(x, u)
y =h(x, u).

is said to be passive if there exists a continuously differentiable positive semidefi-
nite function V (x) (called the storage function) such that

uT y ≥ V̇ =
δV

δx
f(x, u), ∀(x, u) ∈ Rn ×Rp.

Moreover, it is said to be

• lossless if uT y = V̇

• strictly passive if uT y ≥ V̇ + ψ(x) for some positive definite function ψ.

In both cases, the inequality should hold for all (x, u).
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Chapter 3

Satellite Model

The differential equations describing satellite attitude are here introduced as a foun-

dation for the control laws and observer algorithms presented in later chapters.

3.1 Kinematic equations

The kinematic equations of a rotating body in space were given in Chapter 2 as:

η̇ = −1
2
εTωb (3.1)

ε̇ =
1
2

(ηI3×3 − S(ε)) ωb (3.2)

In compact notation, this will be written as T (q)ωb = [ T 1(η) T2(ε) ]Tωb.

3.2 Dynamic equations

The equation of motion for rigid-body spacecraft attitude is in its most general

form

J bω̇b +N(R,ωb)ωb = τ b. (3.3)

If the model includes reaction wheel dynamics theN(·) term becomesN(R,ωb) =
S(RTH i), where H i is the total angular momentum of the spacecraft in the in-

ertial frame. Assuming only simple jet actuators, N(R,ωb) = S(ωb)J bωb. The

equation of motion is written out in Equation 3.4:

J bω̇b + S(ωb)J bωb = τ b (3.4)

3.2.1 Open-loop stability

Before complicating the equations, the open-loop equilibrium points should be

investigated in the spirit of Josh et al. (1995). Setting all derivatives and inputs of
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Equations 3.1 and 3.3 to zero gives:

−1
2
εTωb = 0 (3.5)

1
2

(ηI3×3 − S(ε)) ωb = 0 (3.6)

S(ωb)J bωb = 0

By taking the dot product of ωb on both sides of Equation 3.6, ηIωb · ωb = 0,

which means that either η = 0, ωb = 0 or both are zero. Assuming that η = 0,

then by Equations 3.5 and 3.6 εTωb = 0 and S(ε)ωb = 0, which in turn means

that either ωb = 0, ε = 0 or both are zero. However, by the properties of the unit

quaternion shown in Equation 2.9, if η = 0 then ε �= 0. Conclusively, ωb = 0
when the system is in equilibrium. This will later be used to simplify controller

set-points. The equilibrium points of the system are

⎡
⎣ η

ε
ωb

⎤
⎦ =

⎡
⎣ ±1

0
0

⎤
⎦ . (3.7)

3.2.2 Introducing frames

If using the ECI-frame as the inertial frame for a satellite, ωb
ib can be computed as

the sum of the angular velocity in the other frames between the inertial and body

frame, as shown in Equation 3.8. Then, the velocities may be decomposed into the

new frames.

ωb
ib =ωb

im + ωb
mo + ωb

ob (3.8)

ωb
ib =Rb

oR
o
mωm

im + Rb
oω

o
mo + ωb

ob

This yields the velocities ωm
im = [ 0 0 ωm

0 ]T and ωo
mo = [ 0 −ωo

0 0 ]T ,

which are approximations of the angular velocity of the moon around the earth and

the angular velocity of the satellite around the moon, respectively. Inserting for ωb

in Equation 3.4 gives:

J b[
d

dt
(Rb

oR
o
mωm

im + Rb
oω

o
mo + ωb

ob)] + S(ωb
ib)J

bωb
ib = τ b,

which, using Equations 2.3 and 2.13, assuming ω̇m
im = ω̇o

mo = 0 and rearranging,

can be written as

ω̇b
ob = (J b)−1τ b + S(ωo

mo)R
b
oR

o
mωm

im + Ro
mS(ωb

ob)R
b
oω

m
im + S(ωb

ob)R
b
oω

o
mo

−(J b)−1S(Rb
oR

o
mωm

im + Rb
oω

o
mo + ωb

ob)J
b(Rb

oR
o
mωm

im + Rb
oω

o
mo + ωb

ob)

20



3.3 State-space model

To simplify analysis, Equation 3.9 can be somewhat simplified. By regarding the

Moon as the inertial frame, the motion of the Moon around the Earth is removed.

This is desireable, since because of its highly nonlinear characteristics the assump-

tion ωm
im = 0 is not always correct. It is assumed that self-adjusting properties of

the sensor system will cover the inaccuracies arising from the simplifications.

Using the Moon as the inertial frame and combining with Equation 3.1, it is

possible to choose the state vector x = [ η ε ωb
ob ]T and form the state-space

model:⎡
⎣ η̇

ε̇
˙ωb
ob

⎤
⎦ =

⎡
⎣ −1

2εTωb
ob

1
2 (ηI − S(ε)) ωb

ob

(J b)−1τ b + S(ωb
ob)R

b
oω

o
io − (J b)−1S(ωb

ib)J
b(ωb

ib)

⎤
⎦ , (3.9)

where ωb
ib = Rb

oω
o
io + ωb

ob, ωo
io = [ 0 ω0 0 ] and τ b = τtau + τg.

This is a standard rigid body model, assuming simple jet actuators in the torque

dynamics. Another important assumption is that ωb ∈ L∞, i.e. that the angular

velocity never approaches infinity. This is a sound decision from a physical point

of view, and will be seen to simplify the mathematics. To simplify notation, Rb
o

and J b will in the following be written without sub- and superscripts when the

meaning is clear.

3.4 Environment model

Forces affecting the motion of the satellite include atmospheric drag, sun radiation

and gravity. The two former are assumed neglectable, along with the gravitational

pull of the Earth. Newton’s law of gravitation, see Equation 3.10, describes the

gravitational force between two masses M and m separated by the distance r. G
is the universal gravitational constant, and taking M as the mass of the Moon and

m as that of the satellite, GM = μm where μm is the magnitude of gravitation on

the Moon.

F = μm
m

r2
r (3.10)

Equation 3.10 gives the gravitational force in vector format. Kyrkjebø (2000)

shows how the force F can be reformulated as a torque around the z-axis of an

orbiting satellite, where Ib is the inertia matrix of the satellite:

c3 =Rb
o

[
0 0 1

]T
τ g =S(3ω0

2c3)Ibc3.

3.5 System properties

Most processes can be formulated as Figure 3.1, where r is the reference, u is the

actuating input and y the output. The plant consists of one or more processes, and
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r u y
Plant

Figure 3.1: Overview of a control system. r, u and y represent reference, actuating

input and system output respectively.

+ 1
sB C

A

x x yu

Figure 3.2: Basic linear system. s is the Laplace operator.

the translation from r to u is usually done by some kind of controller. If this trans-

lation is only dependant on u, the controller is so-called ”open loop”. Normally,

performance will then be dissatisfactory, because of changes in plant parameters

or signal noise that are not accounted for. It is more useful to let the actuating

input also rely on the plant output in a feedback control loop. Correctly designed,

this will enhance performance by decreasing the effect of parameter variations and

suppressing noise and disturbances.

Most real-life processes have nonlinear characteristics. Any linear description

will only be an approximation. Process characteristics may also vary with time.

Since this complicates equations and notation, only time-invariant systems are pre-

sented here. With ordinary differential equations, plants may be modelled linearly

as shown in Equation 3.11 and Figure 3.2.

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(3.11)

Plants may be modelled nonlinearly as

Σ :
ẋ(t) = f(x(t),u(t))
y(t) = h(x(t))

(3.12)

where x(t) ∈ Rm,u(t) ∈ Rn,y(t) ∈ Rp and f and h are continuous functions.

State observers is a commonly used tool in control engineering. When design-

ing a control law for the system 3.12, the natural choice is u(t) = −f(x(t), t).
This assumes that the entire state vector can be measured and used directly in a

feedback connection. In most complex systems, this is not the case. States can be

impossible or impractical to measure, or the measurements may suffer from severe
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noise pollution. This leaves the control designer with the possibility to predict,

or estimate, the unknown states. The observer is a model of the system which on

basis of inputs and outputs of the total system estimates the missing states so that

the system can be controlled from these. An obvious demand to the system is then

that it must be possible to reconstruct its states based on the input and output. A

system satisfying this demand is said to observable. The dual of the observability

property is the ability to steer the state variables by varying the input. This is called

controllability, and may be more intuitively understandable.

3.5.1 Controllability

Linear systems

The controllability property of a linear system indicates whether the states of the

state-space equations can be controlled from the input. Chen (1999) gives the

definition:

Definition 3.1 The state equation 3.11 or the pair (A, B) is said to be controllable
if for any initial state x(0) = x0 and any final state x1, there exists an input
that transfers x0 to x1 in a finite time. Otherwise 3.11 or (A, B) is said to be
uncontrollable.

The definition requires that an input should be capable of moving any state to

any other state in finite time. For practical purposes, a system might even then

be uncontrollable since the definition sets no restraints on the input or the state

trajectories from state x to state x′, and a physical system will often have such

restraints.

Nonlinear systems

Controllability may be defined in essentially the same way as with linear systems

(Gershwin & Jacobson 1971). A system such as 3.12 is controllable from (x0, t0)
to (0, tf ) if, for some control u(t), t0 ≤ t ≤ tf , the solution of 3.12 with x(t0) =
x0 is such that x(tf ) = 0, where tf is a preassigned terminal time. tf ensures that

x(t) goes to zero in finite time.

3.5.2 Observability

Where controllability is the concept of steering a state from input, observability is

about estimating a state from the output.

Linear systems

Fulfilling the requirements of the observability property guarantees the possibility

to design an observer for a linear system. Chen (1999) defines observability as:

23



Definition 3.2 The state equation 3.11 is said to be observable if for any unknown
initial state x(0), there exists a finite T > 0 such that the knowledge of the input
u and the output y over [0, T ] suffices to determine uniquely the initial state x(0).
Otherwise, the equation is said to be unobservable.

Given the linear time-invariant (LTI) system 3.11, where A, B and C are

known, its solution is given by:

y(t) = CeAtx(0) + C

∫ T

0
eA(T−t)Bu(t)dt+ Du(t), (3.13)

where the state x(0) is the only unknown. In order to find a unique solution to

Equation 3.13, the system 3.11 must be observable.

Nonlinear systems

For nonlinear systems, the observability property does no longer guarantee the

possibility to design an observer. This is because the property is dependant on

the actuator input, and one would expect that for nonlinear systems, observer gains

would have to vary with the input. Observability for nonlinear systems is explained

in Nijmeijer & Fossen (1999), a short summary is given here.

A pair of internal states (x0, x
′
0) is said to be indistinguishable by u if ∀t ≥ 0,

g(Xu(t, x0)) ≡ g(Xu(t, x′0)). This must be true for all u. Thus, a system such as

3.12 can be said to be observable if it has no indistinguishable state pairs. However,

the indistinguishability and observability property does not exclude the possible

existence of inputs which makes some states indistinguishable: Since the system

may respond differently for different inputs (f is a function of both x and u), the

possibility arises that the output y may be the same for different internal states.

Given this, the inputs must be considered when designing an observer. It is possible

to distinguish between universal and singular inputs. Universal inputs are defined

as inputs that does not give any indistinguishable pairs of system states, while all

non-universal inputs are called singular.

• If a system has no singular inputs, it may be possible to design an observer

irrespective of the input. Otherwise it will only be possible to design one

that is dependant on the input.

• If a system has singular inputs, an observer will in general have to depend

on the input.

24



Chapter 4

Observer

If system 3.11 is observable, an open-loop estimator can be realised as a model

of the plant, as in Figure 4.1. In practice a feedback from the original system is

necessary, since the initial x(t0) may be unknown, and the the two systems will

initially give different output values. Also, if the model is not accurate the states

x(t) and x̂(t) will drift apart over time. The (t) parameter will often be omitted to

simplify notation.

The following is a quick overview on different types of observers. The linear

Luenberger observer was the first of its kind, and the theory behind it is an excellent

introduction to observer design.

Salcudean (1990) presented what has become the foundation of rigid body ob-

servers. Vik (2000) presented an observer based on the rigid body approach, to be

used for GPS/INS integration in marine applications. The complementary qualities

of the GPS and INS is emphasized, where the GPS has slow update rate but high

accuracy, while the INS has fast update rate and lower accuracy. Some parallels

can be drawn to a star tracker and sun sensor configuration, where the sun sensor

may have sample rates ten times that of the star tracker. This observer has become

+b

A

c
1
s

u yx x

+b

A

1
s

x x

Figure 4.1: Open-loop estimator. x̂ is the estimated state
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Figure 4.2: Structure of the closed-loop estimator. The state estimate is fed back

to a controller.

a text-book example of observers for attitude determination, and is well-suited to

be extended with a velocity determination part. It has been subject of further re-

search by Thienel & Sanner (2001), where it was shown that the observer can be

made robust to constant bias errors.

The observer of Vik was presented in the pre-project as the recommended ob-

server for the ESMO ADCS. A succesful implementation would demonstrate the

versatility of the observer, and be a step towards finding a general structure appli-

cable to other areas of control theory.

4.1 Luenberger observer

The first observer was introduced by Luenberger (1966). There it was shown how

an observer could be designed for linear systems based on knowledge of the origi-

nal system. If the observability property of Definition 3.2 is satisfied, the observer

dynamics can be chosen arbitrarily. Convergence to the system states is ensured by

choosing the observer poles faster than the system poles. Observer performance is

dependant on the accuracy of the model. The Luenberger observer for the system

3.11 can be written as:

˙̂x = Ax̂ + Bu + G(y − Cx) ˙̂x = (A − GC)x̂ + Bu + Gy, (4.1)

where G represents the input structure of the observer, as shown in Figure 4.2. The

error dynamics of Equation 4.1 are shown in Equation 4.2, where the convergence

is ensured by choosing the poles of A-GC.

e =x − x̂

ė =(A − GC)e (4.2)
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4.2 Rigid body observer

Salcudean (1990) presented an observer structure designed for rigid body con-

trol. Primarily meant to be used with manipulation of magnetically levitated robot

wrists, it has excellent properties for use with a larger group of rigid bodies. It is

based on a rigid body dynamic and kinematic model formulated with quaternions,

as presented in Equation 2.13. To understand the way of thinking, consider an ex-

ample where the velocity v of a unit mass is to be estimated from the measured

position x and the applied force F . An observer can be made as shown in Equa-

tion 4.3, where kf and kv are positive damping constants. The observer can be

thought of as a system that is influenced by the same force F as the actual system,

in addition to a correction force in the direction of the position error.

v̂ = f + kf (x − x̂); x̂ = v̂ + kv(x − x̂) (4.3)

˙̃v = −kf (x̃) ˙̃x = ṽ − kv(x̃); (4.4)

Error dynamics are made by taking x̃ = x− x̂ and ṽ = v − v̂, as in Equation 4.4,

which implies that the observed velocity will converge to the actual velocity with

convergence rates dictated by the damping constants.

The same approach can be taken for the rotational motion of a rigid body. Ro-

tation matrices Ra
b and Ra

b̂
are used to denote the position of the actual system

and the observer model. The position error becomes Ra
bR

aT

b̂
= Rb

b̂
. These ma-

trices may be computed as in Equation 2.10, using q and q̂. Formulated as in

Equation 4.3, with inertia matrix J , angular velocity ω and torque τ , the observer

dynamics are given by Equation 4.5. ε̃ and η̃ are the components of the quaternion

q̃ describing the rotation error.

J ˙̂ω = τ +
1
2
kfJ

−1ε̃ sgn(η̃)

Ṙ
a
b̂ = [Rb

b̂
(ω + kvJ

−1ε̃ sgn(η̃))]Ra
b̂

(4.5)

Deriving the error dynamics is a lengthy exercise, but they are similar to the

error dynamics for the observer of Vik in the following section.

4.3 Vik observer

The Vik observer was presented in Vik (2000). It is based on the work of Salcudean

(1990), concerning an observer for rigid body robot manipulator control. Its main

properties will later be used in stability analysis of the total system, however in a

simplified manner when it comes to the error models. The observer in its pure form

is therefore analysed here.
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˙̂q =T q̂(q̂)R̃
[
(I + Δ̂)ωimu + b̂ + K1ε̃ sgn(η̃)

]
˙̂
b = − T−1

1 b̂ +
1
2
K2ε̃ sgn(η̃) (4.6)

˙̂s = − T−1
2 ŝ +

1
2
K3 diag(ε̃)ωimu sgn(η̃)

˙̂
φ = − T−1

3 φ̂ +
1
2
K4Γ(ε̃)ωimu sgn(η̃)

where s = [ sx sy sz ] and

φ =

⎡
⎢⎢⎢⎢⎢⎢⎣

φxy
φxz
φyx
φyz
φzx
φzy

⎤
⎥⎥⎥⎥⎥⎥⎦

Γ(ε̃) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 ε̃1 0
0 0 ε̃1
ε̃2 0 0
0 0 ε̃2
ε̃3 0 0
0 ε̃3 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Δ̃ =

⎡
⎣ sx φxy φxz
φyx sy φyz
φzx φzy sz

⎤
⎦

4.3.1 Stability analysis

Lyapunov’s direct method is used to establish global exponential stability. Taking

the observer error dynamics as the difference between q and q̂, the error dynamics

become

˙̃q =T q̃(q̃)
[
(Δ̃)ωimu + b̃ + K1ε̃ sgn(η̃)

]
˙̃
b = − T−1

1 b̃ − 1
2
K2ε̃ sgn(η̃) (4.7)

˙̃s = − T−1
2 s̃ − 1

2
K3 diag(ε̃)ωimu sgn(η̃)

˙̃
φ = − T−1

3 φ̃ − 1
2
K4Γ(ε̃)ωimu sgn(η̃).

The following Lyapunov function is proposed for the error dynamics:

V =
1
2
b̃
T
K−1

2 b̃ +
1
2
s̃TK−1

3 s̃ +
1
2
φ̃
T
K−1

4 φ̃ +
(

(η̃ − 1)2 + ε̃T ε̃ if η̃ ≥ 0
(η̃ + 1)2 + ε̃T ε̃ if η̃ < 0

)

The derivative of V is given by

V̇ = b̃
T
K−1

2
˙̃
b + s̃TK−1

3
˙̃s + φ̃

T
K−1

4
˙̃
φ +

(
2(η̃ − 1)˜̇η + 2ε̃T ˙̃ε if η̃ ≥ 0
2(η̃ + 1)˜̇η + 2ε̃T ˙̃ε if η̃ < 0

)

Inserting for ˙̃η, ˙̃ε,
˙̃
b, ˙̃s and

˙̃
φ now gives the whole expression. Cancellation of

terms, use of Equation 2.3 and that

ε̃T Δ̃ωIMU = (s̃T diag ε̃ + φ̃
T
Γ(ε̃)),
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Error Origin

ωgyro The true angular velocity

Δωgyro 3-by-3 matrix with coupling errors from misalignment angles

and regular scale factor errors along the diagonal

b Bias term representing mechanical drifts after long-term

operation or constant disturbances like solar wind

wn Bounded unmodeled errors and measurement noise

Table 4.1: Gyro errors

ultimately yields

V̇ = b̃
T
K−1

2 T−1
1 b̃ − s̃TK−1

3 T−1
2 s̃ + φ̃

T
K−1

4 T−1
3 φ̃ − ε̃TK1ε̃ ≤ 0.

Due to boundedness of the unit quaternion, V̇ will be zero for ε̃ = [ 1 1 1 ] and

strictly negative else. Theorem 2.3 could now indicate that the observer is glob-

ally exponentially stable, but it is worth to remark here that the global property is

mathematically incorrect due to the multiple equilibria η = ±1. These do however

correspond to the same physical attitude, and Salcudean (1990) uses the term glob-
ally convergent. It can thus be said that the observer error dynamics are globally

exponentially stable from a practical point of view.

4.3.2 Simplified observer

The observer used for analysis in this project is based on the work of Salcudean

(1990). It has later been extended with sensor error models by Vik (2000). The sen-

sor errors are in the following modelled in a simpler fashion, however equivalent

as far as stability analysis is concerned. Tuning of the observer gains is the only

affected area, as the different types of errors in the angular velocities are lumped

together in a single subsystem Δ. The original observer of Vik used two separate

subsystems s and φ.

Angular velocities are usually measured with gyros, which are prone to dif-

ferent types of errors and noise. This observer assumes that the angular velocity

measurement can be decomposed as ωmsr = [I − Δ] ωgyro − b − wn. (See Ta-

ble 4.1 and Vik (2000)). ωgyro will in the following be written simply as ω. The

errors in Δ are small, so an approximation can be made:

ω = (I − Δ)−1(ωmsr + b + wn)
≈ (I + Δ)(ωmsr + b + wn)

≈ ω = (I + Δ)ωmsr + b + wn.

The estimated velocity thus becomes ω̂ = (I + Δ̂)ωmsr + b̂ + K1ε̃ sgn η̃.
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Based on the satellite dynamics, the new observer is proposed as:

˙̂q =T (q̂)R̃
[
(I + Δ̂)ωmsr + b̂ + K1ε̃ sgn(η̃)

]
˙̂
b = − T−1

1 b̂ +
1
2
K2ε̃ sgn(η̃)

˙̂Δ = − T−1
2 Δ̂ +

1
2
K3 diag(ε̃)ωmsr sgn(η̃)

Observer error dynamics

The attitude error in the observer is defined as q̃ = q ⊗ q̂−1. Bias and angular

velocity errors are defined as b̃ = b − b̂ and ω̃ = ω − ω̂. The observer error

dynamics are then:

˙̃q =T (q̃)
[
(Δ̃ω + b̃ − K1ε̃ sgn(η̃)

]
˙̃
b = − T−1

1 b̃ − 1
2
K2ε̃ sgn(η̃) (4.8)

˙̃Δ = − T−1
2 Δ̃ − 1

2
K3ωε̃T sgn(η̃)

Stability analysis of the error dynamics is done by choosing the Lyapunov func-

tion

Vo =
1
2
b̃
T
K−1

2 b̃ +
1
2
Δ̃
T
K−1

3 Δ̃ +
(

(η̃ − 1)2 + ε̃T ε̃ if η̃ ≥ 0
(η̃ + 1)2 + ε̃T ε̃ if η̃ < 0

)

V̇o = b̃
T
K−1

2
˙̃
b + Δ̃

T
K−1

3
˙̃Δ +

(
2(η̃ − 1)˜̇η + 2ε̃T ˙̃ε if η̃ ≥ 0
2(η̃ + 1)˜̇η + 2ε̃T ˙̃ε if η̃ < 0

)

Expressions for ˙̃η, ˙̃ε,
˙̃
b and

˙̃Δ from Equations 4.8 are now inserted, and cancella-

tion of terms and use of 2.3 ultimately yields

V̇o = −b̃
T
K−1

2 T−1
1 b̃ − Δ̃

T
K−1

3 T−1
2 Δ̃ − ε̃TK1ε̃.

V̇ o is not in itself strictly negative, but if the unit quaternion property η2+εT ε = 1
is considered, V̇ o will be zero for ε̃ = [ 1 1 1 ] and strictly negative else. As

with the original observer in Equation 4.6, it can only be said that the observer

error dynamics are GES from a practical point of view due to the multiple equlibria

η = ±1.
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Chapter 5

Controllers

Common for all attitude controllers in this chapter is that they are nonlinear, and

that they use quaternion feedback as opposed to Euler angles. The term ωo
io in

Equation 3.9, which describes the velocity of the orbit frame with respect to the

inertial frame, introduces a slight dilemma for the control strategy. In situations

where it is desireable to compensate for this motion, a nominal term should be in-

cluded in the controller to translate the equilibrium point of the closed-loop system.

The result will be that the orbit frame will not rotate around itself as its origin trans-

lates around the origin of the moon-centered frame. This compensation is done in

all control laws herein.

All controllers describe the velocity error as ω̃ = ωb − ωd and the attitude

error with the parameters of the error rotation matrix R̃ = RdR
b, namely η̃ and

ε̃. R̃ = I corresponds to η̃ = ±1 and ε̃ = 0. From Equation 2.8, η̃ and ε̃ are

bounded inside the unit ball, and from Equation 2.13 it is clear that ˙̃η and ˙̃ε are

bounded whenever ω̃ is bounded.

It seems most controllers developed for spacecraft try to linearize the system

by neutralizing the nonlinear dynamics, see e.g. Byrnes & Isidori (1991), Wen &

Kreutz-Delgado (1991) or Lam & Morgan (1992). This can be done either with

basis in the model equation of motion or, more advanced, by including an adap-

tive term that takes into account model uncertainties. Some model-independent

robust controllers also exist. One adaptive controller and one robust controller are

presented in this chapter. Aside from the differences in design, it is worth to note

the differences in how the problem of multiple equlibrium points are treated in the

stability analyses. The adaptive controller makes use of a Lyapunov function can-

didate V (·, ε) and uses the unit quaternion property in Equation 2.9 to include η in

the analysis. The robust controller shifts the equilibriums η = ±1 to η = 0 and

η = −2 and shows that one equilibrium is attractive and the other is repelling.

Finally, a PD-controller is presented. While perhaps inferior in control per-

formance, a PD control algorithm may be easier to understand and maintain, thus

being more cost effective.
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5.1 Adaptive controller

Egeland & Godhavn (1994) propose an adaptive controller. First, the angular ve-

locity error term ω̃ = ω − ωd and the tracking error e(t) ∈ R3 are defined. ωd

and ω̇d are assumed bounded, along with ω. e(t) is a parameterization of R̃(t),
hence ė is bounded whenever ω̃ is bounded. The equation describing the system is

Mṡ +N(R,ω)s + KDs = ν (5.1)

Here, N(·) is the same as in Equation 3.3, Kd is a positive definite gain matrix and

s is given by

s = ω̃ + κe, κ > 0. (5.2)

It is necessary to show that Equation 5.2 converges. In that case, the error manifold

s has the property s → 0 as t→ ∞. This can be shown with Barbalat’s lemma 2.1,

if it can be established that s ∈ L2 and s, ṡ ∈ L∞.

If the mapping −s → ν is passive, i.e.

∫ T

0
−sT (t)ν(t)dt ≥ −k1, (5.3)

then s ∈ L2. Ortega & Spong (1988) propose the Lyapunov function

V =
1
2
sTMs + k1 −

∫ T

0
−sT (t)ν(t)dt. (5.4)

Originally intended for use with robot arm dynamics, Equation 5.4 can be applied

to a satellite system as well. Note that V is positive definite because of Equa-

tion 5.3. Differentiating along the trajectories of Equation 5.1 gives

V̇ = sTMṡ − sT ν = −sTKDs − sTN(R,ω)s. (5.5)

Hence V̇ ≤ 0 for sufficiently large KD. Conclusively, s ∈ L2. By Corollary 2.3,

s → 0 as t→ ∞.

Two assumptions must now be made, namely that the mapping ω̃ → e is

passive and that ė ∈ L2 when ω̃ ∈ L2. Both are sound assumptions based on the

model dynamics of Equation 3.1. Egeland & Godhavn (1994) then show that

||s||2 = ||ω̃ + κe||2 = ||ω̃||2 + κ2||e||2 + 2κ < e, ω̃ > . (5.6)

Since ω̃ → e is passive, a constant k2 exists so that ||ω̃||2+κ2||e||2 ≤ ||s||2−2κk2,

and thus ω̃, e ∈ L2. It follows from the properties of the unit quaternions and

Equation 3.1 that ė ∈ L2 and e ∈ L∞. By Corollary 2.3 e(t) → 0 as t → ∞.

From Equation 5.1, ω̃, e ∈ L∞ gives s ∈ L∞. Using s,ν ∈ L∞ in Equation 5.1

yields ṡ ∈ L∞. It has already been shown that s ∈ L2, hence Corollary 2.3 can be

employed to show convergence of Equation 5.2.
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It is worth to remark that with the implementation of a linearizing term in Equa-

tion 5.1, Equation 5.5 will be strictly negative for all KD > 0. Egeland & Godhavn

(1994) define the term ωr = ωd − κe, so that s can be written s = ω − ωr. The

adaptive control term is then defined: Take θ as the vector of unknown model pa-

rameters. θ̃ = θ̂ − θ expresses the parameter estimation error. A parameterization

is proposed as

Mω̇r +N(R,ω)ωr = Y (R,ω,ωr, ω̇)θ. (5.7)

That Y is bounded follows from the definition of ωr and the earlier assumptions

that ωd and ω̇ are bounded. An adaptive controller is then formulated as

τ = Y θ̂ − KDs (5.8)

˙̂
θ = −Γ−1Y Ts,

where Γ and KD are constant, symmetric and positive definite matrices.

The e term in s = ω̃ + κe can now be tweaked, as long as it is a function of

the Euler parameters in R̃. Egeland & Godhavn (1994) propose and analyse the

two versions s = ω̃ + κε̃ and s = ω̃ + κη̃ε̃. The former of the two controllers

inspired the controller used in the total stability analysis in Chapter 7, therefore its

stability analysis is presented in the following.

5.1.1 Stability analysis

The stability proof has the form of a theorem, which makes use of two lemmas. It

is already established that ε̃ is bounded, and that ˙̃ε is bounded when ω̃ is bounded.

Since KD is positive definite, there is a constant kD = λmin(KD) that denotes the

smallest eigenvalue of KD. The theorem and lemmas are not given here exactly

as in Egeland & Godhavn (1994), some minor details are simplified.

Lemma 5.1 The mapping ω̃ → ε̃ is passive, and

< ε̃, ω̃ >= 2[η̃(0) − η̃(T )] ∀T ≥ 0

Lemma 5.2 If ω̃ ∈ L2, then ˙̃ε ∈ L2.

Theorem 5.1 Consider the system given by Equation 3.3 with the control law 5.8
and s = ω̃ + κε̃. Then limt→∞ ω̃(t) = 0 and limt→∞ ε̃(t) = 0, while η̃(t) → 1
or η̃(t) → −1 as t→ ∞. If

η̃(0) > −1 +
1

8κkD

[
s(0)TMs(0) + θ̃

T
Γθ̃(0)

]
+ δε (5.9)

for some small constant δε > 0, then η̃(t) > −1+δε for all t ≥ 0 and limt→∞ η̃(t) =
1. The mapping s → ε̃ with initial state ε̃ = 0, η̃ = 1 is L2 stable.
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The theorem gives a stability proof and conditions for the system to converge to the

equilibrium η̃ = 1. Now the parameterization of Equation 5.7 can be subtracted

from the system equation of motion, namely Equation 3.3. If then the control

law in Equation 5.8 is inserted, the result is Equation 5.1 where ν = Y θ̃. The

mapping −s → φ has been shown to be passive. It follows from Theorem 5.1 and

Lemmas 5.1 and 5.2 that limt→∞ ε̃(t) = 0. Hence, η̃ approaches 1 or −1. To show

stability properties of the theorem, consider the Lyapunov function

V =
1
2
(sTMs + θ̃

T
Γθ̃). (5.10)

Following the procedure of Slotine & Li (1988), Chapter 2.2, the time derivative is

V̇ = −sTKDs ≤ 0 (5.11)

s and θ are bounded, since V is nonincreasing. From Lemma 5.1, ν is bounded

and Theorem 5.1 then implies limt→∞ ω̃ = 0. Combining Equations 5.6 and

Lemma 5.2 yields

||s||2 ≥ 2κ < ε̃, ω̃ >T= 4κ [η̃(0) − η̃(T )] ,

which gives a bound on η̃(T ):

η̃(T ) ≥ η̃(0) − 1
4κ

||s||2 ∀T ≥ 0.

Now, from the Lyapunov function and its derivative in Equations 5.10 and 5.11, it

can be seen that

||s||2T ≤ 1
kD

∫ T

0
sTKDsdt ≤ 1

kD
V (0)∀T ≥ 0.

This means that the error manifold s has a bound

||s||2 ≤ 1
2kD

[
s(0)TMs(0)dt+ θ̃(0)TΓθ̃(0)

]
.

Therefore, if Equation 5.9 holds, then η̃(t) > −1 + δε for all t ≥ 0. η̃ can then not

converge to −1. Hence, limt→∞ η̃(t) = 1, as long as η̃(0) �= −1.

5.1.2 Model-dependent linearizing controller

Based on the controller of Egeland & Godhavn (1994) a model-dependent lineariz-

ing controller is designed. To achieve the desired performance, the attitude q(t)
should asymptotically track a desired attitude qd(t). The tracking error is defined

by the inverse quaternion product as

qe(t) =
[
ηe(t)
εe(t)

]
= q(t) ⊗ q−1

d (t). (5.12)
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The velocity error is defined as ω̃(t) = ω(t) − ωd(t), and the tracking error then

obeys the kinematics of ˙̃q = 1/2T (q̃)ω̃. Based on system 3.9, a state feedback

control law is proposed:

τ
′
= −J−1S(ω)ωb

io + S(ωb
io + ω)J(ωb

io + ω)− τ g −KDω̃ −KDκε̃− Ja.
(5.13)

The first three terms cancel the nominal terms of the system, while the three lat-

ter ensure convergence. This can be proven with the direct method of Lyapunov.

Inserting the control law τ
′

into Equation 3.9 yields

Jω̇ = −KDω̃ − KDκε̃ − Ja. (5.14)

Whenever q̃ = 0 the desired angular velocity is zero, so the velocity error becomes

ω(t) − ωd(t) = ω(t). Then the analysis can be simplified using s = ω + κε̃
(Thienel & Sanner 2001) and a = κT 2(ε̃)ω in Equation 5.14, which allows to

write the dynamics as

Jṡ − Jκε̇ = −KDs − JκT 2(ε̃)ω (5.15)

Jṡ = −KDs. (5.16)

Choosing V = 1/2sTJs as Lyapunov function candidate, it can be shown that

its derivative along the trajectories of 5.15 is V̇ = −sTKDs ≤ −sTkDs, where

kD = λmin(KD).
The unit property of quaternions and Equation 5.12 ensures that ε̃ ∈ L∞.

ω ∈ L2 is already assumed, and thus s ∈ L∞. Equation 5.15 implies then that

ṡ ∈ L∞. For positive definite KD, V̇ (s) is strictly negative for all s except the

equilibrium. This implies by Equation 2.16 that s ∈ L2, since for all t

V̇c ≤− sTkds∫ T

t0

sTs dt ≤− 1
kD

∫ T

t0

V̇ c dt

≤ 1
kD

(V (t0) − V (T )),

which shows that s is square-integrable. In sum, s(t), ṡ(t) ∈ L∞ and s(t) ∈ L2,

which by Barbalat’s lemma 2.1 implies that limt→∞ ||s(t)|| = 0.

To establish convergence of the attitude error ε̃(t), observe that ω ∈ L∞ and

ε̃ ∈ L∞ implies that ˙̃ε(t) ∈ L∞ because of ˙̃ε = T 2(ε̃)ω. ε̃ is also in L2, since

κε̃ = s − ω, where s ∈ L2 and the mapping ω → ε̃ can be shown to be passive

(Egeland & Gravdahl 2002):

Using that

˙̃η = −1
2
ε̃T ω̃,
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passivity can be shown by

∫ T

0
ε̃T ω̃ dt = −2

∫ T
0

˙̃ηdt

= −2(η̃(T ) − η(0))
≥ 2(η̃(0) − 1).

Comparing with Definition 2.8, the system can be said to be strictly passive.

ε̇e, εe ∈ L∞ and εe ∈ L2 are now established, and Barbalat’s lemma 2.1

can again be invoked to show that limt→∞ ||εe(t)|| = 0. Thus, global asymptotic

stability is proven for Equation 5.14 using Equation 5.13 as control law.

5.2 Robust Stabilizing Controller

The robustness of a controller is an important issue. The robustness of the adaptive

controller presented in the previous section depends on the convergence of the

estimated parameters to the true parameters. Josh et al. (1995) presents a controller

which is model-independent and therefore robust in that aspect.

Consider the control law

τ
′
= −1

2
[(η̃I + S(ε̃))KP + γ(1 − η̃)I]ε̃ − KDω̃, (5.17)

where γ is a positive definite scalar and KP ,KD are positive definite symmetric

matrices. q̃ = q ⊗ q̂ and ω̃ = ω − ωd. The stability proof begins by establishing

the equilibrium points of the closed-loop system resulting from the insertion of

Equation 5.17 into the system 3.9. From the equilibrium point analysis of the

open-loop system in Chapter 3.2.1 it is known that ω = 0 leads to τ
′
= 0. Using

this in the control law 5.17 yields

[η̃I + S(ε)KP + γ(1 − η̃)I]ε̃ = 0, (5.18)

which can further be simplified by premultiplying with ε̃T :

ε̃TAε̃ = 0, A = [η̃KP + γ(1 − η̃)I]. (5.19)

Hence, the eigenvalues of A are the eigenvalues of the controller. Singularities

occur when one or more of the eigenvalues λi(A) = η̃λi(KP )+γ(1−η̃)I are zero.

The constants KP and γ are design parameters to be chosen arbitrarily, whereas

η is a state variable. Rearranging with respect to η̃ allows for an examination of

possible singularities:

η̃ =
−γ

λi(KP ) − γ
⇒ λi(A) = 0 (5.20)
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From Equation 5.20 it can be seen that

λi(KP ) > 2γ ⇒ η̃ < −1
λi(KP ) = 2γ ⇒ η̃ = −1
λi(KP ) < 2γ ⇒ η̃ > −1,

so that whenever λi(KP ) > 2γ there are feasible values of η̃ that gives singu-

larities in A. The singularity at η̃ = −1 coincides with an equilibrium point of

the open-loop system. In sum, this imposes a restriction on the design parameters

λi(KP ) ≤ 2γ ∀i. As long as this restriction is upheld, the equilibrium points of

the closed-loop system are the same as in Equation 3.7.

5.2.1 Stability analysis

To use the direct method of Lyapunov, the equilibrium of the system should lie in

the origin of the state space. Initially, the closed-loop system has equilibriums in

η̃ = ±1. Josh et al. (1995) translates the equilibriums by introducing the variable

β = η̃ − 1. Accordingly, the control becomes

τ
′
= −1

2
[((β + 1)I + S(ε̃))KP − γβI]ε̃ − KDω. (5.21)

Consider now the Lyapunov function candidate

V = ωTMω + ε̃TKP ε̃ + γβ2. (5.22)

Taking the time derivative of V yields

V̇ = 2ωT [−S(ω)Mω + τ
′
] + ε̃TKP (S(ω)ε̃ + (β + 1)ω) − γβωT ε̃, (5.23)

which can, using Equation 2.3 and substituting for the control law 5.21, be short-

ened to V̇ = −2ωTKDω. Hence, V̇ is only negative semidefinite. Repeating the

procedure in Equations 5.18 to 5.20 with the control law in Equation 5.21 shows

that V̇ = 0 only at the equilibrium points⎡
⎣ β

ε̃
ω

⎤
⎦ =

⎡
⎣ 0 ∨ −2

0
0

⎤
⎦ .

These values correspond to the same physical states. Also, from the Lyapunov

function 5.22, any perturbation from the equilibrium point β = −2 results in a

decrease in V . V̇ < 0 everywhere in the feasible state space, and therefore also in

the neighbourhood of β = −2. Hence, β = −2 is a repelling equilibrium point as

opposed to β = 0 which is attracting. In sum, if the initial conditions of the system

is anywhere but at the equilibrium corresponding to β = −2, it will approach the

origin. If the initial conditions is exactly at the point β = −2, it will stay there

for all time. The two equilibria correspond to the same value in the phsyical space,

and Josh et al. (1995) states that global asymptotic stability can be concluded by

La’Salle’s Theorem 2.4.
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5.3 PD-controller

The advantages of a simple PD-controller can be many. There are few parameters

to tune, the algorithm is easy to maintain and it demands very little computing

power. Also, it is independent of the model, which adds to its robustness and

usability. The drawbacks may be poor control performance and slow convergence.

Taking the desired velocity ωd = 0, the setpoint control law is

τ
′
= −KP ε̃ − KDω. (5.24)

The resulting system dynamics are

Jω̇ = −KP ε̃ − KDω.

5.3.1 Stability analysis

Assuming again that ω, ω̇ ∈ L∞, the law ensures that ε̃(t),ω(t) → 0 as t → ∞.

This can be proven with a Lyapunov function candidate similar but not identical to

the one found in Wen & Kreutz-Delgado (1991), Theorem 1:

V = (KP + kKD)((η̃ − 1)2 + ε̃T ε̃) +
1
2
ω̃Jω̃ + kε̃Jω̃.

V can be bounded below by the function

V ≥ xTP cx,

where

x =
[ ||ε̃||
||ω̃||

]

P c =
1
2

[
2(KP + kKD) k||J ||

k||J || ||J ||
]
.

P c is positive definite for small enough values of k. Taking the time derivative

along the solutions of Equation 3.3 gives

V̇ = (KP + kKD)
[−(η̃1)ε̃T ω̃ + ε̃T η̃ω̃

]
+ ω̃T (τ −N(R,ω)ω̃) + kε̃(τ −N ω̃) + k ˙̃εTJω̃

Inserting for the control law 5.24 gives

V̇ = − ω̃TKDω̃ − ω̃TN(R,ω)ω̃ − kε̃N(R,ω)ω̃ + k ˙̃εTJω̃

= − xTQcx + px

≤− λ||x||2 + ρ(t)||x||, (5.25)
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where

Qc =
[
kKP

1
2kN

1
2kN KD +N

]
,

λ �λmin(Qc),

p =[ 0 k ˙̃εJ ],

ρ(t) �
√

1 − k2k ˙̃εJ (||ρ|| ≥ ||p||).

For sufficiently small k the eigenvalue λ > 0 and Qc is thus positive definite.

The rest of the stability proof uses the same techniques as Wen & Kreutz-

Delgado (1991). Integrating both sides of Equation 5.25 gives

VT − V0 ≤ λ

∫ T

0
||x(t)||2dt+

∫ T

0
ρ(t)||x(t)||dt

which can in turn be written as

λ

∫ T

0
||x(t)||2dt−

∫ T

0
||x(t)||2dt ≤ V0. (5.26)

It is now useful to show that ρ(t) ∈ L2. This can be done by introducing the

surface s = ε̃ + λω̃, assuming that the mapping ω̃ → ε̃ is passive and following

the same reasoning as in Chapter 5.1, in particular concerning Equations 5.4 to 5.6.

Since ρ(t) ∈ L2, the Schwarz inequality can be applied to the second term on

the left hand side of Equation 5.26:
∫ T
0 ρ(t)||x(t)||dt ≤ ||ρ||||x||. Rearranging

now gives

λ||x||2 ≤V0 + ||ρ||||x||

λ||x||2 +
||ρ||
2

2

≤V0 + ||ρ||||x|| + ||ρ||
2

2

||x|| ≤
[

1
λ

(V0 +
||ρ||2
4λ

)
]1/2

+
||ρ||
2λ

. (5.27)

Equation 5.27 expresses a bound on ||x||, hence x ∈ L2. Inserting the bound into

Equation 5.26 shows that V is uniformly bounded for all t. From the kinematic

and dynamic equations in Chapter 3, ẋ ∈ L2 which means that x is uniformly

continuous. Barbalat’s lemma then shows that x(t) → 0 as t→ ∞.

For predetermined KP and KD, there exists a range of possible k such that

P c and Qc are positive definite. The k parameter decides the convergence rate of

the system, and since it is not part of the control law it can be chosen freely (apart

from the stated requirements).
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Chapter 6

Separation Principle

The implementation of a nonlinear feedback controller gives the opportunity to de-

sign the transient behaviour of the total system and to place the system poles such

that some degree of stability is achieved. For state feedback systems, i.e. systems

where all necessary states are available for measurement, this is quite straightfor-

ward as the only alteration of the system dynamics originates in the controller itself.

Control of output feedback systems is made possible with the addition of an ob-

server. The observer/controller configuration is in itself an interconnected system

(ICS). The data fed from the observer to the controller are only estimates, and this

requires the observer error to have some properties of convergence. Rather than

analysing the ICS stability directly, stability analysis can be done by separating

the ICS into subsystems, establish stability properties for each subsystem and then

draw conclusions for the overall system. The structure of the ICS determines how

the subsystems may be formed. In general, a separation principle is said to exist if

a problem can be divided into simpler subproblems, which may in turn be solved

and have their solutions combined to give the solution of the original problem.

6.1 Linear systems

For linear systems there exist a separation principle which simplifies the stability

analysis. The separation principle states that if a controller is designed using an

observer and a state-feedback matrix, the observer gains and the feedback gains

can be designed separately. The eigenvalues of the ICS will be the union of the

eigenvalues of the observer and those due to the feedback controller. The proof

of this can be found in most books on linear systems, e.g. Chen (1999), pp. 254.

The properties of the linear separation principles is summarized here because of its

structural likeness to the cascaded system that will be encountered later.

Consider the system

ẋ =Ax + Bu

y =Cx.
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As long as (A,B) is controllable, the state feedback u = r − Kx can place

the eigenvalues of A − BK in any desired position. If (A,C) is observable,

an observer with arbitrary eigenvalues may be constructed. Take the Luenberger

observer from Chapter 4: ˙̂x = (A − GC)x̂ + Bu + Gy. Now, let the controller

use the estimated state feedback u = r − Kx̂. The total system becomes

[
ẋ
˙̂x

]
=

[
A −BK

GC A − GC − BK

] [
x
x̂

]
+

[
B
B

]
.

By writing the observation error as e = x − x̂, an equivalent presentation of the

total system is

[
ẋ
˙̂e

]
=

[
A − BK BK

0 A − GC

] [
x
e

]
+

[
B
0

]
. (6.1)

Since the square matrix in Equation 6.1 is block triangular, its eigenvalues are the

union of those on the diagonal, namely the eigenvalues of A−BK and A−GC.

These are the original eigenvalues of the controller and the observer respectively,

and it is clear that basing the control law on state estimates does not alter the

eigenvalues of the two subsystems, nor does it introduce any new eigenvalues.

6.2 Nonlinear systems

A similar general principle has yet to be found for nonlinear systems, and proving

stability is more complicated. However, separation principles have been proved for

some classes of nonlinear systems. When designing a control system it is a regu-

lar goal that the interconnected system should fit into one of the classes that have

already established stability theorems and methods of analysis. This thesis takes

the approach of cascaded interconnected systems, on which examples of previous

work can be found in Michel et al. (1978), Vidyasagar (1980a), Jankovic et al.

(1996), Panteley & Loria (1997) etc. These will be referenced as needed through-

out the presentation. Stability analyses are done in the sense of Lyapunov as shown

in Theorems 2.1- 2.3.

6.2.1 ICS with additive subsystems

Consider a system described by an ordinary differential equation of the form

ż = b(z, t) (6.2)

where z ∈ Rm, t is the regular time-function and b : Rm → Rm is a smooth

function and locally Lipschitz. Michel et al. (1978) explains Lyapunov analysis

of an ICS which is composed by simple addition of its subsystems. Decomposing

system 6.2 into subsystems allows rewriting as żi = bi(zi, t). By renumbering,
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and if necessary aggregating the state variables, a hierarchical structure may be

obtained where each subsystem is only affected by itself and ’lower’ subsystems:1

ẋi = fi(xi, t)) + Σi−1
j=1Gij(xj , t) (6.3)

Here fi(·) represents the local mapping and Gij(·) is a matrix containing map-

pings of the contributions from the ‘lower’ subsystems. f(·) and G(·) inherit the

properties of b(·) in 6.2.

The mappings in Gij(·) are decisive in the stability analysis. Take g : xj ×
t → yj , where g is an element of G. g is then said to be stability preserving if

yj(t) = g(xj , t) has the same stability properties as xj(t) and this holds for all t.
Thomas (1964) showed that g is stability preserving if g is a homeomorphism:

Definition 6.1 g is a homeomorphism if it has the following properties:

• g is a one-to-one mapping between xj and yj .

• g is continuous.

• g−1 exists and is continuous.

Equivalently, Hahn (1967) showed that g preserve uniform stability and uniform

asymptotic stability if it fulfils the Lipschitz-like criterion

|y2(t) − y1(t)| < α(|x2(t) − x1(t)|)∀t ≥ 0, (6.4)

where α(·) is a class K function. The mapping g is exponential stability preserv-

ing if it fulfils 6.4 and there exist constants k1, k2, k3 > 0 such that α(|Δx|) ≤
k1(|Δx|)k2 when 0 < Δx < k3. If α(·) is of the class K∞, the results are global.

Using the passivity preserving property of gij and direct Lyapunov analysis as

presented in Chapter 2, Michel et al. (1978) proves Theorem 6.1:

Theorem 6.1 The equilibrium xi = 0 of system 6.3 is (globally) stable, respec-
tively (globally) exponentially/asymptotically stable, if all subsystems xj are (glob-
ally) stable, respectively (globally) exponentially/asymptotically stable.

6.2.2 ICS with nonadditive subsystems

Often, the ICS can not be formed by simply adding its subcomponents. Consider

again Equation 6.2, written in the hierarchical form

ẋi(t) = F i(x1(t), ..., xi(t), t), i = 1, ...,m (6.5)

1The procedure of decomposing a graph into strongly connected subcomponents falls outside the

scope of this thesis. As becomes clear later, it is not necessary for the special case of ICS’s which

an observer/controller system amounts to. Theories on graph decomposition can be found in e.g.

Harary (1962), Kevorkian & Snoek (1973), and Kevorkian (1975).
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where m is the number of subsystems. It is now interesting to relate the stability

properties of the ICS with the properties of each isolated subsystem

ẋi(t) = fi(0, ...0, xi(t), t), (6.6)

as in Vidyasagar (1980a). In addition to F i being smooth, Assumption 6.1 and 6.2

must hold.

Assumption 6.1
F i(0, ..., 0, t) = 0 ∀i, t ≥ 0

Assumption 6.2

sup
||wi||≤c

||∇F i(wi, t)|| <∞ ∀i, t ≥ 0,

where wi = [x1, ..., xi].

With these assumptions, Vidyasagar proves Theorem 6.2

Theorem 6.2 x = 0 is a uniform exponentially/asymptotically stable equilibrium
point of 6.5 if and only if xi = 0 is a uniform exponentially/asymptotically stable
equilibrium point of 6.6 for all i. If Assumption 6.2 is strenghtened with c = ∞,
the results hold globally.

Theorem 6.2 gives necessary and sufficient conditions. Another theorem, which

is a generalization of Theorem 6.1, gives only sufficient conditions:

Theorem 6.3 Suppose that xi = 0 is a globally asymptotically stable equilib-
rium point of Equation 6.6 for all i, and that there exist Lyapunov functions Vi
that fulfils the criterions of Theorem 2.2 for all i and all t. Also, suppose that
lim||xi||→∞ ||∇xiVi(xi, t)/Wi3(||xi||) = 0, that Assumption 6.1 holds and that
there exist class K functions αi such that

||fi(wi, t) − fi(0, ..., xi)|| ≤ αi(||wi||)∀t ≥ 0, x. (6.7)

Then, xi = 0 is a globally asymptotically stable equilibrium point of system 6.5.

It is worth noting that Equation 6.7 ensures that the contributions from lower sub-

systems do not violate the stability preserving property.

6.2.3 Cascaded systems

The term cascaded systems indicates here that the system has the structure of a con-

troller/observer control system as shown in Figure 6.1. Until now only autonomous

systems have been discussed. An observer/controller cascade is nonautonomous,

since the observer dynamics depends on the output. Two different approaches to

stability analysis are presented. The first approach treats the interconnection term

g(·) implicitly, while g(·) is separated from the subsystems in the second approach.

The latter allows for specific requirements on the interconnection term, at the same

time easing the requirements on the subsystems.
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Figure 6.1: The controller observer configuration viewed as a cascade. Σ1 is the

controller system, Σ2 the observer system.

Implicit interconnection term

Vidyasagar (1980b) discusses a special case of ICS with nonadditive subsystems,

more precisely the case where a feedback control law is used for stabilizing the

nonlinear system. The method of designing the control system is as follows:

1. Find a function f(·) based on true states x(t), that has the desired stabilizing

effect on the system.

2. Implement an observer that generates the state estimates x̂(t) such that x̂(t)−
x(t) → 0 for t→ ∞.

3. Base the function f(·) on x̂(t) instead of x(t).

To certify this method it must be shown that the function f(x̂(t), t) from step 3 has

the same stabilizing properties as f(x(t), t) in step 1.

Consider the system

ẋ(t) = f(x(t),u(t), t) (6.8)

y = c(x(t), t),

where x(t), y(t) and u(t) represents the state, output and input of the system,

respectively. f(·) and c(·) are continuous functions and x(t) ∈ Rn, y(t) ∈ Rm,

u(t) ∈ Rl. Further, the following assumption is made:

Assumption 6.3 c(0, 0, t) = 0, f(0, 0, t) = 0 and there exist constants k and δ
such that

||∇xf(x,u, t)|| ≤ k, ||∇uf(x,u, t)|| ≤ k, ∀t ≥ 0, x ∈ Bδ,u ∈ Bδ.
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Now, system 6.8 is said to be asymptotically/exponentially stabilizable if there

exist a function τ(·) : Rn ×R+ → Rl that has the following properties:

• τ(·) is continuously differentiable

• ||∇xτ(x, t)|| ≤ β(||x||) ∀t,x ∈ Bc, where β(·) is of class KL
• x = 0 is a uniformly asymptotically/exponentially stable equilibrium point

of

ẋ = f(x(t), τ(x(t), t), t). (6.9)

If a known function τ(·) stabilizes the system 6.8, τ(·) is referred to as the control
law.

As for the implementation of an observer, the system 6.8 is sait to be weakly
exponentially detectable if there exist functions g(·) : Rn×Rm×Rl×R+ → Rn

and V (·) : Rn ×Rn ×R+ → R+ such that

• h(·) is continuously differentiable

• h(0, 0, 0, t) = 0∀t
• there exist constants k1, k2 and k3 such that V (·) is a Lyapunov function for

the system ė = d(e,u, t) where e = x − x̂, and Theorem 2.3 is valid with

V (·) and V̇ (·).
The function ė = d(·) in the last bullet represents the error dynamics of the ob-

server
˙̂x = h(x̂(t),y(t),u(t), t), x̂(t) ∈ Bδ,u(t) ∈ Bδ (6.10)

and if Theorem 2.3 is valid with V (·), the error dynamics are locally exponentially

stable.2 Thus, Equation 6.10 is an observer for system 6.8.

Based on these premises Vidyasagar (1980b) proves the following theorem:

Theorem 6.4 (Vidyasagar 1980b) Suppose the system

ẋ(t) = f(x(t), τ(x̂(t), t), t)
˙̂x(t) = h(x̂(t), c(x(t), t), τ(x̂(t), t), t) (6.11)

is exponentially stabilizable and weakly exponentially detectable. Then x = 0,
x̂ = 0 is a uniformly stable equilibrium point of the system 6.11.

The previous stability analysis of system 6.11 holds only locally, due to the

restrictions x(t),u(t), x̂(t) ∈ Bδ. Finally, Vidyasagar (1980b) proves a theorem

that gives global exponential stability.

Theorem 6.5 (Vidyasagar 1980b) Suppose the following conditions hold.

2Theorem 2.3 normally proves global stability, but here it is assumed that x(t) ∈ Bδ, u(t) ∈
Bδ, x̂(t) ∈ Bδ and the result will only hold locally.
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i) The system 6.9 is globally exponentially stable.

ii) The solution trajectories of 6.11 satisfy

||x(t) − x̂(t)|| ≤ k4||x(t0) − x̂(t0)||e−k5(t−t0)

for some positive constants k4 and k5.

iii) The function f(·) satisfies

sup
t≥0

sup
x∈Rn

||∇xf(x, τ(x(t), t), t)|| <∞

iv) The system 6.11 satisfies

sup
t≥0

sup
x,x̂∈Rn

max{μ11, μ12, μ21, μ22} = k5 <∞

where

μ11 =∇xf(x, τ(x̂, t), t)
μ12 =∇x̂f(x, τ(x̂, t), t)
μ21 =∇xh(x̂, c(x, t), τ(x̂, t), t)
μ22 =∇x̂h(x̂, c(x, t), τ(x̂, t), t)

Under these conditions, the system 6.11 is globally exponentially stable.

In words, iii) and iv) in Theorem 6.5 states that the gradients with respect to x
and x̂ along the solutions of system 6.11 need to be in L∞. These requirements

are analogous to the stability preserving requirements on the G(·) mappings in

Equation 6.4.

Explicit interconnection term

The cascaded system in Figure 6.1 can be described by

Σ1 : ẋ1 = f(x1, t) + g(x, t)x2

Σ2 : ẋ2 = h(x2, t), (6.12)

where x1 ∈ Rn,x2 ∈ Rm,x = col[x1,x2]. The functions f(·), h(·) and g(·)
are continuously differentiable in their respective arguments and locally Lipschitz.

Panteley & Loria (1997) gives sufficient theorems to show global stability and

global asymptotic stability for the system 6.12:

Theorem 6.6 If Assumptions 6.4 to 6.6 below are satisfied, then the cascaded sys-
tem 6.12 is globally uniformly stable.
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Assumption 6.4 The system ẋ = f(x1, t) is globally uniformly stable with a
Lyapunov function V (x1, t), V : R≥0 × Rn → R≥0 positive definite (that is
V (0, t) = 0 and V (x1, t) > 0 for all x1 �= 0) and proper (that is, radially un-
bounded) which satisfies

∣∣∣∣
∣∣∣∣ δVδx1

∣∣∣∣
∣∣∣∣ ||x1|| ≤ k1V (x1, t) ∀||x1|| ≥ υ (6.13)

where k1, υ > 0. We also assume that δV/δx1(x1, t) is bounded uniformly in t for
all ||x1|| ≤ υ, that is, there exists a constant k2 > 0 such that for all t ≥ t0 ≥ 0

|| δV
δx1

|| ≤ k2 ∀||x1|| ≥ υ

Assumption 6.5 The function g(x, t) satisfies

||g(x, t)|| ≤ θ1(||x2||) + θ2(||x2||)||x1||

where θ1, θ2 : R≥0 → R≥ are continuous.

Assumption 6.6 Equation ẋ2 = h(x2, t) is globally uniformly asymptotically sta-
ble and for all t0 ≥ 0,

∫ ∞

t0

||x2(x2(t0), t0, t)||dt ≤ α(||x2(t0)||)

where function α(·) is a class K function.

Theorem 6.7 Consider the cascaded system of 6.12. Assume that the system ẋ1 =
f1(x1, t) is globally uniformly asymptotically stable with a Lyapunov function sat-
isfying the inequality 6.13 and Assumptions 6.4 and 6.5 of Theorem 6.6. Then the
cascaded system is globally uniformly stable.
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Chapter 7

ADCS Stability Analysis

There are two possible lines of action in the stability analysis. These are designing

the controller in such a way that a separation principle exists for a given system,

or designing the controller independently and then prove the total system to have

properties such that a separation principle exists. The latter method is taken here,

where the ADCS is analysed using the controllers from Chapter 5.

7.1 Method

The construction of the control system is done according to the procedure of Chap-

ter 6.2.3, where a controller and an observer are designed and analyzed in turn be-

fore the total ICS is treated. Due to the cascaded structure of the ICS, the method

of stability analysis will be use of Theorem 6.7. To do this, the system must be

written on the form

Σ1 : ẋ1 = Ac(x1)x1 + g(x)x2

Σ2 : ẋ2 = Ao(x1)x2 (7.1)

which is similar to the system in Equation 6.12. With this method of separating the

subsystems, the controller (Ac) and the observer (Ao) can be designed indepen-

dently whenever Assumptions 1-3 below are satisfied. The function g(·) represents

the interconnection dynamics, see Figure 6.1.

Assumption 1: The state feedback controller is proven globally asymptotically

stable or better.

Assumption 2: The observer is proven globally asymptotically stable or better.

Assumption 3: The interconnection dynamics are uniformly bounded, fulfils the

Lipschitz criterion and is continuous for all time.
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Observer error: q̃ = q ⊗ q̂−1

State feedback controller error: qe = q ⊗ q−1
d

Output feedback controller error: q̂e = q̂ ⊗ q−1
d

Interconnection controller error: q̃e = qe ⊗ q̂−1
e = q ⊗ q̂−1

Table 7.1: An overview of the errors in the controller and observer

7.2 Separation principle

So far, the satellite is proven asymptotically stable with the state feedback con-

trollers in Chapter 5. Also, a globally exponentially stable observer has been de-

signed. The question of overall stability arises when the controller uses the esti-

mated states instead of the actual states, so that a cascaded system is formed.

Some changes in notation are necessary: The controller errors will now be

denoted qe and ωe, while q̃ and ω̃ denotes errors in the observer estimates. The

controller error based on the attitude estimate becomes q̂e = q̂⊗qd, and so the total

attitude error including the estimation error is described by q̃e = qe⊗ q̂e = q⊗ q̂,

see Table 7.1.

7.2.1 PD-controller

It has been shown in Chapter 5.3 that the control law

τ
′
= −KP εe − KDω

corresponds to the system dynamics

Jω̇ = −KP ε̃ − KDω.

Changing τ
′

into an output feedback controller yields

τ = −KP ε̂ − KDω̂

The tracking and observer error can now be defined in the fashion of 7.1: x1 =
[ qe ω ] and x2 = [ q̃ b̃ Δ̃ ]. The tracking error dynamics become

[
q̇e
ω̇

]
= Ac

[
qe
ω

]
, Ac =

[
0 T (qe)

−J−1KPE −J−1KD

]
,

and the observer error dynamics are

⎡
⎢⎣

˙̃q
˙̃
b
˙̃Δ

⎤
⎥⎦ = Ao

⎡
⎣ q̃

b̃

Δ̃

⎤
⎦ , Ao =

⎡
⎣ −K1T (q̃)f(q̃) T (q̃) T (q̃)ωgyro

−1
2K2f(q̃) −T−1 0

−1
2K3ωgyrof(q̃) 0 −T−1

2

⎤
⎦ ,

where f(q̃) = ε̃ sgn(η̃) and E is a 3 × 4 matrix such that ε̃ = Eq̃.
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Interconnection dynamics

From Figure 6.1 it can be seen that the control input can be written as τ = τ
′
+

g(x)x2. The function g(·) represents the errors arising from basing the control law

on the estimated states instead of the true ones.

Now, the control and observer dynamics are defined, so in order to analyse

the stability properties of the interconnected system, the interconnection dynamics

g(·) must fulfil certain requirements, as presented in Chapter 6. Computing the

interconnection dynamics yields:

g(x)x2 = τ − τ
′

The immediate goal is to factorize the right-hand side so that x2 may be cancelled

and g(x) analyzed separately. Inserting for the control laws gives

g(x)x2 =KP ε̃ + KDω̃

=
[

KP KD

]
x2 (7.2)

Completeness

The cascaded system can now be written on the form

Σ1 : ẋ1 =Ac(x1)x1 + g(x)x2

Σ2 : ẋ2 =Ao(x1)x2. (7.3)

Notice that the dynamics of Σ2 are not decoupled from that of Σ1 due to the pres-

ence of ωgyro in Σ2. So in order to consider the total system as a cascade, it must

be shown that the system is complete. I.e. that the solutions x1(t),x2(t) exist for

all time.

Consider the Lyapunov function candidate

V (x) =
1
2
x1

TPcx1 +
1
2
x2

TPox2. (7.4)

Its derivative along the trajectories of Equation 7.3 is

V̇ (x) = −x1
TPcAcx1 + x1

TPcg(x)x2 − x2
TPoAox2. (7.5)

Global exponential stability has been proved for the controller and observer dy-

namics, hence Pc, Po ∈ R>0 is a safe assumption. Accordingly, Equation 7.5 may

be written as

V̇ (x) = −x1
TQcx1 + x1

TPcg(x)x2 − x2
TQox2, (7.6)

where Qc,Qo ∈ R>0. As for the interconnection term, Equation 7.2 shows that it

is bounded for any x. This comes from the facts that q is bounded by definition,

and that the assumption ω ∈ L∞ gives ω̃ ∈ L∞ due to the exponential stability of

51



the observer. Hence, there exist a constant k1 > 0 such that ||g(x)|| ≤ k1 for all

x. Equation 7.6 can now be shortened to

V̇ (x) ≤ λk1||x1||||x2||,
where λ = λmax(P c) <∞ is the largest eigenvalue of Pc. The Schwarz inequality

(2.15) now gives

V̇ (x) ≤ λk1||x1||||x2|| ≤ 2λk1(||x1||2 + ||x2||2). (7.7)

From this, by combining Equations 7.7 and 7.4, it is clear that there exists a con-

stant k2 such that V̇ (x) ≤ k2V (x). By the comparison lemma (2.2) it follows that

there exists a constant k3 such that V (x, t) ≤ k2V (x, t0)e−k3(t−t0). This proves

that V (x) exists and is bounded for all bounded t. Since V (x) is a Lyapunov func-

tion for the system 7.3 it can be concluded that the solutions x(t) exist and can be

continued for all t. The closed-loop system is complete. The observer dynamics

ẋ2 = Ao(x1(t)) can be written as ẋ2 = Ao(t).

Stability analysis of the cascade

Established properties of the ICS are:

i) The observer is globally exponentially stable uniformly in the tracking error

x1.

ii) The controller is globally asymptotically stable.

iii) The solutions of the closed-loop system exist for all t ≥ 0.

iv) The ICS has a cascaded structure.

Also, the system fulfils the following requirements raised by Theorem 6.7:

Assumption 6.4: The following Lyapunov function have been established:

V = (KP + kKD)((η̃ − 1)2 + ε̃T ε̃) +
1
2
ω̃Jω̃ + kε̃Jω̃.

Notice that

|| δV
δx1

||||x1|| ≤ max{2λmax(KP ),2kλmax(KD),

λmax(J), kλmax(J), 1}||x1||2.
From this it can be seen that

|| δV
δx1

||||x1|| ≤k4Vc(x1, t) ∀||x1|| ≥ υ

where k4, υ > 0 is satisfied choosing

k4 ≥ max{2λmax(KP ), 2kλmax(KD), λmax(J), kλmax(J), 1}
min{2λmax(KP ), 2kλmax(KD), λmax(J), kλmax(J), 1}
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Assumption 6.5: The growth rate of the interconnection dynamics due to the track-

ing error satisfies

||g(x)|| ≤|| [ KP KD

]
||g(x)|| ≤λmax(KP ) + λmax(KD).

Assumption 6.6: Since the observer error dynamics are exponentially stable, there

will for all initial conditions x1(t0) exist some positive constants k5 and k6

such that ||x2(t)|| ≤ k5||x2(t0)||e−k6(t−t0). This suggests to choose e.g.

α(||x2(t0)||) = (k5)||x2(t0)||.

By Theorem 6.7, the ICS in 7.3 is globally uniformly asymptotically stable.

7.2.2 Model-dependent linearizing controller

It has been shown that the control law

τ
′
= −J−1S(ω)ωb

io+S(ωb
io + ω)J(ωb

io +ω)−τ g−KDωe−KDκεe−Ja

corresponds to the system dynamics

Jω̇ = −KDωe − KDκεe − Ja.

Changing τ
′

into an output feedback controller yields

τ = −JS(ω̂)ωb
io + S(ωb

io + ω̂) − τ g − KDω̂ − KDκε̂e(t) − JκT 2(ε̂)ω̂.

The tracking and observer error can now be defined in the fashion of 7.1: x1 =
[ qe ω ] and x2 = [ q̃ b̃ Δ̃ ]. The tracking error dynamics become

[
q̇e
ω̇

]
= Ac

[
qe
ω

]
, Ac =

[
0 T (qe)

−J−1κKDE −J−1KD − κT 2(εe)

]
,

and the observer error dynamics are

⎡
⎢⎣

˙̃q
˙̃
b
˙̃Δ

⎤
⎥⎦ = Ao

⎡
⎣ q̃

b̃

Δ̃

⎤
⎦ , Ao =

⎡
⎣ −K1T (q̃)f(q̃) T (q̃) T (q̃)ωgyro

−1
2K2f(q̃) −T−1 0

−1
2K3ωgyrof(q̃) 0 −T−1

2

⎤
⎦ ,

where f(q̃) = ε̃ sgn(η̃) and E is a 3 × 4 matrix such that ε̃ = Eq̃.

Interconnection dynamics

From Figure 6.1 it can be seen that the control input can be written as τ = τ
′
+

g(x)x2. The function g(·) represents the errors arising from basing the control law

on the estimated states instead of the true ones.
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Now, the control and observer dynamics are defined, so in order to analyse

the stability properties of the interconnected system, the interconnection dynamics

g(·) must fulfil certain requirements, as presented in Chapter 6. Computing the

interconnection dynamics yields:

g(x)x2 = τ − τ
′

The immediate goal is to factorize the right-hand side so that x2 may be cancelled

and g(x) analyzed separately. Inserting for the control laws gives

g(x)x2 =J−1S(ω̃)ωb
io

−
[
S(ωb

io + ω̂)J(ωb
io + ω̂) − S(ωb

io + ω)J(ωb
io + ω)

]
+ KD(ω̃ + κε̃e)

+
1
2
κ(η̃I + S(ε̃e))ω̃ + τ̃ g

(7.8)

Using the property of skew-symmetric matrices in Equation 2.2 allows to rewrite

some terms in Equation 7.8:

J−1S(ω̃)ωb
io = J−1S(ωb

io)
T ω̃

S(ωb
io + ω̂)J(ωb

io + ω̂) − S(ωb
io + ω)J(ωb

io + ω)

= −S(ωb
io)Jω̃ + S(Jωb

io)ω̃ + [S(ω̂)J ω̂ − S(ω)Jω]
(7.9)

τ̃ g = 3ω0
2 [S(ĉ3)J ĉ3 − S(c3)Jc3]

Now there are two terms in square brackets in Equation 7.9 which need to be

rewritten in a way that allows factorization. It is practical to introduce the ma-

trix Υυ,υ̂ ⊂ R3×3 where υ̃i = υi − υ̂i, with elements

Υ11 = −j7υ2 + j4υ3

Υ12 = −j7(υ1 − υ̃1) − j8(2υ2 − υ̃2) + j5(υ3 − υ̃3) − j9υ3

Υ13 = j4(υ1 − υ̃1) − j9(υ2 − υ̃2) + j6(2υ3 − υ̃3) + j5υ2

Υ21 = j7(2υ1 − υ̃1) + j8(υ2 − υ̃2) − j1(υ3 − υ̃3) + j9υ3

Υ22 = j8υ1 − j2υ3 (7.10)

Υ23 = j9(υ1 − υ̃1) − j2(υ2 − υ̃2) + j3(2υ3 − υ̃3) − j1υ1

Υ31 = −j4(2υ1 − υ̃1) + j1(υ2 − υ̃2) − j6(υ3 − υ̃3) − j5υ2

Υ32 = −j5(υ1 − υ̃1) + j2(2υ2 − υ̃2) + j3(υ3 − υ̃3) + j1υ1

Υ33 = −j6υ1 + j3υ2

such that

[S(υ̂)J υ̂ − S(υ)Jυ] = Υυ,υ̂υ̃,
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It can then be shown that the bracketed expressions may be written as

[S(ω̂)J ω̂ − S(ω)Jω] = Υω,ω̂ω̃

τ̃ g = 3ω0
2Υc3,ĉ3

c̃3.

The term c̃3 corresponds to the third column of direction cosines in the rotation

matrix in Equation 2.10:

c3 =

⎡
⎣ 2(ε1ε3 + ηε2)

2(ε2ε3 − ηε1)
η2 − ε21 − ε22 + ε23

⎤
⎦

Rewriting allows to factorize as

c3 =

⎡
⎣ 2ε̃2 2ε̃3 0 0

−2ε̃1 0 2ε̃3 0
η̃ −ε̃1 −ε̃2 ε̃3

⎤
⎦

⎡
⎢⎢⎣
η̃
ε̃1
ε̃2
ε̃3

⎤
⎥⎥⎦ (7.11)

=c(q̃)q̃.

Finally, Equation 7.8 can be simplified:

g(x)x2 =
[

KDλ+ 3ω0
2Υc3,ĉ3

c(q̃)
G3

]T [
q̃
ω̃

]

g(x)x2 =
[

KDλ+ 3ω0
2Υc3,ĉ3

c(q̃)
G3

]T
Cx

⎡
⎣ q̃

b̃

Δ̃

⎤
⎦ . (7.12)

In Equation 7.12, the measurement matrix Cη̃ defined as

Cη̃ =
[

1 0 0
−K1f(η̃)E 1 ωgyro

]

combines the measured bias and scale factor errors into angular velocity errors:

[
q̃
ω̃

]
= Cx

⎡
⎣ q̃

b̃

Δ̃

⎤
⎦

The errors arising from the angular velocity are for readability lumped together in

G3 = −M−1S(ωbio)−S(ωb
io)M + S(Mωb

io) + Υω,ω̂ + KD + λ(η̃I −S(ε̃)).

Completeness

The cascaded system can now be written on the form

Σ1 : ẋ1 =Ac(x1)x1 + g(x)x2

Σ2 : ẋ2 =Ao(x1)x2. (7.13)
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The observer is the same as in the case with the PD-controller, so the dynamics of

Σ2 are also here not decoupled from that of Σ1 due to the presence of ωgyro in Σ2.

In order to consider the total system as a cascade, it must be shown that the system

is complete. I.e. that the solutions x1(t),x2(t) exist for all time. The proof of this

can be done in the same way as in the case of the PD-controller.

Stability analysis of the cascade

Established properties of the ICS are:

i) The observer is globally exponentially stable uniformly in the tracking error

x1.

ii) The controller is globally asymptotically stable.

iii) The solutions of the closed-loop system exist for all t ≥ 0.

iv) The ICS has a cascaded structure.

Also, the system fulfils the following requirements raised by Theorem 6.7:

Assumption 6.4: The following Lyapunov function have been established:

V = 1/2sTJs.

Notice that

|| δVc
δx1

||||x1|| ≤ max{λmax(J), κλmax(J), 1}||x1||2.
From this it can be seen that

|| δVc
δx1

||||x1|| ≤k4Vc(x1, t) ∀||x1|| ≥ υ (7.14)

||sTJ ||||s|| ≤k4

2
where k4, υ > 0, is satisfied choosing

k4 ≥ max{λmax(J), κλmax(J), 1}
min{λmin(J), κλmin(J), 1} .

Assumption 6.5: The growth rate of the interconnection dynamics due to the track-

ing error satisfies

||g(x)|| ≤ ||
[

KDλ+ 3ω0
2Υc3,c̃3

c(q̃)
G3

]T
||||Cη̃||.

Assumption 6.6: Since the observer error dynamics are exponentially stable, there

will for all initial conditions x1(t0) exist some positive constants k5 and k6

such that ||x2(t)|| ≤ k5||x2(t0)||e−k6(t−t0). This suggests to choose e.g.

α(||x2(t0)||) = (k5)||x2(t0)||.
By Theorem 6.7, the ICS in Equation 7.13 is globally uniformly asymptotically

stable.
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7.2.3 Robust controller

The method of analysis used with the two first controllers was unsuccessful with

the robust controller. Consider the state feedback control law

τ
′
= −1

2
[(ηeI + S(εe))KP + γ(1 − ηe)I]εe − KDωe

and the output feedback control law

τ= − 1
2
[(η̂I + S(ε̂))KP + γ(1 − η̂)I]ε̂ − KDω̂.

Computing the interconnection dynamics as g(x)x2 = τ −τ
′

yields an expression

which is nonlinear in x and very difficult to factorize.

Still not successful, but closer, is Theorem 6.5:

Condition i) It has been shown that the system is asymptotically stable with state

feedback.

Condition ii) It has been shown that the observer is exponentially stable.

Condition iii) The system with state feedback is asymptotically stable uniformly

in time.

Condition iv) The partial derivatives ∇xh(·),∇x̂h(·) are bounded, since the ob-

server is exponentially stable uniformly in time. The partial derivatives

∇xf(·, τ(x̂, ·)),∇x̂f(·, τ(x̂, ·)) are difficult to compute, shown in Equa-

tion 7.15.

ω̇ = −J−1S(ω)Jω − 1
2
[(η̂I + S(ε̂))KP + γ(1− η̂)I]ε̂−KDω̂ (7.15)

Hence, with the assumption that the partial derivatives ∇xf(·),∇x̂f(·) < ∞
for all time, the system is globally uniformly asymptotically stable.
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Chapter 8

Results

To be of use, the control system must provide a certain accuracy in the attitude

control. The goal for the ESEO satellite was a maximum attitude uncertainty of

±0.0001◦. However, a satellite has numerous operating modes, with different de-

mands to the level of accuracy. When the satellite is in motion, it will have to rotate

continuously to stay with e.g. a camera pointing toward a fixed point in space or

on the moon surface. In orbit, the satellite will have to compensate for the forward

velocity and the force of gravity. Therefore, some tests should be performed to in-

vestigate the tracking abilities of the controllers. Other times it might be desirable

to simply change the satellite attitude from a to b. A simple step-test will in this

case reveal which level of performance the controller can deliver.

In order to do the simulations, a system model was made using Matlab with

Simulink, see Figure 8.1 and Table 8.1. The same set of sensors were used in all

tests, namely a star tracker developed at the Danish Technical University (Jørgensen

et al. 2001) and a ring laser gyro (Fossen (2002) pp. 195). The Simulink models,

simulation data and controller gains can be found on the project CD.

The performance of the ADCS is analysed using three of the controllers in

Figure 8.1: Overview of the ESMO ADCS model.
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Software: Matlab 7.2 (R2006a) with Simulink 6.4 (R2006a)

Solver: ode45(Dormand-Prince)

Relative tolerance: 1e-3

Step sizes: auto

Table 8.1: Simulink simulation parameters.
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Figure 8.2: The setpoint values. Steps at t ≈ 50.

Chapter 5. The same two tests were carried out for all three controllers:

1. A change in the attitude setpoints simultanously for all three angles. This

type of test was chosen for two reasons: First, it represents a worst-case

situation, since there are large deviations between setpoint and actual posi-

tion and therefore a large amount of torque on the system. Second, it might

also be a realistic scenario to adjust all setpoints at once, since from a user

point of view one would like to simply input the desired orientation, without

having to worry about which order of axis rotation will be taken.

2. A tracking test where a sinusoid signal is an approximation of the trajectory

that needs to be followed if a satellite in orbit wants to keep an instrument

directed towards a fixed point on the surface of the moon during in a period

of time.

The setpoints are shown in Figure 8.2. The controllers are first studied one by one,

then they are compared with regards to convergence, amount of noise and accuracy.

As in the case of the ESMO satellite, ±0.0001◦ will be the definitive bound on

oscillations accepted during steady-state operation. In addition to this, the initial

states of the model was chosen arbitrarily to be far from the initial setpoints. Also,

the initial states of the observer were chosen to reflect a worst-case situation e.g.

if the observer algorithm is switched off and then on again after a period of time

during which the attitude of the satellite has changed. For larger versions of the

plots, see Appendix A.
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8.1 Setpoint control

For comparison, the tests will be done for the controllers using both output feed-

back and state feedback. This might indicate the amount of impact the use of

estimates has on the different controllers. The observer estimation errors are also

plotted, to show to which extent the control torque influences the observer.

8.1.1 Model-based linearizing controller

The plots in Figure 8.3 show the attitude error qe = q ⊗ q−1
d converted to Euler

angles. Approximately 60 seconds pass after the step before the satellite regains

steady-state. The controller is relatively fast in the beginning of the transient period

and comes into a < 10◦ range of the setpoints after only 10 seconds. Convergence

after that is slow. If actuator dynamics and physical limitations in the thrusters

were taken into account, it is probable that performance would aggravate severly

since it would take a long time for the error even to enter the < 10◦ range. By

adjusting the controller gains it is possible to speed up convergence, but at the cost

of signal noise with amplitude well above the 0.0001◦ bound.
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Figure 8.3: Plots of the deviation between setpoints and actual position when the

control system consists of observer and linearizing controller.

The plots in Figure 8.4 shows how the estimation error q̃ = q ⊗ q̂−1 takes

approximately 60 seconds to converge. The performance of the observer is clearly

best during steady-state operation. This is not surprising, since it was designed

mainly to filter noise, not predict changes in the attitude.

The performance of the controller when using the actual states is interesting

to note. Figure 8.5 shows a considerable improvement in the convergence rate,

compared to Figure 8.3. Clearly, the performance of the controller is prone to

suffer during feedback from estimated states. This weakness might come from the

control law being model-dependent.
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Figure 8.4: Plots of the estimation error with the linearizing controller.
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Figure 8.5: Plots of the deviation between setpoints and actual position during state

feedback.

8.1.2 Robust controller

The plots in Figure 8.6 show the attitude error qe = q⊗q−1
d converted to Euler an-

gles. Almost 60 seconds pass after the step before the satellite regains steady-state.

The controller is converges slowly right after the setpoints change, but converges

to steady-state in the same amount of time as the linearizing controller. The inclu-

sion of actuator dynamics and physical limitations in the thrusters would probably

make the controller more desirable, because convergence is relatively fast towards

the end of the transient. Adjustment of the controller gains did not improve perfor-

mance.

Due to the relatively slow changes in the attitude after the change in setpoint,

the observer error is very small during the entire period of time as can be seen from

Figure 8.7. Since this controller uses less rapid application of torque, the observer

is less disturbed.

Figure 8.8 indicates that the robust controller shows no performance improve-

ment when the true system states are fed back. This in contrast to the model-

dependent linearizing controller, which improved severely. The robust controller
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Figure 8.6: Plots of the deviation between setpoints and actual position when the

control system consists of observer and robust controller.
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Figure 8.7: Plots of the estimation error with the robust controller.

is clearly robust with respect to noise and model uncertainties.
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Figure 8.8: Plots of the deviation between setpoints and actual position during state

feedback.
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8.1.3 PD-controller

The plots in Figure 8.9 show the attitude error qe = q ⊗ q−1
d converted to Euler

angles. Approximately 20 seconds pass after the step before the satellite regains

steady-state, and it is thus the fastest of the three controllers. The oscillations

during steady-state are more significant than in the other controllers, but are kept

inside the bound. The convergence ratio seems to be approximately constant, so

it is not probable that the controller would be less or more desirable if actuator

dynamics and physical limitations in the thrusters were taken into account. By

adjusting the controller gains it is possible to speed up convergence, but at the cost

of signal noise with amplitude above the 0.0001◦ bound.
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Figure 8.9: Plots of the deviation between setpoints and actual position when the

control system consists of observer and PD-controller.

The observer error in Figure 8.10 is very small during the entire period of time.

Comparing the zoomed plots of estimation error in the three control systems shows

that the estimation error is the same for steady-state operation in all three cases.
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Figure 8.10: Plots of the estimation error with the PD-controller.

The PD-controller shows no or very little performance improvement when the

true system states are fed back, see Figure 8.11. It is therefore robust with respect

to noise and model uncertainties.
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Figure 8.11: Plots of the deviation between setpoints and actual position during

state feedback.

8.2 Tracking control

Tracking a constantly changing reference is different from adjusting to setpoint

changes. None of the control laws tested here include terms that take into account

the rate of change of qd, and excellent performance can therefore not be expected.

8.2.1 Model-based linearizing controller

From Figure 8.12 it can be seen that the linearizing controller actually performs

worse in the case of state feedback than with output feedback. The difference is,

however, relatively small.
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Figure 8.12: Tracking error of the linearizing controller.

8.2.2 Robust controller

The robust controller performs identically in the two cases shown in Figure 8.13.

The error is up to 4 times that of the linearizing controller. This reflects what was

shown in the setpoint tests; the robust controller is slow.
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Figure 8.13: Tracking error of the robust controller.

8.2.3 PD-controller

The PD-controller showed to be fastest during the setpoint test. As seen from

Figure 8.14, it performs very similar to the linearizing controller when tracking a

reference.
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Figure 8.14: Tracking error of the PD-controller.

8.3 Recommendation

Of the three controllers presented here, the PD-controller is the best choice. It is

approximately three times faster than the other two controllers. It has is more noisy

oscillations during steady-state operation, but with tuning this can be smoothed

without having to reduce the convergence speed down to the level of the other

controllers. Additionally, it has been shown to be robust against modelling errors,

and the PD control law algorithm is easy to understand and maintain.

The other two controllers might have more potential. They are more difficult

to tune than the PD-controller, and it might be that more effort put into the tuning

procedure would result in improved performance. Egeland & Godhavn (1994)
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presents an expansion of the linearizing controller which includes an adaptive term

in the control law. Such an adaptive term will make the control law more dynamic

and less dependent on the model. If the adaptive update law is sufficiently fast,

the controller might gain some robustness against noise and will probably perform

better during tracking.
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Chapter 9

Conclusions

As a large part of the thesis has been theoretical proofs of stability, the only prac-

tical results to comment are the simulation results of Chapter 8. The proofs of

total stability in Chapter 7 were tedious and time consuming to work out, but their

contribution is in practice simply to validate which controllers can be chosen for

testing. On the other hand, without a proof of total stability, no controller/observer

system is safe to use. In addition, since the stability proofs show for each con-

trol system the existence of a separation principle, the tuning procedures of the

controllers and observers can be performed independently.

The ADCS was not shown globally uniformly asymptotically stable with the

robust controller. The difficulties seem to arise from the structure of the control law,

i.e. that it is difficult to write on the form ẋ1 = Ac(x1)x1. This may indicate the

the analysis method of cascaded systems is not well-suited for certain controllers,

especially those not based on the plant model. On the other hand, it seems that

the analysis method of cascaded systems can be said to work particularly well with

model-dependent controllers.

9.1 Discussion of the results

All control configurations passed the setpoint tests with below 70 seconds of con-

verge time. In the tracking test, none of the controllers performed entirely to sat-

isfaction. One can not expect the same accuracy during tracking as during steady-

state operation, but errors of > 0.5◦ may be too large to successfully operate a

camera. If the purpose is to use equipment that has lower demands to accuracy,

e.g. antennas, the accuracy obtained here for two of the controllers may suffice.

The PD-controller showed to be the fastest and one of the most robust alter-

natives. This came as a surprise, since it is also the simplest control algorithm.

Especially, when comparing the system dynamics using the control law of the PD-

controller, see Equation 5.24, to the system dynamics using the control law of the

linearizing controller, see Equation 5.13, it is clear that the linearizing controller

reduces to a PD-controller when the linearizing terms are cancelled. What is left is

69



a PD-controller and some (presumably small) nonlinear terms due to model noise

and inaccuracies. In this light, the linearizing controller should outperform the PD-

controller as long as the linearizing terms are close to being equal to the nonlinear

terms of the model. With that said, the linearizing controller is somewhat more

difficult to tune which may account for some of the unexpected performance.

9.2 Further work

Based on the work carried out during this thesis, some suggestions can be made as

to how it can be improved.

Expand the satellite model: Before further analysis is done, the model should

include reaction wheels and possibly other actuator dynamics, physical lim-

itations and time delays.

Enhance the controllers presented herein: Especially, equip the linearizing con-

troller with an adaptive term. This was suggested in Chapter 8 as the im-

provement with the most potential.

Complete the total stability proofs: The ADCS with the robust controller was

not shown globally uniformly asymptotically stable. If the controller is to be

used, a proof must be worked out.

Test the ADCS on a physical model: The Department of Engineering Cybernet-

ics at NTNU have a gyro rig under development, which can be controlled

from Matlab. Finishing the rig and testing the performance of the ADCS

in practice with real-life data is a logical step towards a complete ADCS

proposition.

Establish a documentation standard for proofs of stability: When implement-

ing a control algorithm into a physical system, there should be a require-

ments to have documented proofs of stability. This should be interesting for

e.g. insurance companies and all companies concerned with health, environ-

ment and safety standards. As of now, safety requirements include for the

large part only physical barriers and emergency switches.
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Appendix A

CD-ROM files

The attached CD contains the following:

ESMO ADCS: Simulink model of satellite, environment and ADCS.

sat obs init: Initializes variables used in the Simulink model.

CONTROLLERS: Three different controllers, to be used with the ADCS.

IMU: Models of gyros, to be used with the ADCS.

STAR TRACKERS: Models of star tracker, to be used with the ADCS.

SUN SENSORS: Models of sun sensors, to be used with the ADCS.

Rquat: Quaternion rotation matrix.

q2euler: Converts quaternions to Euler angles.

Sk matrix: Computes the skew matrix of a vector.

marine gnc: Folder with tools for Matlab.

phlib: Folder with tools for Matlab.

Plots: Folder with large versions of the plots in Chapter 8.
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