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Abstract

In this thesis the subjects of system analysis and state estimation of a piezoelectric tube

actuator are discussed. The considered system can be modelled as an LTI-model in series

with a hysteresis differential model. Appropriate models for the hysteresis effect and

the tube dynamics are presented. A new state-space representation of the total system

combines the aforementioned models. The advantageous properties of a capacitive and

strain sensor are employed for displacement measurement.

Under these preconditions, features of a Kalman filter are utilized to fuse the sensor

signals in an optimal way. This approach was tested in a real lab setup and resulted in

successful measurements. Eventually a simple controller design was used to improve the

system performance at higher scanning rates.

Keywords. Piezoelectric tube, Hysteresis model, Kalman filtering, Nonlinear piezoelec-

tric tube model.
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Chapter 1

Introduction

1.1 Motivation

In the past a tremendous effort was put into observing materials. Scaling down to hun-

dreds of micrometers was insufficient to meet the today’s requirements hence nanometer

resolution became necessary for many processes. As conventional optical microscopes are

not able to cope with such a task, new methods had to be invented. Binnig (1984) [14] was

able to construct the first scanning probe microscope (SPM) which simply scans a sample

in a defined raster pattern and measures the current at the related position. Piezoelectric

tubes (PZT) have been used as actuators which provide an acceptable scanning range

at a decent bandwidth. Over the last couple of years such PZTs were the main interest

of ongoing research within SPMs. New control schemes, more exact models, analysis of

diverse nonlinearities or implementation of estimation methods are just some of the lat-

est efforts. Continuous progress and improvements of the existing methods promise even

better resolution results in the future. Different research groups throughout the world are

fascinated by these problems and are actively working on improvements in several fields of

operation. At NTNU the groundwork for research within nanometer positioning has been

carried out in several projects and is continued by this thesis. The focus is mainly to gain

achievements in the area of system modelling and estimation methods for the tube dis-

placement where exact displacement is probably the most important issue for such small

deflections. The author’s intention is to attain a reliable method which can be used in the

future for several projects within nanopositioning at NTNU.

1



2 Chapter 1. Introduction

1.2 Contributions of this thesis

This thesis describes a method to improve the resolution of a nanometer positioning sys-

tem. Based on previous works, a piezoeletric tube actuator was the system of interest.

Besides some basic hardware changes, several other attempts were developed to improve

the resolution. Measurement circuits were redesigned to obtain less noise with higher pre-

cision. A new nonlinear model in state space form is developed to meet the requirements

of implementation for both a Kalman filter and a controller. Conducted experiments,

circuit design and modelling issues are partly inspired by research done at The University

of Newcastle (Australia), The University of Technology, Delft (Netherlands) and the MIT

(USA). References to these and others are given were they are relevant. Other articles

related to the topic of nanopositioning are given in [28] [2]. Results of this thesis will be

compared to actual findings wherever comparison is useful.

1.3 SPM background

Scanning probe microscopes are designed to image objects in the range of nanometers

where common optical microscopes become useless. Among several different techniques

and types of SPMs, the scanning tunnelling microscope (STM) and the atomic force mi-

croscope (AFM) are the most common ones. Areas of science range from cell biology

to crystallography, molecular electronics, etc. Such microscopes are able to depict to-

pographical constellations of solid surfaces down to sub-nanometer resolution. For both

microscopes a target or probe is placed in close range to the microscope’s tip. The whole

area of interest is scanned either by moving the tip or the probe itself.

Within the STM technology the information about the topography is gathered via

electron tunnelling from the tip to the probe (this presumes a conductor or semiconductor

as a sample material). The STM can be run in two different modes. One possibility is to

hold the current at a constant level, which requires a height control of the tip. The control

signal of the z-direction then comprises information about the topography. The second

possible mode is the constant height mode. With that, the tip height is fixed and the

distance between the probe and tip changes. Corresponding to those changes the current

flow changes as well. A topographical map can then be constructed out of the changing

current flow.

The second type of SPM, an AFM, measures the arising forces between the sample

and a cantilever tip by optically evaluating the deflection of the probe. This is typically
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done by a laser beam pointing on the tip. Several modes of operation are possible while

the sample is moved in a raster pattern to obtain an entire surface plot. In contact mode

the tip is in direct contact with the sample surface. For the tapping mode, the probe

is oscillated to constantly tap the surface. This results in less friction effects and more

reliable measurements especially for soft surface scans. Within the non-contact mode the

cantilever is oscillated without touching the surface. Weak attractive forces affect the

oscillations which result in a frequency change. This change is measured and converted

into a figure. (Compare [33],[4] for more detailed information)

1.4 Structure of this document

In Chapter 2 the basic hardware with the sensors in use are explained and possible prob-

lems concerning the grounding are emphasised. Chapter 3 deals with system modelling.

The whole setup is split into several parts where each is described respectively with a

state space model as well as a transfer function. Different appropriate models for nonlin-

ear effects are additionally presented. Chapter 4 consists of the partial models to a model

describing the whole system. Both a linear and nonlinear version is discussed. Kalman

filtering is introduced and adapted to the system models in Chapter 5. Simulation and

experimental results are presented in the following. In Chapter 6 diverse controller real-

isations for both the linear and nonlinear systems are suggested. Eventually, in Chapter

7 results and investigations from the preceding chapters are summarized and discussed.

Conclusions and further work is presented.





Chapter 2

Experimental setup

This chapter presents the setup actually used in the lab. A desired signal is generated

on a PC which is connected to a digital/ analogue conversion unit (dSpace). The voltage

output is amplified and connected to one of the PZT electrodes. Displacement of the tube

is measured by both a capacitive and a strain sensor. An illustration is given in Figure

2.1.

computer dSpace
Piezo

amplifier

pzt

cap. sensor

strain
sensor

Udsp
ys

yc

Uin

x

Figure 2.1: Block diagram of the total lab setup

2.1 Hardware

2.1.1 Fixtures

From the basic ideas and implementations of earlier projects [32], the lab hardware was

systematically improved and extended. For a more detailed documentation compare also

[32]. Of vital importance for precise measurements is a solid construction, which allows

minimal vibration but also shields the setup from outer disturbances (noise, vibration).

5



6 Chapter 2. Experimental setup

To meet these requirements the actuator, a piezoelectric tube, is fixed onto an aluminium

disc, which moreover is bolted to the base (Figure 2.2(a)). To achieve electrical insulation

between the tube and the disc on the one side, but also a firm connection on the other

side is a tricky task. The same problem appears in relation to the cube on the top. This

problem was handled by using a special glue. As a first step the cube and the disc were

bonded separately. The following lathing treatment guaranteed a perfect fit and insulation

too. In the second step the insulating planes were bonded onto the tube. Furthermore the

setup was placed in a cylindrical enclosure to protect the measurements from additional

external noise (Figure 2.2(b)). Capacitive sensors were fixed in the enclosure to measure

the cube’s deflection. Connecting wires from the electrodes and the cube were led through

an outlet to a terminal board. The distance to the plug is kept small, again to minimize

external noise. Connection to the separate instruments is realized via 50Ω Coax-cabels.

(a) (b)

Figure 2.2: Piezoelectric tube isolated from the cube and base (a). Piezoeletric tube setup
with the capacitive sensors right angled to the cube fixed in the enclosure (b).

2.1.2 Vibration isolation

The microscope setup fixed on a rigid table is a possible realization - but not a good one.

External vibrations which can be caused by anything from motors, capacities to building

vibrations can lead to a tremendous aggravation in precision performance. Hence it is of

great importance to reduce any components causing external vibration. Principally this
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can be done by two simple actions.

1. The fixtures should have the highest possible resonant frequency

2. Good damping from the surrounding

Actions to meet point 1 are partly discussed in Section 2.1. Concerning point 2 several pos-

sibilities can be taken into consideration. Generally, [8] suggested to distinguish between

3 different damping technologies.

1. Elastomeric rubbers

The microscopy setup is placed on a rubber board which should damp surrounding

vibrations. Such a method has been used in [32] but led to insufficient measurements.

2. Air table

The usage of an air table improved the measurement performance noticeably and is

actually installed in the laboratory.

3. Active damping

A more costly method is active damping where damping is actively affected and

damped. This method is not used in the lab. Further information relevant to this

can be found in [22].

2.2 Piezoelectric actuator

The piezoelectric actuator in this case is a thin walled tube made from the chemical

composition PbZr0.35T i0.47O3. A schematic drawing is given in Figure 2.3. Both the inside

and outside of the tube are coated with a thin layer of nickel. The tube’s inside is fully

coated whereas the outside is divided into four 90◦ sections. A pair of opposite electrodes

(E1 and E3) is accountable for x-displacement whereas y-displacement is referred to the

other pair (E2 and E4). Deflection can be achieved by driving a pair of electrodes with

signals of identical magnitude but opposite signs. Obviously this is linked with a loss of

possible strain measurements. Another method to achieve a deflection in the x − y plane

is to apply a single voltage to one electrode only (e.g. E1). Displacement will be less

at the benefits of a strain measurement (E3). Deflection in z-direction can be achieved

by applying a voltage to all the outer electrodes or by applying a voltage to the inner

electrode Ei (with respect to ground level).
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x

y

E3

E2

E1

E4

Ei

Figure 2.3: Piezoelectric actuator from the top with possible connections.

2.3 Capacitive sensor

2.3.1 Working principle

In nanotechnology capacitive sensing became very popular in the past, mostly due to

the simple technique when non-contact measurement is needed. The working principle

is based on the movement of the target, which changes the capacity between the fixed

sensor and the moving (cube) electrode. With that, a certain capacity matches a certain

distance. Evaluation units for such sensors convert the capacity into a voltage, where they

then provide an output voltage as a function of the cube’s displacement. Usually these

units are the most critical part as they have to cope with capacitance variations of less

than 0.1fF in order to achieve nanometer position resolution. Considering the presence

of possible parasitic capacitance, this part of sensing is probably the most crucial one.

Relations as described in Chapter 3 are only valid if the cube is aligned perfectly parallel

to the sensor, which happens to be another crucial precision criterion.

2.3.2 Multi-probe setup

In a further stage the laboratory setup should be used in scanning mode. This means both

axes are actuated at the same time and the capacitance measurement is coexistent. If the

measurement noise shows a minimum in single operation mode (either x- or y-deflection

is measured) but an enhanced noise level during x− y measurement tests, the problem of

incompatible tuning is present. This means an internal signal from one sensor is disturbing

the measurements from the opponent. Observations in the lab showed a 220kHz signal

in the noise which comes from the internal signal from the opposite sensor. To still use
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the capacitance gauging system in a multi-probe setup the sensors need to have different

internal frequencies which are separated by at least Δ100kHz.

2.4 Piezoelectric strain sensor

The piezoelectric strain sensor relies on the direct piezoelectric effect. This effect, first

discovered by the Curie brothers (1883), describes the ability of materials to generate

an electric potential when they are under mechanical stress or pressure. In the same

way piezoelectric materials (notably crystals and certain ceramics) can be deformed by

applying a certain voltage to the material. Depending on the sign the material is contracted

or expanded. In related literature [15] this effect is called the converse piezoelectric effect.

Both effects are described by a set of constitutive equations (IEEE Standard 1989) which

are as follows:

Si = sE
ijσj + dmiEm (2.1)

Dm = dmiσi + εT
mkEk (2.2)

where S stands for the mechanical strain, σ for the mechanical stress, D for the electrical

displacement and E for the electric field. The elastic, piezoelectric and dielectric constants

are represented by sE, d and εT . The subscriptions i, j = 1, 2..6 account for the cartesian

direction of the input and the reaction respectively. Equation (2.1) is related to the

converse effect and (2.2) to the direct piezoelectric effect. Regarding the strain sensor, the

direct piezoelectric effect is utilized to interpret the tube’s deflection as a certain voltage.

For this purpose the electrode opposite to the actuated one is devoted and evaluated for

displacement determination.

2.5 Grounding

Adequate grounding is an important issue for precise and correct measurement. It is

even more important when it comes to measurements of small voltage range signals as

the relative error becomes proportionally larger. The laboratory is set up to reduce the

noise influence to a minimum but also to minimize any cross influences between different

actuators, sensors and amplifiers. For this reason the capacitance measurement was, via

an isolating transformer, completely decoupled from the main power supply. This impedes

grounding loops which can elevate the ground level and distort the measuring signal. In
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detail the capacitance measurement circuit is set up as shown in Figure 2.4.

isolating plate

cap.sensor

damping table

aluminium cube

ground wire PZT

Figure 2.4: Grounding schematics of the capacitive sensor

The probe is mounted and fixed in the outer casing of the setup. The aluminium cube

on the top of the tube is directly connected to the casing but isolated from the system.

With this the shortest and best way of grounding is realized. In addition an isolating plate

between the casing and the vibration table avoids the aforementioned ground loop between

the capacitance measurement and the PZT circuit. The inner electrode of the piezoelectric

tube is connected to the vibration table which is on ground level. Furthermore the data

acquisition card (dSpace) is on the same ground level as the table and the tube. A total

setup can be assumed as followed:

isolating plate

cap.sensor

damping table

aluminium cubeground wire

PZT

isolating layer

dSpace aquisition card

displacement signal

(strain)

(cap)

Figure 2.5: Grounding schematics of the lab setup



Chapter 3

System modelling

Happiness is only real when shared.

Christopher McCandless

Piezoelectric actuators are able to reach resolutions down to 1pm. To control and

measure such small displacements, sufficient knowledge of the PZT-system is an essential

matter. In this section different parts of a PZT setup are discussed. The most convenient

way for estimation and control purposes is a dynamical model given in state space form

in order to alleviate the upcoming tasks in Chapter 5.

3.1 System overview

The sensor and amplifier dynamics turn out to be simple high-/low pass filter systems.

These can be described straight forward as LTI-models and added to the overall model.

Disproportionately more difficult is the description of the piezotube itself. An electrome-

chanical model based on a principal physical relation is established in Chapter 4. This

contains a first order differential equation, which describes the hysteresis effects and a

differential equation accounting for the mechanical behaviour. These parts are discussed

later on in this chapter. During the thesis the traditional possibility of voltage steering

was chosen. For this reason the upcoming discussions concentrate more on voltage steering

and discuss its included problems rather than those for charge steering.

11
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3.2 Mechanical model

The focus of this section are the mechanical relations of a piezoelectric tube. The intention

is to obtain a simple dynamic model for lateral motion, which can be used for further

applications. More elaborate models can be found in [21], whereas [25] was used as a

reference in the following. PZT constants and properties used throughout the thesis can

be found in Table 3.1.

Property Symbol Value
Tube length L 63.5 mm
Inner Radius Ri 4.76 mm
Outer Radius Ro 4.48 mm
Average Radius r̄ 4.59 mm
Cross Section Area A 458.3 mm2

Density ρ 7500 kg/m3

Cube mass m 2.84 g
Piezoelectric Strain Constant d31 -265 pm/V
Relative Permittivity Constant ε33 3400

Table 3.1: PZT constants.

Longitudinal dynamics are not taken into consideration although the modelling and

thus the dynamic behaviour is very similar to the lateral dynamics. The piezoelectric tube

actuator is assumed to be a simple forced beam with an attached mass at the end.

m F
z ≈ L

ρ
A

z

y

Ri

Ro

y

x

L

E1

E2

E3

z

x

y
Vy

E3

E2

E1

E4

Figure 3.1: Illustration of a piezoelectric tube actuator.

An appropriate illustration is given in Figure 3.1. The PZT is deflected in y-direction

by applying a voltage Vy to one of the electrodes E1 or E3. According to [26], [25] rotational
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effects of the beam are negligible and the lateral dynamics can be described as:

ρA
∂2ω

∂t2
+ Cω

∂ω

∂t
= −πr̄3 (Ro − Ri)

sE
11

∂4ω

∂z4
(3.1)

Cω is a damping coefficient, ω = ω(z, t) describes the deflection in y-direction and A is

the cross sectional area of the PZT. Remaining coefficients are described in Figure 3.1 and

Table 3.1. The boundary conditions for (3.1) are:

ω = 0 |z=0 (3.2)
∂ω

∂z
= 0
∣∣∣∣
z=0

(3.3)

M
∂2ω

∂t2
+ Cω

∂ω

∂t
+

πr̄3 (Ro − Ri)
sE
11

∂3ω

∂z3
= 0
∣∣∣∣
z=L

(3.4)

πr̄3 (Ro − Ri)
sE
11

∂2ω

∂z2
+

2
√

2r̄2d31Vz

sE
11

= 0

∣∣∣∣∣
z=L

(3.5)

For analytical convenience a virtual slice between the mass and the PZT is inserted. This

will change (3.1) and boundary condition (3.5) to:

ρA
∂2ω

∂t2
+ Cω

∂ω

∂t
+

πr̄3 (Ro − Ri)
sE
11

∂4ω

∂z4
=

∂

∂z
F (3.6)

πr̄3 (Ro − Ri)
sE
11

∂2ω

∂z2
= 0
∣∣∣∣
z=L

(3.7)

With the method of separation of variables [10] ω(z, t) = W (z)T (t) where W (z) is achieved

by boundary conditions 1 and 2:

Wn(z) = Cn {(cos knz − cosh knz) + αn (sinh knz − sin knz)} (3.8)

The nth natural frequency ωn can be found by the characteristic equation:

knL (cos knL cosh knL + 1) +
m

ρAL
(cos knL sinhknL − cosh knL sin knL) = 0 (3.9)

The mechanical model can therefore be extended to an appropriate nth order model, which

appears to be:

MnT̈ (t) + CnṪ (t) + KnT (t) = Qn (3.10)
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Coefficients Mn,Cn,Kn and Qn are the mass, damping, stiffness and force coefficients

respectively. These coefficients are calculated as:

Mn = ρA

(
L

2
− a

4ωn
sin
(

2ωnL

a

))
+ m sin2

(
ωnL

a

)
(3.11)

Cn = CρA

(
L

2
− a

4ωn
sin
(

2ωnL

a

))
(3.12)

Kn = ω2Mn (3.13)

Qn = Fv

(
Wn(L) − ∂Wn(L)

∂z

)∣∣∣∣
Fv=

2
√

2r̄2d31Vy

sE
11

(3.14)

An equivalent second order model can be approximated as:

x(s)
Vy(s)

=
bu

s2 + a1s + a0
(3.15)

For further insight and a more exact derivation a detailed explanation is given in [26]. For

modelling reasons a transfer function between x(s)
q(s) is most suitable, as no hysteresis effects

can be expected when the charge is considered as the input signal. To achieve this, (3.15)

is reformulated and leads to the transfer function:

x(s)
q(s)

=
b0

s2 + a1s + a0
(3.16)

When it comes to the accumulation of an equivalent state space model, care is taken on the

particular state variables and their physical relevance. This means both the displacement

and its first derivative (velocity) are explicitly given as state variables. As a result of that

consideration, a state space model is given as:

˙[
x1

x2

]
=

[
0 1

−a0 −a1

] [
x1

x2

]
+

[
0

b0

]
q

y =
[
1 0
] [x1

x2

]
(3.17)
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a0 3.454 × 107

a1 15.12
b0 1.922 × 108

bu 3.0188

Table 3.2: Related constants, mechanical model.

3.2.1 Model comparison

A mathematical model based on physical relations is always a good way to investigate

the general behaviour. Unfortunately the exact values (resonance frequency, attenuation,

amplification) rarely match the real system. A reason for this could be un-modelled phe-

nomena, uncertain material parameters or model simplifications. To adapt the dynamics

to the real model one can accomplish a spectral analysis. To compare the x(s)
q(s) transfer

functions, a displacement and charge measurement are necessary. The tube deflection x(s)

is derived from the capacitive sensor whereas the charge q(s) can be gained via a voltage

drop measurement over a capacitor. A comparable circuitry is given in Figure 3.2.

Pzt

Ucap

q = C Ucap

C

cap.sensor

frequency analysis

Ch1

Ch2

sweptsine

out

Figure 3.2: Circuitry of a frequency analysis for the mechanical model

Figure 3.3 compares both frequency responses. An excellent compliance between the

physical model and the measured equivalent can be detected. This supports the physical

based calculations and verify the validity of the model. Observing the first resonance peak

(≈ 928Hz) of the two curves one can register an insignificant difference of Δf ≈ 0.4Hz.
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Figure 3.3: Measured and calculated frequency response

3.3 Hysteresis model

In the past, the piezoeletric tube actuators have been widely used is several positioning

applications. Consistent with that, the demand for more accuracy by means of displace-

ment is followed by more accurate system models. Nonlinear hysteresis effects constrain

the positioning precision significantly. In order to achieve sufficient accurate motion within

nanometer manipulation, special care has to be taken on developing appropriate models

for such hysteresis effects. Several different models have been developed over the course

of time as hysteresis behaviour can be observed in many different fields (e.g. in fric-

tion, plasticity, ferromagnetism and also piezoelectricity). Mathematically speaking, the

hysteresis effect can be described as a dynamical system with one input and an output

variable invariant with respect to time scale changes. Often such a system is called a rate

independent (or persistent) dynamical system. In the following some common models are

considered with respect to complexity, accuracy and usability for control design purposes.
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A general hysteresis nonlinearity could be described as:

w(t) = F (v(t))

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a(v(t) − b), if v̇(t) > 0 and a(v(t) − b)

a(v(t) + b), if v̇(t) < 0 and a(v(t) + b)

w(t−), else

(3.18)

The parameter a describes a linear slope whereas the constant b is the backlash distance.

This model is obviously discontinuous and cannot be used for any system modelling pur-

poses or control design issues.

3.3.1 Dahl model

At first the Dahl hysteresis model was developed to describe friction nonlinearities. In

[12],[6] the Dahl model is given as:

dF

dx
= σ

(
1 − F

Fc
sgn(v)

)α

(3.19)

The coefficient σ appears to be the stiffness parameter whereas α mainly determines the

shape of the curve. For most applications α = 1 is used. The force F will never exceed

Fc as long as the initial value satisfies |F (0)| < Fc. With the displacement and the sign of

the velocity as the only inputs, the model is rate independent∗ which (as named earlier) is

an important property of the model. Time dependency of the model can be obtained as:

dF

dt
=

dF

dx

dx

dt
=

dF

dx
v = σ

(
1 − F

Fc
sgn(v)

)α

v (3.20)

The fact that a force-displacement relation is described, motivates the idea of modelling a

hysteresis loop between a voltage and charge with the same model. In [17] an appropriate

second order model based on Dahl’s observations is introduced. It is described by:

dF 2

dt2
+ sgn (v) a1

dF

dt
+ a2F = sgn (v) b1

dU

dt
+ b0U (3.21)

∗A rescaling of the input with respect to time does not instantly lead to a rescaling of the output.
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With the domains changed to voltage and charge respectively, a corresponding state space

implementation is of the form:

˙[
x1

x2

]
=

[
0 1

−a2 −sgn (v̇) a1

][
x1

x2

]
dU

dt
+

[
0

1

]
dU

dt
(3.22)

q =
[
b1 sgn (v̇) b0

] [x1

x2

]
(3.23)

a2 4.41 × 10−4

a1 1
b0 7.8 × 10−6

b1 1.76 × 10−9

Table 3.3: Related constants, Dahl model

Simulations with voltage as input and the charge as the output of the system obtain

hysteresis characteristics as Figure 3.5 illustrates. Basically the modelling results are quite

satisfying but simulations show a wrong loop direction. Hence this model is inappropriate

for piezo hysteresis implementations but another model presented in Section 3.3.2 is used

for further calculations instead.

3.3.2 Coleman-Hodgdon model

3.3.2.1 Explanation

Derivation and constraints Unlike the inclusion of discontinuities as in (3.18),

Coleman and Hodgdon introduced a continuous time model describing the hysteresis effect.

Originally designed for ferromagnetism the model upon a class of constitutive relations is

defined as:

Ḃ = α|Ḣ | [f (H) − B] + Ḣg (H) (3.24)

where the parameter H is the magnetic field and B the flux. This solution can be adapted

to a piezoelectric hysteresis problem simply by rewriting (3.24) to:

dw(t)
dt

= h (v(t), v̇(t), w(t)) (3.25)



3.3. Hysteresis model 19

where

h (v(t), v̇(t), w(t)) = f (v(t), w(t)) |v̇(t)| + g (v(t), w(t)) v̇(t) (3.26)

With respect to control purposes, [19] suggested to just allow differential models with a

function f(v(t), w(t)) affine in w(t) and for the function g(v(t), w(t)) being a constant in

w(t). With these assumptions the differential hysteresis model shows the form:

ẇ = α |v̇| (f(v) − w) + v̇g(v) (3.27)

where the constant α is only allowed to be α > 0. In [18] the above dynamical model

(3.27) has been used to simulate and describe the ferroelectric hysteresis. For that purpose

following constraints concerning the functions f(·) and g(·) were set up.

1. f(·) is real and odd. Furthermore it has to be monotonously increasing and contin-

uously differentiable.

2. g(·) is real, even, piecewise continuous and has to have a finite value at infinity such

that:

lim
s→+∞

df(s)
ds

= lim
s→+∞

g(s) (3.28)

3. Functions f(·) and g(·) are such that :

g(s) ≤ df(s)
ds

∨ s < ∞ (3.29)

In [1] position measurements have been performed showing the hysteresis loop between

a low frequency voltage input signal and the corresponding output. The simulated loop

is similar to the ferromagnetic hysteresis loop shape discussed in [9]. Based on those

simulations, the following choice for the functions f(·) and g(·) are proposed.

f(v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

avmax if vmax < v,

av if − vmax ≤ v ≤ vmax,

avmin if v < −vmax
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and

g(v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if vmax < v,

b if − vmax ≤ v ≤ vmax,

0 if v < −vmax

With a > 0 and b > 0 clearly the functions f(·) and g(·) meet the conditions of 1 and 2.

The inequality of (3.29) is also fulfilled such that 1
2 a ≤ b ≤ a. Function f(·) is proportional

to its input v whereas the function g(·) is constant with respect to v. This leads to the

final differential equation adequate for piezoelectric purposes:

ẇ = α |v̇| (av − w) + b v̇ (3.30)

or expressed with charge q and voltage u:

q̇ = α |u̇| (au − q) + b u̇ (3.31)

Switching mechanism In order to test the switching ability of the model some

pre-definitions are required. According to [30] an explicit solution to (3.30) can be found

as follows:

w(t) = av(t) + d(v) (3.32)

where v is piecewise monotonous. For the term d(v) one can state:

d(v) = [wo − avo] e−α(v−vo)sgn(v̇) + e−αvsgn(v̇)

∫ v

vo

[b − a] eαψsgn(v̇)dψ (3.33)

with v̇ being constant and w(vo) = wo. Assuming the initial values (vo, wo) boundaries

for the term d(v) can be found:

lim
v→∞

d(v) = −a − b

α
(3.34)

lim
v→−∞

d(v) =
a − b

α
(3.35)
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For v̇ > 0 the initial values wo = 0 and vo = 0 are introduced. Inserting them in (3.32)

and (3.33), w(t) is given as:

w(t) = av(t) − a − b

α

(
1 − e−αv(t)

)
for v̇ > 0 (3.36)

Under the initial assumptions given above, v(t) is constantly increased until a time tr

where vr is reached. For t > tr v(t) is decreased again (v(t) < vr). With remark to v̇ < 0

the function for w(t) is given by:

w(t) = av(t) +
a − b

α

[
1 −
(
2e−αvr − e−2αvr

)
eαv(t)

]
for v̇ < 0 (3.37)

Analysis of (3.36) and (3.37) shows w(t) switching from av(t)−a−b
α to av(t)+a−b

α generating

a hysteresis like curvature.

3.3.2.2 Parameterisation

The characteristics of the aforementioned hysteresis loop can be determined experimen-

tally. Via approximated formulae derived in [19] the 3 parameters a, b, α can be determined

using the approximations:

δ ≈ α
(a

b
− 1
)

A2 (3.38)

η ≈ α (a − b) A2 (3.39)

ε ≈ 4
3
α (a − b)A3 (3.40)

The parameters δ, η and ε are calculated via taking some characteristic hysteresis points

into charge. Those appear as shown in Figure 3.4 and are calculated as:

δ � v↑ − v↓ (3.41)

η � w↓ − w↑ (3.42)

In addition to that, the area encircled by the loop is given as ε. With those parameters

being determined and the knowledge of the input signal characteristics one can calculate

the corresponding parameters describing such a hysteresis loop model. In Figure 3.5 the
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vmin v↓ v↑vcentr

δ

vmax

wmin

w↑

wcentr

w↓

wmax

η

ε

Figure 3.4: Parameters of a hysteresis loop

resulting hysteresis is compared with the simulation results of the foregone Dahl model.

Table 3.4 gives the computed values for the corresponding loop.

3.3.2.3 RLS-parameterisation

General background In Section 3.3.2.2 a rough, intuitive method for hysteresis

parameterisation was presented. In this Section the advantages of adaptive algorithms

are utilized to determine the hysteresis parameters. As an alternative to the Wiener-filter

theory, a recursive least square (RLS) based algorithm was implemented for this purpose

of adaption. Different to other filters, the RLS algorithm is not related to any statistics

of the signals, but directly calculates the data with the information available up to the

current point. The deterministic cost function is defined as the sum of the squared error

values from time l0 to k:

Jk =
k∑

l=l0

|e[l]|2 =
k∑

l=l0

|y[l] − d[l]|2 (3.43)

The output of the algorithm is a weighting factor which minimizes Jk and is optimal

with respect to the data available up to point k. To be able to calculate the optimal

weighting vector wk, the cost function Jk has to be minimized. Therefore the gradient of

Jk (with respect to wk) is calculated and set equal to 0 (Compare (3.45)). After replacing
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Figure 3.5: Hysteresis loop simulated by the Dahl and Coleman model. The charge is
displayed as a function of the input voltage

several vector products by its correlation matrices, the deterministic cost function Jk can

be rewritten as:

Jk = wT
k Rkwk − 2wT

k Pk +
k∑

l=l0

d2[l] (3.44)

The gradient then appears to be:

∇w {Jk} = (2Rkwk − 2Pk) = 0 (3.45)

This yields the optimal weighting factor wk:

wk = R−1
k Pk (3.46)

With this, a set of iterative equations could be given but unfortunately at a rather high

calculation complexity. With matrix simplification rules, as described in [23] a more

effective way is introduced. Those simplifications then lead to the following iteration steps

for the RLS algorithm:
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• Initialisation:

R̂−1
0 = ηIN (3.47)

w0 = 0 (3.48)

• Iterative steps at time k = 1, 2, 3, ...:

1. A priori output value:

y[k] = xT [k]wk−1 (3.49)

The a priori output value is calculated with help of the current vector x[k] and

the last optimal weighting factor wk−1. As there is no updated wk available

yet, hence it is called a priori value.

2. A priori error:

e[k] = d[k] − y[k] (3.50)

The difference between the desired value d[k], which is available from the

unknown system and the a-priori output value y[k] results in the a-priori error.

3. Filtered, normalised data vector:

z̃k =
R−1

k−1x[k]

ρ + xT [k]R−1
k−1x[k]

(3.51)

The data vector z̃k can be interpreted as a filtered value of x[k]. The auto-

correlation matrix R−1
k−1 has influence in both length and direction. Additional

to that the factor ρ is added in the denominator. With this factor being 1

the initial matrix would still have influence on the weighting factor. Chosen

somewhere between 0.95 − 1 this influence vanishes by the run of time. ρ is

therefore also called forgetting factor as it forgets about the initialised values.

A value of memory can be described by g(ρ):

g(ρ) =
1

1 − ρ
with 0 < ρ ≤ 1
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4. Update of the optimal weighting factor:

wk = wk−1 + e[k]z̃k (3.52)

Updating the weighting factor is based on the old weighting factor wk−1, where

only the correction term e[k]z̃k is added. This correction term is finally depen-

dent on the last updated values x[k] and d[k]. Consider therefore also:

e[k] = d[k] − y[k] = d[k] − xT [k]wk−1

5. Update of the inverse deterministic autocorrelation matrix:

R−1
k =

1
ρ

(
R−1

k−1 − z̃kx
T [k]R−1

k−1

)
(3.53)

Dependent on the old value, the new inverse autocorrelation matrix is calculated

with respect to ρ as well as to the filtered and unfiltered data vectors z̃k,xT [k].

RLS algorithm implementation In order to apply the RLS algorithm on the hys-

teresis problem some predefinitions are necessary. From (3.30) the hysteresis description

is given as:

q̇ = α|U̇ | (aU − q) + bU̇ = αa |U̇ |U︸ ︷︷ ︸
x1

−α |U̇ |q︸︷︷︸
x2

+b U̇︸︷︷︸
x3

(3.54)

The RLS algorithm requires an input vector x, a desired signal d and a weighting vector

w. Evidently d = q̇ and derived from (3.54), the input vector x and the weighting vector

w are defined as follows:

x =

⎡
⎢⎢⎣
|U̇ |U
|U̇ |q
U̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
x1

x2

x3

⎤
⎥⎥⎦ w =

⎡
⎢⎢⎣

αa

−α

b

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
w1

w2

w3

⎤
⎥⎥⎦ (3.55)

For lab implementations the inputs U and |U̇ | are directly derived from the triangle signal

source given by a waveform generator. Concerning the measurements of q and |q̇| the

problem of derivation has to be kept in mind. Derivating a noisy signal can lead to

inadequate results hence it is rather suggested to measure q̇ (if possible) and integrate this

signal to obtain q. A good possibility to measure q̇ is given via a current measurement
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where q̇ = i. The usage of a simple current amplifier gives satisfying results and is one

alternative to provide q̇. A possible circuitry is illustrated in Figure 3.6.

Pzt
Rc

iUin

Ucurr

Ucurr = −iRc

Figure 3.6: Circuit for current measurements

Results from the RLS estimation were compared with some measured data. The out-

puts presented in Figure 3.7 are not exactly identical but give a good approximation to

simulate the effects of hysteresis. A comparison between the found parameters from Sec-
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Figure 3.7: Comparison of measured and simulated data

tion 3.3.2.2 and the parameters from the RLS algorithm is given in Table 3.4 and shows

quite considerable discrepancies in the parameters a and α. Only parameter b appears

to be roughly equal. Furthermore the RLS algorithm does not meet the requirement
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1
2 a ≤ b ≤ a. Nevertheless, for further investigations the RLS parameters are employed.

a b α

RLS estimation 6.95 10−6 1.468 10−8 8.045 10−6

approximate estimation 1.625 10−8 1.2 10−8 0.055

Table 3.4: Comparison of approximated and RLS estimated parameters

3.4 Creep model

The displacement response of a piezoelectric tube has been modelled and discussed in

Section 3.2. The response is determined by the mechanical coherences and is typically

only a few milli-seconds. This fast response is followed by a slow creeping response in

the range of some seconds to several minutes. According [27] such creep effects can be

up to 20% of the total response. In [11] it is found, that an appropriate model to also

simulate the creep response can simply be a composition of springs and dampers. An

equivalent possible schematic is presented in Figure 3.8. A frequency response has already

xk1 k2 kn

cnc1 c2

ux

Figure 3.8: Schematic model to simulate creep effects

been introduced in Section 3.2 but with focus rather on the general dynamics and natural

frequencies. Omitted at that point was the very small variation in phase and gain at

low frequencies (∼ 20Hz − 300Hz). From Section 3.2 Figure 3.3 is re-plotted but with a

zoomed area around the frequencies of interest. Clearly a gain decrease can be observed

with increasing frequency, which affirms the presence of creep effects. According to [27],

the relative degree† δ is 0 for a transfer function x(s)
q(s) at frequencies much lower than the first

resonant frequency. Subsequent to that the behaviour in Figure 3.9 seems confirmable and

a model as given in Figure 3.8 appears suitable. To eliminate possible hysteresis effects,

the applied voltage/load was kept small and the system response was measured over an

†The relative degree is defined as the difference between the number of poles and number of zeros
(δ =

∑
p −
∑

n)
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Figure 3.9: Slight decrease in gain with increased frequency

extended period of time. Thus at low magnitudes and extremely low frequencies the creep

effect can be isolated from all the other effects. The system response on a step input is

given in Figure 3.10. In [11] the model order has been determined by an error comparison
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Figure 3.10: Comparison of measured and simulated creep effects

of different order creep models where the standard deviation σ is calculated as:

σc =

√√√√ 1
Ncx − 1

Ncx∑
i=1

(xi − x̄i)
2 (3.56)

and the maximum error appears to be:

Emax = max
i

|xi − x̄i| (3.57)

Within here the model has been assumed as of order 3. The respective characteristic

values are given in Table 3.5.
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order σ Emax

3 4.393×10−10 1.198×10−9

Table 3.5: Characteristic creep model values

The creep model is given as:

Gcreep =
s3 4.649 × 10−8 + s2 2.457 × 10−8 + s 7.938 × 10−10 + 2.363 × 10−12

s3 + s2 0.516 + s 0.0161 + 4.69 × 10−5
(3.58)

and the corresponding time response is displayed in Figure 3.10 where the simulation is

compared to the measured response.

3.5 Capacitive sensor model

3.5.1 Model

Preconditions and implementation methods of the capacitive sensor have already been

discussed in Section 2.3. For simulation purposes the capacitive sensor should be available

as a dynamic model as well. The sensitivity Sc is given in the data sheet of the sensor. The

dynamic model was at this point not determined by means of measurements or frequency

analysis but rather taken from the supplier. The transfer function is said to be a simple

low pass filter with a cut-off frequency at some hundred kHz. Together this gives the

following transfer function and state space model respectively.

Uc(s)
x1(s)

= Sc
2πfc

s + 2πfc
=

Kc

s + wc

U̇c =
[
−wc

]
Uc +

[
Kc

]
x1

y =
[
1
]
Uc (3.59)

fc 100 kHz
wc 628.3 × 103 1/s
Sc 0.2 × 106 V/m
Kc 1.256×1011 V/sm

Table 3.6: Related constants, capacitive sensor
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3.5.2 Zero offset with LMS algorithm

To provide a zero-mean sensor signal to the Kalman filter, the bias error has to be sub-

tracted from the actual signal. The fact that the bias error itself cannot be considered as

constant, requires some kind of estimation. Countless methods of estimation are available

where the least-mean-square-method (LMS) is one possibility. The basic idea for all kinds

of gradient methods (the LMS algorithm is one of them) is to search the minimum of the

error surface. For this, the actual weighting factor w[k] is manipulated with an adjustment

term to calculate the updated vector w[k + 1]. With the adjustment term being the neg-

ative gradient of the error surface, the weighting factor approaches the optimal solution

with each step. The gradient appears to be:

∇w {J(w)} = 2
(
Rw − p

)
(3.60)

To calculate the gradient, knowledge about the statistics (R and p) of the signals is re-

quired. As this is often not available, an estimated gradient is used requiring observability

of the signals x[k] and d[k] only. The LMS does not provide the optimal solution (due to

the estimated gradient usage), but still sufficient results at acceptable convergence times

are achieved. The LMS algorithm appears then as follows:

Initialisation:

w[0] = 0 μ > 0 : constant step size

At each step k = 0, 1, 2, ....:

• Filter output value:

y[k] = wT [k]x[k] (3.61)

• Error value:

e[k] = d[k] − y[k] (3.62)

• Update coefficient vector:

w[k + 1] = w[k] + μe[k]x[k] (3.63)
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Results of this implementation are plotted in Figure 3.16 where the LMS algorithm is

applied on the strain sensor. Principally the same results apply for the discussed capacitve

sensor as well.

3.6 PZT strain model

Discussed in the previous Section 3.5 a precise and easy method for measuring displace-

ments has been introduced. The drawback of such a gauging is the rather high equipment

costs. A more cost effective possibility of displacement measurement is therefore presented

in this Section. The piezotube itself can be used not just as an actuator, as described in

Section 3.2 but also as a sensor appointed as what is known as a self sensing actuator.

This means actuation can be measured by means of the piezotube itself. Basis to that is

the piezoelectric effect‡. As soon as the PZT is deflected a charge will be generated due to

mechanical stress. Related to that, this charge is generated depending on the deflection

of the tube. With simple measuring methods, as explained in Section 3.6.2 the charge can

be evaluated and interpreted as the tube’s deflection.

3.6.1 Sensitivity

The relationship between the occurring deflection and charge is given via a sensitivity

constant. A physically based determination of this constant Ss is given in the following.

Bending motion of the PZT is measured from a neutral line in z-direction. In Figure 3.11

this is pointed out more clearly. Under the pre-condition of a small field, the constitutive

E1

E2

E1

E2

E3

z

V1

x1

x

Figure 3.11: PZT bending motion

‡compare: the converse piezoelectric effect has been utilized for PZT actuation
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relations (already mentioned in (2.2) and (2.2)) for a piezoelectric material in general are

given as (IEEE Standard 1987):

[
Sz

Dr

]
=

[
sE
11 d31

d31 εσ
3

][
σz

Er

]
(3.64)

where once again S is the strain, D the electric displacement, σ the stress and E the

electric field. The strain appearing in the PZT (Compare Figure 3.11) is, according to [10]

given as:

Sz = −x1

R
= − r̄ sin θ

R
= −r̄ sin θ

∂2w

∂z2
(3.65)

Observe that r̄ is the average radius of the PZT whereas R must not be mixed up with

the radius of the PZT but rather describes the radius of a curvature (at some point). x1

describes the lateral deflection. From relations given in (3.64) Er can be written as:

Er =
Drs

E
11 − d31Sz

εσ
r sE

11 − d2
31

(3.66)

Assuming that one applies a voltage V1 at electrode E1, relations from above yield to:

V1 = Er (Ro − Ri)

= (Ro − Ri)
Drs

E
11 − d31Sz

εσ
r sE

11 − d2
31

= −d31 (Ro − Ri)
εσ
r sE

11 − d2
31

r̄ sin θ

R
+

sE
11 (Ro − Ri)
εσ
r sE

11 − d2
31

Dr (3.67)

Upon that, the charge created at electrode E1 can be considered as:

Q =
∫ L

0

∫ θ2

θ1

r̄Drdθdz

=
s11Eεσ

3 − d2
31

sE
11 (Ro − Ri)

r̄ (θ2 − θ1)LVz +
d31

sE
11

r̄2 (cos θ2 − cos1)
∂w

∂z

∣∣∣∣
z=L

(3.68)

To solve the aforementioned equation the relationship 1
R = ∂2

∂z2 and ∂w
∂z

∣∣
z=0

were assumed.

Easy to see, neither the voltage nor the charge are functions of the tube deflection in

this equation. But instead the angle at the edge of the tube ∂w
∂z

∣∣
z=L

defines the charge.

Under the assumption that only the first resonance peak is dominant (this has already
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been assumed in Section 3.2) one can approximate

w|z=L ≈ 1
Kpr

∂w

∂z

∣∣∣∣
z=L

(3.69)

Factor Kpr in turn can be determined via (3.8). Indirect proportionality between these

two domains result in 1
Kpr

≈ W1
dW1
dz

∣∣∣∣
z=L

. Inserting this into (3.68) defines the charge as a

function of the deflection.

qpzt

w

∣∣∣
z=L

≈ d31

sE
11

r̄2 (cos θ2 − cos θ1)Kpr +
s11Eεσ

3 − d2
31

sE
11 (Ro − Ri)

r̄ (θ2 − θ1) LV1 (3.70)

Under the condition that V1 = 0 the relation reduces to:

qpzt

w

∣∣∣
z=L

≈ d31

sE
11

r̄2 (cos θ2 − cos θ1) Kpr (3.71)

Observe that the above relationship is only valid for points at the edge of the tube. By

inserting for the constant values the strain sensitivity constant is

Ss =
qpzt

w

∣∣∣
z=L

= 0.0042[C/m] (3.72)

3.6.2 Measurement units

3.6.2.1 Voltage amplifier

In general, sensors having a charge output can be connected to voltage amplifiers on

conditions that the input resistance of the amplifier is very high. A keen disadvantage of

such an arrangement is the impact of several factors on the output voltage. Besides the

amplifier input-resistance and capacity, the PZT capacity and cable capacities determine

the output signal. (Compare Section 3.6.2.2 where this dependency is not given). Such

a structure is given in Figure 3.12 where a dominant high pass behaviour seems obvious.

In a first approximation only the PZT capacity and the input resistance were taken into

account. For the transfer function and the state space model respectively one can state:

Us(s)
x1(s)

=
Ss

Ck

2πRinCpzts

s + 2πRinCpzt
=

Kss

s + ws

U̇s =
[
−ws

]
Us +

[
Ks

]
x2

y =
[
1
]
Us (3.73)
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Rin 100MΩ
Cpzt 13nF
fcut 0.122Hz
ws 0.769 1/s
Ck 3.43 × 10−7
Ss 0.0042C/m
Ks 2.7 × 105

Table 3.7: Related constants, voltage amplifier

amplifier

Cin

V
Rin

CcableCpztsensor
Us

Figure 3.12: Voltage amplifier at the strain output

3.6.2.2 Charge amplifier

A simple and low cost method to convert a charge into a voltage signal is an operational

amplifier (op-amp) circuitry. In its simplest form only one op-amp is needed. A possible

circuit is illustrated in Figure 3.13.

Rch

Us = − qpzt

Cch

E1

E2

E3
z

x

y

Cch

V

qpzt

Figure 3.13: Charge amplifier at the strain output
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One benefit of this amplifier compared to the one in Section 3.6.2.1 is the independence

of the PZT capacity. A drawback is the high DC-gain which amplifies any bias currents

and most likely leads to an over steering of the op-amp. To avoid this, a resistor Rch

makes sure that a stable ’zero point’ voltage at the output is given. The time constant

τ = Rch Cch determines the lower cut-off frequency which is fcut = 1
2πRchCch . At this point

it should be mentioned that the charge amplifier in the given form is not appropriate for

measuring static charges. By the run of time, the output voltage decreases at a constant

charge input in compliance with the function Us = − q0

Cch
e

−t
RchCch . The amplification factor

at t = 0 is determined by the feedback capacitor Cch and the adjacent charge − qpzt

Cch
. A

corresponding transfer function can be given as:

Us

qpzt
= − 1

Cch

wchs

s + wch
(3.74)

In combination with the strain sensitivity evaluated in (3.72) the transfer function for the

strain sensor is:

Us(s)
x1(s)

= −Ss
1

Cch

wchs

s + wch
=

Kchs

s + w2
(3.75)

whereupon the equivalent state space model is given as:

U̇s =
[
−wch

]
Us +

[
Kch

]
x2

y =
[
1
]
Us (3.76)

Rch 800KΩ
Cch 1μF
fcut 0.1918Hz
wch 1.25 1/s
Ss 0.0042C/m
Kch 5.21 × 103

Table 3.8: Related constants, charge amplifier

3.6.2.3 Charge amplifier with zero offset

In [13] it was suggested to extend the aforementioned charge amplifier to meet the problem

of DC offsets. Equivalent circuit schematics are given in Figure 3.14. Omitting the block
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C(s) the feedback gain tries to nullify the applied voltage Vs to the output Vo. Referring

to [13] the circuit is driven within the bandwidth, ql = Vs Cs and the charge amplifier

has a gain given by Zs(s) only. Control issues for the charge amplifier seem obvious, as

V

Vcc−

Vcc+

Vq

C(s)

Zl(s)

Zs(s) Vo

Vh V+

V−

Figure 3.14: Schematics of the charge amplifier with zero offset

K

C(s) Zl(s)

Zs(s)
1

Zs(s)
Vq

Vh
Vo

Figure 3.15: Block diagram of the charge amplifier with zero offset

good tracking performance and DC regulation at low frequencies is required. The transfer

function of interest appears to be between the applied voltage Vs and the output voltage

Vo. For a capacitive load Zs(s) = 1
Css and Zl(s) = 1

Cls
:

Vo(s)
Vs(s)

=
−KCl

(1 + KC(s)) (Cl + Cs) + KCl
(3.77)

The controller is then designed as a simple integral controller C(s) = α
s . For such a circuit

no tuning is required but the circuit nullifies the DC offset automatically. Figure 3.16

shows an adaption of the DC offset. Additionally to that, the results from Section 3.5.2

where an LMS algorithm is used are presented as well. It happens that the LMS imple-

mentation converges a bit slower but eventually both methods find the correct offset. After

convergence time, experiments show perfect tracking performance at complete suppression
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of DC offsets. The circuit, as schematically given in Figure 3.14, is assembled with simple
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Figure 3.16: Adaption of the DC offset for an LMS and a circuit implementation

operation amplifier wirings (integrator, inverter, subtractor) which can be found e.g. in

[31]. Resistors are chosen in the range from 1KΩ to 100KΩ whereas capacitors are 47nF

to 1μF . A good value for α could be around ≈ 0.001.

3.7 Piezovoltage-amplifier model

To deflect a piezoelectric tube in the range of some μm a voltage in the range of hundreds of

volts is necessary. Of course this depends on the different PZTs in use, but still the voltage

input needs to provide considerably high voltages. This circumstance requires a good

and precise voltage amplifier, which should be linear and also work at high frequencies.

Specifications of the amplifier in use, name the bandwidth with more than 200kHz. Simple

frequency analysis in the lab verify this, when the amplifier is unloaded. However the

frequency response changes as soon as a load is applied. In a first approximation one can

assume the response to be of the first order. Additionally the frequency response changes

as soon as the load is changed. Tests show a dependency between capacitive load and

bandwidth. This relation suggests to imply that the transfer function of the amplifier is

dependent on the load. Such a description makes the transfer function more versatile with

respect to changes in the capacitance of a PZT. To evaluate and determine the generally
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valid transfer function, several tests with different loads were accomplished. The higher

the load becomes, the lower the cut-off frequency is. In Figure 3.17 a frequency response

plot shows the load dependence, the corresponding values are tabulated in 3.9.
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Figure 3.17: Frequency response with different capacitive loads

cut-off frequency [Hz] capacitance load [nF ]
5 × 104 100
6 × 104 81
8 × 104 60
1.2 × 105 47
2 × 105 25
3 × 105 16

Table 3.9: cut-off frequency versus load capacitance

Evaluation of the data above gives a formula for the cut-off frequency and the transfer

function respectively:

famp =
1

200C
[Hz] (3.78)

Ua

Udsp
= Vgain

2πfamp

s + 2πfamp
=

ba

s + aa
(3.79)

Observe that for this application C = Cpzt where Cpzt is assumed as constant. Subsequent

to that the cut-off frequency is given as constant too. The transfer function is defined

as the relation between the amplifier output and the input, which is typically given by

the dSpace module and can either be a control signal or a predetermined waveform. As a

state space model is required for establishing a total PZT-system model, one can define
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the amplifier dynamics in state space form as:

U̇a =
[
−aa

]
Ua +

[
ba

]
Udsp

y =
[
1
]
Ua (3.80)

Cpzt 13nF
famp 300 kHz
wamp 1.885 × 106 1/s
Vgain 20
Kamp 3.76 × 107

Table 3.10: Related constants, piezovoltage amplifier





Chapter 4

Merged system model

In the course of this chapter a total system description of the piezoelectric actuator is set

up. The goal is to fit the separate parts discussed in Chapter 3 into one single state space

model. This includes the sensor dynamics, the amplifier dynamics and the PZT hysteresis

effect as well as the mechanical PZT model itself. At first an electromechanical model is

set up to combine mechanical and hysteresis effects. Later on the additional dynamics of

sensors and the amplifier are added.

4.1 Electromechanical model

4.1.1 Physical background

The piezoelectric tube action is based on the piezoelectric effect as described in Chapter

2 (See also [28] for more information). The dielectric material is technically speaking an

insulator, thus a relation between electric charge and voltage can be found. Additionally

to the relations described by the dielectric effect, another mechanical relation arises when

considering the conversion of the applied force to an expansion in length. Consider Figure

4.1 which displays the changing physical domain within a piezoelectric actuator.

voltage charge force deflection
electr. piezo mech.

Figure 4.1: Block diagram of the physical relations in a piezoelectric actuator

From those observations one can see the piezoelectric effect as a directive of combining

41
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the electrical and mechanical domains.

4.1.2 Hysteresis interrelation

In [24] it was found that there clearly is a hysteresis relation between the applied voltage

and the deflection as well as between the applied voltage and the charge. In contrast to

that, a quite linear relation could be detected between the charge and the deflection. A

possible explanation may be found in the constitutive relations for piezoelectricity (3.64).

In a first approximation one can assume the mechanical stress T to be ≈ 0 compared with

the stalling force, which yields the relation:

S = dE (4.1)

D = ε0E + P (4.2)

ε0 is the natural dielectric permittivity and P the polarisation of the ceramic material.

The piezoelectric ceramic, which is ferroelectric, shows a hysteresis like relation between P

and E. This is achieved via a high polarising field in the final stage of the manufacturing

process, which causes the ceramic to remain in a remanent polarisation. Ionic movement

within the ceramic leads to a change in polarisation and is closely related to the piezoelec-

tric strain. Regarding to the hysteresis between the electric field E and the polarisation

P one can expect a hysteresis like relation between the piezoelectric strain and E.

Measurements approved the theory and corresponding plots are illustrated in Figure

4.2. A moderately linear relation between the charge and the deflection shows Figure

4.2(a). The relation between the applied voltage and the charge is already illustrated in

Figure 3.7 when the hysteresis model parameters were estimated. Figure 4.2(b) displays

the overall relation (applied voltage against displacement), which of course shows nonlinear

behaviour as well as this is just a combination of the two aforementioned relations.

4.1.3 Model schematics

In [19] a quite accurate model was proposed to simulate the overall characteristics of

a piezoelectric actuator. This model was adapted for the lab setup and is given in a

slightly different form in Figure (4.3). For this purpose the hysteresis and piezo effect

are separated. The voltage drop due to hysteresis effects is Uh (which is also dependent

on the charge q) whereas the total applied voltage is Ua. The reverse piezoelectric effect

transforms electrical domains into mechanical ones, which is realized by a simple factor
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Figure 4.2: Almost linear relation between charge and displacement (a), Nonlinear relation
between applied voltage and displacement (b)

n. Factor C is the present capacitance induced by the dielectric material itself. The total

current flowing through the circuit is q̇ where q̇p can be seen as the derivation of the charge

from the mechanical side. However Fp is the transduced force on the electrical side. The

relation between the force Fp and the deflection x is given by the dynamical model Fem.

Consider also the relation of equal electrical and mechanical energy Ut qp = Fp x.

Hyst

Fem

C

Ua

Uh

Ut

q̇

q̇p
qp

Ut

x

Fp

n

Figure 4.3: Electromechanical model of a piezoelectric actuator

Subsequently the set of electromechanical equations for a piezoelectric actuator appears
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to be:

Ua = Uh + Ut (4.3)

q = Hyst(Uh) (4.4)

q = n x + C Up (4.5)

Fp = n Ut (4.6)

x = Fem(Fp) (4.7)

Charge q is determined twice, once by the nonlinearity of the hysteresis (as a function of

Uh) and the other time by the parallel branch with q = qc + qp (Compare Figure (4.3)).

It is composed of qc = C Ut and qp. The operators Hyst and Fem have been part of the

discussion in Section 3.2 and 3.3 and represent the hysteresis model and the mechanical

model respectively. Displayed in block diagram order, the overall electromechanical system

can be considered as follows:

Fem

Hyst n

n

C

Ua Ut

Uh

x

q

Ft x

Figure 4.4: Flow diagram of the PZT electromechanical model

4.2 Linear model

In a first step the system is modelled as a linear model. A good approximation for mod-

elling an actuated PZT, can be achieved by connecting the part models from Chapter 3.

Considering linear relationships only, the hysteresis model is not taken into consideration

but rather a transfer function between the input voltage and the displacement is taken

into account. In details the state space models from (3.17), (3.73), (3.59) and (3.80) yield
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to one total system description:

˙⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ua

x1

x2

Uc

Us

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−aa 0 0 0 0

0 0 1 0 0

blin −a0 −a1 0 0

0 Kc 0 −wc 0

0 0 Ks 0 −ws

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
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⎤
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+

⎡
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0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Udsp

y =

[
0 0 0 1 0

0 0 0 0 1

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Uamp

x1

x2

Uc

Us

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4.8)

The variable x1 signs for the tube’s displacement whereas Uc and Us is the capacitive and

strain sensor signal respectively. One can notice an inappropriate transfer function q(s)
x1(s)

for the mechanical model as now the only input is the applied voltage. Because this model

deals with linear equations only, the relation between applied voltage/ charge is assumed

linear as well and entered in the corresponding function. Parameter blin appears then to be

blin = 3.02. Preceding investigations concerning the linear Kalman filter (Section 5.1) are

treated with discrete time models. To do so the continuous model has to be discretised. A

very rough approximation is given in (4.9) whereas within implementations the MATLAB

function c2d has been used for this conversion.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ua

x1

x2

Uc

Us

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

k+1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 − Taa 0 0 0 0

0 1 T 0 0

Tblin −Ta0 1 − Ta1 0 0

0 TKc 0 1 − Twc 0

0 0 TKs 0 1 − Tws

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ua

x1

x2

Uc

Us

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

k

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T (1 − Taa) ba

0

T 2blinba

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Udsp,k

yk =

[
0 0 0 1 0

0 0 0 0 1

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Uamp

x1

x2

Uc

Us

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

k

(4.9)
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4.3 Nonlinear model

In a second and more sophisticated step the system is modelled as a nonlinear system by

taking the hysteresis effects into account. Therefore (4.4) - (4.7) are rewritten to be ap-

propriate for state space expression. Again the part models given in (3.17), (3.73), (3.59),

(3.30) and (3.80) are used to configure the overall system model. By simply inserting the

different transfer functions the model appears to be:

˙⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ua

Uh

x1

x2

Uc

Us

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ua aa + Udspba

f
(
U̇h

)
x2

Ua b0 n − Uh b0 n − x1 a0 − x2 a1

x1 Kc − Uc ωc

x2 Ks − Us ωs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y =

[
0 0 0 0 1 0

0 0 0 0 0 1

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ua

Uh

x1

x2

Uc

Us

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.10)

The function f(U̇h) depends on the sign of U̇h and is defined as given below:

f(U̇h) =
n x2 + C (Udsp ba − Uaaa)

b + C + αUh (a + C) − αnx1 − αCUa
(4.11)

for U̇h > 0

and

f(U̇h) =
n x2 + C (Udsp ba − Uaaa)

b + C − αUh (a + C) + αnx1 + αCUa
(4.12)

for U̇h < 0

During simulation and implementation tests, the system model as given above turned

out to be quite complex. It clearly does simulate the system behaviour in an excellent

way, but complexity turns out to be a problem. Due to this another, simplified, but still

nonlinear model was consulted. This new model is based on the relations given in (4.4)-
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(4.7) and only slight changes are made. The model is redefined under the assumption that

the charge, which is given by the nonlinear hysteresis (3.31) is the input of the mechanical

model. The mechanical model itself, with charge as the input and displacement as the

output, is again given by (3.17). With respect to this simplified combination of dynamics

the new state space form is given as:

˙⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ua

q

x1

x2

Uc

Us

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ua aa + Udspba

αa |Udspba − Ua aa| Ua − α |Udspba − Ua aa| q + b (Udspba − Ua aa)

x2

q b0 − x1 a0 − x2 a1

x1 Kc − Uc ωc

x2 Ks − Us ωs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y =

[
0 0 0 0 1 0

0 0 0 0 0 1

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ua

q

x1

x2

Uc

Us

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.13)

With almost the same simulation results, this simplified model causes less problems when

it comes to implementation issues. Thus further investigations and extended Kalman

filtering are related to this model.
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Kalman filter

For linear systems the Luenberger observer is a well known tool to estimate unreachable

system states. The theory behind that is that the observer has just to copy the system

and place the intrinsic value on specified points. The fact that input-, output- and state

noise influence the system are not accounted for in that observer, which makes the vector

state estimation more inaccurate. One can ask how we can still get an optimal prediction

of such system states. This can be answered with the theory of the Kalman filter. The

linear Kalman filter is, with respect to stochastic noise parameters, designed to yield an

optimal state prediction. This kind of Kalman filter, which is mainly used to estimate

system states, can even be extended so as to account for changes in the system itself. This

is then called the extended Kalman filter. As the Kalman filter is mainly implemented in

discrete form, the model found in Section 4.3 is used as a reference model in the following.

5.1 Linear Kalman filter

5.1.1 Theory about the Kalman filter

The discrete linear model found in Section 4.3 was used to implement the linear Kalman

filter. To meet the Kalman filter specifications the linear model has to be extended with

the input and output noise. Under further constraints

• the PZT tube displacement is constant over a sampling time period

• the sampling period is constant

the following LTI model can be deduced:

49
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xk+1 = Φxk + Huk + wk

yk = Cxk + vk (5.1)

The vectorial stochastic processes wk (state noise) and vk (output noise) are depicted to

be stationary white noise and uncorrelated. In [5] the Kalman filter equations for model

(5.1) emerge to:

x∗
k = Φx̂k−1 + Huk−1

P∗
k = ΦPk−1ΦT + Q

Kk = P∗
kC

T
(
CP∗

kC
T + R

)−1

x̂k = x∗
k + Kk (yk − Cx∗

k)

Pk = (E − KkC)P∗
k (5.2)

The covariance matrix Q results in:

Q = HQu H (5.3)

The covariance matrix Qu is considered to be the input noise matrix. Additional to

that it is weighted by the input matrix H. That is why H is often also called weighting

matrix . R is defined to be the covariance matrix of the output noise. The Kalman filter

equations (5.2) describe a recursive calculation specification. For the start up at (k = 0)

the equations for x̂k and Pk are not defined. By reason of that the variables x∗
k and P∗

k

have to be well defined in advance to get the Kalman filter going. The variable x∗
k has been

introduced as the predicted estimate value without any consideration of measurements.

With that knowledge we find the best estimation for x∗
0 to be exactly the expected value

of x0.

x∗
0 = E (x0) = m0 (5.4)
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The matrix P∗
k has been assumed to be the covariance matrix of the error of the predicted

estimate value. This yields us to the following:

P∗
0 = E

{
(x∗

0 − x0) (x∗
0 − x0)

T
}

= E
{

(m0 − x0) (m0 − x0)
T
}

(5.5)

Initial states for the PZT actuator are all assumed to be 0. For the P ∗
0 -matrix an appro-

priate choice with fairly possible values is advisable but one can note that this choice is

not highly important for the estimation performance.

x∗
0 =
[
0 0 0 0 0

]
P∗

0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ε 0 0 0 0

0 ε 0 0 0

0 0 ε 0 0

0 0 0 ε 0

0 0 0 0 ε

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(5.6)

Aside from that, a good choice of the matrices Q and R is evident to achieve a satisfying

performance. Considering the equations listed in (5.2) equation 2,3 and 5 comprise calcu-

lations for the Kalman gain Kk . Especially equation 3 is very compute intensive as the

inverse of a matrix has to be calculated. Merging the equations given in (5.2) the simu-

lation block diagram given in Figure 5.1 is supposed. The input noise is mainly caused

z−1H
uk

C

Φ ×

yk

Kk

x̂k

Figure 5.1: Block diagram of the Kalman filter equations

by some finite resolution of the ADC. The input noise variance can be determined via the
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operating limit (±10) and the resolution (16 bit).

LSB =
20
216

σw =
LSB√

16
(5.7)

An evaluation of the output noise signal gives the corresponding variance (Compare Section

5.1.2). Assuming that the input noise as well as the output noise are white noise, the

covariance matrices Qu and R happen to have diagonal entries only.

R =

[
σ2

c 0

0 σ2
s

]
Q = H

[
σ2

w

]
HT (5.8)

It should be mentioned that experimental adjustments showed an even better performance

when the R matrix was slightly changed. For the last entry σ2
s ×0.7 was chosen instead of

σ2
s . A possible reason to that could be some incorrect measurements when the standard

deviation was determined.

5.1.2 Noise properties

To apply the ordinary Kalman filter as described in Section 5.1, according to [3] several

properties have to be fulfilled. Partly already mentioned in Section 5.1.1 the Kalman filter

requires the following noise properties:

1. Stationary noise

Stationarity is given for both the strain and capacitive sensor noise. For display

reasons the noise signal was averaged at every point over a window of 100 data

points. Figure 5.2 illustrates the respective stationary noise signals.

2. White noise

To prove the noise to be white, an autocorrelation seems appropriate. Only a peak at

0 indicates perfect white noise. This cannot be expected but a good approximation

appears for both noise signals. According plots are found in Figure 5.3.

3. Gaussian distributed noise

The Kalman filter gain is optimized for only one distribution peak. If two or more

peak distributions appear, other solutions (like a particle filter) are more appropriate.

The probability density functions (pdf) show roughly Gaussian distribution (Figure

5.4).
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Figure 5.2: Stationary noise for the capacitive sensor (a) and the strain sensor (b)
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Figure 5.3: Autocorrelation functions for (a) capacitive sensor noise and (b) strain sensor
noise. Peaks at 0 indicate approximate uncorrelated signals.
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Figure 5.4: Roughly Gaussian distribution for (a) capacitive sensor noise and (b) strain
sensor noise.

The gained noise data is summed up in Table 5.1. The values for the different matrices

within the linear Kalman filter implementation are summarized again in Table 5.2.

cap. sensor strain sensor
stationary yes yes
white noise yes yes
Gaussian distribution approx. approx.
standard deviation σ 5 × 10−3 3.3 × 10−4

mean value η 1.24 × 10−15 3.01 × 10−19

Table 5.1: Noise data

σc σs σw ε
5 × 10−3 3.3 × 10−4 7.6 × 10−5 0.1

Table 5.2: Summarized parameters for the linear Kalman filter

5.2 Extended Kalman filter

Section 5.1 dealt with linear system equations. This kind of system description does not

pay attention to any nonlinear behaviour of the system. A positive consequence of that is
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that the convenience that the Kalman filter gains can be calculated in advance. Compare

(5.2) and especially equation 2,3 and 5 which are completely isolated from xk and yk. The

negative side becomes apparent when nonlinearities dominate the system. This makes it

impossible to design a linear system description and therewith an appropriate Kalman

filter. But exactly this problem is featured by the extended Kalman filter.

5.2.1 Theory about the extended Kalman filter

For nonlinear applications the Kalman filter theory can be used in 2 different ways. As

the system must be linearized at some point, the question of where and how arise.

• Linearization about a nominal value. If these nominal values are already known

in advance one can pre-compute the linearization along this trajectory. With this,

another linearization during real time is not necessary and real time implementations

become less computation intensive.

• Another way to operate a Kalman filter is to determine the trajectory during com-

putation time. This means the system is linearized with regard to the actual state

vector. An advantage of this method is, that only the state estimation error is in-

cluded in the perturbation. As this error is usually smaller than the one of a nominal

trajectory a better performance is obvious.

• A possibility to earn greater applicability is to also include second order terms. This

results in a higher complexity in computation.

5.2.2 Nonlinear plant

In the following a continuous nonlinear system description as represented in (5.9) is used.

ẋ = f(x, u, t) + w(t)

y(t) = h(x, u, t) + v(t) (5.9)

where the noise related domains are:

Plant noise: Measurement noise:
E {w(t)} = 0 E {v(t)} = 0
E
{
w(t)wT (s)

}
= δ(t − s)Q(t) E

{
v(t)vT (s)

}
= δ(t − s)R(t)

Table 5.3: Comparison of errors depending on the order size
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Implemented for the nonlinear PZT system is the linearization about the estimated tra-

jectory. This means the Taylor series expansion is evaluated with regard to the estimated

trajectory x̂(t). At each step in time a new linearized system description is calculated,

which has to fulfil the condition of observability (explanations on that can be found in e.g.:

[20]). The newly calculated linear matrices F , H are used to calculate the Kalman gain K

and the covariance matrix P . A drawback of this is, as mentioned above the computation

complexity.

5.2.3 Matrix definitions

The sensor signals appear to be the same, which gives the identical R matrix as stated

in the linear Kalman filter description (5.8). Matrix Q can instead not be determined in

the same intuitive way as before. The state variables appear to be different and a new

matrix G is added to weigh the state noise (Compare (5.15)). The displacement and its

derivation are assumed to have no noise. Noise for the states ’applied voltage Uamp’ and

’charge q’ can be determined with adequate measurements. All other state noises are set

to 0. This yields the following state noise covariance matrix Q:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ2
u 0 0 0 0 0

0 σ2
q 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.10)

Initial value definition is done in a similar way as within the linear model. Already

mentioned before, is the influence of these initial values vanishing by the run of time.

For the initial state values x∗
0 and the initial covariance matrix P∗

0 following values were

chosen:

x∗
0 =
[
0 0 0 0 0 0

]
P∗

0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ 0 0 0 0 0

0 λ 0 0 0 0

0 0 λ 0 0 0

0 0 0 λ 0 0

0 0 0 0 λ 0

0 0 0 0 0 λ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.11)
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The values for the different matrices within the extended Kalman filter implementation

are summarized again in Table 5.2.3.

σc σs σu σq λ
5 × 10−3 3.3 × 10−4 3.1 × 10−5 1.6 × 10−8 0.1

Table 5.4: Summarized parameters for the extended Kalman filter

5.2.4 Extended Kalman filter equations

The relevant equations defining the EKF are summed up in (5.12-5.15) (Compare also

[16]). A corresponding block diagram of a possible implementation is illustrated in Figure

5.5.

State estimation:

˙̂x(t) = f(x̂, u, t) + K(t) [y(t) − ŷ(t)] (5.12)

Measurement prediction:

ŷ(t) = h(x̂, u, t) (5.13)

Kalman gain equations:

Ṗ (t) = F1(t)P (t) + P (t)F1(t) + G(t)QGT (t) − K(t)R(t)KT (t)

(5.14)

K(t) = P (t)HT
1 (t)R−1(t) (5.15)

Matrices F1(t) and H1(t) are the approximately linearized matrices of the functions

f(x, u, t) and h(x, u, t) where Section 5.2.5 gives a more detailed explanation of

calculation methodology.

5.2.5 Matrix evaluation

The EKF works as mentioned in the preceding chapter very similar to the linear Kalman

filter. To guarantee such a functionality, linear matrices F and H have to be obtained at
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f(x̂, u, t)

u(t)
1
s

K(y(t) − ŷ(t))

linearize

calculate

kalmangain

y(t)

˙̂x x̂

x̂

x0 P0
F1 H1

Figure 5.5: Block diagram of the extended Kalman filter

each time step. The linearization is done by evaluating the Jacobi matrices:

F1(t) =
∂f(x, u, t)

∂x(t)

∣∣∣∣
x=x̂(t),u=u(t)

(5.16)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1

∂x1

∂f1

∂x2

∂f1

∂x3
. . . ∂f1

∂xn

∂f2

∂x1

∂f2

∂x2

∂f2

∂x3
. . . ∂f2

∂xn

∂f3

∂x1

∂f3

∂x2

∂f3

∂x3
. . . ∂f3

∂xn

...
...

...
. . .

...

∂fm

∂x1

∂fm

∂x2

∂fm

∂x3
. . . ∂fm

∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x=x̂(t),u=u(t)

(5.17)

and

H1(t) =
∂h(x, u, t)

∂x(t)

∣∣∣∣
x=x̂(t),u=u(t)

(5.18)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂h1
∂x1

∂h1
∂x2

∂h1
∂x3

. . . ∂h1
∂xn

∂h2
∂x1

∂h2
∂x2

∂h2
∂x3

. . . ∂h2
∂xn

∂h3
∂x1

∂h3
∂x2

∂h3
∂x3

. . . ∂h3
∂xn

...
...

...
. . .

...

∂hm
∂x1

∂hm
∂x2

∂hm
∂x3

. . . ∂hm
∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x=x̂(t),u=u(t)

(5.19)
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Simulation and experiments

The focus of this chapter is the simulation and hardware implementation of both the linear

and extended Kalman filter. Furthermore appropriate controller schemes will be presented

and tested. A comparison between an uncontrolled and a controlled system will make the

need of a controller, especially at higher frequencies, even more evident. Implementations

of the estimators and controllers are done in the Real Time Workshop for MATLAB. A

dSpace prototype system DS1103 DSP was used for hardware implementations.

6.1 Linear model simulation

6.1.1 Linear Kalman filter

One of the features of a Kalman filter is to estimate different state variables. Above that

it also fulfils a filtering function and processes signals for further use.

Performance of the displacement estimator can be analysed and tested with different

trajectory signals ranging from 170nm to 3.6μm at 0.5 and 50Hz. Figure 6.3 and 6.4

illustrate the estimated displacement and the resulting capacitive sensor signal. Excellent

performance can be observed for both plots at 5 and 50Hz for a displacement of 3.6μm.

Observing Figure 6.4, the meaning and use of a controller becomes indispensable (More on

that in Section 6.1.2). If the displacement range is however minimized to a range of 170nm,

noise problems become more serious. Figure 6.1 demonstrates the filtering performance

and the improved displacement signal. Above that, this implementation does not just

estimate the displacement but also the capacitive and strain sensor signal. The excellent

filtering performance for both sensor signals is shown in Figure 6.1.
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Figure 6.1: Estimation results for the capacitive (a) and strain (b) sensor signal. Both
plots show the measured signal (top) and the estimated equivalent (bottom). Additionally
an offset was added for better clearness. Trajectory in use: ±170nm at 5Hz

6.1.2 Controller

In the preceding chapters emphasis was put on an appropriate form for a feasible controller

design. In (4.9) the system is given in a convenient state space form where all the necessary

states are estimated by means of the Kalman filter. As the sensor states are not needed

for controlling, the system reduces to:⎡
⎢⎢⎢⎢⎣
Ua

x1

x2

⎤
⎥⎥⎥⎥⎦

k+1

=

⎡
⎢⎢⎢⎢⎣
1 − Taa 0 0

0 1 T

Tblin −Ta0 1 − Ta1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
Ua

x1

x2

⎤
⎥⎥⎥⎥⎦

k

+

⎡
⎢⎢⎢⎢⎣
T (1 − Taa) ba

0

T 2blinba

⎤
⎥⎥⎥⎥⎦Udsp,k

yk =
[
0 1 0

]
⎡
⎢⎢⎢⎢⎣
Uamp

x1

x2

⎤
⎥⎥⎥⎥⎦ (6.1)

The number of different and advanced control designs seems endless but nevertheless the

implementation of a state space controller is a good alternative both regarding perfor-

mance and implementation. More exactly a state space controller with an integral part is

implemented to get rid of an eventual steady state deviation from the desired value. For

this purpose an integrator is added to the existing system which leads to the following
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form: ⎡
⎣x

ε

⎤
⎦

k+1

=

⎡
⎣Φ 0

C 0

⎤
⎦
⎡
⎣x

ε

⎤
⎦

k

+

⎡
⎣H

0

⎤
⎦uk

yk = Cxk (6.2)

The control law appears then to be:

uk := −
[
hT hI

] ⎡⎣x
ε

⎤
⎦

k

(6.3)

After fine tuning, the poles were placed at 0.2 where both a good dynamic and overshoot

behaviour could be observed. The total closed loop system including the Kalman filter,

control gains and the system itself are illustrated in Figure 6.2.

z−1rk hI

wk

−ε

hT

Us

Uc

xdispl

x̂

uk
xk+1 = Φxk + Huk + wk

yk = Cxk + vk

Kalman
filter

PZT-system

Figure 6.2: Block diagram of the controlled system

6.1.3 Comparison

For both the open and closed loop system appropriate experiments were conducted to

present the filtering and estimating performance. The same desired trajectories were

applied for both systems to guarantee genuine comparability. Clearly the results of the

closed loop do not show any fluctuations as they are presented within the open loop results

for higher frequencies. Results performed at 5Hz are illustrated in Figure 6.3. The same

experiments at 50Hz are summarized in Figure 6.4.
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(a) open loop, range:±3.6 μm
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(b) closed loop, range:±3.6 μm
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(c) open loop, range:±170 nm
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(d) closed loop, range:±170 nm

Figure 6.3: 5Hz results for the open and closed loop system. Desired trajectories range
from ±170nm to ±3.6μm. All the plots display the capacitive sensor signal (top) and the
estimated displacement (bottom). For clarity an offset was added to the estimated states.
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(a) open loop, range:±3.6 μm
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(b) closed loop, range:±3.6 μm
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(c) open loop, range:±170 nm
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(d) closed loop, range:±170 nm

Figure 6.4: 50Hz results for the open and closed loop system. Desired trajectories range
from ±170nm to ±3.6μm. All the plots display the capacitive sensor signal (top) and the
estimated displacement (bottom). For clarity an offset was added to the Kalman signal.

To numerically verify the resolution improvements, the tracking error has been calcu-

lated for the preceding experiments. Following to [2], the tracking error can be determined

by calculating the rms difference of the displacement and a straight line over 90% of the full

scan range. The measured capacitance displacement and the estimated displacement are

evaluated and compared for different scan rates and ranges. The results for the open loop

experiments are given in Table 6.1. At a lower scan rate (5 Hz) not modelled hysteresis

effects sign for the error at 3.6μm-range where noise dominates the error at 170nm-range.
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Vibrational effects at higher rates (50 Hz) cause then the higher tracking errors.

Open loop tracking error

Frequency Scan Range RMS yc RMS x1

5 Hz 170 nm 6.9 nm 2.4 nm

5 Hz 3.6 μm 7.28 nm 4.97 nm

50 Hz 170 nm 8.42 nm 5.88 nm

50 Hz 3.6 μm 127 nm 95 nm

Table 6.1: Open loop tracking error for different scan rates and displacement ranges.

Equivalent calculations were done for the closed loop experiments. The implemented

controller provides improved performance for all ranges even at higher scan rates (50 Hz).

The left tracking error is mostly caused by vibrational effects not coped by the controller.

The calculated errors are given in Table 6.2.

Closed loop tracking error

Frequency Scan Range RMS yc RMS x1

5 Hz 170 nm 5.3 nm 0.4 nm

5 Hz 3.6 μm 5.28 nm 1.02 nm

50 Hz 170 nm 7.04 nm 2.28 nm

50 Hz 3.6 μm 76.4 nm 9.1 nm

Table 6.2: Closed loop tracking error for different scan rates and displacement ranges.

6.2 Nonlinear model simulation

6.2.1 Extended Kalman filter

The investigations described in Section 5.2 were implemented in the ’Realtime’ Workshop

as well. In the following the same experiments as listed in Section 6.1 were executed for

the extended Kalman filter as well (Figure 6.7). Measurements for both the capacitive

and strain sensor signal and their respective Kalman estimates are given in Figure 6.5.

Similar to the linear implementation a good filtering performance is also obtained by the

extended model.
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Figure 6.5: Estimation results for the capacitive (a) and strain (b) sensor signal. Both
plots show the measured signal (top) and the estimated equivalent (bottom). Additionally
an offset was added for better clearness. Trajectory in use: ±180nm at 5Hz

Another intention for the use of a Kalman filter was its ability of sensor fusion. The

information provided by the two measurement signals should be utilized in an optimal

way. These expectations in combination with the filtering features were sufficiently met

and illustrated in Figure 6.6.
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Figure 6.6: Sensor fusion done by the Kalman filter. (a) shows the total range. (b) is a
zoomed area around the turning point.
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(a) range:±170 nm, rate:5 Hz
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(b) range:±170 nm, rate:50 Hz
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(c) range:±3.6 μm, rate:5 Hz
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(d) range:±3.6 μm, rate:50 Hz

Figure 6.7: Results for the open loop systems. Desired trajectories range from ±170nm
to ±3.6μm at a frequency of 5Hz and 50Hz. All the plots display the capacitive sensor
signal (top) and the estimated displacement (bottom). For clarity an offset was added to
the estimated states.

The tracking error evaluation is done in a similar way as suggested in Section 6.1.3.

Hysteresis effects are now included in the model which does not change the error at

small scan ranges (170 nm) or at higher rates (50 Hz) (Here the vibrational effects are

dominating the error and not the hysteresis). The error at 5Hz at 3.6 μm scan range is

again dominated by the hysteresis thus a better system model guarantees a lower tracking

error (Compare the tracking error of the linear modle given in Table 6.1 at the same rate

and range). In fact the error value is minimized but not dramatically which suggests
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further improvements in modelling the appearing nonlinear effects.

Open loop tracking error

Frequency Scan Range RMS yc RMS x1

5 Hz 170 nm 5.69 nm 1.9 nm

5 Hz 3.6 μm 6.98 nm 4.48 nm

50 Hz 170 nm 8.05 nm 4.9 nm

50 Hz 3.6 μm 132 nm 90 nm

Table 6.3: Open loop tracking error for different scan rates and displacement ranges.
Nonlinear system

6.2.2 Controller

In the following a possible control scheme [7] is presented, which has been simulated with

success but has not been tested in the lab so far. Therefore no guarantee of function

can be given, but interesting design aspects for a hardware controller implementation are

described and discussed.

6.2.2.1 Problem statement

The system of interest is already appropriate presented in (4.13). The sensor dynamics

are now omitted as the system’s transfer function is just from the voltage input to the

displacement. For the sake of simplicity the system is rewritten in canonical form:

xn +
r∑

i=1

aiYi

(
x(t), ẋ(t), ..., x(n−1)(t)

)
= b0 w (v(t)) (6.4)

where w (v(t)) describes the nonlinearity with the applied voltage as an input and the

charge as the output. (Compare also Figure 3.7). The objective is to find a control law

for the input v(t) in order that the systems’ state vector x = [x ẋ] follows the desired

trajectory xd = [xd ẋd] in the best possible way (e.g.: x → xd).
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6.2.2.2 Adaptive control law

Following to (3.32) the hysteresis is expressed in a linear form with signal v(t) and the

boundary d(v). Under consideration of this, the total system can be rewritten as:

xn +
r∑

i=1

aiYi

(
x(t), ẋ(t), ..., x(n−1)(t)

)
= b0 av(t) + b0 d(v(t)) (6.5)

resulting in a linear relation for the input v(t). Restrictions are given by (3.34) and (3.35)

which require a boundary such that:

||d(v)|| ≤ ρ (6.6)

In order to apply a suitable control law following assumptions are made:

• The mechanical model parameter b0 has some known boundaries [b0 min b0 max].

• The hysteresis parameter a has some known boundaries [amin amax]. a is defined

as a design parameter for the hysteresis loop and determines the hysteresis slope.

Under considerations of the adaption algorithm some good values for [amin amax]

can be found.

• A new vector θ is defined and corresponds to [(a1/ba) (a0/ba)]. From definitions

above the boundaries can be defined as [θmin θmax].

• The boundary given in (6.6) is known.

• The desired trajectory xd = [xd ẋd] is continuous and available.

For better understanding and easier writing the following definitions are made:

• x̃ is the tracking error vector and defined as: x̃ = x− xd

• θ̂ is an estimate of θ defined in assumption 2 above. θ̃ is then the respective error

θ̃ = θ̂ − θ.

• φ is defined as φ = (bc)−1 where φ̂ is again the estimate. The error is expressed as

φ̃ = φ̂ − φ.
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Furthermore the filtered tracking error is defined as:

s(t) =
(

d

dt
+ λ

)(n−1)

x̃(t) (6.7)

s(t) = ΛT x̃(t) with ΛT = [λ 1] (6.8)

Instead of driving the controller with the tracking error another ’tuning error’ is intro-

duced.

sε = s− ε sat
(s

ε

)
(6.9)

Parameter ε can be chosen arbitrary but positive. It should be noted that the tuning error

disappears when the tracking error is smaller than the chosen ε. Under the aforementioned

assumptions and abbreviations a control law for the system model given in (6.5) can be

presented as follows:

v(t) = −kd s(t) + Φ̂ ufd(t) + YT (x)Θ̂ − ks sat
(s

ε

)
(6.10)

ufd(t) = x(n)
d (t) − κT x̃(t) (6.11)

˙̂Θ = Proj
(
Θ̂,−γY(x)sε

)
(6.12)

˙̂
φ = Proj

(
φ̂,−η ufd sε

)
(6.13)

For the Proj.-operators introduced above knowledge about some boundary values (given

in the assumptions) is necessary. The operator Proj
(
θ̂,−γY(x)sε

)
is defined as follows:

Proj
(
θ̂,−γY(x)sε

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if
[
θ̂i = θimax and γ (Y sε)i < 0

]
−γ (Y sε) , if

[
θimin < θ̂i < θimax

]
or
[
θ̂i = θimax and γ (Y sε)i ≥ 0

]
or
[
θ̂i = θimax and γ (Y sε)i ≤ 0

]
0, if

[
θ̂i = θimin and γ (Y sε) > 0

]
(6.14)
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In a similar way operator Proj
(
φ̂,−η ufd sε

)
is:

Proj
(
φ̂,−η ufd sε

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if
[
φ̂i = φi max and − η ufd sε < 0

]
−η ufd sε, if

[
φi min < φ̂i < φi max

]
or
[
φ̂i = φi max and − η ufd sε ≥ 0

]
or
[
φ̂i = φi max and − η ufd sε ≤ 0

]
0, if

[
φ̂i = φi min and − η ufd sε > 0

]
(6.15)

6.2.2.3 Choice of design parameters

Choice of ε Parameter ε defines the saturation function and can principally be

chosen freely without any constraints. But if it becomes too small, the linear region

defined by s/ε (See Figure 6.8) will be even smaller and chattering phenomena are very

likely. This inhibits somehow a trade-off between small but still large enough to avoid

chattering. For implementations, ε was chosen around ε ≈ 0.01.

ε−ε s/ε

1

−1

sat
( s

ε

)

Figure 6.8: Saturation function with the linear area defined by s/ε

Choice of γ, η The two parameters γ and η determine the adaption time of the

Proj.-operators. As the initial values for both θ and φ seem to be well known, no fast

adaption is necessary. A good value around ≈ 0.5 turned out to be a good choice.

Choice of ks ks is one of the control gains and is mostly used to compensate the

hysteresis bound d(v). Therefore ks should fulfil ks ≥ ρ/amin, where ρ is given in (6.6)
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above. With ρ = 7.72 × 10−8 and amin = 1.6 × 10−8 the resulting gain is ks = 4.82.

Choice of kd Another control gain is kd which assesses the filtered tracking error.

No certain constraints are given for this but fine tuning should be done experimentally. A

gain with adequate tracking performance was found somewhere around kd ≈ 30.

Choice of λ Concerning the design parameter λ given in (6.8) no special calculation

specification is given. In practice this means fine tuning is done experimentally. To get an

idea of the size of λ, analysis of the mechanical system can obtain various factors limiting

the parameter λ. In general three different factors are taken into consideration [29]:

• Resonant mode: λ should be lower than the lowest un-modelled resonance fre-

quency fR.

λ ≤ λR ≈ 2π
3

fR (6.16)

• Neglected time delay: Similar to above, the lowest un-modelled time delay (e.g.

in some of the actuators or sensors) limits λ as follows:

λ ≤ λD ≈ 1
3TD

(6.17)

• Sampling rate: The sampling rate of the system defines another upper border for

λ:

λ ≤ λS ≈ 1
5TS

(6.18)

λ appears then to be the minimum of the three upper limits λR, λD, λS . Equation (6.16)

accounts on the mechanical properties, whereas (6.17) reflects the time delays and (6.18)

depends on the sampling time. For the system in account this leads to the following

limitations:

λR = 7129 λD = not specified λS = 2000 (6.19)

For final implementations λ was chosen around 1500.

The summarized design parameters for the applied adaptive control are listed again

in Table 6.4. As some values are ascertained experimentally, this listing does not claim

perfect tuned values but rather gives a good possibility of choice.
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ε γ η ks kd λ

0.01 0.5 0.5 4.82 30 1500

Table 6.4: Design parameters for the adaptive controller

6.2.3 Simulation results

The controller was tested in simulation for a triangle signal at diverse amplitudes and

frequencies. For all tests promising results were attained. Figure 6.9 shows the desired

trajectory and the real displacement respectively.
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Figure 6.9: Tracking performance of the adaptive controller for ±1μm at 5Hz
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Evaluation

Niemals geht man so ganz, irgendwas

von mir bleibt hier.

Trude Herr

7.1 Summary of results, Conclusions

The main focus of this thesis was the improvement of resolution for a PZT actuator setup.

This can be done either way on the mechanical and electrical side.

The mechanical design was slightly changed and adapted to the latest perceptions. In

a preceding work [32] some problems concerning a too low resonance frequency turned

up. The reasons for that were the rather compliable plastic fixture of the PZT and the

heavy brass cube on the top of the tube. This has been rebuilt with a much lighter

aluminium cube and another aluminium disc at the bottom. These upgrades raised the

first resonance frequency to a frequency approx. 3 times higher than in [32]. Regarding

vibrational damping, a rubber elastic board (as used in [32]) was replaced by a new air

dampened table which ensures better vibrational damping from external sources.

The second and main part of this thesis covered the topic of a Kalman filter implemen-

tation to gain the PZT displacement resolution. Needed for such an implementation is a

system description, most likely in state space form so as to integrate the Kalman filter in

a most convenient way. In the course of this work, at first the individual partial models

of the amplifier, capacitance and strain sensors, piezoelectric tube, hysteresis effects and

creep effects were presented and then combined to a total system. Stressed out at this

point should be the excellent compliance between the mechanical model (based on physi-

73
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cal relations) and the measured one. This indicates the succeeding improvements done on

the mechanical side of the lab setup. Two different PZT systems were investigated. At

first a linear model was presented, and based on this model the linear Kalman filter was

designed. A number of experiments obtain excellent estimation of the tube’s displacement.

Furthermore a state space controller concluded the work with the linear model. With this

the appearing fluctuations at higher frequencies were successfully decreased.

In a second step the nonlinear system model was designed. For this the hysteresis

effects of the PZT were incorporated and another extended model has been presented.

Two different hysteresis models were presented, where [9] suggested a suitable model

description. Parameters for this model were both approximated and calculated by means

of an RLS algorithm. Due to nonlinearities, the previous linear Kalman filter could not

be used anymore. An extended Kalman filter tackled the new system. Also with this

implementation satisfying results were attained. Eventually a robust controller developed

on the nonlinear model should care for the requisite tracking. Unfortunately this was

simulated only and not tested with the real hardware. But still promising simulations

show a well-operating system combining the estimation and control issues.

7.2 Further work

Although the results given in the preceding chapters are quite satisfactory, several im-

provements can be suggested. By providing an even more detailed system model, the

Kalman filter performance can be raised to a next level. In details a higher order me-

chanical model, creep effects (as presented in Section 3.4), cross correlations or additional

sensors should be discussed. Furthermore the controller schemes presented within Chap-

ter 6 were a rather coarse approach. Especially the robust controller can be modified and

should be tested under real conditions. Many different articles dealt with this topic and

the presented results promise further improvements concerning the resolution. Another

topic of further investigations is the cross correlation. Influences on that have not been

part of this thesis and need to be analysed . This could be a next step for further research.
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Appendix A

IFAC Abstract

At the department of cybernetics at NTNU a paper on tracking control for piezoelectric

nanopositioners was suggested for the IFAC Symposium on Mechatronic Systems 2010

and the ASME Dynamic Systems and Control Conference 2010. This paper was partly

inspired by this thesis. An abstract can be found in the following.
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Tracking Control for a Piezoelectric Nanopositioner using Estimated

States and Feed-forward Compensation of Hysteresis

Arnfinn Aas Eielsen (eielsen@itk.ntnu.no)
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Nanopositioning stages utilizing piezoelectric actuators exhibit several undesired features

inhibiting good reference tracking performance. The most salient features are lightly

damped mechanical resonances, hysteresis, and creep. In addition, sensor noise limits the

resolution achievable when applying closed-loop control schemes.

In order to improve the precision, and for sensor fusion, when using closed-loop control,

we develop a non-linear state estimator using the extended Kalman filter. Furthermore we

propose a novel method for compensating the hysteric behavior in piezoelectric actuators

when tracking a reference trajectory, and present a method for online identification of

the parameters of the system, aiming for simplicity and ease of implementation. The

backstepping framework is used to obtain an adaptive control law and to analyze stability

and boundedness of the tracking error.

Experimental results are presented in order to assess the performance of the proposed

control scheme on a flexure-based nanopositioner using piezoelectric actuators.
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